
An Investigation into Exact Methods for the
Continuous p−Centre Problem and its Related

Problems

A thesis submitted to the University of Kent in the subject of

management science for the degree of Doctor of Philosophy

by

Becky Callaghan

2016

Synopsis

This thesis will analyse, investigate and develop new and interesting ideas to optimally

solve a location problem called the continuous p−centre problem. This problem wishes

to locate p facilities in a plane or network of n demand points such that the maximum

distance or travel time between each demand point and its closest facility is minimised.

Several difficulties are identified which are to be overcome to solve the continuous

p−centre problem optimally. These relate to producing a finite set of potential facility

locations or decreasing the problem size so that less computational time and effort is

required. This thesis will examine several schemes that can be applied to this location

problem and its related version with the aim to optimally solve large problems that

were previously unsolved.

This thesis contains eight chapters. The first three chapters provide an introduc-

tion into location problems, with a focus on the p−centre problem. Chapter 1 begins

with a brief history of location problems, followed by the various classifications and

methodologies used to solve them. Chapter 2 provides a review of the methods that

have been used to solve the p−centre problem, with a focus on the continuous p−centre

problem. An overview of the location models used in this research is given in Chapter

3, alongside an initial investigative work.

The next two chapters enhance two well-known optimal algorithms for the continu-

ous p−centre problem. Chapter 4 develops an interesting exact algorithm that was

first proposed over 30 years ago. The original algorithm is reexamined and efficient

neighbourhood reductions which are mathematically supported are proposed to im-

prove its overall computational performance. The enhanced algorithm shows a sub-

stantial reduction of up to 96% of required computational time compared to the original

algorithm, and optimal solutions are found for large data sets that were previously un-

solved. Chapter 5 develops a relatively new relaxation-based optimal method. Four

mathematically supported enhancements are added to the algorithm to improve its

efficiency and its overall computational time. The revised reverse relaxation algorithm

yields a vast reduction of up to 87% of computational time required, which is then used

i

to solve larger data sets where n ≤ 1323 optimally.

Chapter 6 creates a new relaxation-based matheuristic, called the relaxed p′ matheuris-

tic, by combining a well-known heuristic and the optimal method developed in Chapter

5. The unique property of the matheuristic is that it deals with the relaxation of facil-

ities rather than demand points to establish a sub-problem. The matheuristic yields a

good, but not necessarily optimal, solution in a reasonable time. To guarantee optimal-

ity, the results found from the matheuristic are embedded into the optimal algorithms

developed in Chapters 4 and 5.

Chapter 7 adapts the optimal algorithm developed in Chapter 5 to solve two related

location problems, namely the α−neighbour p−centre problem and the conditional

p−centre problem. The α−neighbour p−centre problem is investigated and solved

where α = 2 & 3. A scenario analysis is also conducted for managerial insights by

exploring changes in the number of facilities required to cover each demand point.

Furthermore, an existing algorithm for the conditional p−centre problem is enhanced

by incorporating the optimal algorithm proposed in Chapter 5, and it is used to solve

large data sets where the number of preexisting facilities is 20. This chapter therefore

demonstrates that an algorithm developed in this research can be adapted or used to

enhance existing algorithms to optimally solve more practical and challenging related

location problems.

Finally, Chapter 8 summarises the findings and main achievements of this research,

and outlines any further work that could be worthwhile exploring in the future.

ii

Acknowledgments

I would like to express my gratitude to the people who helped me in this great achieve-

ment. I would firstly like to thank EPSRC for their generous funding for this research

project, as without them the completion of this Ph.D. would not have been possible.

Secondly, I would like to show my sincerest gratitude to my first supervisor, Pro-

fessor Säıd Salhi. His brilliant guidance helped me understand and master key skills,

and his limitless patience and understanding kept me motivated, especially in times

where I lacked confidence. He always had time to talk through ideas, offer insightful

suggestions and to give invaluable feedback. I am very thankful for all his hard work.

I would also like to thank my second supervisor, Doctor Gábor Nagy. He was a great

support, and always offered alternative viewpoints so that my work could progress in

interesting directions. He was also the one who suggested studying for a Ph.D., and

showed faith that I could achieve it.

I would like to show my gratitude to my entire family, who showed endless support

for my studies. I would especially like to thank my father, Doctor Peter Callaghan,

who often took much time to speak about my research with me, understand it and

offer interesting observations and advice. I would also like to thank my partner, Kyle

Brown, who supported me in many ways through the most challenging part of the

research.

I also wish to express my thanks to the Business School at The University of Kent,

who helped me complete my Ph.D. by offering support, understanding and kindness

towards my disability. I am very grateful and proud to be part of this school in the

university.

I would also like to thank God, whom I believe did not only give me the strength

and opportunity to do this research, but also supplied me with the support network

mentioned above whom I am very grateful for.

iii

Contents

Synopsis i

Acknowledgments iii

Chapter 1 Introduction to Location Problems 1

1.1 Introduction . 1

1.2 Research Investigation . 1

1.3 A Brief History of Location Analysis with a Focus on Centre Problems 3

1.4 Classification of Location Problems with a Focus on Centre Problems . 5

1.5 An Overview of Methodologies used for Location Problems 9

1.5.1 Exact Methods . 10

1.5.2 Heuristic Methods . 12

1.5.3 Integrating Exact and Heuristic Methods 15

1.6 Summary . 16

Chapter 2 A Literature Review of Location Problems with a Focus

on the Continuous P−Centre Problem 17

2.1 Introduction . 17

2.2 Literature Investigated & Applied in this Research 17

2.2.1 Introduction . 18

2.2.2 Heuristic Methods . 18

2.2.3 The Elzinga-Hearn Algorithm (The Single Facility Problem) . . 21

2.2.4 Optimal Methods for the p−centre Problem 22

2.2.5 Location Problems Related to the p−centre Problem 25

2.3 Related Literature . 29

2.3.1 The Discrete p−Centre Problem 30

2.3.2 Metaheuristic Methods for the p−Centre Problem 34

2.3.3 Real Life Applications . 35

2.3.4 Other Inspirational Literature 38

2.4 Summary . 43

Chapter 3 Methodology and First Investigative Results 44

3.1 Introduction . 44

3.2 Location Models . 44

iv

3.2.1 The Set Covering Problem . 45

3.2.2 The P−Centre Problem . 46

3.3 Initial Research . 50

3.3.1 Preliminary Experiments with Heuristic Methods 50

3.3.2 The Upper Bound’s Effect on the Duality Gap 54

3.3.3 The Corridor Method . 56

3.4 Summary . 60

Chapter 4 An Enhanced Implementation of Drezner’s Exact Method 62

4.1 Introduction . 62

4.2 Z−maximal Circles . 62

4.2.1 Introduction and Definitions . 62

4.2.2 Drezner’s Optimal Algorithm 63

4.3 Initial Results . 66

4.3.1 Results using Drezner’s suggested formulations 67

4.3.2 Modification of the Covering Problem (Enhancement Zero) . . . 67

4.3.3 Results using Forpc . 68

4.3.4 Interesting Observations . 70

4.4 The Z−Maximal Circles-Based Enhancements 72

4.4.1 Enhancement One: EHA-Based Implementation 73

4.4.2 Enhancement Two: Efficiently Recording Z−maximal Circles . 75

4.4.3 Enhancement Three: Fast Identification of some Non−Z−maximal

Circles . 77

4.4.4 Enhancement Four: Identifying the Non−Z−maximal Circles . 80

4.5 Analysing the Z−Maximal Circles-Based Enhancements 81

4.6 The Complete Revised Optimal Algorithm 83

4.7 Computational Results . 84

4.8 A Compromise Solution in CPLEX . 87

4.8.1 An Adaptive CPLEX Policy . 90

4.8.2 Results with the Adaptive CPLEX Policy 92

4.8.3 The Adaptive CPLEX Policy where µ = 1 94

4.9 Overall Computational Results . 95

4.9.1 Scenario One: Results using the TSP-Library data sets 95

4.9.2 Scenario Two: Results using our new generated data sets 99

v

4.10 Summary . 102

Chapter 5 Relaxation-Based Algorithms for the Continuous P−Centre

Problem 103

5.1 Introduction . 103

5.2 Relaxation Algorithms . 103

5.3 An Enhancement-Based Algorithm . 107

5.3.1 A Deterministic Generator for the Initial Subset 108

5.3.2 An Efficient Scheme for Adding Demand Points 115

5.3.3 Jump-Based Lower Bound Update 119

5.3.4 A Dynamic Scheme for the Determination k 126

5.4 The Enhanced Reverse Relaxation Algorithm & Overall Results 128

5.5 Summary . 134

Chapter 6 A Facility-Based Relaxation Algorithm 135

6.1 Introduction . 135

6.2 A New Matheuristic . 135

6.2.1 Overview . 135

6.2.2 The Voronoi Diagram-Based Method 137

6.2.3 The Simpler Neighbouring Facilities Method 140

6.2.4 The Relaxed p′ Matheuristic . 142

6.3 Initial Implementation & Observations 144

6.4 Changing the Neighbourhood of FSub 146

6.4.1 A Randomly Generated Neighbourhood (Variant (a)) 146

6.4.2 A Deterministically Generated Neighbourhood (Variant (b)) . . 147

6.4.3 Generating a Neighbourhood using Alternating Methods

(Variant (c)) . 149

6.4.4 The Enhanced Relaxed p′ Matheuristic & Diversification 150

6.5 The Enhanced Relaxed p′ Matheuristic Results 152

6.5.1 Allowing Changing Neighbourhoods & Incorporating the Diver-

sification Method . 152

6.5.2 Integrating the Relaxed p′ Matheuristic with the Optimal Meth-

ods - Initial Results . 154

6.5.3 Computational Results for Larger Instances 156

6.6 Summary . 162

vi

Chapter 7 Relaxation-Based Method to Related p−Centre Problems:

Formulations & Managerial Insights 163

7.1 Introduction . 163

7.2 The α− Neighbour p−Centre Problem 163

7.2.1 Introduction . 163

7.2.2 Adapting ERRA for the α−Neighbour p−Centre Problem . . . 164

7.2.3 Computational Results . 169

7.2.4 The Variable α−neighbour p−centre Problem 175

7.3 The Conditional p−centre Problem . 179

7.3.1 Introduction . 179

7.3.2 The Algorithms . 179

7.3.3 Computational Results . 183

7.4 Summary . 185

Chapter 8 Conclusions and Suggestions 187

8.1 Conclusion . 187

8.2 Further Research Suggestions . 190

vii

List of Tables

Chapter 1 1

1.1 The classification of the p−centre problem investigated in this research 9

Chapter 3 44

3.1 Results for the Heuristic Investigation where n = 100 53

3.2 Results for the Duality Gap Investigation for MSDA (DV = 0%) . . . 55

3.3 Results for the Duality Gap Investigation for MSEHA (DV = 0%) . . 55

3.4 Angle vs. Corridor (n = 439) . 60

3.5 Angle vs. Corridor (n = 575) . 60

Chapter 4 62

4.1 Initial Results for n = 439 TSP-Lib . 69

4.2 Initial Results for n = 575 TSP-Lib . 69

4.3 Comparing CPU Times (in secs) for Drezner’s optimal method with and

without Enh1 (n = 439) . 74

4.4 Number of Z−maximal circles required & previously identified for the

first 10 iterations (n = 439, p = 100) . 75

4.5 n = 439 TSP-Lib with Enhancements 86

4.6 n = 575 TSP-Lib with Enhancements 86

4.7 Original vs. Revised Drezner’s algorithm for n = 439 TSP-Lib and

n = 575 TSP-Lib . 87

4.8 CPLEX Durations (secs) for both the total and the last iteration in the

case of n = 575 TSP-Lib . 88

4.9 n = 575 TSP-Lib with Enhancements and Adaptive CPLEX Policy . . 93

4.10 Results for n = 439 TSP-Lib with Enhancements and the Adaptive

CPLEX Policy where µ = 1 . 94

4.11 Results for n = 575 TSP-Lib with Enhancements and the Adaptive

CPLEX Policy where µ = 1 . 95

4.12 Results for n = 575 TSP-Lib using Enhancements and CPLEX Adaptive

Policy starting from Best Heuristic Value 96

viii

4.13 Results for n = 783 TSP-Lib using Enhancements and CPLEX Adaptive

Policy starting from Best Heuristic Value 96

4.14 Results for n = 1002 TSP-Lib using Enhancements and CPLEX Adap-

tive Policy starting from Best Heuristic Value 97

4.15 Results for n = 1323 TSP-Lib using Enhancements and CPLEX Adap-

tive Policy starting from Best Heuristic Value 98

4.16 Results for the generated data set where n = 400 using the Revised

Drezner’s Algorithm . 100

4.17 Results for the generated data set where n = 600 using the Revised

Drezner’s Algorithm . 101

4.18 Results for the generated data set where n = 800 using the Revised

Drezner’s Algorithm . 101

Chapter 5 103

5.1 Initial Results for the Binary and Reverse Relaxation Algorithms where

n = 439 . 107

5.2 Results comparing the Reverse Relaxation Algorithm with and without

SubE1 . 114

5.3 Results for the Reverse Relaxation Algorithm without enhancements,

with AddE2 and with SubE1 & AddE2 where n = 439 119

5.4 Results for the Reverse Relaxation Algorithm with SubE1 & AddE2

with and without JumpE3, where n = 439 and jump = 2 121

5.5 Results for the Reverse Relaxation Algorithm with SubE1, AddE2, JumpE3⊥

where n = 439, k = 4, jump = 2 and jump = 5 124

5.6 Results for the Reverse Relaxation Algorithm with SubE1, AddE2 &

DyJumpE3⊥ where k = 4 . 126

5.7 Results for the Reverse Relaxation Algorithm with SubE1, AddE2, DyJumpE3

& PointE4 (n = 439) . 128

5.8 Results for TSP-Lib rat575 using the Enhanced Reverse Relaxation Al-

gorithm . 130

5.9 Results for TSP-Lib rat783 using the Enhanced Reverse Relaxation Al-

gorithm . 130

ix

5.10 Results for TSP-Lib pr1002 using the Enhanced Reverse Relaxation Al-

gorithm . 131

5.11 Results for TSP-Lib rl1323 using the Enhanced Reverse Relaxation Al-

gorithm . 131

5.12 Solutions for the generated data set where n = 400 using the Enhanced

Reverse Relaxation Algorithm . 132

5.13 Solutions for the generated data set where n = 600 using the Enhanced

Reverse Relaxation Algorithm . 133

5.14 Solutions for the generated data set where n = 800 using the Enhanced

Reverse Relaxation Algorithm . 133

Chapter 6 135

6.1 First results using the relaxed p′ matheuristic for pr439 144

6.2 Results for the Relaxed p′ Heuristic for pr439 with Changing Neighbour-

hood (Variant (a) and the Diversification Method (Divmax = 10)) . . . 152

6.3 Results for the Relaxed p′ Heuristic for pr439 with Changing Neighbour-

hood (Variant (b) and the Diversification Method (Divmax = 10)) . . . 153

6.4 Results for the Relaxed p′ Heuristic for pr439 with Changing Neighbour-

hood (Variant (c) and the Diversification Method (Divmax = 10)) . . . 153

6.5 Total Computational Time Spent Finding the Optimal Solution with

and without using the Relaxed p′ Matheuristic 155

6.6 Results found for rat575 using the Relaxed p′ Matheuristic 157

6.7 Results found for rat783 using the Relaxed p′ Matheuristic 157

6.8 Results found for pr1002 using the Relaxed p′ Matheuristic 158

6.9 Results found for rl1323 using the Relaxed p′ Matheuristic 159

6.10 Results found for the generated data where n = 400 using the Relaxed

p′ Matheuristic . 160

6.11 Results found for the generated data where n = 600 using the Relaxed

p′ Matheuristic . 160

6.12 Results found for the generated data where n = 800 using the Relaxed

p′ Matheuristic . 161

Chapter 7 163

7.1 Results for the 2−neighbour p−centre problem for pr439 using AERRA 170

x

7.2 Results for the 3−neighbour p−centre problem for pr439 using AERRA 171

7.3 Sensitivity analysis when solving the α−neighbour p−centre problem

where n = 439 and α = 1, 2 & 3 . 172

7.4 Results for the α−neighbour p−centre problem for rat575 and α = 2 & 3 173

7.5 Results for the α−neighbour p−centre problem for rat783 and α = 2 & 3173

7.6 Results for the α−neighbour p−centre problem for pr1002 and α = 2 & 3174

7.7 Results for the α−neighbour p−centre problem for rl1323 and α = 2 & 3 174

7.8 Results for the variable α−neighbour p−centre problem for pr439 . . . 177

7.9 Results for the variable α−neighbour p−centre problem for rat575 . . . 177

7.10 Results for the variable α−neighbour p−centre problem for rat783 . . . 178

7.11 Results for the variable α−neighbour p−centre problem for pr1002 . . . 178

7.12 Results for the variable α−neighbour p−centre problem for rl1323 . . . 178

7.13 Results for the conditional p−centre problem for pr439 where q = 10 & 20184

7.14 Results for the conditional p−centre problem where q = 20 185

xi

List of Figures

Chapter 1 1

1.1 Classes of location problems where the bold line indicates our research

path . 2

1.2 Torricelli Points and Simpson Lines . 3

Chapter 3 44

3.1 Distribution for the generated data where n = 100 52

3.2 Heuristic solution values compared to the optimal solution value 54

3.3 The corridor for points P1 and P2. 57

Chapter 4 62

4.1 Drezner’s Original Algorithm (Drezner (1984a)) 65

4.2 The FMC Algorithm . 66

4.3 Comparing time spent to calculate Z−maximal circles, the cplex solu-

tion and other calculations . 71

4.4 Distribution for pr439 and rat575 from TSP-Lib 71

4.5 Illustrative Example for Enh3 . 78

4.6 Checking Area for circle Cj . 79

4.7 Enhancement’s Individual Improvements 81

4.8 Comparison on CPU Time for the Enhancements 82

4.9 The FMC-Revised Algorithm . 84

4.10 Drezner Enhanced Algorithm (DEA) 85

4.11 Average computational time % in CPLEX per iteration vs. last iteration

for rat575 . 88

4.12 Distributions where n = 400 . 99

4.13 Distributions where n = 600 . 99

4.14 Distributions where n = 800 . 99

4.15 Average computational time for generated clustered, semi-clustered and

randomly distributed data sets . 102

xii

Chapter 5 103

5.1 Classic Relaxation based on Chen & Chen (2009: 1648) 104

5.2 Reverse Relaxation based on Chen & Chen (2009: 1649) 105

5.3 Binary Relaxation based on Chen & Chen (2009: 1650) 106

5.4 Initial subset for n = 439, p = 50, k = 5 108

5.5 Initial Subset Algorithm (SubE1) . 111

5.6 Illustrative example of SubE1 . 112

5.7 Initial subset for n = 439, p = 50 using SubE1 113

5.8 Critical points for the optimal solution for n = 439, p = 50 113

5.9 Observation 1 . 114

5.10 Adding k furthest demand points example 116

5.11 Construction of an artificial circle with radius Z 117

5.12 Point Selection Algorithm (AddE2) . 118

5.13 Checking which bound is optimal (jump = 2) 120

5.14 Iterations saved for jump = 2, 5 where δ = 1, . . . , 15 122

5.15 Jumping back demonstration where jump = 5 124

5.16 The Enhanced Reverse Relaxation Algorithm (ERRA) 129

5.17 Average computational time for generated clustered, semi-clustered and

randomly distributed data sets . 134

Chapter 6 135

6.1 The new matheuristic targets specific facilities in the feasible solution

and optimally solves the sub-problem 136

6.2 A Voronoi diagram example . 137

6.3 The relationship between Delaunay Triangulation and the Voronoi Polygon138

6.4 The Voronoi-based Method . 139

6.5 Finding FSub using the Voronoi-based method 140

6.6 The Simpler Neighbouring Facilities Method 140

6.7 Finding FSub using the Neighbouring Facilities Method 141

6.8 The Relaxed p′ Matheuristic . 142

6.9 An example when the neighbouring facilities method yields a larger FSub145

6.10 Changing the Neighbourhood Randomly (Variant (a)) 147

6.11 Changing the Neighbourhood Deterministically (Variant (b)) 148

xiii

6.12 Finding the closest to frMax . 149

6.13 Changing the Neighbourhood Alternately (Variant (c)) 150

6.14 The Diversification Method . 150

6.15 The Enhanced Relaxed p′ Matheuristic 151

6.16 Deviation of the relaxed p′ matheuristic solution from the optimal solution161

Chapter 7 163

7.1 Demand point P1 is covered by 3 facilities for the solution value Z . . . 164

7.2 Adapted Point Selection Algorithm . 166

7.3 A simple set of demand points . 168

7.4 Solving the 2−neighbour 4−centre problem 168

7.5 The Adapted Enhanced Reverse Relaxation Algorithm (AERRA) . . . 169

7.6 The optimal solution value, Z∗, for the data set pr439 where p =

10, . . . , 50 and α = 1, 2 & 3. 172

7.7 Chen & Chen’s (2010) algorithm for the conditional p−centre (CON

CCA) . 180

7.8 The CON ERRA . 183

xiv

Chapter 1

Introduction to Location Problems

1.1 Introduction

“Set aside for yourself three cities centrally located in the land the Lord your God has

given you to possess. Build roads to them and divide them into three parts.”

− Deuteronomy 19 v2-3.

Location problems have been around since the dawn of human civilisation. The first

recorded location problem is in the Bible, where God commanded Moses to locate

three cities of refuge, a city for people who have unintentionally killed, for the people

of Israel. Wilamowsky, Epstein & Dickman (1994) proposed an interesting paper that

suggested how this problem could have been solved at the time using only the mathe-

matical tools that were available to Joshua. They concluded that the locations Joshua

picked in the Bible were indeed the optimal ones.

The aim of this chapter is to clearly outline the research question that will be in-

vestigated in this thesis, whilst providing an introduction into location analysis and

an overview of the solution methods used. It shall begin by identifying the research

question. It will then discuss the history of location analysis before explaining the

different classifications for location problems in order to distinguish between the vari-

ous types. Finally, the chapter will conclude with a section that presents the different

methodologies used to solve location problems, with a focus on the exact and heuristic

methods used in this research.

1.2 Research Investigation

This research aims to investigate exact methods used to solve a well-known location

problem, called the p−centre problem, whose aim is to locate p facilities amongst a

plane or network of n demand points such that the maximum distance from a demand

point to its closest facility is minimised. This type of location problem is known as a

1

centre problem, and it is related to two other well-known types of location problem,

namely covering problems and median problems, which will be briefly reviewed later.

Centre problems wish to locate a specific number of facilities amongst a set of demand

points, and therefore the maximum distance or time is relaxed in order to establish a

solution. Covering problems mirror centre problems by finding the number of facilities

required to serve the demand points within a pre-specified distance or travel time. An

example of this problem type is the Set Covering Problem, which will be discussed in

more detail throughout this research. A median problem wishes to locate a specific

number of facilities such that the average distance or travel time between a demand

point and its closest facility is minimised. An example of this problem type is the

p−median problem, see Irawan (2014) for more detail. For clarity, Figure 1.1 shows

the relation between these location problems using a tree diagram, and the bold line

indicates the research path for this thesis.

Figure 1.1: Classes of location problems where the bold line indicates our research
path

Before analysing this specific location problem in more detail, we shall first provide a

brief history into location analysis and discuss the classifications of location problems

in further depth.

2

1.3 A Brief History of Location Analysis with a

Focus on Centre Problems

Many authors begin by crediting Pierre de Fermat (1601−1665) for proposing the first

basic special median problem. Fermat challenged his pupils by asking the question

“Given a set of three points on the plane, find a fourth point such that the sum of

the distances to the given three is as small as possible”. Fermat and his pupils looked

for possible solutions, and most references state that his pupil, Torricelli, proposed the

first solution. However, as other mathematicians were working on this problem at the

time (such as Cavalieri and Viviani), it is not clear who first proposed the solution to

this problem. Therefore, it can be referred to by several names, such as the Fermat

Problem or the Fermat-Torricelli Problem.

Torricelli solved the Fermat’s problem in the following way. He first joined the three

points together to create a triangle. Then, for every pair or points, he drew the equilat-

eral triangle outwards. Three circles are then constructed from the equilateral triangles,

and the point where these circles intersect is the median point, or the ‘Torricelli point’.

This point marked the location of the fourth point. Simpson developed this idea fur-

ther by constructing three lines which are referred to as the Simpson lines. These lines

were made by connecting the outside vertices of the equilateral triangle to the demand

point that lies opposite them, see Figure 1.2. The three lines intersect at the Torricelli

point.

Figure 1.2: Torricelli Points and Simpson Lines

3

Varignon (1654− 1722) solved a similar location problem proposed by Fermat using a

simple mechanical object called a Varignon frame, but this time the number of given

points was > 3. First, n holes are drilled in a board, where the board and the holes

represented the plane and the location of the given set of points respectively. A piece

of string is threaded through each hole, and a weight that is proportional to the re-

spective point’s demand is tied to the end. These pieces of string were then all tied to

one main piece of string with a knot to keep them bound together. When the string

is released, gravity pulled the weights downwards, and the optimal location of the new

point is situated at the position of the knot.

The location problem was developed further by an educated landowner called von

Thünen. In 1826 he published a book called ‘Der Isolierte Straat’, that later became

one of the founding books on location theory. He developed his ideas around agricul-

tural problems, where he gave a predictive model for rural development. He wanted to

allocate crops to land surrounding the town based on transportation and maximising

efficiency whilst minimising costs for the local town or city.

In 1857, Sylvester asked the question “Is it possible to find the least circle that can

contain a set of given points?” He later answered this question, and today this problem

is known as the single facility problem. More detail on the single facility problem can

be found in Section 2.2.3, Chapter 2.

Alfred Weber (1909) proposed a location problem that acted as a catalyst for future

research into location analysis. Weber wished to find the location of one facility for a

set of demand points such that the sum of the weighted Euclidean distances is mini-

mized. This famous location problem is known as the Weber Problem. In the twentieth

century, Weiszfeld (1937) developed a simple iterative and convergent procedure that

is now commonly used to solve the Weber problem.

Hakimi (1964) published a seminal paper on location problems aimed to locate po-

lice stations on a network, such that the number of stations was minimised. He solved

the problem using Boolean algebra, and a linear formulation was later presented by

4

Roth (1969).

Further information on the history of location analysis can be found in Wesolowsky

(1993). For an interesting review of location theory, including the variety of problems

and techniques used to solve them, see De Berg et al (2000), Drezner (2001), and Eiselt

& Marianov (2011).

1.4 Classification of Location Problems with a

Focus on Centre Problems

Location analysis is part of the field of Operational Research, and has a wide range

of mathematical problems that are classified in a variety of ways regarding its specific

needs and information. This section will now list and explain the important and rel-

evant classifications for the location problems that will be discussed in this research.

For clarity, the choice for each classification type for the location problem studied in

this thesis will be highlighted in Table 1.1.

Objective Function

The objective function states what the problem wishes to minimise or maximise. For

example, the Set Covering problem wishes to minimise the number of facilities located

in order to cover all the demand points. The p−centre problem has a slightly different

objective function, as it wishes to locate p facilities amongst a set of n demand points,

such that the maximum distance from a demand point to its allocated facility is min-

imised. The p−median problem, on the other hand, aims to locate p facilities such

that the sum of distances in minimised. Furthermore, the p−dispersion problem aims

to locate p obnoxious facilities (i.e. power stations or recycling centres) such that the

minimum distance from a customer site to an open facility is maximised.

Discrete vs Continuous

If the problem is classified as continuous, then the facilities can be located anywhere in

the plane (rather than at pre-sepcified locations). Therefore, there are an infinite num-

ber of possible sites for the facilities, and Love et al (1988) referred to these problems

as “site generating” problems. For the discrete p−centre problem, there are specific

5

nodes on a network or graph that the facilities can be located on. Thus the discrete

problem has a finite number of possibilities from which the facilities’ locations can be

selected.

Capacitated vs Uncapacitated

If a facility is capacitated, this means there is a maximum threshold of service that it

can provide. For example, a hospital may be restricted by the maximum number of

patients that it can serve, or a warehouse may be limited by its storage size so that

it can only serve a limited number of customers. Here, the assignment is achieved

by solving the transportation or the assignment problem depending on whether the

allocation is single sourced or not.

If the facilities are uncapacitated, then there is no maximum threshold on the amount

of service the facility can provide, and hence the assignment of a customer to its open

facility is relatively much simpler as each demand point will be allocated to its closest

facility.

Single Facilities vs Multiple Facilities

We have previously discussed that centre problems are assigned a given number of

facilities to locate. However, as seen in Figure 1.1, the problem can be classified as a

single facility problem or a multiple facility problem. If only one facility needs to be lo-

cated, this becomes the single facility location problem. Many optimal algorithms have

been developed to solve this problem, including the Elzinga-Hearn algorithm (EHA)

proposed by Elzinga & Hearn (1972) for the 1−centre problem in the plane and the

previously mentioned Weiszfeld’s algorithm for the Weber problem. The EHA will be

described fully in Chapter 3 as it is used as one of the main ingredients in this research.

For the discrete case, the complete enumeration technique (i.e. evaluating all possible

sites) is a useful optimal method to solve small-sized problems, and will be revisited in

Section 1.5.1.

In practice, several facility location problems wish to locate p facilities where p > 1

(e.g. the p−centre problem or the p−median problem). As this generates a larger, more

complex problem, multiple facility location problems take more computational effort

6

to solve. This therefore means that some location problems cannot be solved optimally.

Furthermore, in other cases, p can also be a decision variable such as the uncapac-

itated/ capacitated location problem where a fixed cost of establishing a facility is

required. Note that the former case can be used for scenario analysis by varying the

value of p.

Conditional vs Unconditional

A location problem is classified as conditional if p facilities need to be located, given

that q facilities already exist. For example, if we wish to locate three hospitals in

a county that already has five, we would want to take the location of the existing

five hospitals into consideration before locating the new ones. If q = 0 (i.e. there

are no existing facilities to consider), the problem reduces to the unconditional case,

see Berman and Drezner (2008) for further details. This variant, with respect to the

p−centre problem, will be studied in Chapter 7.

Constrained vs Unconstrained

A location problem is said to be constrained if there are areas where facilities cannot

be located. For example, it is often undesirable to locate a facility somewhere heavily

populated, and it is impossible to locate a facility on a lake. Furthermore, the problem

may wish to locate the facilities, such as mountain rescue centres, in specific areas of

the plane or network. The areas in the plane or network where the facilities cannot be

situated are called forbidden regions, see Plastria (2002) and Suzuki & Okabe (1995).

If there are no forbidden areas, then the problem is classified as unconstrained.

Deterministic vs Probabilistic

This type of classification determines the uncertainty of a model regarding its predicted

behaviour in the future. This depends on whether the underlying network of the model

is static or dynamic. If it is static, then elements of the model, such as the position

of the demand points, the travel time or the distance from the demand points to the

facilities, do not change over time. In other words, the solution to the current location

problem will still be relevant and correct in the future. This location problem is clas-

sified as deterministic.

7

However, if the model has elements of uncertainty following certain density functions

for the future, then it is classified as probabilistic. For example, say we wish to locate

p fire stations on a set of n demand points. An element of uncertainty could be the

travel time from the fire station to a demand point as this may change in the future due

to factors like traffic cycles, volume of traffic, the population or a change in the road

network. In this class, some problems are more sensitive than others. For example, the

p−centre problem can be more affected by a change of one new customer (e.g. the new

customer happens to be further away) than the p−median problem (e.g. the effect of

a new customer on the average sum may not be so great) due to their corresponding

objective functions (i.e. MinMax vs. MinSum). Investigations for this problem type

for the single facility problem include Wesolowsky (1977) and Berman et al (2003) who

study the weighted single facility location problem. Furthermore, Averbakh & Berman

(1997) studied the weighted p−centre problem where the weights of each demand point

were uncertain based on probability density functions.

Demand Points

Demand points can be situated either a) anywhere on the plane or graph or b) in spe-

cific areas. For example, if the p−centre problem wishes to locate p facilities amongst

a network of demand points, the demand points may only be able to be situated at the

nodes of the network. Moreover, the demand can be based on coverage areas rather

than specific points, such as in agriculture and crime, see Murray, O’Kelly & Church

(2006).

Oriented vs Non-Oriented

Establishing whether a location problem is oriented or non-oriented (or bi-directional)

is extremely important. This could easily make the problem asymmetric, which is likely

to violate the triangle inequality and so rendering the problem even harder to solve.

Distance Metrics

As this report will focus on minimising the maximum distance, it is important to know

how distance is measured and defined in this research. Drezner & Hamacher state the

five most commonly used distances in location analysis, namely the Euclidean distance,

8

rectangular distance, max distance, hexagonal distance and Minkowski distance, see

Drezner & Hamacher (2001) for further details. The most familiar measure, which is

used in our research, is the Euclidean distance representing the straight line distance

between any two points.

Classification Our Research
Objective Function Minimise maximum distance

Discrete vs. Continuous Continuous
Capacitated vs. Uncapacitated Uncapacitated

Single Facilities vs. Multiple Facilities Multiple Facilities
Conditional vs. Unconditional Unconditional & Conditional
Constrained vs. Unconstrained Unconstrained
Deterministic vs. Probabilistic Deterministic

Demand points Anywhere in the plane
Oriented vs. Non-Oriented Non-Oriented

Distance Euclidean

Table 1.1: The classification of the p−centre problem investigated in this research

The relevant, interesting and common classification types for location problems have

been discussed, allowing us to highlight in Table 1.1 the classification option for the

location problem investigated in this research.

1.5 An Overview of Methodologies used for

Location Problems

The two main methodologies used to solve location problems are exact and heuristic

methods. Exact methods guarantee the optimal solution if they are run until the end,

whereas heuristics give an approximate solution in relatively short time. Exact meth-

ods are therefore the most desirable to utilise if possible, and they are often used to

solve easier combinatorial or global optimisation problems or NP-hard location prob-

lems that are relatively small. However, as NP-hard problems increase in size, they

often become difficult or impossible to solve using exact methods only. This may be

due to the amount of computational time and effort they require, or practical issues

such as a lack of computer memory. Therefore, heuristic methods may be incorporated

so that a good, but not necessarily optimal, solution may be found in a reasonable

amount of computational time. Moreover, heuristics have the added advantage of be-

9

ing used for scenario analysis due to their speed.

This dissertation focuses on solving the continuous p−centre problem using exact meth-

ods, and so this section will discuss the relevant exact methodologies that were put into

practice during this research. However, heuristic methods were also incorporated into

several algorithms in order to obtain the optimal solution more efficiently. Therefore,

this section will also analyse several heuristic methods that have some relevance to this

research.

1.5.1 Exact Methods

The two main exact methods used to solve location problems are complete enumeration

and integer linear programming. Note that dynamic programming is also well-known

but less used in the field of location problems, especially in the research we are inves-

tigating here.

Complete Enumeration

Complete enumeration optimally solves combinatorial problems by evaluating every

combination and then choosing the best solution. For example, the discrete p−centre

problem wishes to locate p facilities from a total of m potential facility locations.

The total number of combinations for the facilities is therefore Cm
p = m!

p!(m−p)! . For

example, if we wish to locate 2 facilities given there are 10 potential facility locations,

there will be a total of 45 combinations to check. If the number of potential facility

locations were to only increase by 5 (i.e. m = 15), the total number of combinations to

check increases to 105. It is clear to see that as the problem size increases, this method

becomes increasingly difficult, or even impossible, to use as the number of combinations

becomes too great. There are however some interesting reduction techniques that are

developed to eliminate irrelevant combinations using memory of previous calculations,

see Alharbi (2010). Though larger problems were optimally solved, the handicap of

this blind search remains valid for larger problems (e.g., n = 100 and p = 5). It is

worth noting that this simple optimal method can be practical and easy to implement

if the problem happens to be small enough, and hence there is no need for expensive

and sophisticated commercial solvers.

10

Integer Linear Programming

Integer linear programming is a mathematical tool used to optimally solve a variety of

combinatorial problems, such as location problems. This optimal method can be used

to solve large location problems that cannot be solved using other methods such as

complete enumeration with the aid of powerful commercial optimisation solvers such

as IBM ILOG CPLEX, LINDO and XPRESS amongst others.

In an integer linear programming model, all the variables are of integer values. This

includes decision variables, which can specifically binary (e.g. open/closed, yes/no,

off/on) or an integer (e.g. the number of facilities located). Many location problems

can be formulated as integer linear programming models including the relevant formu-

lations of location problems studied in this research, see Chapter 3.

Among the techniques used include the Branch & Bound Method, the Cutting Plane

Method and the Branch & Cut Method.

The Branch & Bound Method (BBM) is the most well known method used to solve

integer linear programming problems, and it consists of two steps. Let us wish to

solve the continuous p−centre problem using the BBM, where an upper bound on the

optimal solution has been obtained. In this instance, the objective function wishes to

minimise the solution value. The first step (i.e. branching) partitions the set of feasible

solutions into subsets. The LP solution value for each subset is then obtained, thus

yielding a set of lower bounds (i.e. bounding). If a subset’s lower bound exceeds the

upper bound, this subset can be excluded, or fathomed, from the search. The remain-

ing subsets are partitioned further and further until a feasible solution is found such

that the solution value is the smallest lower bound found amongst all the subsets. The

solution is optimal since there is no other subset yielding an improved solution. For

more information, see Lowe (2011).

The Cutting Plane Method (CPM), first introduced by Gomory (1958), solves the

integer linear programming problem by first solving the linear programming problem.

If an integer solution is found, then the process stops. Otherwise, a new constraint,

11

known as a Gomory cut, is added to the problem that reduces the feasible region and

therefore ‘cuts’ off the non-integer solution. The problem is then solved again with

the new constraint usually using the dual simplex method. Each time a non-integer

solution value is obtained, the feasible region is reduced further by adding another

constraint and so allowing the problem to converge towards the optimal solution.

The CPM was found to take a large amount of computational time and effort as the

constant addition of new constraints created a more complex problem. The weakness

of CPM is that no integer solution can be found until the optimal final solution is

obtained, whereas the BBM has an advantage of producing intermediate integer solu-

tions. An effective combination of the BBM and the CPM, called the Branch & Cut

method, was developed and found to be very efficient. It is used in many powerful

commercial optimisation software packages, such as IBM ILOG CPLEX, LINDO and

XPRESS amongst others.

1.5.2 Heuristic Methods

The word ‘heuristic’ originates from the Greek word that means discover or explore in

the wider sense. For location analysis, heuristic methods have been developed so that

concrete solutions may be obtained for large problems that cannot be solved using op-

timal techniques. Their efficiency is examined by two main criteria, namely the quality

of the solution value found and the amount of computational time required to obtain

the solution. Therefore, the most powerful heuristics are the ones that find a high

quality solution in a reasonable amount of computational time. These heuristics have

been used in many academic areas of research such as business, economics, medicine

and engineering; see Salhi (2006) for an overview of heuristic search.

Improvement-Based Heuristics

An improvement-based heuristic only accepts improving solutions at each iteration. An

example is Cooper’s locate-allocate heuristic, which is discussed later in Section 2.2.2,

Chapter 2. The heuristic starts with an initial solution (i.e. p facilities) and begins

a cycle of locating all demand points to their closest facility to generate a new set of

p facilities until the solution does not change (i.e. the heuristic has become caught

in a local minimum). Although these type of heuristics are useful, their weakness is

12

becoming trapped at local minima. Therefore, they are most effective to use when

there is either only one local minimum/maximum (i.e. a global one), or if they are

incorporated as an extra method, amongst another heuristic or optimal method, to

improve the solution value further. Note that the first scenario happens when the ob-

jective function is convex (concave) and hence there is only one minimum (maximum).

The continuous p−centre problem is non-convex, and so the optimal solution cannot

be guaranteed by Cooper’s locate-allocate approach.

Furthermore, other methods, namely local search or improvement/refinement based

methods, can be applied to help improvement-based heuristics, such as Cooper’s locate-

allocate heuristic, explore further areas of the solution space. An example is the local

search method, which changes the current feasible solution in an intelligent way so

that an improved solution may be found, see Salhi (1997) for further details. In this

research, a heuristic developed by Drezner (1984a), called the H2 heuristic, pairs a

locate-allocate heuristic with a swap-based local search in order to find an improved

feasible solution for the continuous p−centre problem. As H2 is also used in this

research, it will be revisited in Section 2.2.2, Chapter 2.

Metaheuristics Used To Solve the p−centre Problem

Several powerful heuristics, known as metaheuristics or modern heuristics, have been

adapted or enhanced to solve the discrete and continuous p−centre problem. This

section will discuss several of these interesting and relevant heuristics.

An important heuristic for the p−centre problem, developed by Brimberg & Mlad-

denović (1996), is the Variable Neighbourhood Search (V NS) heuristic which was

designed to avoid local optimality in order to obtain a tight feasible solution for dis-

crete and continuous location problems. This metaheuristic systematically changes the

neighbourhoods to see if a better solution can be found, see Mladenović & Hansen

(1997). Results using this heuristic is used in this thesis for comparison purposes when

analysing the solution quality in Chapter 6. Furthermore, a detailed description of this

heuristic is given in Section 2.2.2, Chapter 2.

Davidović et al (2011) proposed a metaheuristic method called Bee Colony Optimiza-

13

tion (BCO). Bees find the best places for food by searching an area individually and

announcing the quality of the area they found to the whole hive. The better the quality

of the area, the more likely other bees will start to find food in that area. The BCO

metaheuristic was formed of two stages, namely the forward pass and the backward

pass. In the forward pass, agents (i.e. the artificial bees) are sent out to explore the

solution space and find a feasible solution. During the backward pass, the agents come

back and announce what they have found (i.e. state the solution value of the feasible

solution). The better the solution value, the more likely other agents will not stay

loyal to their solution and will have to pick from the other advertised objective func-

tions values. Davidović et al found that the BCO was effective at finding solutions

for the discrete p−centre problem for small problems. However, as the problem sizes

increased, it was found to be less effective. This motivated the development on an

improved method, namely the BCOi, that modified the generated solutions in order to

establish an improved one, rather than ‘starting from scratch’ or adding a new com-

ponent to a partial solution. The modification consisted of allowing p + q facilities to

serve the n demand points (i.e. creating an infeasible solution in order to reduce the

solution value) and then removing q facilities in a greedy manner. The BCOi yielded

high quality solutions with a negligible increase in computational time. Moreover, the

idea of perturbing the solution by adding q facilities and then removing them is a sim-

pler version of the perturbation method originally developed by Salhi (1997), and very

recently extended for the continuous p−centre problem by Elshaikh et al (2016).

Another interesting heuristic used to solve the discrete p−centre problem is the Har-

mony Search heuristic, which was inspired by the way a musician adjusts musical

notes according to the previously played ones to create a melodic tune. The heuristic

performs in a similar way by selecting a number of initial solutions and creating a

new ‘harmony’. Kaveh & Nasr (2011) modified a harmony search in order to solve

the conditional and unconditional discrete p−centre problem. Firstly, they developed

the algorithm so that the diversification and intensification of the solution can be con-

trolled. Secondly, a new facility (or ‘note’) is selected based on its location and distance

to the current facility. Thirdly, a greedy heuristic is incorporated into the model so that

each new harmony is enhanced such that it is more likely to yield an improved solution.

14

Rabie, El-Khodary & Tharwat (2013) used a metaheuristic called the Particle Swarm

Optimization (PSO), developed by Kennedy & Eberhart (1995), to solve the continu-

ous p−centre problem. The PSO is a population-based metaheuristic, and it is inspired

by the way birds fly in union together in close proximity but never touch. As the so-

lution space in Rabie et al ’s study was continuous, the main modifications they made

were to “generate the swarm on space/plane limits instead of generating it on arcs of

networks”. They concluded that the developed algorithm was not only simple and easy

to apply, but also efficient.

1.5.3 Integrating Exact and Heuristic Methods

As previously mentioned, the aim of this research is to investigate new and improved

methods to optimally solve the continuous p−centre problem. As heuristic methods

cannot guarantee optimality, one may think that they have little relevance in this re-

search. However, heuristic methods are highly important when optimally solving a

problem as a good feasible solution can be embedded into an optimal method so that

it does not need to ‘start from scratch’. This means that there is a direct relation be-

tween the quality of the heuristic solution, and whether or not the optimal technique

will obtain optimality within the reasonable amount of computational time. The most

common way of integrating the two methods is obtaining a good quality solution value

(i.e. reasonably close to the optimal solution) using a powerful heuristic that can be

used in optimal methods. For example, in our research, the results of the H2 heuris-

tic, Cooper’s multi-start heuristic and the V NS heuristic are set as the initial upper

bounds for the optimal methods used.

A hybrid of exact and heuristic methods is also known as a matheuristic, where at

least one aspect contains an optimal method. In Chapter 6, a new matheuristic, in-

spired by the hybridisation of some heuristics and exact methods previously discussed,

is created to find a tight upper bound or a good feasible solution that can be used to

optimally solve the continuous p−centre problem.

15

1.6 Summary

This chapter introduced the research question that will be throughly investigated and

answered in this thesis. It then proceeded to give an introduction into location anal-

ysis by first discussing briefly the history of location analysis with a focus on centre

problems. The different classification types of location problems were then explained,

and the classification options for the specific problem that this research focuses on has

been highlighted for clarity. Finally, the different types of exact and heuristic methods

used to solve this location problem were discussed, with a focus on the optimal and

approximate methods used in this research.

The next chapter provides an extensive literature review of the recent and relevant

studies in the area of location analysis with a focus on centre problems and the con-

tinuous p−centre problem in particular.

16

Chapter 2

A Literature Review of Location

Problems with a Focus on the

Continuous P−Centre Problem

2.1 Introduction

The purpose of this chapter is to provide an account of the research that has been

investigated into both the continuous p−centre problem and its related location prob-

lems. The chapter is divided into two main sections. The first section deals with the

literature that was directly used and applied to this research. This includes exact

methods that were utilized or enhanced, the heuristic methods that were incorporated

into the optimal algorithms, and the related location problems that were examined in

this research, such as the α−neighbour p−centre problem and the conditional p−centre

problem. The second section explores those methods that, although not directly used

in this research, show the developments, enhancements and adaptations in order to

provide some lead ideas that were taken into account in this study. These techniques

are designed for the discrete p−centre problem, the maximal coverage problem and

other related location problems.

2.2 Literature Investigated & Applied in this

Research

In this section, the literature that was directly investigated and used in this study will

be described. This includes a) the heuristic methods that were incorporated into our

research, b) the exact algorithms that were developed and enhanced to create a more

efficient algorithm for the continuous p−centre problem and c) the related location

problems.

17

2.2.1 Introduction

The p−centre problem is an old but interesting topic of research in location analysis. It

was first mentioned by Miehle (1958), who proposed three main methods to minimise

link lengths in networks. One of the methods is referred to as the ‘soap film method’.

When air is blown into soap, the soap film expands to create a sphere that we know

as ‘bubbles’. Miehle observed that the size of the bubble is minimised such that it can

still hold the maximum potential energy carried inside, and thus the basic ideas for the

p−centre problem began. The problem was then later formulated by Cooper (1963),

and Hakimi (1964) was the first to find the discrete and continuous centre in a network

of demand points.

Megiddo & Supowit (1984) showed that the p−centre problem is NP-hard for vari-

able p. In other words, the larger the problem size, the harder it becomes to obtain

the optimal solution (i.e. the computational effort grows exponentially as the problem

size gets larger) leading to a problem that cannot be solved in polynomial time. Even

the most powerful and modern computers experience difficulties solving large location

problems due to the lack of computer memory or the requirement of an exceptionally

high amount of computational effort. Therefore, to save on time and expense, it has

been desirable to use alternative methods, such as heuristic and metaheuristic algo-

rithms, so that approximate solutions may be obtained within a reasonable amount of

time. However, due to large advancements in technology and computer power, it has

now become a realistic possibility that optimal solutions for large problems can now

be pursued. Furthermore, the combination of exact and heuristic methods provide fast

and powerful algorithms that allow large, complex problems to be solved optimally in

a reasonable amount of computational time.

2.2.2 Heuristic Methods

Cooper (1963) was the first to formulate the general location problem. He proposed

an exact equation for locating p facilities anywhere in the plane of n demand points

using differentiation. However, these problems could only be solved in a reasonable

amount of time where n ≤ 10. Therefore, he developed a second method where all the

possible combinations of p temporary facilities from the n demand points are obtained,

18

and the demand points are allocated to their closest temporary facility. The configu-

ration of facility locations that yielded the minimum distance or cost are taken as the

final locations; thus attaining the optimal solution for the discrete case. This feasible

solution for the continuous problem was then incorporated into the optimal methods

to determine the exact solution for the continuous p−centre problem. This process of

embedding the heuristic solution into the optimal methods allowed larger problems to

be solved optimally. However, this method would not be computationally attractive

for very large industrial problems and so Cooper suggested that the development of

other heuristics may be worthwhile.

Cooper (1964) later introduced four heuristics for the continuous p−centre problem.

The first he named the Destination Subset Algorithm, which is described above, and

the second heuristic was named the Random Destination Algorithm. This is similar

to the Destination Subset Algorithm, with a difference of selecting the initial facility

locations at random rather than obtaining every combination. The third heuristic was

called the Successive Approximations Algorithm, which involved adding new facilities

to the solution space gradually until there are p facilities. The final heuristic was

called the Alternate Location and Allocation Algorithm, which consisted of dividing

the group of demand points into p subsets, and then finding the optimal solution of

the 1−centre problem for each subset using an established exact method such as the

Elzinga-Hearn algorithm that will be described in Section 2.2.3. This research pairs

the Random Destination Algorithm with the Alternate Location and Allocation Al-

gorithm to form Cooper’s multi-start heuristic, or Cooper’s locate-allocate method,

which is investigated in Chapter 3.

A review of location-allocation systems, including variations such as capacitated mod-

els, can also be found in Scott (1970).

Drezner (1984a) proposed two very interesting and effective heuristics. The first heuris-

tic, H1, is much like Cooper’s locate-allocate method mentioned previously. Drezner’s

heuristic begins with an initial p locations for the facilities, and the demand points are

allocated to their closest facility forming p clusters of demand points. The plane is then

partitioned into p polygon areas such that each polygon encompasses one facility and

19

the area in the plane that lay closest to that facility. The union of these polygons is

known as a Voronoi diagram, which will be revisited in Section 6.2.2, Chapter 6. The

centres of these p polygons become the new p facility locations, and the process repeats

until the configuration of the facilities do not change. In order to improve the heuristic

solution and avoid becoming trapped in a local minimum, Drezner suggests pairing the

H1 heuristic with a perturbation method. This step consists of re-allocating demand

points to another facility in an attempt to find an improved solution. He improves

this method by demonstrating that the only demand points that need to be considered

for re-allocation are the critical points of the solution circle (i.e. the demand points

forming the largest circle in the solution). This is because the solution value cannot

improve unless the size of the solution circle is decreased. Therefore, different arrange-

ments of these critical points are tested until an improved solution is found. Drezner

suggests alternating this perturbation method with the H1 heuristic to obtain an im-

proved feasible solution. This union of the two methods will be referred to as the H2

heuristic, and it is used in Chapter 4 to find initial upper bounds for the solution value

of the p−centre problem.

Mladdenović, Labbé & Hansen (2003) adapted the V NS−based heuristic so that it

could be used to solve the p−centre problem. Neighbourhoods based on moving facili-

ties, as well as re-allocating customers, are explored with interesting results. Elshaikh,

Salhi & Nagy (2015) used V NS to investigate the p−centre problem in the plane.

Firstly, they incorporated learning into the search which meant useful parameters were

identified and controlled. They also developed the local search step using two enhance-

ments. Firstly, they allocated a critical point from the largest circle to another facility

in an attempt to decrease the size of the largest covering circle. This idea uses the

observation noted by Drezner stating that the solution value cannot improve unless

the radius of the largest covering circle decreases. It is important to note that this

reasoning is also considered when developing the matheuristic in Chapter 6. Secondly,

the authors removed ‘non−promising’ facilities. That is, the circles that only serve the

critical points and so do not encompass any other demand points. The enhanced V NS

algorithm gave promising results as it was easy to implement, and outperformed other

known heuristics for TSP-Library data sets such as rat575, rat783, pr1002 and rl1323.

The results of this enhanced V NS are used as an initial upper bound for the optimal

20

algorithms developed in Chapters 4, 5 and 6.

More recently, Elshaikh et al (2016) developed a powerful perturbation heuristic to

solve large continuous p−centre problems, see Section 2.3.2 for further details.

2.2.3 The Elzinga-Hearn Algorithm (The Single Facility

Problem)

The single facility location problem, or 1−centre problem, wishes to locate one facil-

ity on the plane amongst a network of discrete or fixed demand points, such that the

maximum distance from the facility to any demand point is minimised. As mentioned

previously, Sylvester (1814-1897) first proposed the problem of finding the smallest

circle that encompassed a set of demand points and later solved it. More details can

be found in Wesolosky (1993) and references therein. As the method used here is the

basis for the multi-facility problem, a brief review on this issue is given next.

One of the most common methods to solve this problem to optimality is the geometry-

based algorithm proposed by Elzinga & Hearn (1972), referred to as EHA. The cor-

nerstone to this method is based on the theorem that the optimal location for the

1−centre problem is equidistant from two or three demand points. The EHA begins

by choosing two demand points at random to form the diameter of the circle. The

algorithm then checks if all the demand points are covered by the circle or not. If so,

then the minimum covering circle has been found. Else, the covering circle is enlarged

by reforming it from one or two covered point/s and an uncovered demand point. This

process continues until all demand points are encompassed by the covering circle.

Drezner & Shelah (1987) state that the EHA was found to be very efficient when

tested on randomly generated problems. There is no cycling as a larger (or same size)

circle is found at each iteration, and there are a finite number of steps as the EHA

always converges towards the optimal solution. These two properties create a simple,

deterministic and a commonly used algorithm to optimally solve the 1−centre problem.

A detailed description of the algorithm can be found in Section 3.3.1, Chapter 3 as it

was incorporated into the algorithm developed in Chapter 4.

21

Recently, Elshaikh, Salhi & Nagy (2015) enhanced and modified the EHA to solve

the unweighted and weighted 1−centre problem. The first enhancement consisted of a

better selection method for the initial points. The four points that had the minimum

and maximum x and y coordinate values were found, and from these four extreme

points, the two points that had the greatest weighted distance were then chosen as the

two initial points. This improved selection method decreased the required amount of

the computational time with an average decrease of over 46%. Furthermore, they also

proposed a second enhancement for the selection of the uncovered point. Instead of

choosing a point at random, the one with the greatest weighted distance from the cur-

rent circle’s centre was selected. This enhancement further reduced the computational

time greatly with an average decrease of over 42%. These two enhancements to the

EHA are both important and relevant to this research as such ideas were incorporated

into the optimal algorithm developed in Chapter 4.

2.2.4 Optimal Methods for the p−centre Problem

There are two optimal type approaches used to solve the continuous p−centre prob-

lem in this study, namely the maximal circles-based method and the relaxation method.

(i) The Maximal Circles-Based Method

Drezner (1984a) proposed an interesting exact method to find the optimal solution value

to the continuous p−centre problem using a subset of potential facility covering circles

called maximal circles. The process begins with an initial upper bound, Z, which was

found using an established heuristic method, such as Cooper’s locate-allocate method

or the H2 heuristic proposed by Drezner (both previously described in Section 2.2.2).

A circle is defined as maximal based on the upper bound Z. The set of maximal circles

is treated as the set of potential facility locations, as Drezner proves that the largest

covering circle in the optimal solution is a maximal circle. By narrowing the size of

the set of potential facility locations, the problem size is efficiently decreased such that

larger problems can be solved optimally. Drezner’s algorithm consists of a) finding the

set of maximal circles and b) searching for a better solution (i.e. a feasible solution

with a solution value smaller than Z) using this set. If a better solution is found, the

upper bound Z is updated as the new, improved solution value, a new set of maximal

circles is attained and the process begins again. If a better solution value cannot be

22

found with the set of maximal circles, the optimal solution is the current upper bound

Z. A detailed description of Drezner’s algorithm can be found in Figure 4.1, Chapter 4.

This method shows much potential as it yields a relatively small problem size for large

problems, and so it may be beneficial to be investigated further. Drezner’s method is

examined thoroughly in Chapter 4.

(ii) The Relaxation-Based Method

Relaxation is a simple method used to solve large problems by breaking them down

into smaller sub-problems and successively solving them. The classic algorithm, first

suggested by Handler and Mirchandani (1979), begins with an upper bound of infin-

ity, and either updates the upper bound or adds demand points to the subset at each

iteration until optimality is reached. Alternative variations to the classic relaxation

algorithm have been researched and will also be described in this section. This method

has great importance to this research, as it forms the backbone to the research given

in Chapters 5, 6 and 7.

Chen & Handler (1987) were one of the first to propose a relaxation-based algorithm

that solved the continuous p−centre problem. First, they explained that a finite set

of potential facility locations (from the infinite set) could be attained by finding all

the critical circles, where a critical circle has either a) three or more demand points

on its circumference, b) two demand points forming the ends of the diameter or c) a

null circle consisting of the single demand point (these points shall be referred to as

critical points in this study). Therefore, the full set of potential facility locations can be

calculated as
(
n
3

)
+
(
n
2

)
+n, where

(
n
3

)
refers to the number of circles created from three

demand points,
(
n
2

)
refers to the number of circles created from two demand points and

n is the number of demand points. Furthermore, the number of critical circles can be

decreased further when analysing the geometry of the demand points forming them.

For example, all circles made from three points that form an obtuse or right−angled

triangle can be discarded, as the circle created from the two points furthest from each

other would incorporate all three points. This method of finding all critical circles

formed from three demand points shall be referred to as the ‘angle method’. Chapter

3 proposes a new method that finds these critical circles more efficiently and in less

23

computational time.

The foundation of Chen & Handler’s relaxation-based algorithm is built on the well-

known theorem stating that among all the optimal solutions to the p−centre problem,

at least one of them consists of p critical circles encompassing all the demand points.

Therefore, by finding the full set of possible facility locations, a finite set of potential fa-

cility locations has been obtained which allows us to solve the problem optimally. Their

method also incorporated the observation that the solution for the (p− 1)−centre so-

lution yielded an upper bound for the p−centre solution. This allowed tight upper

bounds to be obtained, and so meant many circles can be discarded if their radius size

exceeded the upper bound. Therefore, this reduced the number of calculations and

allowed the problem to require less memory and relatively less computational time to

be solved. The authors gave a small example where n = 10 and p = 1, 2, . . . , 10. Their

method starts by solving the 1−centre problem using established methods on a very

small subset of demand points. An arbitrary point was then added and all the possible

critical circles constructed from the subset of demand points are found. A solution is

obtained for the relaxed problem (i.e. the subset of demand points), and feasibility for

the full problem is checked. If the solution for the sub-problem is feasible for the full

problem, another arbitrary point is added to the subset and the process continues until

p facilities have been located. If not, the point farthest from its closest circle centre

is added to the subset of demand points and another solution for the same number of

facilities is found.

Chen & Chen (2009) proposed two new and interesting relaxation algorithms based

on the classic relaxation algorithm to solve the discrete and the continuous p−centre

problem optimally. The classic relaxation algorithm optimally solves large problems

by breaking them down into smaller sub-problems that are easier to solve. Every time

a feasible solution with a value less than the current upper bound is obtained for the

sub-problem then, much like Chen & Handler’s (1987) approach, feasibility for the

full problem is checked. If it is feasible for the full problem, then the upper bound

is updated. Else, another demand point is added to the subset. If a feasible solution

with a value less than the current upper bound cannot be found for the subset, then

the current upper bound is the optimal solution value. The authors presented two

24

improvements for the classic relaxation method. The first improvement updates the

upper bound more efficiently by treating every feasible solution for the relaxed prob-

lem as a feasible solution for the full problem. The second improvement adds more

than one point to the relaxed subset at a time to reduce the number of ‘uninformative

iterations’ and therefore creates a more efficient algorithm. However, the number of

demand points that are added to the subset needs to be carefully balanced between

decreasing the number of iterations and keeping the number of circles created to a

minimum. If too many demand points are added, this creates a large problem to solve

and negates the use of the relaxation method. Chen & Chen state that this is an area

that could be researched in more depth, and this gap of knowledge is investigated in

Chapter 5.

Chen & Chen (2009) also suggested two new relaxation algorithms, namely the re-

verse relaxation algorithm and the binary relaxation algorithm. In short, the reverse

relaxation algorithm starts with a lower bound of 0, and constantly updates it until

optimality is reached. The binary relaxation algorithm has “the best of both worlds”

as it updates either the lower or upper bound at each step. The algorithm starts with

an initial coverage distance LB+UB
2

, where LB denotes the lower bound and UB de-

notes the upper bound. The LB and UB values are updated throughout the algorithm

depending on whether a solution can be found within the coverage distance for the sub-

problem or for the full problem. A detailed description of these two algorithms can be

found in Figures 5.2 & 5.3, Chapter 5, as both are tested in order to determine which

one shows the most potential for further improvement. The results show justification

for choosing the reverse relaxation for further development.

2.2.5 Location Problems Related to the p−centre Problem

The Set Covering Problem

The set covering problem (SCP) is one of the most well-known location problems. The

aim is to find the minimum number of facilities in a plane or network required such

that all demand points are covered. Hakimi (1964) first used the SCP to solve the

problem of locating the minimum number of police stations amongst a set of demand

points. The problem was later formulated by Toregas et al (1971), who stated that

the simplicity of the SCP meant that larger problems could now be solved for the first

25

time. For more information on the SCP , see Schilling et al (1993).

The SCP is revisited in Section 3.2.1, Chapter 3, where the full formulation is given,

and it is directly used in this research by being embedded into the optimal algorithm

proposed in Chapter 5.

A relevant variation of the SCP is the multi-level set covering problem that was first

defined by Toregas (1971). This is where each demand point is covered by a specific

number facilities as opposed to only one facility. The coverage need may differ between

the demand points (e.g. some may need to be covered by one facility whereas other

may need to be covered by three facilities). This creates a more complex problem

as infeasibility becomes an issue if co-location of the facilities (i.e. facilities situated

in the same place) is not allowed. Church & Gerrard (2003) investigated the multi-

level set covering problem where co-location was not allowed. Furthermore, they also

investigated the instance where the number of facilities needed to cover a demand

point varied. This idea is incorporated into Section 7.2.4, Chapter 7, where a scenario

analysis is performed on a relaxation-based algorithm. Other research in this area in-

cludes the development of algorithms where co-location of facilities is accepted, such

as Hogan & Revelle’s (1986). This idea is also incorporated into the algorithm devel-

oped in Section 7.2, Chapter 7. Finally, the research for the multi-level set covering

problem provides the backbone for a variation of the p−centre problem, namely the

α−neighbour p−centre problem, which will be discussed in more detail in Section 2.2.5.

The α−neighbour p−centre Problem

In the classic p−centre problem, the maximum distance between a demand point and

its closest facility is minimised. This idea is expanded for the α−neighbour p−centre

problem, where the maximum distance between a demand points and its closest α fa-

cilities are minimised. Therefore, the objective is to minimise the maximum distance

between the demand point and its αth furthest facility, which is equivalent to ensuring

that each demand point is covered by at least α circles. This means if a demand point’s

α−1 closest service facilities fail, it is still covered by a facility. Therefore, the solution

to this problem provides extra security for location problems where the loss of facilities

may be realistic, such as the failure of a power station or the closure of a hospital.

26

The α−neighbour p−centre problem was first presented by Krumke (1995), who pro-

vided an approximation algorithm to solve the α−neighbour p−centre problem on a

network with an approximation factor of 4 when α ≥ 2. Khuller et al (2000) improved

this by producing an approximation algorithm that had an approximation factor of 3

for α > 2, and 2 for α = 2.

Chen & Chen (2013) devised an optimal algorithm for the continuous α−neighbour

p−centre problem by adapting two well-known optimal algorithms. These two al-

gorithms were an adjustment of Minieka’s (1970) algorithm (see Section 2.3.4) used

to solve the discrete and continuous p−centre problem, and the classic relaxation al-

gorithm, previously discussed in Section 2.2.4. Experimental results revealed that

the adapted classic relaxation algorithm was more efficient at optimally solving the

α−neighbour p−centre problem than Minieka’s adapted algorithm, and this compari-

son became clearer as the size of the data sets increased (i.e. comparing n = 48, 101 &

150). The computational time required to optimally solve the α−neighbour p−centre

problem using the adapted classic relaxation algorithm for the TSP-Library data set

where n = 439 was then compared for α = 1 & 2. Results showed that the al-

gorithm was computationally faster for smaller values of p (i.e. 10, 20, 30 & 40)

when α = 2. Chen & Chen state that this is because the solution value is larger

when α = 2, which leads to fewer iterations and therefore less required computational

time overall. However, the algorithm is computationally faster for larger values of p

(i.e. 50, 60, 70, 80, 90 & 100) when α = 1 (i.e. the classic p−centre problem). Chen

& Chen suggest that as the solution to the α−neighbour p−centre problem is always

equal to or greater than the solution of the (α− 1)−neighbour p−centre problem, the

upper bound is higher which increases the number of potential facility locations and

therefore the overall problem size. This interesting variation of the classic p−centre

problem will be revisited in Chapter 7 where a relaxation-based algorithm is adapted to

solve the α−neighbour p−centre problem and tested against Chen & Chen’s adapted

classic relaxation algorithm.

The Conditional p−Centre Problem

As previously discussed, the p−centre problem can be classified as conditional. The

27

conditional problem wishes to locate p new facilities, given that q facilities already

exist. The first conditional location problem can be found in Handler & Mirchandani

(1979), and Minieka (1980) introduced conditional location problems on a network

where both centres and medians were obtained. Drezner (1995) proposed the notation

“(p, q) location problem” where p represents the number of new facilities to locate and

q represent the number of existing facilities.

Chen & Handler (1993) modified a relaxation-based method (discussed previously

in Section 2.2.4), which was initially developed to solve the unconditional p−centre

problem (see Chen & Handler (1987)), for the conditional p−centre problem. Two ad-

justments were made to the original algorithm. The first one ensured that the demand

points added to the subset were not within a certain distance of the fixed facilities,

as this allowed the solution value to improve. The second adjustment modified how

feasibility for the full problem was checked by calculating the largest distance from a

demand point to its allocated facility where the fixed facilities are also included. When

testing the algorithm, it was observed that it was very efficient for smaller problems

but not for larger ones. Therefore, in an effort to improve this result, they introduced

a maximum number of cuts when solving the problem. Once the maximum number

of cuts was met, the algorithm started again with the best solution value found from

the previous run and a new relaxed set of demand points. The authors found the new

approach improved computational time such that optimal solutions were now obtained

in less than 200 seconds. It is important to add that the idea of introducing a threshold

to increase the chances of attaining the optimal solution inspired the scheme developed

in Section 4.8, Chapter 4.

Berman & Simchi-Levi (1990) solved the conditional p−centre problem in a network

using a distance matrix of demand points to all potential facility locations where the

existing facilities are represented as one location. This meant a new facility could be

located such that the solution value was improved. Berman & Drezner (2008) ad-

vanced this idea further by developing a modified distance matrix. Instead of finding

the shortest distance from a demand point to any potential facility location, the short-

est distance from a demand point to any existing facility was calculated instead. This

is because in order to find an improved feasible solution, the distance from a demand

28

point to its closest existing facility must either decrease or stay the same (i.e. the

demand point is allocated to an existing facility).

Drezner (1989) developed a binary algorithm for the conditional p−centre problem.

Initially, the set of demand points, {i1, i2, . . . , in}, are allocated to their closest existing

facility. They are then sorted and listed in non-increasing order of Euclidean distance.

Drezner states that there must be a value l such that the demand points {i1, i2, . . . , il}

are not covered by the existing facilities within the optimal solution value, and there-

fore these are the demand points that need to be covered by the new facilities. A

binary algorithm was used to solve a succession of p−centre problems for a subset of

demand points in order to determine the value of l and obtain the optimal solution.

Chen & Chen (2010) developed Drezner’s (1989) algorithm further by introducing

their reverse relaxation algorithm, given in Chen & Chen (2009), to solve the subset of

demand points more efficiently. The demand points were sorted as Drezner suggested,

and for k = 1, . . . , l, the subset {i1, . . . , ik} was optimally solved using the reverse re-

laxation algorithm which yielded a solution value Z. The algorithm terminated when

Z was larger than the next furthest Euclidean distance in the ordered list, as this

meant all demand points could now be covered by a facility (either existing or new)

with this coverage value. The adaptations made to the reverse relaxation algorithm for

the conditional p−centre problem consisted of adding one demand point to the subset

at a time, and adding the demand point was the next to appear in the order list. Chen

& Chen’s algorithm for the conditional p−centre problem is explored further in Chap-

ter 7, where it is compared to an enhanced version that incorporates the algorithm

developed in Chapter 5.

2.3 Related Literature

This section will discuss the interesting literature that is related to this research, such

as the discrete p−centre problem, metaheuristics for the p−centre problem and real life

applications. Though the various methods and applications introduced in this section

are not directly applied in this study, they still inspired the ideas and developments of

29

this research and so are worth mentioning.

2.3.1 The Discrete p−Centre Problem

Much like the continuous case, the discrete, or vertex, p−centre problem wishes to

locate p facilities in a plane or network of demand points such that the maximum

distance from a demand point to its nearest facility is minimised. However, unlike

the continuous case, all the potential facility locations are pre-specified (e.g. on the

demand points or on specific nodes). Although this research focuses on the continuous

p−centre problem, this section will review the literature accomplished for the discrete

case where ideas were adopted and adapted in this research for the continuous case.

As previously discussed, Hakimi (1964) was one of the first researchers to develop

the idea of centres and medians in a network.

Dyer & Frieze (1985) gave a simple heuristic to solve the weighted discrete p−centre

problem which consisted of a finite set of weighted points. The heuristic began by

identifying the point with the greatest weight as the first facility site. The next fa-

cility is located at the demand point that is the greatest sum weighted distance from

the previously selected facility location. This process is continued until p points are

selected.

Plesńık (1987) developed two heuristics where the first, described by the author as

‘simple and natural’, used a greedy heuristic to solve the discrete p−centre problem.

First, a distance matrix was constructed for each demand point to each possible facility

location. A sub-routine was used to find the minimum number of facilities required

to cover the demand points within a given upper bound, and the heuristic repeated

this sub-routine as the upper bound was increased to the next weighted distance in the

matrix until the number of facilities required was ≤ p. This heuristic was also modified

such that it could heuristically solve the continuous case. As a distance matrix cannot

be constructed for the continuous case, the modified heuristic determines all possible

solution values (to be listed in non-decreasing order and set as upper bounds) by re-

stricting the facility locations to O(mn2) points on the network (where n is the number

of nodes and m is the number of edges). The heuristic then proceeds as normal to find

30

the minimum solution value needed such that all of the demand points are served by

p facilities.

Ilhan & Pinar (2001) developed an algorithm for the discrete p−centre problem that

solved many feasibility problems using a coverage distance found from the average of a

lower and upper bound to the optimal solution value (much like the binary relaxation

algorithm previously described). This algorithm was successful due to one key obser-

vation: if no feasible problem could be found for the corresponding linear programming

problem (LP), then a feasible solution will not be found for the integer linear program-

ming problem (ILP). In other words, the algorithm is split into two phases, where the

first deals with solving the LP problem and the second with the ILP problem. Once

feasibility has been found for the LP problem, the algorithm moves into the second

phase. As the LP problem is easier to solve, the required computational time and effort

was decreased, and therefore an efficient optimal algorithm for the discrete p−centre

problem was created.

This important observation inspired more research into the discrete p−centre prob-

lem. During the second phase of Ilhan & Pinar’s algorithm, the coverage distance is

slowly increased by setting it as the next smallest distance between a demand point

and a facility that is greater than the current coverage distance when no feasible solu-

tion is found for the sub-problem. The idea was adopted by Chen and Chen (2009) for

their reverse relaxation algorithm that was used to solve the discrete and continuous

p−centre problem (see Section 2.2.4).

Özsoy & Pinar (2006) also extended Ilhan & Pinar’s algorithm to develop an exact

algorithm for the capacitated vertex p−centre problem (i.e. each facility has a max-

imum capacity of demand points that it can serve). They formulated two additional

sub-problems that could be embedded into the end of the algorithm to solve the ca-

pacitated p−centre problem. The first sub-problem considered the instance where the

facilities’ capacities were equal, and the second dealt with the case where the facilities’

capacities varied.

Finally, Al-Khedhairi & Salhi (2005) developed three modifications for Ilhan & Pinar’s

31

algorithm in order to improve its efficiency. Firstly, they noticed that when the algo-

rithm moved from the first phase into the second phase (i.e. feasibility was found for

the LP problem), updating the coverage distance as the lower bound would cause one

wasted iteration as the LP formulation was found to be infeasible using this coverage

distance. Therefore, instead they either updated the coverage distance as the upper

bound, or did not change its value. Secondly, they observed that as the coverage dis-

tance is the average of the lower bound and the upper bound, it is not a ‘real’ distance

between a demand node and a facility, and therefore not a potential solution value.

Therefore, once the coverage distance was found, the value was adjusted to be the next

minimum distance between a demand node and a facility greater than the coverage

distance. Thirdly, Al-Khedhairi & Salhi proposed a new scheme for the second phase.

Whereas Ilhan & Pinar found the next lower bound by selecting the next smallest

distance between a demand node and a facility, Al-Khedhairi & Salhi suggest selecting

the second smallest. Thus, their jump-based scheme involved missing out some values

in order to reach the optimal solution quicker. This scheme is revisited later as it is

used as a basis for an enhancement described in Section 5.3.3, Chapter 5.

In the same paper, Al-Khedhairi & Salhi modified a second algorithm, first proposed

by Daskin (1995), to solve the discrete p−centre problem. Daskin’s algorithm uses a

search procedure, normally referred to as a binary search, to obtain the optimal so-

lution. Much like Ilhan & Pinar’s algorithm, the algorithm begins by selecting initial

values for the lower and upper bound, and obtaining a coverage distance by calculating

their average. The set covering problem is then solved for this coverage distance, and

the minimum number of facilities needed, p′′, is recorded. If p′′ ≤ p, then the optimal

solution value is less than the coverage distance. The upper bound is set as the current

coverage distance, a new coverage distance is calculated and the process begins again.

If p′′ > p, then the optimal solution value is greater than the current coverage distance.

Therefore, the lower bound is reset as the current coverage distance, a new coverage

distance is calculated and the process begins again. Thus at each iteration, a bisection

between the upper and lower bound is made that pushes the bounds together until the

optimal solution has been found (i.e. when the lower and upper bound are equal). This

process of solving a succession of covering problems to ultimately solve the p−centre

problem is adopted in Chapter 5.

32

Al-Khedhairi & Salhi (2005) proposed three modifications for Daskin’s algorithm in

order to reduce the number of iterations needed to find optimality. The first modifica-

tion tightened the lower bound by starting with the pth minimum value in the distance

matrix. The second modification tightened the upper bound by finding the maximum

distance in each row of the distance matrix, and taking the minimum of these. Fi-

nally, their last modification designed a more powerful binary search by introducing

the numerical technique of the Golden Section. The modifications described for both

algorithms reduced the number of iterations needed to find optimality, and therefore

demonstrates that is it worthwhile adding simple enhancements to existing algorithms.

An efficient three-level heuristic used to solve the discrete p−centre problem was de-

veloped by Salhi & Al-Khedhairi (2010) which grouped facilities together within a

predefined distance to form neighbourhoods. First, an initial solution is found using

Cooper’s multi-start heuristic. Then, the first level takes any facility and identifies the

demand points encompassed by its covering circle and the demand points encompassed

by covering circles of its neighbouring facilities (i.e. its neighbourhood). The location

of this facility is then relocated to all these demand point sites. If an improved con-

figuration is found, then it is kept and the customers served by the group of facilities

are allocated to their closest facility within the neighbourhood. This is repeated for all

facilities. The second level involves simultaneously moving two facilities to a customer

location at a time, focusing on the largest covering circle. The third level used a per-

turbation step to avoid becoming trapped inside a local minimum. This step accepted

infeasible solutions by allowing the solution to go above or below the required p facilities

by a predetermined number q. The obtained solution is then used as an upper bound

(UB) in the bisection method where the lower bound is then generated as β(UB) where

β ≈ 0.85. The integration of heuristics into exact methods proved to be very promising.

This three level heuristic is particularly important to the work discussed in Chapter 6.

It inspired the development of a matheuristic that incorporates the idea of grouping

facilities together to form neighbourhoods, and, as previously stated, adopts the logic

of focusing on decreasing the size of the largest covering circle in order to improve the

solution value.

33

Other research for the discrete p−centre problem includes Dantrakul & Likasiri (2012),

who developed an algorithm for the capacitated p−centre problem and tested it against

the one devised by Albareda-Sambola et al (2010). Chen & Chen (2010) adapted the

reverse relaxation algorithm to solve the discrete and continuous conditional p−centre

problem, see Section 2.2.5. Finally, Averbakh & Berman (1997) studied the prob-

abilistic p−centre problem, that is, finding the optimal solution for a problem that

incorporates future values (e.g. change in population) into the formulation. They

approached the problem by first modeling it using probability distribution to reveal

possible scenarios or changes in population over the network, and then using the weight

range over the population by calculating the ‘best of the worst case scenario’ using the

largest weights for each demand points.

2.3.2 Metaheuristic Methods for the p−Centre Problem

Many powerful heursitic, or metaheuristic, methods have been developed in order to

find a tight feasible solution for large p−centre problems where obtaining optimal

solutions was not possible. This section will discuss several different metaheuristics

developed to solve either the discrete or the continuous p−centre problem.

As previously stated in Section 1.5.2, Chapter 1, Davidović et al (2011) proposed a

metaheuristic method called Bee Colony Optimization (BCO) and an improved method

(BCOi) to solve the discrete p−centre problem, and Kennedy & Eberhart (1995) de-

veloped a new metaheuristic called Particle Swarm Optimization (PSO) which was

developed by Khodary & Tharwat (2013) to solve the continuous p−centre problem.

Irawan et al (2016) developed two meta-heuristics used to solve large discrete p−centre

problems and conditional p−centre problems. Both meta-heuristics used the aggrega-

tion method to find an approximate solution to the problem. In other words, a problem

of size n was transformed into a set of sub-problems of size n′, where n′ << n. This

method was used as a tool, alongside exact methods and the Variable Neighbourhood

Search algorithm, to find a good approximate solution initially. Both metaheuristics,

as well as the exact methods, were then adapted such that they can be used to solve

the conditional p−centre problem. Similar adjustments can be seen in Chapter 7, as

34

the algorithm developed in Chapter 5 was modified to solve the conditional continuous

p−centre problem.

In more recent work, Elshaikh et al (2016) developed another perturbation-based

heuristic for the continuous p−centre problem. The perturbation method in this in-

stance allowed the number of facilities p to go over or under by a set amount q, thus

making the solution infeasible at certain points in the algorithm. This perturbation

method was first suggested by Salhi (1997) for the p−median problem, and adapted by

Salhi & Al-Khedhairi (2010) for the discrete p−centre problem. The heuristic has three

main stages that are a) adding q facilities, b) dropping q facilities and c) swapping fa-

cilities. The authors developed and tested two variants of this perturbation algorithm,

namely GRADPERT and STRONGPERT. The GRADPERT algorithm adds one of

the extra q facilities at a time before using a local search, whereas the STRONGPERT

adds all q facilities altogether before using the local search. STRONGPERT was also

enhanced using learning and was found to perform the best.

2.3.3 Real Life Applications

This section provides a brief review of some real-life case studies for the p−centre

problem and its related location problems. It therefore demonstrates the practical-

ity of the p−centre problem solution, and the impact that a tight solution can make

in a real-life scenario where emergency facilities must be located efficiently to save lives.

Richard et al (1990) proposed an interesting paper that compared the set covering

model, the p−median model and the p−centre model. The purpose of the paper was

to use the three models to locate fifteen fire stations in the Belgian rural province of

Luxembourg, and compare these results to the locations in real life to see if either

model could yield an improvement. They highlighted that this area was very rural,

which made the study rare as most research selected urban areas. The data collected

over a five year period from the existing fifteen fire stations found a total of 908 de-

mand points that included villages, sparsely populated hamlets and uninhabited areas

where accidents occurred regularly such as roads. The 99 potential facility locations

were identified in a similar way. The results showed that the p−median gave the best

results in terms of minimising the maximum travel time and mean time. The results

35

were compared with the coordinates for the real fifteen fire stations and showed that the

real locations could be improved by using both the p−median or the p−centre solution.

Pacheco & Casado (2004) presented a real health case study where a small number

(p < 10) of health resources, such as geriatric and diabetic health care clinics, were

located in the area of Burgos, Spain. As this is a rural area with a dispersed popula-

tion, it is important to locate emergency facilities in an efficient way so that medical

emergencies can be dealt with quickly. Both the discrete p−centre problem and the

maximal covering problem were solved for this real life case study using a scatter search,

and the results were compared to that of the Variable Neighbourhood Search (V NS).

On average, the scatter search yielded the same quality of result as the V NS, but it

took less computational time.

As previously discussed in Section 1.5.2, Chapter 1, Kaveh & Nasr (2011) modified

a harmony search to solve the following real life problem. In the city of Isfahan, ten

new bicycle stations needed to be established each year given that eight bicycle sta-

tions were successfully located in the city during the previous year. Therefore, the

problem is the conditional p−centre problem, where ten stations need to be located

given that eight already exist. Firstly, the unconditional problem was solved where

p = 8, followed by the conditional 10−centre problem where the location of the first

eight stations were accounted for. A similar approach is used in this study when the

relaxation-based algorithm developed in Chapter 5 is incorporated into a known algo-

rithm used to solve the conditional p−centre problem, see Chapter 7.

Wei et al (2006) developed Suzuki & Okabe’s (1995) heuristic for the constrained

p−centre problem (see Section 2.3.4) and applied it to the real life case study of lo-

cating 25 service facilities in Dublin, Ohio. They compared their algorithm to Suzuki

& Okabe’s in terms of solution value and the computational time required for each

iteration and overall. Suzuki & Okabe’s algorithm required less computational time

(1.2 hours), however two facilities were located outside of the city border. Wei et al ’s

algorithm required 2.9 hours to solve the problem, but all facilities were located inside

the city border and so gave a feasible solution. More information on their enhanced

algorithm can be found in Section 2.3.4.

36

Murray, O’Kelly & Church (2006) located warning sirens in Dublin (Ohio) where both

the number of facilities was minimized and the entire solution space was covered. They

represented the demand points in four ways (i.e. point representation, modified point

representation, regional representation and area representation) and compared the re-

sults of each representation type on its efficiency and effectiveness. They found that

when the demand point were represented in the traditional way (i.e. point represen-

tation), 14 − 27 sirens were required. However, this solution did not cover the entire

solution space. In other words, anyone stood in the uncovered areas at the time of

the sirens sounding would not be able to hear them. When using the modified point

representation method, it was found to require 19 − 26 sirens where 8.35% − 1.16%

of the plane remained unserved. The strongest representation types were regional and

area representation, as 26 sirens where required to cover the entire solution space.

However, a weakness of area representation is that there may exist wasted coverage as

certain areas were covered that did not need to be (i.e. outside of the solution space

boundary), or some areas were covered by more than one siren.

Murray & Wei (2013) applied the set covering problem to a real life scenario where

the demand points where represented in two different ways, similar to the represen-

tations described above. The first approach was the traditional point representation,

and the second approach defined the customer as a polygon area rather than a single

point. In other words, if a facility serves a customer, then this means it must serve the

entire polygon area. This approach may be useful when locating facilities that need

to cover whole areas rather than specific points, such as the instance of emergency

sirens mentioned above or locating street lamps to ensure that a whole street is lit.

Two real life applications were investigated using this point representation method.

The first minimised the number of emergency warning sirens that need to be placed in

Dublin, Ohio, and the second application sited the minimum number of fire stations

in Elk Grove, California. These two applications showed this method to be robust and

efficient as both had a clear result on the number and location of the facilities.

Lu (2013) presented a case study based on the earthquake in Taiwan where the author

solved the p−centre problem when travel time and demand for each facility differs.

37

The earthquake, that was measured at 7.3 on the Richter scale, caused 2500 deaths,

8000 injuries and damaged 39,000 buildings. Therefore, in instances such as these,

it is important to accurately locate the limited number of urgent relief distribution

centres (URDC) to help with the casualties. As the URDCs are located in established

buildings, such as schools and warehouses, the problem was formulated as a discrete

p−centre problem. Lu developed a simulated annealing (SA) heuristic that dealt with

uncertain travel times and demand at each facility. The SA-based heuristic was com-

pared to exact solutions found using complete enumeration for benchmarking purposes,

and was found to give good results. It then proceeded to locate two URDC’s to aid

casualties after the earthquake from a selection of seven URDCs amongst fifty-one

demand points. For more information on the SA heuristic, see Salhi (1998), (2006).

2.3.4 Other Inspirational Literature

This section will discuss other interesting literature that was not directly applied to

this research. This includes briefly reviewing the constrained p−centre problem, the

maximal covering problem and solving the continuous p−centre problem in networks

and in rectangular areas.

The Constrained p−Centre Problem

The p−centre problem is classified as constrained if there are certain forbidden areas

in the solution space where the facilities cannot be situated. Research in this area has

been conducted for the discrete case (such as Murray, O’Kelly & Church (2006)), and

this method is also mentioned for the continuous case, see the chapter based on full

covering location problems by Plastria (2002).

Suzuki & Okabe (1995) developed a Voronoi diagram heuristic for the continuous

p−centre problem. The algorithm initially located p facilities at random, and con-

structed p Voronoi diagrams based on these p facilities. The current facility locations

were then replaced by the centre of each Voronoi diagram, and this was repeated until

the configuration of the facilities’ locations didn’t change. As the final solution value

was highly influenced by the initial starting locations, the authors suggested repeating

the process many times and to obtain a tight solution. Suzuki & Drezner (1996) devel-

oped this algorithm further by creating a ‘finishing-up’ algorithm that decreased the

38

size of the maximum covering circle and simultaneously increased the size of a smaller

covering circle to maintain coverage. The authors found that this converged the solu-

tion faster. It is important to note that this Voronoi-based heuristic shares similarities

with the matheuristic proposed in Chapter 6, as Voronoi-based algorithms inspired its

development.

As previously mentioned in Section 2.3.3, Wei et al (2006) highlighted several areas of

possible difficulty when applying Suzuki & Okabe’s Voronoi heuristic to a real-life case

study due to the following three assumptions that a) the overall region is rectangular

or square, b) all Voronoi polygons are simple and c) facilities can be located anywhere.

The authors therefore developed the algorithm such that it could be used to solve the

constrained p−centre problem for real-life data by finding the constrained minimal cov-

ering circle (CMCC) when calculating the centre of the Voronoi polygon. Firstly, the

subset was treated as unconstrained and so the minimum covering circle (MCC) was

found. If the solution to the MMC was not in a forbidden region, this was taken as

the solution. However, if the centre of the MMC lay in a forbidden region, two repair

mechanisms were used to find the best CMCC. The first consisted of constructing

the convex hull for the region and finding covering circles formed from a point on the

convex hull and its closest point on each line segment. The second method investigated

all pairs of points in the convex hull. The solution circle was taken as the smallest of

all possible CMCC’s.

Davoodi et al (2011) also proposed a Voronoi-based algorithm that was similar to

the approach suggested by Wei et al (2006). They began with a simple, but effective,

algorithm that consisted of allocating demand points to their closest facility, construct-

ing the Voronoi diagrams based on these facilities, computing the MCCs and checking

if the centre of the diagrams lay outside the forbidden regions. If they did not, the

process was simply repeated. They found this algorithm to be fast as it did not have

many iterations. However, a possible weakness was highlighted as they stated that “the

high convergence in the heuristic algorithm usually causes them to become trapped in

the local optima.” (Davoodi et al (2011): 3323). They suggested an improved heuris-

tic which moved the centres of the smaller circles closer to the centre of the largest

circle(s) in an endeavour to avoid becoming trapped in a local optimum. This created

39

a computationally more time-consuming algorithm but with improved results.

The Maximal Covering Problem

The maximal covering problem, first defined by Church & Revelle (1974), wishes to

locate p facilities such that the number of demand points served by each facility is

maximised. Alternatively, the aim is to minimise the number of uncovered demand

points. A relation can be seen between the maximal covering problem and the multi-

level set covering problem discussed in Section 2.2.5, as both location problems deal

with maximising coverage.

Mehrez & Stulman (1982) investigated the discrete maximal covering problem (i.e.

a facility can only be located on a pre-specified point) for both the single facility prob-

lem and the multiple facility problem. In both instances, a facility was located at the

centre of a covering circle with radius R. For the single facility problem, if a circle with

radius R was placed at every demand point with no intersections between the circles,

then the final facility could be placed at any demand point. However, if two or more

circles intersected, then the optimal solution was found in the intersection where most

demand points were covered. The multiple facility problem could be solved with either

complete enumeration or dynamic programming.

Church (1984) developed the maximal covering location problem by introducing a

new problem called the planar maximal covering problem (PMCE). This is where the

facilities can be located anywhere on the plane (i.e. a continuous problem). First, the

author obtained the finite set of potential facility locations, and then found the set of

circle intersection points (CIP s). The author then proved that at least one optimal

solution of the PMCE has all facilities’ locations lying in the CIP s. He enhanced

the algorithm further by excluding circles from the potential set of facilities that were

dominated by another covering circle, which lead to a reduced set of circle intersection

points and thus decreased the problem size.

The Continuous p−Centre Problem in Networks

Hakimi (1964) was the first to formulate the 1−centre problem in a network, and pro-

posed a method of finding the absolute centre of a graph (i.e. a facility can be located

40

anywhere on the edges or vertices of the graph). If there are l edges to a graph and n

vertices, finding the absolute centre involves solving l ‘min-max’ problems. However, as

this requires n!(n− 1!) calculations, it would require a large amount of computational

time for very large problems.

Handler (1978) presented a simple algorithm to locate the absolute centre in a tree

network, and extended this algorithm to solve the absolute 2−centre problem. The

idea was to find the absolute 1−centre of the graph first using established methods.

A cut is made in the tree on the edge that the absolute 1−centre point is located on,

splitting the tree network into two smaller sub-graphs. The absolute 1−centre was

found for both sub-graphs to find a solution for the 2−centre problem.

Minieka’s (1970) proposed an interesting algorithm for the continuous p−centre prob-

lem in a graph where p > 1. He uses minimal set covering to solve the p−centre problem

optimally. In other words, he found the minimum number of facilities required so that

all the demand points were covered. His algorithm begins with an arbitrary first choice

of p facilities (located anywhere on an edge or vertex) as an initial solution, yielding

a solution value Z. The aim is to find another set of p locations for the facilities such

that the solution value < Z. The SCP is solved for the value Z, and this yields the

minimal number of facilities needed to serve all the points. If the minimum number of

facilities needed is < p, then the solution can be improved. Therefore, Z is set as the

new solution value and the process begins again. However, if the minimum number of

circles is ≥ p, the solution cannot be improved and so Z is the optimal solution value.

Thus, Minieka’s algorithm decreases the value of Z until optimality is reached. This

method is important as it has been advanced and adapted in more recent research to

solve large discrete and continuous p−centre problems, some of which have previously

been discussed in Section 2.3.1.

Daskin (1995) developed a simple but effective algorithm to find the absolute 1−centre

for a weighted tree network. The method starts by finding the centre for two weighted

nodes by using their weight ratios. He then uses the same idea to solve the problem

with three nodes, where the centre of the first two weighted nodes are treated as one

node. This method of solving two at a time is then used to solve a larger network using

41

a weighted distance matrix.

Solving the Continuous p−Centre Problem using Rectangular Areas

Drezner & Hamacher (2001) describe the process for finding the smallest rectangular

space that covers all the points (rather than the smallest covering circle). The tech-

nique is to find the smallest diamond that covers a set of given demand points. The

four corners of the diamond are labelled LT, RT, LB and RB for the left-top corner,

right-top corner, left-bottom corner and right-bottom corner respectively. The process

begins with an initial rectangle that covers a subset of demand points. The rectangle

is then increased in size by pushing down on the LT and RT corners, and up on the LB

and RB corners until it reaches an uncovered demand point in both directions. The

process continues until all the demand points are covered and the optimal location for

the facility lies at the centre of the diamond.

Wesolowsky (1972) also studied solving the p−centre problem using rectangular ar-

eas. He gave several examples where he compared solving small problems using linear

programming or graphical methods. The method of using rectangular areas was also

adopted by Drezner & Wesolowsky (1993), who used it to solve maximin problems.

More information on solving the p−centre problem using rectangular distances can

be found in Drezner (1987).

Vijay’s Exact Method

Similar to Drezner’s (1984) exact method, Vijay (1985) also proposed an algorithm

that solved the p−centre problem using geometric properties. He described a way to

reduce the problem size by finding dominated circles. If a subset of demand points was

covered by a non-dominated circle, this subset was called a maximal subset and the

circle was kept as a potential facility location. He used a rotation technique to find

all the maximal subsets. Each pair of points created a circle of radius Z, where an

initial Z was found using a locate-allocate heuristic. The circle was then rotated 360◦

around one of the points on its circumference, and each time a demand point entered

or left the circle it was recorded. Thus, it could be seen if certain circles held the same,

or the same and more, demand points to the others. Once all maximal subsets of a

42

given value Z was found, the problem could then be solved using an ILP method.

Similarly to Drezner’s maximal circles method, the problem can now be solved in less

computational time and effort as the number of the potential facilities has greatly de-

creased. Vijay states that the setup for this algorithm is where computational time is

at its highest, however, once the setup is complete the problem is solved very quickly.

Therefore, a balance between the computational time required to set up the algorithm

and to solve the problem must be found.

2.4 Summary

This chapter has given a detailed literature review for both the studies directly ap-

plied to this research, and for the related ones. The first section highlights the studies

that were utilized in this thesis (such as the exact methods that were investigated and

enhanced), the heuristic methods that were incorporated into optimal algorithms and

the related locations problems. The second section dealt with the important and rele-

vant literature that, although not directly used in this research, gave key elements that

contributed to our research. This included methods used to solve discrete p−centre

problem as well as and powerful metaheuristics developed for complex, large location

problems.

The next chapter will discuss and formulate the main location models used in this

research, and will also examine the initial investigative work that was conducted.

43

Chapter 3

Methodology and First Investigative

Results

3.1 Introduction

This chapter begins by studying the formulations of the relevant location problems

to this research such as the set covering problem, the vertex p−centre problem and

the continuous p−centre problem. As this thesis focuses on the latter, this issue will

be discussed in greater depth. The chapter will also investigate heuristic methods,

and observe how their solution quality can be used as a stepping stone to obtain the

optimal solution. Two heuristics, namely the classical Cooper’s multi-start in the

discrete space, and its extended version, namely Cooper’s alternate locate and allocate

algorithm, are compared. Furthermore, a new scheme that attains all circles formed

from three demand points is described and its computational efficiency evaluated.

3.2 Location Models

As previously stated, location models can be classified under two main categories,

namely discrete models and continuous models. We recall that the potential facility

sites for the discrete models are fixed positions, or nodes on a network, whereas in the

continuous case there are no restrictions on site location which means a facility can be

situated anywhere on the network or in the plane.

We shall now introduce the formulations of the location problems that were used in

this research. As this thesis will be focusing on the absolute, or continuous, p−centre

problem, for completeness we shall also describe two discrete p−centre problem-based

formulations that are incorporated into this research. Three formulations used to solve

the continuous p−centre problems are then presented, with the final one being the one

that will be extended upon. We shall begin by describing the Set Covering Problem,

44

which is used as one of the sub-problems that is solved optimally as part of solving the

p−centre problem. For more information on discrete models, see Daskin (1995) and

references therein.

3.2.1 The Set Covering Problem

The Set Covering Problem (SCP) aims to minimise the number of facilities, whilst

ensuring that all the customers (demand points) are served within a threshold distance

(e.g. R = 4 miles) or travel time (e.g. 10 minutes). Here we refer to the location of a

facility j as the centre of circle Cj. The SCP formulation is given as follows.

Firstly, let us define the binary matrix, A′i,j.

A′i,j

1 if di,j ≤ R (i.e. point i can be covered by the jth facility with radius rj ≤ R),

0 else.

with

di,j: Euclidean distance from demand point i to the centre of circle Cj, i ∈ I, j ∈ J ;

R: threshold imposed.

Minimise
∑
j∈J

xj (3.1)

subject to
∑
j∈J

A′i,jxj ≥ 1 ∀i ∈ I, (3.2)

xj ∈ {0, 1} ∀j ∈ J, (3.3)

where:

I: the set of demand points, where i = 1, . . . , n;

J : the set of facilities (potential circles with their corresponding centres), where

j = 1, . . . ,m;

xj =

1 if a circle Cj is selected,

0 else.

The objective function (3.1) minimises the number of facilities (covering circles) opened.

Constraint (3.2) ensures that each customer is covered by at least one facility and con-

45

straint (3.3) represents the binary decision variable xj.

This model will be embedded into the relaxation-based algorithm that will be pre-

sented in Chapter 5.

3.2.2 The P−Centre Problem

The p−centre problem seeks to find the best location of p facilities in a network or

plane to serve n demand points such that the maximum distance or time from a de-

mand point to its closest facility is minimised. In other words, the p−centre problem

wishes to reduce the outcome of the worst case scenario. For example, one may wish

to find the location of p hospitals in a town to serve n residential homes, such that the

maximum distance from any residential home to its closest hospital is minimised. This

strategy aims to reduce the risk of accidents of emergencies becoming more complicated

or serious.

The formulations of the two different model types (i.e. discrete and continuous) will

now be described.

(a) The Vertex P−Centre Problem

The first model for the vertex p−centre problem uses an integer linear programming

(ILP) formulation, whereas the second model is based on the SCP formulation.

(i) The ILP Formulation

The ILP formulation for the vertex p−centre problem is shown below.

Minimise W (3.4)

subject to
∑
j∈J

Yi,j = 1 ∀i ∈ I, (3.5)

∑
j∈J

xj = p, (3.6)

Yi,j ≤ xj ∀i ∈ I,∀j ∈ J, (3.7)

W ≥
∑
j∈J

di,jYi,j ∀i ∈ I, (3.8)

xj, Yi,j ∈ {0, 1} ∀i ∈ I, ∀j ∈ J. (3.9)

46

where

W : is the maximum distance between a facility and a demand point;

Yi,j

1 if demand point i is assigned to facility j,

0 else.

All other definitions are as previously given.

The objective function (3.4) minimises the maximum distance between any demand

point and its nearest facility. Constraint (3.5) guarantees that all demand points are

assigned to a facility, and constraint (3.6) ensures that exactly p facilities are located.

Constraint (3.7) imposes that demand points are only assigned to another demand

point if a facility is located on it. Constraint (3.8) ensures that W is the maximum

distance between any demand points and its allocated facility. Constraint (3.9) refers

to the binary decision variables xj and Yi,j.

Note that if the demand points are weighted (the case above assumes they are of

equal weight) constraint (3.8) would be adjusted to

W ≥ wi
∑
j∈J

di,jYi,j ∀ i ∈ I (3.10)

where wi indicates the weight of node i.

(ii) The SCP-Based Formulation

The discrete p− centre problem can be efficiently solved using the SCP -based method,

which has already been briefly described in Section 2.3.1, Chapter 2. This method it-

eratively updates the range (LB,UB) where LB and UB refer to the lower and upper

bound of the solution value W respectively. A coverage distance CD = LB+UB
2

is

found, and the SCP is then solved with the coverage distance treated as an upper

bound to the solution value. If the number of facilities needed to solve the SCP is > p,

then CD is infeasible for the p−center problem and so must be a lower bound. The

lower bound LB is updated so that LB = CD. Else, the number of facilities needed

to solve the SCP is ≤ p, thus giving a feasible solution to the problem. The upper

47

bound UB is updated such that UB = CD. The process is repeated until (LB,UB)

does not contain any further coverage distances and so W = UB. For more details,

see Salhi and Al-Khedhairi (2010).

This method is important as it is incorporated into our research in Chapter 5 when

enhancing a well known relaxation-based algorithm.

(b) The Continuous P−Centre Problem

The continuous p−centre problem can be formulated mathematically in several differ-

ent ways. Below, we see the formulation of the Euclidean unweighted p−centre problem

as stated by Chen & Chen (2009).

Minimise X1...Xp {Max i∈I [Min 1≤j≤p di,j]} (3.11)

where:

Xj = (xjc , yjc) is the location of facility j with its Cartesian coordinates for j = 1, . . . , p.

All other definitions are as previously given.

Secondly, the problem can also be formulated as a non-linear mathematical program-

ming formulation as follows.

Minimise W (3.12)

subject to W ≥ di,jYi,j ∀i ∈ I, j = 1, . . . , p, (3.13)

p∑
j=1

Yi,j ≥ 1 ∀i ∈ I, (3.14)

Yi,j ∈ {0, 1} ∀i ∈ I, j = 1, . . . , p, (3.15)

Xj ∈ R2 j = 1, . . . , p. (3.16)

The objective function (3.12) minimises the maximum distance between any demand

point and its nearest facility. Constraint (3.13) ensures that W is the maximum dis-

tance in the solution and constraint (3.14) guarantees that every demand point is

covered by at least one facility. Constraints (3.15) and (3.16) refer to the binary and

real decision variables respectively. Note that this formulation is non-linear as di,j rep-

48

resents the Euclidean distance from demand point i to facility j.

The third, and main formulation used in this research, is based on the SCP . For clar-

ity, we shall refer to this particular formulation from now on as the classic p−centre

problem formulation, abbreviated to Forpc.

Firstly, let us define the binary matrix, Ai,j.

Ai,j

1 if di,j ≤ rj (i.e. point i can be covered by the jth facility with radius rj),

0 else.

Forpc : Minimise W (3.17)

subject to
∑
j∈J

Ai,jxj ≥ 1 ∀i ∈ I, (3.18)

∑
j∈J

xj = p, (3.19)

W ≥ xjrj ∀j ∈ J, (3.20)

xj ∈ {0, 1} ∀j ∈ J, (3.21)

where all definitions are as previously given.

The objective function (3.17) wishes to minimise the maximum distance between any

demand point and its closest facility. Constraint (3.18) ensures that every customer

(i.e. demand point) is served by at least one facility. Constraint (3.19) states that

only p facilities are located and constraint (3.20) guarantees that W is the maximum

distance between any demand point and its allocated facility. Constraint (3.21) refers

to the binary decision variable.

The next section will now discuss the initial research conducted that is incorporated

into the future research.

49

3.3 Initial Research

In our preliminary experiments, several ideas were investigated with a view to min-

imise either the computational time or computer memory required for large continuous

p−centre problems so that they may be solved optimally. Two experiments that helped

guide and shape the main body of research conducted in this thesis will now be de-

scribed. In brief, the first idea explored the integration of heuristic solutions within

optimal methods to aid in obtaining the optimal solution, and the second explored a

simple but exciting new idea to save computational time when creating the potential

facility locations formed from three demand points.

3.3.1 Preliminary Experiments with Heuristic Methods

A heuristic method gives an approximate, or good, solution, but not necessarily an

optimal one. However, as stated previously, a heuristic solution can be used as an

initial upper bound that can be incorporated into optimal techniques to tighten the

search and hence obtain the optimal solution relatively quickly.

For the case of the continuous p−centre problem, finding an upper bound to the opti-

mal solution means that any covering circle (from the set of potential facility locations)

with a radius larger than the upper bound can be discarded, as a solution has been

obtained with p circles whose radii are equal to or smaller than the upper bound. Once

these larger circles have been removed from the search, the number of calculations

and overall computational time will decrease. This increases the chances of optimally

solving larger location problems in a reasonable amount of time. Therefore, the better

the quality of the heuristic solution, the tighter the upper bound found and therefore

there is an increased chance of optimally solving larger problems.

Investigative work was completed for two different heuristics to help solve large contin-

uous p−centre problems, namely the Cooper’s multi-start discrete method (MSDA),

also known as Cooper’s discrete locate-allocate, and Cooper’s multi-start method in

the continuous space (MSEHA) as previously discussed in Section 2.2.2, Chapter 2.

As the MSEHA requires an established method to optimally solve the 1−centre prob-

lem, the Elzinga & Hearn (1972) algorithm is used here, and is referred to as EHA.

50

The full description of EHA is given in Algorithm 1. For clarity, the full algorithm

for the MSEHA is found in Algorithm 2 as it is used widely in this research. The

MSDA shares many similarities to the MSEHA algorithm, and so, for completeness,

the steps of this algorithm that differ from MSEHA can be found in Algorithm 3.

Algorithm 1. The EHA Algorithm

1. Select two points P1 and P2 .

2. Construct a circle whose diameter is the line joining P1 and P2. If this circle

encompasses all the points, stop. If not, go to Step 3.

3. Select a point P3 outside the circle made from P1 and P2.

4. Determine if points {P1, P2, P3} form an acute, right-angled or obtuse triangle.

(i) Right-angled or obtuse triangle: Take the two points furthest away from each

other and go back to step 2.

(ii) Acute triangle: Construct the circle passing through these three points. If this

circle encompasses all the demand points stop. Else, go to Step 5.

5. Select a point P4 outside of the circle, and let H be the point from {P1, P2, P3}

that is furthest away from P4. Extend the diameter through the point H so the

plane is divided into two halves. Select a point L from {P1, P2, P3} that is in the

half plane opposite to the point P4. Set P1 = H, P2 = L and P3 = P4 and go to

Step 4.

Algorithm 2. The MSEHA Algorithm

1. Select the number of multi-starts, MulStart. Set Mul = 0.

2. While Mul < MulStart do:

(a) Set Mul=Mul+1; Select any p points from the m customer sites or on the

plane to be temporary facility locations.

(b) Allocate all the demand points to their closest temporary facility. This cre-

ates p clusters.

(c) For each cluster, find the optimal solution for the single facility problem

using Algorithm 1.

51

(d) Reset the location of the facilities as the p circle centres found for each single

facility problem.

(i) If the configuration of the facilities change, go back to Step 2 (b).

(ii) Else, take the radius of the largest circle as the solution value. Go back

to Step 2 (a).

3. Take the smallest solution value found as the final value. Stop.

Algorithm 3. The MSDA Algorithm

1. Steps 1-2 (b) in Algorithm 2.

2. (c) In each cluster, find the furthest Euclidean distance between any two points.

This yields p distances.

(d) Take the largest of the p distances as the solution value. Go to Step 2(a).

3. Take the smallest solution value as the final value. Stop.

Note that as Step 2 (c) in Algorithm 3 is time consuming and Step 2 is repeated several

times, the MSEHA requires more computational time than the MSDA.

Comparing the Heuristics

The two heuristics were tested on a generated data set where n = 100 (see Figure

3.1). The algorithm was written on a HP Elitebook 8570w with 12 GB of RAM. Table

3.1 shows the solution value found using each heuristic, and this is compared to the

optimal solution to see how far each heuristic deviated from the exact answer.

Figure 3.1: Distribution for the generated data where n = 100

52

Note that the deviation (%) was calculated by:

Hp −Op

Op

× 100, (3.22)

where Hp and Op refer to the heuristic and optimal solution for a given p respectively.

Table 3.1 is organised in the following way. The first column, labelled ‘p’, shows

the number of facilities located. The second column, titled Z∗, displays the optimal

solution for the corresponding p value. The next two columns displays each heuristic’s

solution value, ZH , which could be used as an initial upper bound for optimal methods.

To test the quality of the solution given for each heuristic, the last two columns show

the percentage deviation that the heuristic solution is from the optimal solution. Fig-

ure 3.2 is also given to illustrate the solution values found for each heuristic compared

to the optimal solution.

ZH Deviation (%)

p Z∗ MSDA MSEHA MSDA MSEHA
2 85.566 113.071 85.566 32.1 0.00
5 49.649 79.158 49.649 59.4 0.00
10 29.921 55.000 29.921 83.8 0.00
15 21.319 44.553 24.910 109.0 16.8
20 16.101 42.426 21.319 163.5 32.4
25 13.210 30.870 16.867 133.7 27.7
30 11.161 28.231 14.603 152.9 30.8

Average 32.418 56.187 34.689 104.9 15.4

Table 3.1: Results for the Heuristic Investigation where n = 100

It is clear to see that the solution value found using the MSDA deviates much further

from the optimal solution compared to the solution value found using the MSEHA.

This is the expected result, as the MSDA can only choose possible facility locations

from a discrete set of points. This restricts where the facilities can be located, thus

restricting the overall solution value. The MSEHA does not have these restrictions,

however, as facilities can be located anywhere in the plane. This therefore allows the

solution value to be much tighter. It is worth noting that the solution of each run of

the MSDA could be used as an initial solution for the MSEHA, rather than starting

with p random points, in order to obtain an even tighter upper bound.

53

Figure 3.2: Heuristic solution values compared to the optimal solution value

Although the importance of finding a good heuristic solution is practically demon-

strated in Chapters 4 and 5, it is especially relevant in Chapter 6. This is because this

chapter creates a matheuristic by combining the MSEHA mentioned above with the

exact algorithm developed in Chapter 5.

Note that the generated data set can be collected from the author or accessed from the

Centre for Logistics and Heuristic Optimisation (CLHO (2016)) website http://www.kent

.ac.uk/kbs/research/research-centres/clho/datasets.html by following the links to ‘con-

tinuous data sets’ and then to ‘random p−centre’.

3.3.2 The Upper Bound’s Effect on the Duality Gap

During this research, the program IBM ILOG CPLEX (referred to as CPLEX) was

used to solve the problems optimally. CPLEX is a well known commercial ILP solver

that, as previously discussed, uses a Branch & Cut method to optimally solve location

problems.

CPLEX allows a parameter that controls the termination of the program based on

the value of the duality gap to be manually inserted into the code. In other words,

once the duality gap reaches a particular value of our choosing (say, 10%), CPLEX

stops and reports the best solution value if found.

Initial investigative work was completed that explored how using the heuristic’s so-

lution value as an initial upper bound affected the duality gap value (DV). The

computational time for the duality gap to reach 0% (i.e. the optimal solution) using

54

the respective upper bound was recorded to reveal the affect a tight upper bound has

on the overall computational time. The upper bounds were set as the MSDA and

MSEHA solution values given in Table 3.1, and the results found are displayed in Ta-

bles 3.2 and 3.3 which are both organised in the following way. The first two columns

are organised the same as Table 3.1. The remaining three columns display the results

for the MSDA and for the MSEHA respectively. That is, the heuristic solution, ZH ,

from the respective algorithm that was used as an upper bound, the number of circles

(i.e. potential facility locations) inputted into CPLEX and the computational time

taken to find the solution value where DV = 0% respectively.

p Z∗ ZH # Circles CPU
Time
(secs)

2 85.566 113.071 43928 62.45
5 49.649 79.158 35624 58.23
10 29.921 55.000 18641 23.60
15 21.319 44.553 10819 13.12
20 16.101 42.426 9567 14.44
25 13.210 30.870 3851 4.36
30 11.161 28.231 3130 3.90

Average 32.418 56.187 17937 25.73

Table 3.2: Results for the Duality Gap Investigation for MSDA (DV = 0%)

p Z∗ ZH # Circles CPU
Time
(secs)

2 85.566 85.566 38583 23.67
5 49.649 49.649 14467 7.98
10 29.921 29.921 3563 0.60
15 21.319 24.910 2444 0.60
20 16.101 21.319 1830 0.54
25 13.210 16.867 1371 0.42
30 11.161 14.603 1148 0.63

Average 32.418 35.076 9058 4.92

Table 3.3: Results for the Duality Gap Investigation for MSEHA (DV = 0%)

Results show that the tighter the upper bound, the faster the optimal solution is found.

This is because the tighter the upper bound, the more circles can be discarded due to

having radii larger than the upper bound. This creates less possible facilities loca-

tions and so makes the problem smaller and relatively easier to solve. In other words,

CPLEX can find the optimal solution relatively much quicker as many calculations are

55

eliminated.

Manipulating the solution value obtained using CPLEX based on the size of the duality

gap is revisited in the development of an exact algorithm in Chapter 4, where a duality

gap policy is established in order to refine the algorithm so that it can optimally solve

large continuous p−centre problems.

We shall now discuss a new scheme devised to aid in the generation of potential facility

locations.

3.3.3 The Corridor Method

The aim of this method is to save computational time when finding all potential facility

locations generated from the circles formed from three demand points (i.e. three critical

points). This idea was developed so that we did not need to calculate all the angles for

each combination of three demand points to determine whether or not they form an

acute triangle (i.e. the ‘angle method’ proposed by Chen & Handler (1987), see Section

2.2.4, Chapter 2). As the new scheme systematically incorporates the same circles as

the angle method, it can be considered as a reduction method without eliminating any

of the possible solutions.

The Main Idea

Take any two points in the plane and draw the unique straight line, l1, that passes

through them both. The two lines, perpendicular to l1, that pass through the centre

of both points are then calculated. The area in between these two lines is the matter

of interest. Any points that lie on the line or outside of this area can be discarded for

now, as these points will form a right-angled or an obtuse triangle with the given two

points. The only (but not all) points that make acute triangles will lie inside this region.

Figure 3.3 shows the ‘corridor’ for points P1 and P2 (lighter area labeled ‘corridor’)

and the area where the points are not checked for further calculations (darker area

labeled ‘reject’). Figure 3.3 shows that the one place inside the corridor that allows

points to form a right-angled or obtuse triangle with P1 and P2 is inside the circle

defined by P1 and P2. We wish to find all the points that lie inside the lighter area or

56

the corridor. That is, the points that lie inside the corridor but outside of the circle.

As shown in Figure 3.3, there are two cases where points can be rejected. This in-

cludes (i) if the points lies outside of the corridor region and (ii) if the points lie inside

the circular region.

Figure 3.3: The corridor for points P1 and P2.

It is important to note that a similar diagram can be seen in Elzinga & Hearn (1972:

383). Even though the purpose of this diagram is demonstrating where the next point

can be chosen for the EHA, the mathematics are the same as Elzinga & Hearn are

trying to find any point in the plane that creates an acute triangle with two given

points. Therefore, the corridor method extends the work devised by Elzinga & Hearn

by using their idea to find all third points that create acute triangles with any two

given points.

Corridor Method Mathematically Analysed

Let G be a (n1 × n2) grid. Take two points Pk,l and Ps,t respectively, such that:

k = (1, 2,, (n1 × n2 − 1)),

l = (1, 2, . . . , (n1 × n2 − 1)),

s = ((k + 1), . . . , (n1 × n2)),

57

t = ((l + 1), . . . , (n1 × n2)).

The equation of the line that joins the two points Pk,l and Ps,t is

y =
t− l
s− k

(x− k) + l, (3.23)

and the two lines of equation that make up the corridor are

y =
k − s
l − t

(x− k) + l, (3.24)

and

y =
k − s
l − t

(x− s) + t. (3.25)

Case 1: Inside the corridor

Take any point Px,y in the plane. If it does not satisfy Equation (3.24) and (3.25), that

is

k < x < s, (3.26)

and
k − s
l − t

(x− k) + l < y <
k − s
l − t

(x− s) + t, (3.27)

then it does not lie inside the corridor region for points Pk,l and Ps,t and can therefore

be rejected.

If, however, the point Px,y does lie inside the corridor region for points Pk,l and Ps,t,

case 2 must now be checked.

Case 2: Outside of the circle

If the point lies inside the corridor region, certain checks must be performed to see if it

lies in the circular region or not. We wish to keep all points that lie outside the circle

region, as they will form an acute triangle with points Pk,l and Ps,t. That is

y >
√
r2 − (x− xc)2 + yc, (3.28)

where xc and yc are the centre points of the line Pk,l → Ps,t, and r =
distPk,l,Ps,t

2
where

distPk,l,Ps,t is the Euclidean distance from point Pk,l to Ps,t.

58

This is achieved as follows:

a) Calculate the radius, r, and centre, (xc, yc), of the circle formed by points Pk,l

and Ps,t.

b) Calculate the Euclidean distance distPx,y ,Pxc,yc . If distPx,y ,Pxc,yc > r, we save

the point Px,y for further investigation, otherwise it is rejected.

Once we have found all the points that lie outside of the circular region, we can elimi-

nate these points from the search to obtain the set of saved points that form an acute

triangle with Pk,l and Ps,t.

Each saved point is added to the set

Sav(Pk,l, Ps,t) = {Px,y | x satifies (3.26) and y satisfies (3.27) and (3.28)},

and the total number of saved points S is

S =

n1×n2−1∑
k,l=1

n1×n2∑
s=k+1

n1×n2∑
t=l+1

|Sav(Pk,l, Ps,t)|. (3.29)

Investigative Results

The corridor method was tested against Chen and Handler’s (1987) well-known angle

method. Two data sets from the TSP-library, namely pr439 and rat575, were tested

for comparison and the results can be seen in Tables 3.4 and 3.5.

The tables are structured in the following way. The first column shows the num-

ber of facilities we wish to locate. The second column, labelled ZH , shows the upper

bound generated from the H2 heuristic proposed by Drezner (1984a) (this heuristic

will be discussed further in Chapter 4). The third column shows the number of cir-

cles (made from three demand points) that was found for both the angle and corridor

method. The fourth and fifth columns show the computational time in seconds each

method required to find that number of circles. Finally, the last column shows the

percentage decrease in computational time using the corridor method compared to the

angle method.

59

CPU Time (secs)

p ZH # Circles Angle Method Corridor Method % Decrease
10 1716.510 587409 17.67 1.93 89.05
20 1169.540 292182 17.66 1.97 88.87
30 975.00 191794 17.61 2.00 88.66
40 874.271 142327 17.41 1.97 88.71
50 580.005 39258 17.24 1.98 88.50
60 570.088 36985 17.35 2.01 88.40
70 503.271 24565 17.99 2.1 88.20
80 467.039 18698 17.46 2.05 88.29
90 391.511 10007 17.14 2.17 87.35
100 315.486 4138 17.04 1.97 88.47

Average 756.27 134736 17.46 2.02 88.45

Table 3.4: Angle vs. Corridor (n = 439)

CPU Time (secs)

p ZH # Circles Angle Method Corridor Method % Decrease
10 69.426 832370 39.30 3.39 91.39
20 48.107 241223 40.19 3.45 91.42
30 39.655 120212 41.10 3.42 91.68
40 33.365 63518 39.90 3.41 91.46
50 30.336 44849 38.60 3.37 91.26
60 27.951 32710 38.44 3.37 91.23
70 25.578 22952 38.34 3.47 90.94
80 24.135 18219 38.06 3.38 91.12
90 21.932 12597 38.27 3.52 90.80
100 20.402 9419 38.67 3.53 90.87

Average 34.090 139807 39.09 3.43 91.22

Table 3.5: Angle vs. Corridor (n = 575)

The results are very promising, with an average decrease in computational time of over

88.4% and 91.2% for n = 439 and n = 575 respectively. Although the angle method is

still quick, this decrease in computational time could make a significant difference for

algorithms where the potential facility locations are constantly re-calculated. Thus,

the corridor method shows much value, and therefore it is incorporated into all further

algorithms that are developed during this research.

3.4 Summary

This chapter has studied the relevant formulations used in this research, namely the Set

Covering problem, the vertex p−centre problem and the continuous p−centre problem.

60

It has investigated the usefulness of combining heuristic and optimal methods together

to obtain the optimal solution. The effect on the solution value quality when the dual-

ity gap value is manipulated was also explored. Finally, a new method that found all

potential facility locations formed from three demand points was discussed and proven

to require less computational time in comparison a well known and popular method.

The next chapter will revisit a dormant, but interesting, optimal algorithm.

61

Chapter 4

An Enhanced Implementation of

Drezner’s Exact Method

4.1 Introduction

This chapter begins by testing the original implementation of Drezner’s optimal algo-

rithm for the p−centre problem to highlight its strengths and weaknesses. New en-

hancements, designed to speed up the algorithm by avoiding unnecessary calculations,

are then proposed and mathematically supported with lemmas and proofs. Further-

more, a duality gap policy is also devised to improve the algorithm’s efficiency for

data sets with more complex distributions that are harder to optimally solve. The

enhanced algorithm is then evaluated under two scenarios. Scenario One finds the

optimal solution for five TSP-Library data sets, namely pr439 (a 439-city problem),

rat575 (a 575-rattled grid problem), rat783 (a 783-rattled grid problem) and pr1002

and rl1323 (a 1002-city and a 1323-city problem respectively). The algorithm demon-

strates its robustness as optimal solutions are found for the first time for the data sets

where n ≥ 575. Scenario Two tests the revised algorithm on nine generated data sets

where n ranges from 400−800 with distinguished and contrasting distributions, namely

randomly spread, semi-clustered and clustered, to emphasis the algorithm’s strength.

4.2 Z−maximal Circles

4.2.1 Introduction and Definitions

Drezner proposed an exact method to find the optimal solution for the p−centre prob-

lem in the plane using a group of circles called Z−maximal circles. A circle is defined

as maximal based on a given upper bound, Z. The set of Z−maximal circles are

identified and their centres are used as a subset of potential facility locations to find

the optimal solution value. An initial upper bound is found using a heuristic method,

62

and each iteration of the algorithm either finds a better solution (i.e. a smaller upper

bound) which becomes the new upper bound, or proves that there is none and so has

reached optimality.

Let us begin by defining the additional notations and concepts that are needed.

Definition 4.2.1. The closure of circle Cj is the set of demand points encompassed

by circle Cj which is defined as

Clj = {i ∈ I| di,j ≤ rj} ∀ j = 1 . . .m.

Let:

K: a subset of I;

R(K): radius of the smallest circle encompassing all points in K;

JZ : set of Z−maximal circles (JZ ⊂ J);

d′i,l: Euclidean distance from demand point i to demand point l;

Z: the upper bound at a given iteration.

Definition 4.2.2. The minimum covering circle (MCC) of the set K is the small-

est circle encompassing all points in K with radius R(K).

We can now define a Z−maximal circle. The following definition was taken directly

from Drezner (1984a).

Definition 4.2.3. A circle Cj with radius rj is said to be Z−maximal (often simply

called maximal) if:

1. rj < Z;

2. For every demand point i /∈ Clj, R(Clj ∪ {i}) ≥ Z.

In other words, if rj ≥ Z, then circle Cj cannot be classified as a Z−maximal circle.

However, if rj < Z, the next step is to add a demand point i /∈ Clj and find R(Clj∪{i}).

If R(Clj ∪ {i}) ≥ Z ∀ i /∈ Clj, then circle Cj is said to be Z−maximal.

4.2.2 Drezner’s Optimal Algorithm

Introduction

Drezner proposed two ways to solve the p−centre problem using Z−maximal circles.

63

The first, which will be referred to as For
(a)
0 , uses the set covering problem (formulated

in Chapter 3) to find the minimum number of Z−maximal circles needed. For clarity,

we shall define For
(a)
0 below.

(For
(a)
0) : Minimise

∑
j∈JZ

xj (4.1)

subject to
∑
j∈JZ

Ai,jxj ≥ 1 ∀i ∈ I, (4.2)

xj ∈ {0, 1} ∀j ∈ JZ , (4.3)

where Ai,j

1 if i ∈ Clj,

0 else,

(4.4)

xj =

1 if Z−maximal circle Cj is selected,

0 else.

(4.5)

The objective function (4.1) refers to minimising the number of Z−maximal circles

required to cover the set of demand points. Constraint (4.2) guarantees that every

demand point is encompassed, or covered, by at least one Z−maximal circle. If the

minimum number found in (4.1) is ≤ p, then the upper bound is decreased by setting Z

to the radius of the largest Z−maximal circle from the obtained solution. The process

of identifying the Z−maximal circles is then repeated. Else (i.e. the minimum number

is > p), the current upper bound Z is taken as the optimal solution and the algorithm

terminates.

In the second method, referred to as For
(b)
0 , a new constraint (4.6) is added to For

(a)
0

to impose that the number of covering circles has to be equal to p, while the objective

function (4.1) is omitted turning the problem into a feasibility problem.

(For
(b)
0): Find xj ∈ {0, 1} ∀j ∈ JZ subject to

(4.2) - (4.3),

∑
j∈JZ

xj = p. (4.6)

Before we use Drezner’s optimal algorithm to solve the p−centre problem using Z−maximal

64

circles as described in Figure 4.1, we shall first define the following additional notations.

C1
J : the set of null circles created from one critical point only (i.e., rj = 0 ∀ Cj ∈ C1

J);

C2
J : the set of circles created from two critical points defining its diameter;

C3
J : the set of circles created from three critical points forming an acute triangle.

Step 1. Find the three sets of circles C1
J , C2

J and C3
J .

Step 2. Find an initial solution and set the solution value as the initial upper

bound, Z.

Step 3. Eliminate all circles whose radii are ≥ Z from C2
J and C3

J .

Step 4. Find all Z−maximal circles using Procedure FMC(C1
J , C

2
J , C

3
J , Z, JZ)

(see Figure 4.2).

Step 5. Solve CP
(a)
0 or CP

(b)
0 using the Z−maximal circles JZ .

If the optimal value of CP
(a)
0 is ≤ p or CP

(b)
0 is feasible, set the new

upper bound Z as the radius of the largest Z−maximal circle found in

the solution and go to Step 3.

Else take the upper bound Z as the optimal solution value of the planar

p−centre problem and stop.

Figure 4.1: Drezner’s Original Algorithm (Drezner (1984a))

It is important to note that an appropriate heuristic must be used to find an initial

upper bound. For instance, a simple multi start heuristic can be used. In this study

we opted for the H2 heuristic proposed by Drezner (1984a) for consistency reasons.

Computing all Z−maximal Circles

We now construct an algorithm that finds which circles (i.e. the set of potential facility

locations) are Z−maximal. This ‘finding Z−maximal circles’ algorithm will be referred

to as the FMC algorithm for short and is given in Figure 4.2.

Time Complexity

The time complexity of the algorithm is examined at each of the steps described in

Figure 4.1. The complexity is bounded by Step 5 which is NP-hard. However, let us

examine the other four steps.

65

Procedure FMC(C1
J , C

2
J , C

3
J , Z, JZ)

Step 1. Set JZ = ∅.

Step 2. (Find all Z−maximal circles in the set C1
J .)

For each Cj = {i} ∈ C1
J do: If

d′i,l
2
> Z ∀ l 6= i ∈ I, add Cj to JZ .

Else the (single point) circle Cj is not Z−maximal.

Step 3. (Find all Z−maximal circles in the set C2
J ∪ C3

J .)

For all Cj ∈ {C2
J ∪ C3

J} do:

If R(Clj ∪ {i}) > Z ∀ i /∈ Clj (i.e. the circle Cj is Z−maximal

by definition) set JZ = JZ ∪ {Cj}.
Else, the circle Cj is not Z−maximal.

Step 4. Return JZ .

Figure 4.2: The FMC Algorithm

In Step 1, the total number of circles created from one, two or three demand points is

at most n0 = n(n2+5)
6

, giving a time complexity of O(n3). If the H2 heuristic is used

in Step 2, it has a time complexity of O(n2) which is dominantly the Elzinga-Hearn

algorithm (see Drezner & Shelah (1987)). Note that H2 is run h times and the best

is chosen. The wost-case time complexity for Step 2 is O(n3), and the worst case for

Step 3 has a complexity of O(n). Finally, the worse case scenario in Step 4 would be

to calculate all the Z−maximal circles given so that every possible circle is evaluated.

If the closure of circle Cj holds nj demand points, the time complexity for this step

becomes O(n6) as this requires
∑n0

j=1(n− nj)n2 calculations.

4.3 Initial Results

All algorithms in this study were coded in C+ + on a HP Elitebook 8570w with 12GB

of memory. The IBM ILOG CPLEX 12.6 console was incorporated into the program

using default parameters. Note that in the basic trial, squared distances were also

adopted when useful to improve code efficiency (e.g. when distances are compared, or

for non-acute triangle detection).

The algorithm used to find the MCC is the algorithm of Elzinga & Hearn (1972),

though a more advanced one could be used (see Elshaikh et al (2015)).

66

4.3.1 Results using Drezner’s suggested formulations

Initial results were found for the TSP-Library data set pr439 with used the two for-

mulations described by Drezner, For
(a)
0 , For

(b)
0 , to solve the 90−centre problem. For

the data set pr439, the problem was optimally solved using For
(a)
0 requiring more than

38 hours (i.e. 137692.6 seconds) and using 4580 iterations. When using For
(b)
0 for

the same data set, the required computational time was reduced to just below 3 hours

(10654.30 seconds) and using 393 iterations. For rat575, an optimal result was obtained

using For
(b)
0 , however it required nearly 30 hours (107916.0 seconds) of computational

time using 2729 iterations. Furthermore, when using For
(a)
0 , the program was stopped

after the time limit of 2 days with only a feasible solution found with a solution value

of 21.471 (a percentage difference of 18% from the optimal solution). It will be shown

later that the optimal solution can be found in less than half an hour (996.43 seconds)

with our improved method. Therefore, this example highlights the importance of devel-

oping ways to enhance the efficiency of Drezner’s optimal algorithm. Our first attempt

is to examine the formulation of the p−centre problem, which will be discussed in the

next section.

4.3.2 Modification of the Covering Problem (Enhancement

Zero)

The formulation for the p−centre problem (Forpc given initially in Chapter 3) was the

first to be examined. It is given below for completeness.

(Forpc) Minimise W (4.7)

subject to
∑
j∈JZ

Ai,jxj ≥ 1 ∀i ∈ I, (4.8)

∑
j∈JZ

xj = p, (4.9)

xjrj ≤ W ∀j ∈ JZ , (4.10)

xj ∈ {0, 1} ∀j ∈ JZ . (4.11)

where

W : the maximum distance between a facility and a demand point.

67

This formulation Forpc has an advantage over Drezner’s original two suggestions. This

is due to the optimal solution value being established quicker as there will be a smaller

amount of iterations. Although Forpc may be harder to solve than the set covering

problem, the advantages meant that it was the chosen formulation for this investi-

gation. Therefore, the introduction of Forpc, instead of For
(a)
0 or For

(b)
0 , could be

considered as our first enhancement due to generating tighter bounds. However, for

simplicity and conciseness, the results of Forpc will be used as a starting point from

which we will base our improvements. In other words, whenever we refer to Drezner’s

original algorithm we mean the algorithm with Forpc instead.

4.3.3 Results using Forpc

Tables 4.1 and 4.2 show the optimal results for p = 10 to 100 in multiples of 10. The

first column, titled p, shows the number of facilities required. The second column shows

the initial upper bound value, denoted by Z1, that was found from a 1000 iteration

runs of the H2 heuristic described in Drezner (1984a). The computational time to find

this upper bound is also given in the corresponding CPU Time column. The fourth

column, titled Z∗, shows the optimal solution found from Drezner’s optimal algorithm,

followed by the loop computational time consumed by Drezner’s optimal algorithm

only (i.e. excluding the computational time required for the H2 heuristic).

Other information, such as the number of loops (iterations) before an optimal solu-

tion value was found, the total time spent on computing the Z−maximal circles and

the total time spent on solving the problem in CPLEX are reported. The percentages

of these times are also given in the remaining columns to indicate proportionally how

the overall computational time was shared over the different calculations. These will

provide us with an insight into the problem and hence potential ways on how to speed

the search up. Note that these two individual percentages when added are below 100%

due to other calculations that have not been included such as the initial construction

of circles (Step 1 in Figure 4.1).

These results were first reported in Elshaikh et al (2016) for evaluating a heuristic

known as the perturbation method.

68

H2 Heuristic Optimal Solution

p Z1 CPU Time Z∗ Loop
CPU
Time
(secs) a

Loops Maxi
Circles
(secs)

CPLEX
(secs)

Maxi
Circles
(%)

CPLEX
(%)

10 1716.510 96.88 1716.510 6252.72 2 6154.93 36.39 98.44 0.58
20 1169.540 170.28 1029.710 56753.00 36 54203.60 297.90 95.51 0.52
30 975.000 205.36 739.193 37017.10 49 35024.50 222.96 94.62 0.60
40 874.271 218.90 580.005 31355.00 67 29986.40 209.61 95.64 0.67
50 580.005 235.61 468.542 4939.25 38 4781.67 59.91 96.81 1.21
60 570.088 246.86 400.195 4956.45 47 4794.88 57.77 96.74 1.17
70 503.271 256.30 357.946 3170.89 46 3076.31 39.04 97.02 1.23
80 467.039 300.01 312.500 2186.27 53 2109.08 37.33 96.47 1.71
90 391.511 276.20 280.903 1258.22 48 1214.45 23.80 96.52 1.89

100 315.486 332.53 256.680 462.30 32 437.38 13.93 94.61 3.01

Average 756.272 233.89 614.218 14835.12 42 14178.32 99.87 96.24 1.26

a This excludes computational time for the H2 heuristic.

Table 4.1: Initial Results for n = 439 TSP-Lib

H2 Heuristic Optimal Solution

p Z1 CPU Time Z∗ Loop CPU
Time (secs)
a

Loops Maxi
Circles
(secs)

CPLEX
(secs)

Maxi
Circles
(%)

CPLEX
(%)

10 69.426 98.34 67.926 83898.60 10 78805.90 351.59 93.93 0.42
20 48.107 175.62 45.475 19087.06 11 17513.80 519.37 91.75 2.72
30 39.655 238.26 35.556 9743.91 14 8698.37 577.51 89.27 5.93
40 33.365 296.90 30.063 41733.00 11 3240.15 38342.30 7.76 91.88
50 30.336 403.76 25.826 9612.61 15 2515.16 6985.51 26.17 72.67
60 27.951 422.18 23.163 28344.00 18 1938.64 26327.70 6.84 92.89
70 25.578 558.86 20.858 40256.90 20 1449.39 38756.30 3.60 96.27
80 24.135 535.90 19.026 40181.70 17 892.371 39247.90 2.22 97.68
90 21.932 743.20 17.460 4260.10 18 696.769 3532.50 16.36 82.92

100 20.402 795.13 16.420 33694.00 15 405.90 33262.20 1.20 98.72

Average 34.089 426.81 30.177 31081.24 15 11615.65 18790.29 33.91 64.21

a This excludes computational time for the H2 heuristic.

Table 4.2: Initial Results for n = 575 TSP-Lib

69

It can be noted for the data set pr439 that when p = 90 and 100 the computational

times are 1258.22 and 462.30 seconds respectively. This is therefore much quicker than

using the fastest of either For
(a)
0 or For

(b)
0 which consume 10654.30 and 2989.64 sec-

onds respectively. Therefore, the use of the formulation Forpc is approximately 9 and

7 times faster than using For
(a)
0 or For

(b)
0 in these two instances.

4.3.4 Interesting Observations

The strengths and weaknesses of this optimal approach to solve medium to large contin-

uous p−centre problems can be seen from the results. An obvious strength to highlight

is that optimal solution values for the rat575 data set have now been discovered for all

p values.

However, by studying Tables 4.1 & 4.2, it can be observed that the time shared between

the determination of the Z−maximal circles and CPLEX differ in these two instances

and for the value of p. There are two areas where enhancements could be introduced

in an attempt to shorten the overall computational time.

a) the way the Z−maximal circles are identified from one iteration to the next;

b) a choice of a compromise between the quality of a feasible solution and its

corresponding computational time when solving Forpc (i.e. finding an optimal

solution or a good feasible solution).

It is interesting to observe that the majority of the computational time for the data

set pr439 was taken by calculating the Z−maximal circles, whereas the majority of

computational time was consumed when solving Forpc in CPLEX for rat575. This is

demonstrated in Figure 4.3. This could be due to the distribution of the two data sets,

which can be visually compared using Figure 4.4.

Figure 4.4a shows that pr439 has a clustered distribution. This type of distribution

may affect computational time when classifying circles as Z−maximal or not. If a

circle is small or lies in a sparse area of demand points, the number of demand points

not enclosed within the circle may be proportionally high. Therefore, determining

whether the circle is Z−maximal or not may require many combinations and calcula-

tions. However, as the covering circles vary in size it is more likely that the cardinality

70

(a) pr439 (b) rat575

Figure 4.3: Comparing time spent to calculate Z−maximal circles, the cplex solution
and other calculations

(a) pr439 (b) rat575

Figure 4.4: Distribution for pr439 and rat575 from TSP-Lib

71

of set of Z−maximal circles will be smaller in this instance compared to a data set

with an evenly spread distribution. Therefore, the calculation time is mainly taken up

by calculating Z−maximal circles rather than finding a solution in CPLEX.

There is a marked difference in the distribution for the data set where rat575, as

the demand points are evenly spread. The results for this data set show an interesting

pattern. When p is small (10− 30) the computational times are proportionally similar

to that of the data set n = 439. However, as p increases, the time spent finding a solu-

tion in CPLEX dramatically increases, and time spent computing Z−maximal circles

greatly decreases proportionally. This could be explained by looking at the distribu-

tion. The smaller p is, the larger the upper bound value will be. This means there

will be more circles that are accepted by condition (1) in Definition 4.2.3. Thus there

are more circles to check condition (2) with, and this takes much computational time.

However, the size of the Z−maximal circles set will be relatively small and so finding

an optimal solution will not take as much computational time (much like the reasoning

for the pr439 data set). As p gets larger, the number of circles that satisfy condition

(1) in Definition 4.2.3 decreases, and so finding the Z−maximal circle set does not

take as much computational time. However, if a circle is classified as Z−maximal,

then it is likely that there are other circles of a similar size that will also be classed

as Z−maximal, as the evenly spread data can given a ‘duplicate effect’ but creating

many circles of similar sizes. Furthermore, as the distribution is evenly spread it could

mean that most circles that satisfy condition (1) are Z−maximal. This could therefore

lead to a large subset of potential facility locations and so increasing the time spent on

finding a solution.

4.4 The Z−Maximal Circles-Based Enhancements

If the algorithm only needed a small number of iterations, the original proposal from

Drezner would be efficient and therefore enhancements might not be worthwhile. How-

ever, as the algorithm involves many iterations, it soon becomes apparent that infor-

mation found in one iteration could be used to save computational time in the next. As

the cumulative computational time saving from the improvements might create a big

change to the overall computational time, it is worth investigating and testing possible

72

enhancements. This is especially useful for larger data sets, as some of the previous

results show the algorithm can take well over 24 hours to complete.

4.4.1 Enhancement One: EHA-Based Implementation

As described in Chapter 1, the EHA is used to find the solution to the single facility

location problem, and thus find MCCs. As this is repeatedly needed in Step 3 of the

FMC algorithm, the implementation of this algorithm was enhanced in two ways in

an attempt to reduce the overall computational time which will now be explained.

Early Termination

The EHA starts with a circle made from any two selected points and continues to

find a covering circle of increasing size until all points are covered. Therefore, EHA

terminates when the MCC is found. However, it is important to realise that the exact

centre point and the radius of the MCC are not needed for this maximal circles-based

method: we simply aim to establish whether or not the MCC will be larger or smaller

than the upper bound Z. With this in mind, we can see that if the radius of the covering

circle found at any point during the EHA is smaller than the upper bound, then the

EHA will have to continue to the end as normal. However, it can be terminated early

if the covering circle’s radius ever exceeds Z. This is because at each iteration in the

EHA, the new circle’s radius is either the same or larger. Therefore, if a circle has a

radius ≥ Z at any point, there is no need to continue as the final circle (MCC) will

be either the same or even larger. As this is all the information needed, the algorithm

can terminate early and the next combination can be tested. Thus, not having to

necessarily compute the radius of the MCC each time will save computational time.

More Informative Initial Points

Instead of starting the EHA from random points or selecting points using selection

rules, such as the ones adapted by other authors including Welzl (1991) and Elshaikh et

al (2015), here we consider the information we have already found. In other words, the

two or the three critical points that defined the circle being evaluated are our chosen

initial points for the EHA. This makes the selection deterministic and yields faster

results.

73

Combining these two ideas forms a double enhancement, which will be referred to

as Enh1. Enh1 was tested on the data set pr439 where p = 10, . . . , 100. The results

are displayed in Table 4.3, where the fifth column shows the computational time re-

quired for Drezner’s optimal method, and the sixth column gives the computational

time needed for Drezner’s optimal method where Enh1 is incorporated. The last col-

umn, displaying the overall percentage decrease in computational time, shows a sig-

nificant drop in required time with an average decrease of over 58%. For clarity, the

computational time required by the H2 heuristic is given in the second column.

H2 Heuristic Drezner’s Optimal Method

p CPU Time
(secs)

Z∗ # Loops Original
CPU
Time
(secs)a

New
CPU
Time
(secs)a

% Overall Change

10 96.88 1716.510 2 6252.72 1949.32 68.83
20 170.28 1029.710 36 56753.00 19323.00 65.95
30 205.36 739.193 49 37017.10 12978.50 64.94
40 218.90 580.005 67 31355.00 11434.00 63.53
50 235.61 468.542 38 4939.25 2019.48 59.11
60 246.86 400.195 47 4956.45 2082.34 57.99
70 256.30 357.946 46 3170.89 1368.08 56.86
80 300.01 312.500 53 2186.27 1024.88 53.12
90 276.20 280.903 48 1258.22 654.80 47.96
100 332.53 256.680 32 462.30 264.04 42.88

Average 233.90 302.010 45 14835.12 5309.84 58.12
a This excludes computational time for the H2 heuristic.

Table 4.3: Comparing CPU Times (in secs) for Drezner’s optimal method with and
without Enh1 (n = 439)

Note that Enh1 does not affect the total number of iterations of the algorithm used to

determine the solution, and it will incorporated into Step 3 of the FMC algorithm only.

Summary

◦ If at any point in the Elzinga-Hearn algorithm a circle is created whose radius ≥ Z,

the algorithm can be terminated early.

◦ Instead of starting the algorithm on random demand points, it starts with the critical

points of circle Cj.

74

4.4.2 Enhancement Two: Efficiently Recording Z−maximal

Circles

At each new iteration in the Drezner algorithm, the process of finding the Z−maximal

circles begins again from the start irrespective of earlier iterations. However, when

examining the first set of results, we observed that it was likely that many circles were

being classified as Z−maximal for successive iterations.

As an example, Table 4.4 displays the number of Z−maximal circles found for the

first 10 iterations of the original algorithm using the data set pr439 where p = 100.

The first column shows the iteration number, and the second column gives the total

number of circles found after completing Steps 1−3 in Figure 4.1. The third column

shows the number of circles that are classified as maximal during this iteration, and

the fourth column gives the number of maximal circles that were already classified as

maximal from previous iterations. Finally, the last column displays the percentage of

new circles classified as maximal in the given iteration.

Iteration # # Original Circles # Z−maximal Cir-
cles

Circles Previ-
ously Identified

Extra %
Required

1 9281 860 - -
2 9189 855 780 8.77
3 8835 797 597 25.09
4 8796 805 758 5.84
5 8652 809 684 15.45
6 8449 798 640 19.80
7 8384 804 735 8.58
8 7922 756 478 36.77
9 7855 767 693 9.64

10 7637 770 601 21.95

Average 8500.00 802.10 662.88 16.88

Table 4.4: Number of Z−maximal circles required & previously identified for the first
10 iterations (n = 439, p = 100)

When studying the fourth column, in this example we can see the vast majority of

classified Z−maximal circles have been previously found, with only a small percentage

of new circles classified as Z−maximal. An average of only 16.88% extra Z−maximal

circles to be added is required (note that the first iteration was not included), with

the largest deviation being 36.77%. Therefore, it is worthwhile to track which circles

have been defined as Z−maximal and which have not to avoid unnecessary calculations.

75

A technique to identify whether a circle is Z−maximal or not can now be constructed.

For clarity, let K be a subset of I.

Lemma 1. If circle Cj is Zt−maximal for an upper bound Zt at iteration t, then it is

also Zt+1−maximal for iteration t+ 1 if and only if its radius rj < Zt+1.

Proof. We know at each iteration t, the upper bound Z strictly decreases. Therefore,

we can say Zt > Zt+1. For circle Cj to be a Z−maximal circle at iteration t, the

following two conditions need to be satisfied:

1. rj < Zt;

2. For every demand point i ∈ I such that i /∈ Clj, R(Clj ∪ {i}) ≥ Zt.

As Zt+1 < Zt, we can deduce that R(Clj ∪ {i}) > Zt+1. Thus if rj < Zt+1, circle Cj

will still be a Z−maximal circle by definition at iteration t+ 1.

The information denoting whether or not circle Cj has been found to be Z−maximal

or not can be stored in a binary or logical vector CircMax where

CircMaxj =

1 if Cj ∈ JZt ,

0 else.

In brief, if circle Cj ∈ JZt , then Cj ∈ JZt∗ where t∗ > t and rj < Zt∗ , and so there is

no need for further calculations in subsequent iterations.

Lemma 1 is incorporated into Steps 2 and 3 of the FMC algorithm to avoid per-

forming redundant calculations. We will refer to this enhancement as Enh2.

Summary

If circle Cj ∈ JZt , then Cj ∈ JZ for all subsequent iterations and can be disregarded

from further calculations.

76

4.4.3 Enhancement Three: Fast Identification of some

Non−Z−maximal Circles

This enhancement, which we will refer to as Enh3, uses a technique to quickly find

some non−Z−maximal circles without performing unnecessary calculations.

Take the circle Cj with a centre point (xjc , yjc) and radius rj. We can now create

a new circle C+
j centered at (xjc , yjc) with radius Z. It is clear that Cj lies inside C+

j .

Lemma 2. If s ∈ I is not covered by Cj (i.e. s /∈ Clj) but is strictly covered by C+
j ,

then circle Cj is not Z−maximal.

Proof. Let s ∈ I with s /∈ Clj but strictly covered by C+
j . Then the smallest circle,

C, containing s and the whole circle Cj, contains all the points in Clj and is strictly

contained in C+
j . Hence, C’s radius is at least R(Clj ∪{s}) and is strictly less than Z.

It follows that R(Clj ∪ {s}) < Z, and so Cj is not Z−maximal.

An Illustrative Example

The solid circle in Figure 4.5 demonstrates circle Cj. The largest, hashed circle repre-

sents circle C+
j . The dot in Cj defines its centre. The line represents the bisector going

through the point i encompassed by circle Cj. The location of the external point s′

can be seen on the circumference of circle C+
j .

It is easy to see that R(Clj ∪ {s′}) =
rj+Z

2
.

If
Z + rj

2
< Z,

=⇒ Z + rj < 2Z;

As rj < Z, we deduce that R(Clj ∪ {s′}) < Z. As this is the largest MCC that

can be made with circle Cj united with an external point that is encompassed by C+
j ,

it is clear that all other MCCs will have radii < Z. Thus a minimum threshold

of Z has been established. In other words, if there is at least one demand point not

77

covered by circle Cj which lies within this distance, then the circle cannot be classified

as Z−maximal as they cannot satisfy condition (2) of Definition 4.2.3.

Let the closure of circle C+
j be defined as Cl+j . It is worth noting that if @ s′ ∈ Cl+j ,

this does not mean that circle Cj can be defined as a Z−maximal circle.

Figure 4.5: Illustrative Example for Enh3

This idea can be further developed by adding a maximum threshold of 2Z which is

stated in Lemma 3.

Lemma 3. Take any demand point s ∈ I not covered by Cj. In case ds,j ≥ 2Z, then

R(Clj ∪ {s}) > Z.

Proof. Take s ∈ I with ds,j ≥ 2Z. Consider the circle C with centre s and radius 2Z.

As rj < Z, the centre of Cj is not encompassed by C. Therefore, the circle arc of Cj

lying within C is strictly less than half Cj’s circumference.

But the critical points of Cj span at least half the circle, and so cannot all lie within

C. Therefore, ∃ i ∈ Clj where di,s > 2Z, which implies that R(Clj ∪ {s}) > Z.

Thus if a point that lies at a distance ≥ 2Z from (xjc , yjc) is added to the set of points

encompassed by the circle Cj, the MCC that covers all these points would have a

radius ≥ Z. If this information is known, any point in this area does not need to be

checked again and hence computational time can be saved without affecting the quality

of the solution.

78

This enhancement will be referred to as Enh3 and will be incorporated into Step 2

and Step 3 of the FMC algorithm.

Summary

Two observations can be made.

1. If

∃ i /∈ Clj | di,j < Z, (4.12)

we can conclude that circle Cj is not Z−maximal.

2. If

di,j ≥ 2Z ∀ i /∈ Clj (4.13)

we can conclude circle Cj is Z−maximal.

These two observations led to constructing a checking area for circle Cj, say Checkj,

where

Checkj = {i /∈ Clj | Z ≤ di,j < 2Z}. (4.14)

If the two observations above are not true and Checkj 6= ∅, further calculations must

be done.

The checking area for circle Cj is displayed in the shaded section of Figure 4.6.

Figure 4.6: Checking Area for circle Cj

79

An Approximation

If we consider a uniformly distributed set of demand points, we can approximate the

number of demand points n′ that lies in the checking area. Take A0 to be the total

area and Ac to be the checking area.

We see

A0 = π(2Z)2 = 4πZ2,

and

Ac = A0 − πZ2 = 4πZ2 − πZ2 = 3πZ2.

Therefore, as
A0

Ac
' n

n′
.

we see

=⇒ n′ ' n
Ac
A0

=
3

4
n.

4.4.4 Enhancement Four: Identifying the Non−Z−maximal

Circles

If circle Cj is not Z−maximal, then there must be a demand point i /∈ Clj such that

R(Clj ∪{i}) < Z. If this point is recorded, in the next iteration this demand point can

be the first to be checked and hence repeated computations can be discarded. If the

MCC of the next iteration is still < Z, then we can deduce that this circle is still not

Z−maximal thus saving computational time. If the MCC is ≥ Z, we either continue

with calculations and conclude it is now classified as Z−maximal, or we record the next

demand point to cause Cj to be non−Z−maximal if it exists. In other words, either

way will provide us with useful information that can be used in subsequent iterations.

As an example, say it takes qj points to find a demand point to determine circle

Cj as not Z−maximal at iteration t. This means the next iteration starts with the qthj

point instead of starting at the beginning, thus saving the computational time it takes

to check the previous (qj − 1) points.

80

Let Start be an integer vector of dimension m. The entry Startj denotes which demand

point i should be checked first in the next iteration to see if circle Cj is Z−maximal or

not. This enhancement, which will be referred to as Enh4, is incorporated into Step 2

and Step 3 of the FMC algorithm.

Summary

If ∃ i ∈ I : R(Clj ∪ {i}) < Z at iteration t, then demand point i will be checked first

against circle Cj at iteration t+ 1.

4.5 Analysing the Z−Maximal Circles-Based

Enhancements

The enhancements were first analysed separately so that each one’s improvement in

computational time could be assessed and its impact measured. For illustrative pur-

poses, the computational times for the separate enhancements for the data set pr439

where p = 70, 80, 90 and 100 are first shown in Figure 4.7. This is then followed by

combining all the refinements together using a certain order that will be based on en-

hancement performance.

Figure 4.7: Enhancement’s Individual Improvements

Individual Performances

Figure 4.7 suggests that the best enhancement, giving an average decrease in compu-

tational time of 84.42%, is Enh3. By providing a minimum and maximum threshold

81

by which the demand points are checked reduces many calculations as many points

sit outside of the checking area. Enh4 yields the second best result with an average

decrease of 83.26% in computational time. Again, this result is to be expected as Enh4

reduces the number of unnecessary calculations to find all Z−maximal circles. By

starting at the last known non−Z−maximal circle, all previous demand points can be

discarded which avoids the unnecessary calculations that they incur. Enh1 is the third

best at improving the overall computational time, with an average decrease of 50.65%.

This is because this enhancement also reduces the number of calculations by termi-

nating the EHA algorithm earlier whenever possible. Also, by choosing the current

critical points as the initial points, the EHA will have less iterations to find the MCC.

Finally, Enh2 improves the computational time the least. This is due to not dealing

with the Z−maximal circle calculations directly; it simply minimises how many circles

are needed for these calculations. The average improvement of computational time for

Enh2 is 26.26%, which is still significant.

Combined Performance

The four enhancements are embedded into Drezner’s original algorithm (using Forpc) in

our order of individual performances observed earlier which is as follows: Enh3−Enh4−Enh1

−Enh2. To assess the incremental gain of these enhancements, we also conduct the

following experiment: in the first run we use Enh3, in the second we use Enh3 and

Enh4, and in the third Enh3, Enh4 and Enh1 are used. The fourth run consists of the

proposed algorithm with all the enhancements incorporated. The results are shown in

Figure 4.8.

Figure 4.8: Comparison on CPU Time for the Enhancements

82

It is clear to see that the enhancements greatly improve the computational time. The

first enhancement reduces the total computational time by an average of 84.49% as

previously mentioned, and by adding Enh4 this is decreased further to 90.26%. Af-

ter the addition of Enh1, the average decrease becomes 96.46% and finally with all

enhancements this reaches 96.71%. In other words, just above 3% of the original com-

putational time is needed on average, leading to a very strong result.

It is also worth noting that the incremental decrease in computational time is not

directly additive as there is a high level of association between their individual contri-

butions. For instance, after gaining 84% with Enh3, one might expect Enh4 to yield

83% of the remaining 16%. This would therefore give a new decrease of approximately

97%. However, it only decreases it to just over 90% (i.e., an extra 5.8% only).

Section 4.6 describes the enhanced reverse relaxation with all four enhancements added

to the algorithm.

4.6 The Complete Revised Optimal Algorithm

The full revised FMC algorithm is given in Figure 4.9. It is similar to the original

FMC algorithm, except Steps 2 and 3 in Figure 4.2 have been modified accordingly

to accommodate the enhancements described in this study.

The Drezner enhanced algorithm (DEA) is similar to the Drezner’s original algorithm

stated previously in Figure 4.1, except that in Step 5 the formulation Forpc is used

instead of For
(a)
0 or For

(b)
0 and an extra step (Step 3 shown in Figure 4.10) has been

added to accommodate the enhancements. For completeness, we reproduce the full

DEA in Figure 4.10.

Section 4.7 displays the new results for pr439 and rat575 with all four enhancements

incorporated.

83

Step 1: Input vectors Startj and CircMaxj . Set JZ = ∅.

Step 2: For all Cj ∈ J , if CircMaxj = 1, add Cj to JZ (i.e. set JZ = JZ ∪ Cj)

and remove Cj from the set {C1
J ∪ C2

J ∪ C3
J}.

Step 3: (Find all Z−maximal circles in the set C1
J .)

For all Cj ∈ C1
J where CircMaxj = 0 do:

Take the circle Cj . Starting from demand point Startj , take l ∈ I and

compute dl,j . If ∃ l ∈ I such that
dl,j
2 < Z, the circle is not Z−maximal.

Discard Cj from further investigation and set Startj = l.

Else, the circle is Z−maximal by definition. Add Cj to JZ

(i.e. JZ = JZ ∪ Cj) and set CircMaxj = 1.

Step 4: (Find all Z−maximal circles in the set C2
J ∪ C3

J .)

For all Cj ∈ {C2
J ∪ C3

J} where CircMaxj = 0 do:

Step 4A:

(i) Starting from demand point Startj , if ∃ i /∈ Clj where
di,j < Z, go to Step 4B(ii), else go to 4A(ii).

(ii) Starting from demand point Startj , if ∀ i /∈ Clj , di,j ≥ 2Z,
go to Step 4B(i), else go to 4A(iii).

(iii) While ∃ i /∈ Clj with Z ≤ di,j < 2Z, starting from demand
point Startj do:
Use the EHA to find R(Clj ∪ {i}).
If a circle with radius ≥ Z is found at any point during the
EHA, go back to start of 4A(iii) starting from the next i
value, else continue to find R(Clj ∪ {i}). If R(Clj ∪ {i}) < Z,
then Cj is not Z−maximal: go to Step 4B(ii).

(iv) If this point is reached the circle is maximal: go to Step 4B(i).

Step 4B :

(i) (Circle Cj is Z−maximal by definition.) Add Cj to JZ
(i.e. set JZ = JZ ∪ Cj) and set CircMaxj = 1.

(ii) (Circle Cj is not Z−maximal by definition.) Set Startj = i.

Figure 4.9: The FMC-Revised Algorithm

4.7 Computational Results

Tables 4.5 & 4.6 show the results found for the data sets pr439 and rat575 using the

DEA. The columns are organised in the same way as in the previous tables. As a

summary, we also produced Table 4.7 to show the new and the old duration for each

value of p including the percentage decrease. Note that these computational times do

84

Step 1. Find the circles made from one, two or three demand points. This

creates three sets of circles : C1
J , C2

J and C3
J . Discard any circle in

C3
J whose three points create an obtuse or right-angled triangle.

Step 2. Find an initial solution and set the solution value as the initial

upper bound, Z.

Step 3. Set Startj = 1 and CircMaxj = 0 for j = 1, . . . ,m.

Step 4. Eliminate all circles whose radii are ≥ Z from C2
J and C3

J .

Step 5. Find all Z−maximal circles using the FMC-Revised algorithm with

the threshold Z (Figure 4.9). Let JZ be the set of Z−maximal

circles.

Step 6. Solve Forpc using the set of current Z−maximal circles JZ .

If a solution is found, set Z to be the new upper bound, JZ = ∅
and go back to Step 4.

Else, set the upper bound Z is the optimal solution value of the

continuous p−centre problem and stop.

Figure 4.10: Drezner Enhanced Algorithm (DEA)

not include the computational time for the H2 heuristic.

It is clear to see the enhanced method has greatly reduced the computational time

for both data sets. Whereas it took the data set pr439 just over 4 hours average com-

putational time before, it now takes an average time of just over 12 minutes leading to

a massive reduction of 96%.

For the data set rat575, the computational time has also been reduced. For the

smaller values of p (10, 20 and 30), the majority of the time was taken computing

the Z−maximal circles leading to a reduction of over 90%. However, for the other

values of p, the majority of the computational time is taken up solving the problem in

CPLEX, leading to a relatively small though still significant overall reduction of nearly

50%. The next section will investigate a new policy developed to reduce the time spent

solving Forpc.

85

H2 Heuristic Optimal Solution

p Z1 CPU Time Z∗ Loop
CPU
Time
(secs) a

Loops Maxi
Circles
(secs)

CPLEX
(secs)

Maxi
Circles
(%)

CPLEX
(%)

10 1716.510 96.88 1716.510 342.78 2 278.96 34.52 81.38 10.07
20 1169.540 170.28 1029.710 2856.38 36 359.05 282.05 12.57 9.87
30 975.000 205.36 739.193 2146.67 49 229.60 207.87 10.70 9.68
40 874.271 218.9 580.005 1515.29 67 171.14 200.49 11.29 13.23
50 580.005 235.61 468.542 159.49 38 21.90 51.09 13.73 32.04
60 570.088 246.86 400.195 170.38 48 23.24 53.20 13.64 31.22
70 503.271 256.30 357.946 97.63 47 13.77 36.71 14.11 37.60
80 467.039 300.01 312.500 73.52 52 9.61 31.62 13.07 43.02
90 391.511 276.20 280.903 38.01 48 4.71 20.85 12.39 54.86

100 315.486 332.53 256.680 16.77 32 1.50 11.06 8.93 65.93

Average 756.272 233.90 614.218 741.69 42 111.35 92.95 19.18 30.75

a This excludes computational time for the H2 heuristic.

Table 4.5: n = 439 TSP-Lib with Enhancements

H2 Heuristic Optimal Solution

p Z1 CPU Time Z∗ Loop
CPU
Time
(secs) a

Loops Maxi
Circles
(secs)

CPLEX
(secs)

Maxi
Circles
(%)

CPLEX
(%)

10 69.426 98.34 67.926 5572.02 10 693.86 336.28 12.45 6.04
20 48.107 175.62 45.475 1616.05 11 109.75 495.80 6.79 30.68
30 39.655 238.26 35.556 1023.14 14 46.20 544.21 4.51 53.19
40 33.365 296.90 30.063 37660.80 11 17.41 37514.80 0.05 99.61
50 30.336 403.76 25.826 6352.86 15 12.85 6247.59 0.20 98.34
60 27.951 422.18 23.163 26870.00 18 9.26 26800.50 0.03 99.74
70 25.578 558.85 20.858 26123.80 19 6.22 26082.30 0.02 99.84
80 24.135 535.90 19.026 32343.20 17 4.41 32343.20 0.01 99.91
90 21.932 743.20 17.460 2167.610 18 3.04 2149.99 0.14 99.19

100 20.402 795.13 16.420 25074.40 15 1.93 25074.40 0.01 99.95

Average 34.089 426.81 30.177 16480.39 15 90.49 15758.90 2.42 78.65

a This excludes computational time for the H2 heuristic.

Table 4.6: n = 575 TSP-Lib with Enhancements

86

pr439 rat575

p Original
Loop CPU
Time (secs)a

New Loop
CPU Time
(secs)a

Percentage
Decrease
(%)

Original
Loop CPU
Time
(secs)a

New Loop
CPU Time
(secs)a

Percentage
Decrease
(%)

10 6252.72 342.78 94.52 83898.60 5572.02 93.36
20 56753.00 2856.38 94.97 19087.6 1616.05 91.53
30 37017.10 2146.67 94.20 9743.91 1023.14 89.50
40 31355.00 1515.29 95.17 41733.00 37660.80 9.76
50 4939.25 159.49 96.77 9612.60 6352.86 33.91
60 4956.45 170.38 96.56 28344.00 26870.00 5.20
70 3170.89 97.63 96.92 40256.90 26123.80 35.11
80 2186.27 73.52 96.64 40181.70 32343.20 19.51
90 1258.22 38.01 96.98 4260.10 2167.61 49.12

100 462.30 16.77 96.37 33694.00 25074.40 25.58

Average 14835.12 741.69 95.91 31081.24 16480.39 45.26

a This excludes computational time for the H2 heuristic.

Table 4.7: Original vs. Revised Drezner’s algorithm for n = 439 TSP-Lib and
n = 575 TSP-Lib

4.8 A Compromise Solution in CPLEX

In this section, we investigate how to balance the time spent between computing the

Z−maximal circles and the level of the solution quality which is considered acceptable

when solving Forpc. However, to guarantee optimality we need to show at one stage

that Forpc has no feasible solution, and hence the final iteration needs to run to the

very end. In other words, it is not possible to reduce computational time here by ter-

minating the search earlier in the last run.

As a demonstration, Table 4.8 shows the total time taken in CPLEX compared to

the time consumed in the last iteration in CPLEX (i.e. the amount of time required

for CPLEX to find that no feasible solution exists). Figure 4.11 displays the aver-

age computational time spent during each iteration compared to the amount of time

consumed by CPLEX in the last iteration. Though a relatively considerable amount

of time is used in the last iteration (accounting for approximately 10-20% of the to-

tal computational time), the computational time taken in the previous iterations is

nonetheless worth exploring for possible improvement. A compromise feasible solution

to save computational time in CPLEX while limiting the total number of iterations of

the entire algorithm will be the focus of in this section.

87

p CPLEX Loop
CPU Time (secs)

CPLEX Final
Iteration CPU
Time (secs)

Loops Percentage
Use (%)

Average(%)
per Loop
w/o last
iteration

Average
(%) per
Loop

10 336.28 31.81 10 9.46 11.11 10.00
20 495.80 105.96 11 21.37 10.00 9.09
30 544.21 68.25 14 12.54 7.69 7.14
40 37514.80 12789.40 11 35.81 10.00 9.09
50 6247.59 673.42 15 10.78 7.15 6.67
60 26800.50 3821.60 18 14.26 5.88 5.56
70 26082.30 2231.55 19 8.56 5.56 5.26
80 32343.20 647.03 17 2.00 6.25 5.88
90 2149.99 41.48 18 1.93 5.88 5.56
100 25074.40 4577.57 15 18.26 7.14 6.67

Average 15758.91 2498.81 15 15.86 7.14 6.67

Table 4.8: CPLEX Durations (secs) for both the total and the last iteration in the
case of n = 575 TSP-Lib

Figure 4.11: Average computational time % in CPLEX per iteration vs. last iteration
for rat575

There are several ways in which the search can be terminated early in previous runs

whilst producing a feasible solution for Forpc. An example would be to impose a time

limit, however one cannot guarantee that a feasible solution will be found within the

time and so other options are investigated.

One option would be to use either a) the set covering formulation For
(a)
0 or b) the

p−centre formulation where the first feasible solution of Forpc is used (i.e. equivalent

to For
(b)
0) with our enhanced algorithm, as both of these were initially suggested by

Drezner. These two possibilities were initially discarded as they greatly increased both

the number of iterations and the total computational time due to the time spent cal-

culating the Z−maximal circles. However, as the computational time for the revised

88

method has now dramatically improved, these options may have become viable to war-

rant further examination.

The set covering formulation was tested with the Drezner enhanced algorithm for data

sets pr439 and rat575 where p = 100 and was still found to be inefficient. Results for

these two instances can be found in Table A.1 in Appendix A.

Drezner’s alternative suggestion of updating the upper bound as the first feasible so-

lution found in each iteration was tested with the Drezner enhanced algorithm for

data sets pr439 and rat575, and the results can be found in Table A.2 and A.3 in

Appendix A. Interestingly, this method was found to have some strengths as well as

weaknesses. Among the strengths is that the computational times were improved for

n = 575, including the computational time spent in CPLEX. This is significant as the

total computational time for rat575 was largely affected by the time spent in CPLEX.

However, the number of iterations for the algorithm was still extremely large which we

aim to avoid here by adopting a different strategy.

Our strategy manipulates the duality gap so that CPLEX terminates earlier with a

good feasible, but not necessarily optimal, solution whenever it manages to find at

least one. However, the value of the duality gap can be both sensitive and critical

which can make our algorithm less robust. The algorithm cannot terminate too early

as it could simply increase the number of iterations greatly, and therefore increase the

time spent computing the Z−maximal circles. It is therefore important to devise a

reasonable compromise. In this study, we propose the following self−learning CPLEX

policy which takes into consideration information from previous iterations.

It is worth noting that the following duality gap policy is only implemented when

CPLEX finds at least one feasible solution in any run of CPLEX. If no feasible solution

has been identified in a given run, CPLEX continues until the maximum time limit is

reached where the search terminates. Hence the obtained Z value of the previous run

is used as the final solution (which obviously cannot be guaranteed to be optimal).

After the first results, it was noted that terminating the program before 1.5% would be

89

too early. It may reach this duality gap value quickly, but the feasible solution found

often deviated far from the optimal solution. This would greatly increase the number

of overall iterations, thus causing a similar weakness to those mentioned using the first

feasible solution.

A maximum duality gap value of 1% should be appropriate in most cases. How-

ever, for some values of p (e.g. p = 10) the data spends far more time computing the

Z−maximal circles rather than solving the problem. If a duality gap was increased

from 0% to 1% in this instance, Z would be updated more frequently which would

lead to the undesirable outcome of calculating the Z−maximal circles more often. To

overcome this, a self-learning policy is constructed where the selection of the duality

gap value is based on previous iterations.

4.8.1 An Adaptive CPLEX Policy

At iteration t, the moving average for the computational time for calculating Z−maximal

circles (TMax) and solving the problem in CPLEX (TCPLEX) based on the last µ iter-

ations is respectively defined as follows.

Gµ
t (A) =

∑t
t′=t−µA

t′

µ
(4.15)

where A = {TMax, TCPLEX}, and At
′

is the corresponding time at iteration t′.

We define µ as

µ =

 t
2

if t ≥ K,

t else.

In other words, the classical average is used if t < K, otherwise the moving average

over half of the past iterations is adopted. In this study, we used K = 6 based on

preliminary results.

We use the following scheme based on the performance ratio ξ =
Gµt (TMax)

Gµt (TCPLEX)
;

a) If

ξ ≥ 1 (4.16)

90

then the time for computing the Z−maximal circles is much larger than the time spent

solving the problem in CPLEX. Therefore, the number of iterations need to be reduced

as much as possible, and so we set the duality gap to 0%.

b) However, if

ξ ≤ 0.4 (4.17)

then the majority of the computational time is spent solving the problem in CPLEX,

and therefore we wish to exit CPLEX sooner with a feasible solution rather than seek-

ing an optimal one. The duality gap is set to be 1%.

c) If ξ has any other value, then the computational times are considered to be more

or less similar. In this case, we wish to reach a balance between finding the optimal

solution and leaving CPLEX early, hence we set the duality gap to be 0.5%.

In summary, the following conditions related to the duality gap are given.

Duality Gap=


0 if ξ ≥ 1,

0.5% if 0.4 < ξ < 1,

1% if ξ ≤ 0.4.

(4.18)

This policy, which uses adaptive learning, is less sensitive to the effect of the data’s

distribution on the computational time as therefore it is very reliable.

It is important to explain why this policy (4.18) chooses the moving average to analyse

the past computational time is chosen. The total average was considered, but this

was found unreliable as it includes results from very early iterations that could behave

differently to the current iterations. Successive iterations can behave similarly, and so

this suggests the previous iterations would give the best indication as to which dual-

ity gap value to use. However, this method has a weakness. If a previous time was

randomly very extreme, as this will affect the overall computational time. Thus, the

moving average was chosen as it finds a balance between accounting for extreme values

whilst only considering recent computational times. Furthermore, by choosing t′ = t
2
,

this means the range of the moving average increases as the iterations increase, whilst

91

keeping the values in the range as the most recent.

Only three values were assigned as cut-off points to establish which duality gap to

choose, and it is noted that many more values could be considered and analysed for

further work. Additionally, the largest duality gap that can be allocated is 1%. How-

ever other larger duality gaps, such as 2.5% and 5%, could also be analysed.

4.8.2 Results with the Adaptive CPLEX Policy

The results for rat575, that include the CPLEX adaptive policy, are found in Table

4.9, displayed alongside the total computational time required to optimally solve this

data set using the enhanced algorithm without the duality gap policy. Results show

that the average decrease in computational time is now 72.91% from the original CPU

times, and it has decreased a further 50.05% from this new computational time when

incorporating the adaptive CPLEX policy with the enhancements. This is a promising

result and demonstrates that the adaptive CPLEX policy has a large and positive effect

on the overall duration.

Although it already had promising results, the data set pr439 was also tested with the

policy. This can be found in Table A.4 in Appendix A. The results are still extremely

promising, however the overall computational time is slightly worse than previously.

This is because the total time spent in CPLEX is still larger compared to the time

spent computing the Z−maximal circles. This therefore sets the duality gap to be

0.5% or 1%, thus increasing the number of iterations and the overall computational

time. Furthermore, this is also the reason as to why there is a slight increase in com-

putational time for the data set rat575 where p = 10− 30.

However, the purpose of the adaptive CPLEX policy is to find a compromise for all

data sets so that it can be applied to any distribution type. As the overall computa-

tional time is still decreased by 94.5% for pr439 compared to the original results, it is

still considered an extremely encouraging result.

Furthermore, it is important to recognise that for some values of p (e.g. p = 10)

the total duration could be slightly increased if the majority of time is spent comput-

92

H
2

H
eu

ri
s-

ti
c

O
p

ti
m

al
S

ol
u

ti
on

p
Z
1

Z
∗

L
o
op

C
P

U
T

im
e

w
/o

D
u
-

al
it

y
G

ap
(s

ec
s)
a

L
o
op

C
P

U
T

im
e

(s
ec

s)
a

P
er

ce
n
ta

ge
D

ec
re

as
e

(%
)

L
o
op

s
M

ax
C

ir
cl

es
(s

ec
s)

C
P

L
E

X
(s

ec
s)

M
ax

C
ir

cl
es

(%
)

C
P

L
E

X
(%

)

T
ot

al
L

as
t

L
o
op

1
0

69
.4

2
6

67
.9

26
55

72
.0

2
57

32
.1

2
-2

.8
6

10
69

0.
69

34
0.

37
32

.8
9

12
.0

5
5.

93
2
0

48
.1

0
7

45
.4

75
16

16
.0

5
16

34
.7

4
-1

.1
5

11
11

2.
83

47
1.

74
10

8.
68

6.
90

28
.8

6
3
0

39
.6

5
5

35
.5

56
10

23
.1

4
12

54
.5

7
-2

2.
62

30
58

.8
8

73
0.

55
69

.9
7

4.
69

58
.2

3
4
0

33
.3

6
5

30
.0

63
37

66
0.

80
25

94
9.

90
31

.1
0

15
19

.5
5

25
79

3.
20

12
93

6.
20

0.
08

99
.4

0
5
0

30
.3

3
6

25
.8

26
63

52
.8

6
31

61
.5

9
50

.2
3

23
14

.1
7

30
52

.8
9

67
5.

08
0.

45
96

.5
6

6
0

27
.9

5
1

23
.1

63
26

87
0.

00
91

34
.1

4
66

.0
1

29
10

.4
9

90
63

.4
2

37
33

.3
9

0.
11

99
.2

6
7
0

25
.5

7
8

20
.8

58
26

12
3.

80
15

96
1.

50
38

.9
1

24
6.

53
15

92
0.

30
22

19
.5

7
0.

04
99

.7
4

8
0

24
.1

3
5

19
.0

26
32

37
2.

30
56

56
.9

9
82

.5
3

74
8.

80
56

19
.1

8
64

2.
85

0.
16

99
.3

3
9
0

21
.9

3
2

17
.4

60
21

67
.6

1
99

6.
43

54
.0

3
34

3.
98

97
6.

77
41

.8
6

0.
40

98
.0

3
10

0
20

.4
0
2

16
.4

20
25

08
6.

30
12

86
2.

90
48

.7
3

23
2.

29
12

85
0.

30
46

14
.6

2
0.

02
99

.9
0

A
v
e
ra

g
e

3
4
.0
8
9

3
0
.1
7
8

1
6
4
8
4
.4
8

8
2
3
4
.4
9

5
0
.0
5

2
7

9
2
.8
2

7
4
8
1
.8
7

2
5
0
7
.5
1

2
.4
9

7
8
.5
2

a
T

h
is

ex
cl

u
d

es
co

m
p

u
ta

ti
on

al
ti

m
e

fo
r

th
e
H

2
h

eu
ri

st
ic

.

T
ab

le
4.

9:
n

=
57

5
T

S
P

-L
ib

w
it

h
E

n
h
an

ce
m

en
ts

an
d

A
d
ap

ti
ve

C
P

L
E

X
P

ol
ic

y

93

ing the Z−maximal circles. This is because in the first iteration, there is no way of

knowing whether the majority of time will be spent on computing Z−maximal circles

or solving the problem in CPLEX due to the fact that the problem is yet to be solved in

CPLEX for the first time. To respond to this issue, the duality gap is set to 0.5% in the

first iteration as a compromise, which in this instance could cause an extra iteration or

more. If this is the case, and the majority of time is spent computing the Z−maximal

circles, the total duration will be a little higher.

4.8.3 The Adaptive CPLEX Policy where µ = 1

A simpler test was attempted where µ = 1 (i.e. the duality gap was determined by

the results from the previous iteration). The results for pr439 and rat575 using this

simpler adaptive CPLEX policy can be found in Tables 4.10 and 4.11.

H2 Heuristic Optimal Solution

p Z1 Z∗ Loop
CPU
Time
(secs) a

Loops Max
Circles
(secs)

CPLEX (secs) Max
Circles
(%)

CPLEX
(%)

Total Last
Loop

10 1716.510 1716.510 359.00 2 293.31 35.86 17.81 81.70 9.99
20 1169.540 1029.710 2927.82 36 371.49 288.74 7.07 12.69 9.86
30 975.00 739.193 2165.59 49 232.89 210.5 3.23 10.75 9.72
40 874.271 580.005 1598.51 88 184.49 247.93 1.84 11.54 15.51
50 580.005 468.542 360.06 177 47.35 207.65 2.10 13.15 57.67
60 570.088 400.195 322.27 182 42.23 171.44 0.71 13.10 53.20
70 503.271 357.946 193.09 162 24.76 112.18 0.55 12.82 58.09
80 467.039 312.500 141.15 165 16.62 86.19 0.36 11.78 61.06
90 391.511 280.903 94.86 165 10.02 67.54 0.32 10.56 71.19

100 315.486 256.680 29.39 69 2.63 21.41 0.38 8.94 72.85

Average 756.272 233.900 819.18 110 122.58 144.95 3.44 18.70 41.92
a This excludes computational time for the H2 heuristic.

Table 4.10: Results for n = 439 TSP-Lib with Enhancements and the Adaptive
CPLEX Policy where µ = 1

Results show that this simpler approach led to an inferior outcome. For example, when

studying the data set rat575, it can be seen that more computational time was spent

solving the problem in CPLEX compared to the results found in Table 4.9. As we want

to decrease the time spent in CPLEX, this was an undesired affect. Therefore, it was

decided that the more informative method of past iterations (i.e. using the moving

average) should be kept.

94

H2 Heuristic Optimal Solution

p Z1 Z∗ Loop
CPU
Time
(secs) a

Loops Max
Circles
(secs)

CPLEX (secs) Max
Circles
(%)

CPLEX
(%)

Total Last
Loop

10 69.426 67.926 5631.73 10 697.62 333.15 31.96 12.39 5.92
20 48.107 45.475 1550.06 11 110.59 427.93 106.01 7.13 27.61
30 39.655 35.556 1288.47 37 62.03 778.10 69.33 4.81 60.39
40 33.365 30.063 21914.60 13 18.39 21765.90 13057.90 0.08 99.32
50 30.336 25.826 3213.43 23 14.33 3105.54 697.21 0.45 96.64
60 27.951 23.163 8517.14 30 10.64 8446.75 3831.13 0.12 99.17
70 25.578 20.858 23648.60 31 7.23 23606.10 2411.24 0.03 99.82
80 24.135 19.026 6215.33 44 6.84 6180.39 705.50 0.11 99.44
90 21.932 17.460 1075.65 34 4.05 1055.75 45.21 0.38 98.15

100 20.402 16.420 14149.70 23 2.39 14136.50 5167.62 0.02 99.91

Average 34.089 426.810 8720.47 26 93.41 7983.62 2612.31 2.55 78.64

a This excludes computational time for the H2 heuristic.

Table 4.11: Results for n = 575 TSP-Lib with Enhancements and the Adaptive
CPLEX Policy where µ = 1

4.9 Overall Computational Results

The performance of the DEA is now fully evaluated under two scenarios. It is im-

portant to note that from this point, the DEA will refer to the Drezner enhanced

algorithm paired with the adaptive CPLEX policy. In Scenario One, the large known

TSP-Library data sets rat575, rat783, pr1002 and rl1323 are tested, and in Scenario

Two, 3 new types of large data sets, namely randomly spread, semi-clustered and

clustered, are generated and tested.

4.9.1 Scenario One: Results using the TSP-Library data sets

As these are very large data sets, a total time limit of 24 hours was given to each value

of p. If the algorithm at some value p takes longer than 24 hours to run, the program

is terminated and the upper bound at that time is recorded as the best solution found.

Tables 4.12 − 4.15 are arranged similarly to the tables in Section 4.3, except the

initial upper bound value, ZH , is now the best known heuristic value (see Elshaikh et

al (2016)) as we aim to obtain the optimal solution. Therefore, in this experiment, we

deviate from the method previously used where an initial upper bound was obtained

95

using the H2 heuristic. Note that the computational times given here do not include

this heuristic step, but the times can be collected from Elshaikh et al (2016).

Best
Heuristic

Optimal Solution

p ZH Z∗ Loop CPU
Time (secs) a

Loops Max
Circles
(secs)

CPLEX (secs) Max
Circles
(%)

CPLEX
(%)

Total Last
Loop

10 67.926 67.926 489.53 1 413.20 32.37 32.37 84.41 6.612
20 45.621 45.475 384.79 3 49.50 272.52 107.70 12.86 70.82
30 35.556 35.556 87.16 1 11.19 68.84 68.84 12.83 78.99
40 30.265 30.063 20898.30 5 6.57 20880.01 13085.80 0.03 99.91
50 26.173 25.826 2476.32 10 4.35 2462.60 670.71 0.18 99.45
60 23.622 23.163 8888.40 12 3.03 8878.01 3749.88 0.03 99.88
70 21.059 20.858 16283.70 9 1.64 16277.80 2238.12 0.01 99.9
80 19.510 19.026 3893.66 13 1.45 3887.75 646.53 0.04 99.85
90 17.923 17.460 868.39 18 1.22 863.18 41.75 0.14 99.40

100 16.551 16.420 13268.80 8 0.55 13265.40 4626.44 0.00 99.97

Average 30.421 30.178 6753.90 8 49.27 6688.86 2526.81 11.05 85.49

a This excludes computational time for the heuristic step.

Table 4.12: Results for n = 575 TSP-Lib using Enhancements and CPLEX Adaptive
Policy starting from Best Heuristic Value

Best
Heuristic

Optimal/Best Solution

p ZH Z∗ Loop CPU
Time (secs) a

Loops Max
Circles
(secs)

CPLEX (secs) Max
Circles
(%)

CPLEX
(%)

Total Last
Loop

10 79.313 79.313 5696.39 2 2918.48 978.14 402.57 51.23 17.17
20 53.441 53.332 2884.05 8 224.16 2410.67 400.08 7.77 83.59
30 42.395 42.307 21833.60 4 55.52 21714.00 13229.40 0.25 99.45
40 35.962 35.861⊥ 86400.00 1 19.30 86380.00 86370.00 0.02 99.98
50 31.184 31.041⊥ 86400.00 10 14.81 86355.50 33887.70 0.01 99.95
60 28.053 27.880⊥ 86400.00 14 10.95 86365.10 80032.39 0.01 99.96
70 25.446 25.239⊥ 86400.00 3 4.21 86381.60 39254.10 0.004 99.98
80 23.560 23.192⊥ 86400.00 9 5.43 86384.24 1530.90 0.006 99.98
90 21.710 21.319⊥ 86400.00 12 5.01 86384.30 54352.70 0.005 99.98

100 20.334 19.999⊥ 86400.00 7 2.03 86387.10 50190.10 0.002 99.99

Average 36.140 −−− −−− 7 325.99 62974.05 35964.00 5.94 90.00
a This excludes computational time for the heuristic step.
⊥ Best feasible solution found within 86400 seconds.

Table 4.13: Results for n = 783 TSP-Lib using Enhancements and CPLEX Adaptive
Policy starting from Best Heuristic Value

Tables 4.12-4.15 provide extra information regarding the computational time spent in

96

CPLEX. In order to establish how much computational time cannot be improved on

(i.e. the computational time consumed in the last iteration) the column representing

time spent in CPLEX is now divided into two, with one half showing the total time

spent in CPLEX and the other half showing how long the last iteration took in CPLEX.

Therefore, in the instance where the algorithm reaches the maximum time limit, the

result in the second half of this column may not be showing the time spent to reach

optimality. However, in each of these circumstances, no further feasible solution was

found in the final iteration (except for the case where n = 783, p = 40). Thus, this

indicates that the solution found in the previous iteration may be the optimal solution.

Furthermore, in the instance where n = 783 and p = 40, a feasible solution was found

but the adaptive CPLEX policy value had not been reached (i.e. 0%, 0.5% or 1%).

The program was therefore allowed to run for a further hour (with the solution found

at this iteration as its new upper bound) to see if this solution could be improved.

However, during this time no further feasible solution was found, thus showing that

the last feasible solution found could be optimal.

Best
Heuristic

Optimal Solution

p ZH Z∗ Loop CPU
Time (secs) a

Loops Max
Circles
(secs)

CPLEX (secs) Max
Circles
(%)

CPLEX
(%)

Total Last
Loop

10+ 2389.360 − − − − − − − −
20 1609.540 1607.530 4904.66 10 825.07 2786.07 340.83 16.82 56.80
30 1231.360 1231.360 881.26 1 86.42 739.83 739.83 9.81 83.95
40 1030.400 1021.410 1778.08 29 121.62 1404.82 190.49 6.84 79.01
50 901.455 895.342 13011.90 12 42.29 12867.60 353.84 0.33 98.89
60 801.474 795.709 8961.03 22 40.29 8843.69 785.27 0.45 98.69
70 727.154 725.431 1502.26 3 10.86 1458.29 1436.05 0.72 97.07
80 664.798 655.746 917.42 15 16.35 853.75 78.91 1.78 93.06
90 604.152 604.152 373.52 1 4.20 349.55 349.55 1.12 93.58

100 559.017 555.662 123.78 10 6.82 91.64 12.70 5.51 74.04

Average 1051.870 825.540 3605.99 11 128.21 3266.13 476.39 4.82 86.12

a This excludes computational time for the heuristic step.
+ Could not be computed due to computer memory issues.

Table 4.14: Results for n = 1002 TSP-Lib using Enhancements and CPLEX Adaptive
Policy starting from Best Heuristic Value

97

Best
Heuristic

Optimal/Best Solution

p ZH Z∗ Loop CPU
Time (secs) a

Loops Max
Circles
(secs)

CPLEX (secs) Max
Circles
(%)

CPLEX
(%)

Total Last
Loop

10+ 2897.490 − − − − − − − −
20+ 1886.820 − − − − − − − −
30 1466.970 1466.970 29522.00 2 1605.09 26403.90 12725.60 5.43 89.44
40 1236.380 1235.660⊥ 86400.00 5 199.23 86150.77 19277.17 0.23 99.71
50 1060.820 1060.420⊥ 86400.00 2 48.08 85933.90 400.00 0.06 99.46
60 941.870 940.483⊥ 86400.00 7 43.10 86333.90 18895.60 0.05 99.90
70 844.967 843.801 13454.40 12 38.72 13323.10 6278.02 0.29 99.02
80 774.764 774.764 51229.30 1 9.45 51164.10 51164.10 0.02 99.87
90 720.625 706.145 5942.07 33 46.91 5750.88 119.51 0.80 96.78

100 662.936 658.997 37388.90 15 20.53 37273.30 6915.90 0.05 99.69

Average 1249.364 −−− −−− 10 251.39 49041.73 14471.99 0.87 97.98

a This excludes computational time for the heuristic step.
⊥ Best feasible solution found within 86400 seconds.

+ Could not be computed due to computer memory issues.

Table 4.15: Results for n = 1323 TSP-Lib using Enhancements and CPLEX Adaptive
Policy starting from Best Heuristic Value

It is important to note that for smaller values of p (i.e. p = 10 for pr1002 and p ≤ 20

for rl1323) computer memory becomes an issue leading to no results being found. This

could be due the initial upper bound being higher in these instances, leading to a rel-

atively large number of circles being considered and thus making the ILP model too

big to be handled.

The results show that the DEA can now find very good, and even optimal, solu-

tions for these large TSP-Library data sets. Optimal solutions are found for the first

time for the larger data sets pr1002 and rl1323 where a reasonable amount of computa-

tional time is required. This promising result therefore displays the DEA’s dominance

for solving the continuous p−centre problem. The results also suggest that the data’s

distribution, rather than size, contributes to how easily the problem can be solved.

For example, the data set rat783, whose distribution is much like rat585, was more

challenging to solve optimally. However, the data set pr1002, whose distribution is

similar to pr439, was less challenging. This observation will be analysed further in the

next section.

98

4.9.2 Scenario Two: Results using our new generated data

sets

This section aims to study how efficiently the DEA solves data sets with distinguished

contrasting distributions. Clustered, semi-clustered and randomly distributed data

sets were generated using C + + programming language where n = 400, 600 and 800.

Figures 4.12, 4.13 and 4.14 show the clustered, semi-clustered and random distributions

respectively for n = 400, 600 and 800.

Figure 4.12: Distributions where n = 400

Figure 4.13: Distributions where n = 600

Figure 4.14: Distributions where n = 800

Tables 4.16, 4.17 and 4.18 gives the optimal results for each data set for p = 25, 50, 75

and 100 where n = 400, 600 and 800 respectively. The first column displays the dis-

99

tribution of the data set where ‘Cl’ represents clustered, ‘S-Cl’ semi-clustered and ‘R’

randomly distributed. The third column displays the best solution found using the H2

heuristic after a time limit of 1500 seconds. Figure 4.15 displays the average computa-

tional times taken for each value of n.

H2

Heuristic
Optimal Solution

Dist p Z1 Z∗ Loop
CPU
Time
(secs) a

Loops Max
Circles
(secs)

CPLEX (secs) Max
Circles
(%)

CPLEX
(%)

Cl 25 56.871 53.677 1704.10 886 285.75 1245.46 1.42 16.77 73.09
Cl 50 38.082 32.660 27.95 27 3.71 12.84 0.42 13.28 45.95
Cl 75 31.827 24.279 26.12 60 2.93 16.31 0.24 11.23 62.46
Cl 100 25.480 19.963 18.87 79 1.64 13.60 0.14 8.70 72.08

Average 63 38.065 32.645 444.26 263 73.51 322.08 0.56 12.50 63.40
S-Cl 25 103.393 89.0983 2946.33 742 653.99 1891.80 2.54 22.20 64.21
S-Cl 50 72.890 53.8911 442.70 235 63.27 226.14 0.90 14.29 51.08
S-Cl 75 60.891 38.852 133.02 66 18.80 43.72 0.46 14.13 32.87
S-Cl 100 49.498 29.568 107.34 172 14.44 61.33 0.23 13.45 57.14

Average 63 93.694 52.852 907.35 304 187.63 555.75 1.03 16.02 51.33
R 25 119.474 107.353 157.67 16 13.10 57.49 6.43 8.31 36.46
R 50 82.619 67.151 53.81 56 4.42 35.14 0.58 8.19 65.32
R 75 63.389 51.573 14.57 32 1.15 9.50 0.27 7.92 65.21
R 100 54.722 40.140 14.10 61 1.00 9.65 0.13 7.08 68.45

Average 63 80.051 66.554 60.04 41 4.92 27.95 1.85 7.88 58.86
a This excludes computational time for the H2 heuristic.

Table 4.16: Results for the generated data set where n = 400 using the Revised
Drezner’s Algorithm

Note that the generated data sets can be collected from the authors or accessed

from the Centre for Logistics and Heuristic Optimisation (CLHO (2015)) website

http://www.kent.ac.uk/kbs/research/research-centres/clho/datasets.html by following

the links to ‘continuous data sets’ and then to ‘random p−centre’.

Tables 4.16, 4.17 and 4.18 yield interesting results. The first table would suggest

that clustered or semi-clustered data takes longer to solve on average than the ran-

domly distributed data for the smallest data size (n = 400). Table 4.17 shows that the

computational time begins to even out over the three distributions when the data size

increases to n = 600. However, for the largest data set (n = 800), Table 4.18 shows

a dramatic change. The clustered data now needs proportionally much less compu-

tational time to be solved compared to the randomly distributed data. Furthermore,

the semi-clustered data also requires much less computational time compared to the

randomly distributed data. Therefore these results suggest that as the size of the

100

H2

Heuristic
Optimal Solution

Dist p Z1 Z∗ Loop
CPU
Time
(secs) a

Loops Max
Circles
(secs)

CPLEX (secs) Max
Circles
(%)

CPLEX
(%)

Cl 25 64.070 57.618 1977.52 42 185.65 447.96 10.73 9.39 22.65
Cl 50 44.003 36.739 1827.59 287 223.48 1077.57 4.49 12.23 58.96
Cl 75 34.436 25.986 1016.40 427 111.65 697.31 1.39 10.98 68.61
Cl 100 30.566 20.826 749.11 507 77.06 543.40 2.51 10.29 72.54

Average 63 43.269 35.292 1392.66 316 149.46 691.56 4.48 10.72 55.69
S-Cl 25 73.135 64.368 2269.07 43 157.70 496.03 14.70 6.95 21.86
S-Cl 50 51.587 41.904 872.52 70 71.70 316.32 14.16 8.22 36.25
S-Cl 75 41.135 31.275 1857.44 672 217.89 1328.04 2.69 11.73 71.50
S-Cl 100 35.203 24.323 494.76 257 52.83 315.74 0.92 10.68 63.82

Average 63 50.273 40.468 1373.45 261 125.03 614.03 8.12 9.40 48.36
R 25 74.402 67.979 1781.05 24 73.29 874.39 61.60 4.12 49.09
R 50 52.366 44.411 2917.39 26 15.09 2786.28 281.09 0.52 95.51
R 75 41.001 33.616 102.84 33 5.82 67.45 5.15 5.66 65.58
R 100 35.250 27.023 99.47 115 7.45 71.68 0.64 7.49 72.06

Average 63 50.005 43.257 1225.18 50 25.41 949.95 87.12 4.45 70.56
a This excludes computational time for the H2 heuristic.

Table 4.17: Results for the generated data set where n = 600 using the Revised
Drezner’s Algorithm

data become larger, the more clustered that data set is the less computational time is

required for the DEA to solve the problem optimally.

H2

Heuristic
Optimal Solution

Dist p Z1 Z∗ Loop
CPU
Time
(secs) a

Loops Max
Circles
(secs)

CPLEX (secs) Max
Circles
(%)

CPLEX
(%)

Cl 25 63.776 60.879 3553.70 94 412.05 1641.80 16.89 11.59 46.12
Cl 50 48.089 40.265 9330.68 981 1108.46 6746.15 8.04 11.88 72.30
Cl 75 36.634 30.446 2420.53 564 240.32 1851.81 5.47 9.93 76.50
Cl 100 31.544 24.824 1748.96 711 161.83 1388.90 6.76 9.25 79.41

Average 63 45.011 39.104 4263.47 588 480.67 2907.17 9.29 10.66 68.58
S-Cl 25 90.593 81.238 22121.5 345 2472.25 11249.60 238.46 11.18 50.85
S-Cl 50 62.332 51.051 3405.79 73 190.46 1319.38 41.02 5.59 38.74
S-Cl 75 50.487 38.596 10793.60 1565 1266.10 8056.53 4.43 11.73 74.64
S-Cl 100 45.900 31.205 4682.38 1021 487.81 3387.57 9.42 10.42 72.35

Average 63 62.328 50.523 10250.80 751 1104.16 6003.26 73.33 9.73 59.15
R 25 126.385 115.444 15996.70 187 944.04 9461.35 55.79 5.90 59.15
R 50 89.059 75.935 79663.90 54 73.98 78929.40 10187.30 0.09 99.08
R 75 71.218 58.217 3940.31 36 20.00 3759.52 756.78 0.51 95.41
R 100 61.850 48.545 1032.94 104 22.43 924.72 121.00 2.17 89.52

Average 63 87.128 74.535 25158.46 95 265.11 23268.75 2780.22 2.17 85.79
a This excludes computational time for the H2 heuristic.

Table 4.18: Results for the generated data set where n = 800 using the Revised
Drezner’s Algorithm

101

Figure 4.15: Average computational time for generated clustered, semi-clustered and
randomly distributed data sets

4.10 Summary

This chapter has investigated an optimal algorithm proposed by Drezner (1984a) to

solve the continuous p−centre problem. Opportunities to improve Drezner’s algorithm

were highlighted, four enhancements were discussed and tested, an adaptive CPLEX

policy was introduced and an enhanced algorithm, DEA, was proposed. The DEA

was tested on five existing TSP-Library data sets: pr439, rat575, rat783, pr1002 and

rl1323 for p = 10, . . . , 100 and on three new types of large data sets, namely randomly

spread, semi-clustered and clustered where n = 400, 600 and 800. The results for the

known data sets show the DEA gives a very significant decrease in computational time

which sometimes reaches an average reduction of 96%, yielding an algorithm that is

faster, more efficient and so can be used to solve the continuous p−centre problem for

large data sets where several optimal solutions for large instances were obtained for the

first time. The proposed algorithm also showed its superiority by producing optimal

solutions for all the new generated data sets while requiring a reasonable amount of

computational time especially for the clustered and semi-clustered data sets.

The next chapter will revisit another optimal algorithm that applies a different ap-

proach by using problem reduction and relaxation.

102

Chapter 5

Relaxation-Based Algorithms for the

Continuous P−Centre Problem

5.1 Introduction

This chapter will analyse and investigate a well-known method called relaxation that

is used to solve location problems, including the continuous p−centre problem. Section

5.2 will begin by describing the classic relaxation algorithm. It will then examine three

algorithms that are developed from the classic relaxation problem, namely the im-

proved classic relaxation, the reverse relaxation and the binary relaxation. The reverse

relaxation algorithm is investigated further, and four enhancements are proposed and

empirically tested using the TSP-Library data sets and the new generated data sets first

discussed in the previous chapter. It is shown that each enhancement yields a faster

and more powerful algorithm, thus leading to a powerful relaxation-based algorithm.

5.2 Relaxation Algorithms

The relaxation method breaks large problems down into smaller, but dependent, sub-

problems to be solved successively until optimality is reached. Chen & Chen (2013:

39) stated that a problem must have the following two properties for the relaxation

technique to be worth using.

1. There must be an algorithm capable of answering the question “is there a solution

to the problem with value better than Z?”, and finding such a solution if one

exists.

2. The problem must be such that if there is no solution to the sub-problem with

a value better than Z, then there can be no solution to the full problem with a

value better than Z.

103

The classic relaxation algorithm was first suggested by Handler & Mirchandani (1979)

and the main steps are summarised in Figure 5.1 (adapted from Chen & Chen (2009)).

It begins with an upper bound of infinity and a small subset of demand points. The

algorithm determines if a feasible solution can be found for the subset of demand

points with a better solution value than the current upper bound. In other words, the

minimum number of facilities required to cover all the demand points in the subset

within the upper bound is calculated. If this number is ≤ p, then there is a feasible

solution for the subset with a solution value less than the current upper bound, and so

feasibility for the full problem is checked. If the solution is feasible for the full problem,

the upper bound is updated, otherwise another demand point is added to the subset

and the process is repeated. If a feasible solution cannot be found for the subset of

demand points with a solution value better than the current upper bound, then the

current upper bound is taken as the optimal solution value for the entire problem.

1. Set the upper bound to be ∞.

2. Choose a random subset of demand points, Sub.

3. Determine whether Sub has a feasible solution, feasible, with a solution value
smaller than the upper bound.

a) If feasible cannot be found, return the current upper bound as the
solution value.

b) If feasible can be found, continue to Step 4.

4. Determine whether feasible is feasible for the full problem.

a) If it is, reset the upper bound as the solution value of feasible and

go back to Step 3.

b) Otherwise, add another demand point to Sub and go back to Step 3.

Figure 5.1: Classic Relaxation based on Chen & Chen (2009: 1648)

Chen & Chen (2009) suggest two enhancements for the classic relaxation algorithm,

which will be referred to as the improved classic relaxation algorithm. The first en-

hancement updates the upper bound more frequently, and the second adds k demand

points at a time to the subset where k > 1. Furthermore, they also developed two

other algorithms that were briefly described in Chapter 2. These two algorithms will

be referred to as the ‘reverse relaxation’ and the ‘binary relaxation’. For completeness,

they are adapted from Chen & Chen (2009: 1649-1650) and described again here in

104

1. Set the lower bound to be 0.

2. Choose a random subset of demand points, Sub.

3. Determine whether Sub has a feasible solution, feasible, with a solution value
smaller than the lower bound.

a) If feasible cannot be found, generate a new lower bound by finding

the smallest radius of a covering circle created from Sub that is

larger than the current lower bound and go back to Step 3.

b) If feasible can be found, continue to Step 4.

4. Determine whether feasible is feasible for the full problem.

a) If it is, halt and return feasible as the final solution.

b) Otherwise, add k demand points to Sub and go back to Step 3.

Figure 5.2: Reverse Relaxation based on Chen & Chen (2009: 1649)

Figures 5.2 and 5.3 respectively.

Although these algorithms are proven to be efficient at solving the discrete p−centre

problem, they have not been tested for similar, large data sets as one may expect for

the continuous case. For example, Chen & Chen (2009) only record one table of results

for one instance only using the TSP-Library data set pr439 for p = 10, . . . , 100 where

they found exact solutions for all values of p. This result is promising, and highlights

the potential that these type of algorithms may be used to solve larger, more complex

problems if revisited.

After studying the computational times, the reverse relaxation algorithm was found to

perform the best (i.e. fastest) for p = 10− 30 while the binary relaxation algorithm

performed the best for the remaining values of p (i.e. p = 40−100). However, there

is little evidence to say which algorithm is the most efficient as the results are strictly

based on this one data set. Furthermore, different and specific values of k worked best

for each algorithm. Therefore, a further investigative work was carried out in this study

to compare these two promising algorithms with an aim to identify the most promising

algorithm that we can focus on for further investigations.

105

1. Set the lower bound (LB) to be 0 and the upper bound (UB) to be ∞.

2. Choose a random subset of demand points, Sub.

3. Set the coverage distance, CD, to be LB+UB
2

.

4. Determine whether Sub has a feasible solution, feasible, with a solution value
smaller than CD.

a) If not, set LB = CD and go back to Step 3.

b) If feasible can be found, continue to Step 5.

5. Determine whether feasible is feasible for the full problem.

a) If not, add k demand points to Sub and go back to Step 4.

b) If so, save feasible as Best Candidate found so far, and update UB

to be the solution value of feasible, Z.

If no solution less than Z can be found for Sub, halt and return

Best Candidate as the final solution.

Figure 5.3: Binary Relaxation based on Chen & Chen (2009: 1650)

Initial Results

Chen & Chen’s investigation was replicated by running both the reverse relaxation algo-

rithm and the binary relaxation algorithm for the data set pr439 where p = 10, . . . , 100

and k = 1, . . . , 10. Table 5.1 shows Chen & Chen’s first results for the binary and the

reverse relaxation algorithm where k = 6 and 2 respectively. For comparison, our re-

sults are also shown for the same k values where Chen & Chen yielded their best results.

Furthermore, the k value that required the smallest amount of computational time in

our experiment is also reported. The best (i.e. fastest) results for the binary-based

method were obtained when k = 8, and for the reverse-based method when k = 3. For

clarity, the best results found for each value of p are also highlighted in bold.

When analysing the results, it becomes clear that Chen & Chen’s results cannot be

replicated easily, as we had different computational times and found different values of

k to be more effective. This is because the algorithms proposed by Chen & Chen are

not deterministic, and so the speed and the efficiency of the algorithm relies greatly

on the initial subset of the demand points. This highlights the disadvantage of such

algorithms, which we wish to examine in this chapter.

106

Binary Relaxation Reverse Relaxation

Chen &
Chen’s
Results,
k⊥ = 6

Original
Implemen-
tation,
k⊥ = 6

Original
Imple-
mentation
(best),
k⊥ = 8

Chen &
Chen’s
Results,
k⊥ = 2

Original
Implemen-
tation,
k⊥ = 2

Original
Imple-
mentation
(Best),
k⊥ = 3

p Z∗ CPU Time
(secs)

CPU Time
(secs)

CPU Time
(secs)

CPU Time
(secs)

CPU Time
(secs)

CPU Time
(secs)

10 1716.510 4.53 3.07 9.30 0.84 2.41 4.18
20 1029.715 7.28 11.28 6.15 2.63 3.02 3.22
30 739.193 14.33 49.78 22.04 6.16 7.62 3.75
40 580.005 58.92 104.41 65.82 93.38 66.54 38.69
50 468.542 78.89 194.71 104.30 207.45 95.46 63.62
60 400.195 29.98 35.90 74.86 62.19 161.96 24.49
70 357.946 27.72 25.77 28.77 103.28 461.17 57.12
80 312.500 31.04 35.83 21.51 172.59 68.12 41.62
90 280.903 40.05 39.56 33.45 157.07 49.70 63.24
100 256.680 35.07 42.74 21.98 60.40 68.13 17.32

Average 614.218 32.78 54.31 38.82 86.60 98.41 31.73

⊥ Best result for k = 1, . . . , 10.

Table 5.1: Initial Results for the Binary and Reverse Relaxation Algorithms where
n = 439

Furthermore, Chen & Chen’s results also suggest that the binary relaxation algorithm

is generally the faster of the two. Our results, however, suggest that both algorithms

show efficiency, with the reverse relaxation algorithm showing a slightly faster rate

on average. As we wish to focus on and enhance one algorithm, we suggest that the

reverse relaxation algorithm shows marginally more potential in terms of finding the

optimal solution. Therefore, this algorithm is chosen for further development.

It is important to note that the time complexity for both the binary and the reverse

relaxation algorithm is bounded by Step 3 as this is NP-hard.

5.3 An Enhancement-Based Algorithm

The reverse relaxation algorithm aims to find an efficient small subset of demand

points such that the exact solution to the full problem can be found. This can be

achieved by finding a deterministic way to carefully select the initial subset of demand

points, and efficiently adding k demand points to that subset. These ideas inspired the

four enhancements which will be explained and investigated in this section. The first

generates an initial subset deterministically, the second develops an efficient scheme for

107

adding k demand points to the subset, the third proposes a jumping scheme to save

computational time and the fourth creates a dynamic scheme to determine the value

of k.

5.3.1 A Deterministic Generator for the Initial Subset (Step

2 of Figure 5.2)

The computational time required for the reverse relaxation algorithm has a great de-

pendence on the subset selected at the beginning. The results in the previous section

suggest that the algorithm works efficiently and quickly; however this is not always the

case. The results in Section 5.2 only give the best computational times, and had the

algorithm only run once for one value of k (rather than having several different values

to choose from) the results may have yielded different computational times.

(a) Run One (b) Run Two

Figure 5.4: Initial subset for n = 439, p = 50, k = 5

The variance of computational times can be easily demonstrated with a small exam-

ple. The reverse relaxation algorithm was run twice to solve the data set pr439 where

p = 50 and k = 5. In this particular experiment, run one found the optimal solution

after 169.1 seconds, whereas the second run found it in less than half the time at 72.9

seconds. Figures 5.4a and 5.4b show the initial subset of demand points for the first

run and the second run respectively. In Figure 5.4a, the demand points are more clus-

tered, whereas during the second run (see Figure 5.4b) the initial subset of demand

points were more evenly spread throughout the full data set. This therefore makes the

initial subset given in the second run closer to the optimal solution than its counterpart

108

subset generated in run one.

This simple example demonstrates the initial motivation for the first enhancement

for the reverse relaxation algorithm by highlighting that it may be preferable is to

select an evenly spread out initial subset over the data’s distribution in a deterministic

way. This could lead to regaining computational time as the algorithm would be less

sensitive to the initial subset of the demand points.

Generation of the initial subset of demand points

The first enhancement, which will be referred to as SubE1, proposes a scheme to find

the minimum number of dispersed initial demand points. For clarity, let:

d′i,l: the Euclidean distance from demand point i to demand point l;

Sub: the subset of demand points.

SubE1: An Overview

i) Firstly, we construct the convex hull encompassing all the demand points. Let

CS be the set of points defining the vertices of the convex hull. In this study we

used the quickhull algorithm proposed by Barber, Dobkin & Huhdanpaa (1996).

ii) The demand point î ∈ I, that sits the greatest sum distance from all i′ ∈ CS,

is identified by

î = Arg(Max
i∈I\CS

{
∑
i′∈CS

d′i,i′}), (5.1)

and set Sub = {̂i}.

iii) The algorithm then enters the third stage where

a) All i ∈ I are allocated to their closest facility j ∈ Sub. This is represented

by the allocation matrix Al.

Ali,j =

1 if di,j ≤ di,j∗ ∀i ∈ I, ∀j, j∗ ∈ Sub : j 6= j∗,

0 else.

b) The temporary facility with the most allocated demand points, jMax, is

109

identified where

jMax = Arg(Max
j∈Sub

{
∑
i∈I

Ali,j}). (5.2)

c) The demand point that is both allocated to jMax and sits the furthest

away from it, say i∗, is then identified as follows:

i∗ = Arg(Max
i∈I

(di,jmax : Ali,jMax
= 1). (5.3)

d) The demand point i∗ is then added to the initial subset (i.e., Sub =

Sub ∪ {i∗}).

We will now discuss the method used to determine the cardinality of the initial subset

of demand points.

Determining the minimum |Sub|

The minimum number of demand points, r, needed for the initial subset to yield an

initial solution (i.e. p circles) is found by Chen & Handler (1987). They state that the

number of circles that can be formed using r′ demand points is derived from Equation

(5.4).

r = Min
r′∈N

:

(
r′

3

)
+

(
r′

2

)
+ r′ ≥ p. (5.4)

To save computational time, the algorithm finds (r − 1) demand points using SubE1.

Note that r in Equation (5.4) represents the maximum number of circles made up

from 1, 2 or 3 critical points first discussed in Section 2.2.4, Chapter 2.

The number of circles created from this initial subset of size r may not be large enough

to form an initial solution (i.e. the number of circles < p), as some may be discarded

due to the geometry of the critical demand points. If this is the case, the algorithm

returns back to part (iii) and adds another demand point to the initial subset one by

one until an initial solution can be found. The algorithm for SubE1 can be found in

Figure 5.5.

110

1. Set Sub = ∅. Find the demand points i′ ∈ I that form the vertices of the
convex hull, defined as the set CS.

2. Find the demand point î ∈ I \CS that has the largest sum distance from all
i′ ∈ CS using Equation (5.1). Set Sub = Sub ∪ {̂i}.

3. Determine the value of r using Equation (5.4).

4. While |Sub| < r do:
Allocate all i ∈ I to their closest j ∈ Sub. Determine jMax using Equation
(5.2) and then find the furthest demand point i∗ ∈ I that is allocated to jMax

using Equation (5.3). Set Sub = Sub ∪ {i∗}.

5. Find all circles made by one, two or three demand points from i′′ ∈ Sub. If
the number of circles is ≥ p, return Sub as the initial subset and stop.
Else, set r = r + 1 and go back to Step 4.

Figure 5.5: Initial Subset Algorithm (SubE1)

This method also allows the distribution of the data to be considered by allocating all

demand points to their closest j ∈ Sub and noting the one that has the most allocated

to it. This means the initial subset does not only yield a well dispersed set of demand

points, but additionally it is proportionally dispersed over clustered areas and evenly

spread areas. This gives a more efficient subset of demand points to begin the algo-

rithm. Furthermore, by checking to see if the subset can produce an initial solution

each time another demand point is added, the size of the subset is minimised and so

reduces redundant calculations.

Illustrative Example

Figure 5.6 shows the demand points (diamonds) for the data pr439. Let p = 30, and

four facilities, F1, F2, F3 and F4 have already been found using SubE1. Equation (5.4)

states that as p = 30 then r = 6, and so (at least) two more demand points must be

added to the initial subset. If the furthest point from its allocated facility was taken,

this would mean that point P1 would be selected next for Sub as it sits the furthest

from its allocated facility, F1, than all other demand points from their allocated facili-

ties. However, even though this is an extreme point, this is not the best point to select

as it lies in an area where demand points are sparse.

After studying the distribution, it is clear to see the best place to select a point is

111

Figure 5.6: Illustrative example of SubE1

inside the dashed circle area, as this is a highly populated area with only one facility.

Therefore, by taking into account both a) the distance from a demand point to a fa-

cility and b) the number of demand points a facility serves, SubE1 would select point

P2 as the next facility. This creates a more evenly spread selection of facilities over the

data’s distribution.

Figure 5.7 shows the initial subset that has been found for the data set pr439 where

p = 50 using SubE1. Note that |Sub| = 24. The Initial Subset Algorithm would

proceed to find the extreme demand points that form the convex hull, and the point

that has the greatest sum distance from these extreme points. The third stage would

then find another six points straight away. This is due to
(
6
3

)
+
(
6
2

)
+ 6 = 41 (< p) and(

7
3

)
+
(
7
2

)
+ 7 = 63 (> p), thus making r = 7. The third stage would then continue to

find the remaining 17 points one by one until an initial solution is obtained.

For comparison, Figure 5.8 shows the critical points of the circles for the optimal so-

lution for pr439 where p = 50. Note that the number of critical points is 88. When

comparing Figures 5.7 and 5.8, it can be seen that there are similarities as the demand

points tend to be situated at extreme parts of clusters (in the corners or near the

edge). Therefore, it suggests that enhancement one creates a good initial subset in a

deterministic way.

112

Figure 5.7: Initial subset for n = 439, p = 50 using SubE1

Figure 5.8: Critical points for the optimal solution for n = 439, p = 50

Why all i′ ∈ CS are not necessarily added to the initial subset

Observation 1. Take two points i1, i3 /∈ CS and point i2 ∈ CS. If the angle ∠i1i2i3 >

90◦, then the point i2 can be encompassed by the covering circle formed from i1 and i3.

This observation is illustrated in Figure 5.9 with an example where the point i2 is

encompassed by a covering circle formed from the two points i1, i3 /∈ CS.

As the third part of SubE1 is designed to find the dispersed, extreme points in the

plane it might seem reasonable to add all i ∈ CS to Sub automatically. However,

observation 1 demonstrates that the extreme points that form the convex hull are not

necessarily critical points for their covering circles. Although SubE1 could select some

points that form the vertices of the convex hull to be in Sub, it is also designed to find a

good initial subset based on the data distribution and thus be more selective about the

113

Figure 5.9: Observation 1

points that are chosen. Therefore, instead of automatically adding all i ∈ CS to Sub,

we acknowledge that this may increase the problem size unnecessarily and so allow the

third stage (part (iii)) to choose the most appropriate points.

Results using SubE1

Table 5.2 shows the comparison between the computational times for Chen & Chen’s

results, our first results (found in Section 5.2) and the results with SubE1 added to the

reverse relaxation algorithm for the TSP-Library data set pr439.

CPU Times (secs)

Chen & Chen’s
Results

Our First Results Our Results
With SubE1

p Z∗ Best⊥ (k = 2) Best⊥ (k = 3) Worst (k = 1) Average (k =
1, . . . , 10)

Best⊥ (k = 2)

10 1716.510 0.84 4.18 2.27 29.65 1.98
20 1029.715 2.63 3.22 2.31 18.94 2.12
30 739.193 6.16 3.75 5.05 27.10 42.39
40 580.005 93.38 38.69 29.29 57.96 38.96
50 468.542 207.45 63.62 69.20 127.83 67.84
60 400.195 62.19 24.49 77.55 54.59 14.18
70 357.946 103.28 57.12 52.18 107.24 45.33
80 312.500 172.59 41.62 620.60 188.09 52.39
90 280.903 157.07 63.24 274.08 85.05 85.45

100 256.680 60.40 17.32 119.36 51.92 31.59

Average 614.22 86.60 31.73 125.18 74.81 38.22

⊥ Best result for k = 1, . . . , 10.

Table 5.2: Results comparing the Reverse Relaxation Algorithm with and without
SubE1

These results may suggest initially that the first enhancement does not improve the

computational time when compared with our original results where k = 3. However, as

stated before, SubE1 has the advantage of being deterministic. When compared with

114

Chen & Chen’s results, it can be seen that the reverse relaxation algorithm including

SubE1 required less computational time. Due to the original algorithm being non-

deterministic, some runs may be much faster than others. Therefore, it is promising

to see the computational time taken by the algorithm including SubE1 is much closer

to that of a ‘good’ run for the original algorithm. In addition, a deterministic selection

method for the initial subset, such as SubE1, is more reliable as it can be replicated

by other researchers while not requiring extremely large computational times that a

random subset might incur.

5.3.2 An Efficient Scheme for Adding Demand Points (Step

4b in Figure 5.2)

Chen & Chen’s reverse relaxation algorithm states that if more demand points are to

be added to the subset, the k furthest ones from their allocated facilities are chosen.

Though this is a good idea, this method could be improved further by identifying its

weakness through the following ‘worst-case scenario’ example.

In order to explain the second enhancement, we recall from Chapter 4 that R(K)

is the radius of the smallest circle encompassing all points in K (K ⊂ I).

An Illustrative Example

Figure 5.10a demonstrates a solution for the relaxed subset where p = 4. The grey

dots are the facility locations (circle centres) for the subset’s solution. The black dots

are the uncovered demand points in the full problem. It is clear to see this solution is

not feasible for the full problem.

Let us say k = 4. According to the original algorithm, all uncovered demand points

must now be allocated to their nearest facility and the k furthest points will be added

to the subset. In this example, the first demand point that will be allocated to the

subset, P1, is the one encompassed by its own dotted circle and labelled P1 in Figure

5.10b. Adding P1 to the subset could contribute to a good result as it would guide the

algorithm towards the optimal solution.

However, the other three demand points that would be added to the subset, labelled

115

(a) (b)

Figure 5.10: Adding k furthest demand points example

P2, P3 and P4 are the three demand points that are circled with a dashed line in Figure

5.10b. The addition of these three demand points to the subset does not contribute

to improving the solution as the new information is now redundant. This is because

R(K∪{P1}) ≥ R(K∪{Ps}), s = 2, 3, 4, as P1 lies further from circle Cj. Adding P2, P3

or P4 to Sub would mean there were extra calculations that are both redundant and

time consuming. This claim is stated in Lemma 4.

Lemma 4. Take two demand points, i1 and i2, that are not encompassed by Cj. If

di1,j > di2,j, then R(K ∪ {i1, i2}) > R(K ∪ {i2}).

Proof.

R(K ∪ {i1, i2}) =
rj + di2,j + (di1,j − ν)

2
− ε

where 0 ≤ ν ≤ di2,j, and

R(K ∪ {i2}) =
rj + di2,j

2
− ε.

If R(K ∪ {i1, i2}) > R(K ∪ {i2})

=⇒
rj + di2,j + (di1,j − ν)

2
− ε >

rj + di2,j
2

− ε,

=⇒
di1,j − ν

2
> 0,

=⇒ di1,j > di2,j.

116

Enhancement two, which will be referred to as AddE2, aims to overcome this short-

coming by slightly altering this selection rule. In order to explain AddE2, the following

definition is given.

Definition 5.3.1. An artificial circle is a circle whose radius, rj, has been enlarged

to Zt, where Zt is the solution value at iteration t.

At any iteration t, all circles’ radii are artificially increased to size Zt and the solution

is analysed again to see what demand points remain uncovered. This allows more de-

mand points to be covered whilst not compromising the solution quality.

Figure 5.11: Construction of an artificial circle with radius Z

Figure 5.11 demonstrates the usefulness of artificial circles. The demand point P5 ap-

pears to be uncovered by a solution circle. However, once the smaller solution circle is

enlarged into an artificial circle (the dashed circle) by increasing its radius rj to Z, it

then becomes clear that point P5 is now covered with the solution value Z.

AddE2 uses artificial circles to help enhance and improve the selection technique when

choosing the new demand points to be added to the subset in the following two steps.

1. For iteration t, increase all circle’s radius to Zt. Only the demand points that

are not covered by an artificial circle can now be selected for the subset.

2. The uncovered points are then allocated to their closest facility creating at most

p clusters of demand points. However, we suggest adding the k furthest demand

117

points but with the added condition that only one point is selected from each

cluster. This strategy therefore allows a wider distribution of demand points to

be selected and avoids the weakness highlighted in Figure 5.10b from occurring.

The detailed algorithm for AddE2 is outlined in Figure 5.12

1. Input: set of solution circles (facilities) F and value k.

2. Allocate all the demand points i ∈ I to their closest facility j ∈ F and define
the allocation matrix Ai,j where Ai,j = 1 if demand point i is allocated to
facility j, else Ai,j = 0. Record Z = Max(rj : j ∈ F).

3. Artificially increase all rj so that rj = Z ∀ j ∈ F .

4. Update the allocation matrix such that Ai,j = 1 if demand point i is both
allocated to facility j and di,j > Z.

5. Find the k furthest demand points from their allocated facility such that only
one demand point is selected from each facility.

Figure 5.12: Point Selection Algorithm (AddE2)

Computational Results

AddE2 was first added on its own to the reverse relaxation algorithm and tested on

the data set pr439 where p = 10, . . . , 100 and k = 1, . . . , 10. These results are given

in column 4 of Table 5.3, and show that the algorithm has improved with an average

decrease in computational time of 10.6%.

Although this is an encouraging result, due to the fact that the algorithm is not deter-

ministic, fast results such as these cannot be replicated with AddE2 alone. To achieve

the desired outcome, both SubE1 and AddE2 are incorporated into the reverse re-

laxation algorithm. The results, shown in the last column Table 5.3, show that the

deterministic algorithm with these two enhancements yields the optimal solution in a

faster time with an average decrease of computational time of 11.3%.

118

CPU Time (secs)

p Z∗ Without
Enhancements⊥,
k = 3

With AddE2⊥,
k = 2

With SubE1 &
AddE2⊥, k = 3

10 1716.510 4.18 2.08 1.81
20 1029.715 3.22 4.63 2.32
30 739.193 3.70 10.51 5.94
40 580.005 38.69 24.87 49.97
50 468.542 63.62 83.76 53.08
60 400.195 24.49 20.76 12.10
70 357.946 57.12 51.32 47.07
80 312.500 41.62 29.32 47.43
90 280.903 63.24 38.33 48.20
100 256.680 17.32 17.81 13.36

Average 614.22 31.73 28.34 28.13

⊥ Best result for k = 1, . . . , 10.

Table 5.3: Results for the Reverse Relaxation Algorithm without enhancements, with
AddE2 and with SubE1 & AddE2 where n = 439

5.3.3 Jump-Based Lower Bound Update (Step 3a in

Figure 5.2)

The reverse relaxation algorithm is constantly updating the lower bound resulting in a

large number of iterations. Each new update, especially at the start of the search, pro-

duces a small increase from one iteration to the next making most ‘jumps’ to the next

lower bound redundant. This section takes this drawback into account and attempts

to provide a more efficient updating scheme.

Enhancement three, which will be referred to as JumpE3, aims to reduce the num-

ber of iterations by redefining what the next lower bound will be set to. Instead of

being set as the smallest radius larger than the current lower bound, it will be set to

the jumpth smallest radius.

In the first experiment, we set jump = 2 which is displayed in Figure 5.13. By missing

out the next lower bound (i.e. jumping to the second smallest radius larger than the

current lower bound), the algorithm converges towards the optimal solution faster. A

similar approach was first suggested for the discrete p−centre problem by Al-Khedhairi

& Salhi (2005).

119

Figure 5.13: Checking which bound is optimal (jump = 2)

However, this means that an extra step is needed once the algorithm finds a solution

that is feasible for the full problem, see Figure 5.13. At each step, the lower bound, LB,

is updated to the second smallest radius larger then the current lower bound. Once a

feasible solution is found, this becomes an upper bound, UB, for the optimal solution.

However, the previously missed bound must now be checked to see whether or not this

yields a feasible solution. This is shown as the ‘jump back’ step in Figure 5.13. If the

missed value does yield a feasible solution, then it is is taken as the optimal solution,

otherwise the current upper bound UB is the optimal solution value

JumpE3 was added to the enhanced algorithm and tested on the data set pr439 for

p = 10, . . . , 100 in steps of 10. The results are given in Table 5.4 which is organised in

the following way. The first column shows the number of facilities located, p, and the

second column shows the optimal solution value, Z∗. The next three columns show the

number of iterations needed, the number of lower bound updates required and the total

amount of computational time in seconds for the reverse relaxation algorithm with the

enhancements SubE1 and AddE2 to reach optimality. The final three columns display

the same information, but this time corresponding to the reverse relaxation algorithm

with enhancements SubE1, AddE2 and JumpE3 where jump = 2.

The results show that the computational time required to find the optimal solution

has significantly decreased. This gives a good indication that JumpE3 has the desired

effect of decreasing the total number of iterations and the number of times the lower

bound was updated. This is confirmed by comparing the information given in Columns

120

p Z∗ With SubE1 & AddE2⊥, k = 3 With SubE1 & AddE2 & JumpE3⊥, k = 4

Iterations # LB
Updates

CPU Time
(secs)

Itera-
tions

LB
Updates

CPU Time
(secs)

10 1716.510 272 224 1.80 202 140 1.05
20 1029.715 253 187 2.33 260 167 2.26
30 739.193 338 237 5.94 309 172 3.81
40 580.005 727 573 49.97 604 400 19.97
50 468.542 616 462 53.08 664 449 58.53
60 400.195 407 231 12.10 402 173 7.58
70 357.946 687 490 47.07 599 342 18.54
80 312.500 725 512 47.43 652 368 30.49
90 280.903 555 335 48.20 555 259 24.13

100 256.680 345 137 13.36 393 117 11.018

Average 614.22 493 339 28.13 464 259 17.75

⊥ Best result for k = 1, . . . , 10.

Table 5.4: Results for the Reverse Relaxation Algorithm with SubE1 & AddE2 with
and without JumpE3, where n = 439 and jump = 2

3 & 4 with that of Columns 6 & 7 respectively.

Defining a critical and dynamically changing jump

Although jumping to the second lower bound is effective, this idea can be developed

further. As the algorithm has many iterations until the optimal solution is finally

reached by the lower bound, why not go to the 3rd lowest bound, or the 4th? In other

words, Al-Khedhairi & Salhi set the new lower bound LB0 = LB2 where

LB1 = min{di,j : di,j > LB0 ∀ i ∈ I, j ∈ J} (5.5)

LB2 = min{di,j : di,j > LB1 ∀ i ∈ I, j ∈ J}. (5.6)

We aim to jump to the jumpth lowest bound, such that LB0 = LBjump where

LBjump = min{di,j : di,j > LBjump−1 ∀ i ∈ I, j ∈ J}. (5.7)

Simple Comparison of jump = 2 vs. jump = 5

As an example, the computational time saved using JumpE3 when jump = 2 & 5 can

be summarised below, where δ is the number of iterations needed to find the optimal

solution when jump = 1, and No
(k)
q is the number of iterations that can be saved when

jump = k.

121

Figure 5.14: Iterations saved for jump = 2, 5 where δ = 1, . . . , 15

If jump = 2,

No(2)q =


δ
2

+ 1 if δ is even,

δ+1
2

+ 1 if δ is odd.

(5.8)

If jump = 5,

No(5)q =

δ − (δ
5

+ 1) if q = 0,

δ − (δ−q
5

+ (6− q)) if q > 0,

(5.9)

where δ = q mod jump.

The computational savings can be easily compared with a simple example. If δ = 100,

the total number of iterations saved when jump = 2 is 100
2

+ 1 = 51, yielding a saving

of 51%. This can be compared to when jump = 5, where the number of iterations

saved is 100− 100
5

+ 1 = 79, leading to a saving of 79%.

Figure 5.14 compares the number of iterations saved when δ = 1, . . . , 20 for jump = 2

and jump = 5. If δ < 3 the solution is always found with less iterations when jump = 2,

and if δ > 11 the solution is always found with less iterations when jump = 5. If δ ≥ 7

and jump = 5, the number of iterations saved is either greater than or the same com-

pared to jump = 2. Note that when δ = 6, 11, there is a drop in the number of

iterations saved for jump = 5 compared to jump = 2.

Defining the backward jump

Note that if an upper bound is found when jump = 2, the next lower bound to con-

122

sider if the one before which is the only value missed. However, if jump > 2, there will

be more than one value missed leading to several options for choosing the next lower

bound.

One option is to use a binary (bisector) method by taking the missed value that is

halfway between the current lower bound and upper bound and continuing from there.

Another way would be to return to the very first missed lower bound and continue

from this point successively until the optimal value is reached.

However, in this study we apply a backward strategy where the idea is to start from

the last lower bound that was missed. If this value is found to be an upper bound, we

then proceed to the second last value that was missed and so on until a lower bound is

found. Once a lower bound is found, the upper bound checked previously is therefore

the optimal value.

Figure 5.15 illustrates the ‘jump-back’ method by showing an example where jump = 5.

The algorithm first goes to LB5, which yields a value that is not feasible for the full

problem. It then proceeds to the next lower bound which is LB10. This yields a feasible

solution for the full problem, thus becoming an upper bound (i.e. UB = LB10). The

missed lower bound values (between LB5 and LB10) must now be checked to deter-

mine the optimal solution value. We begin by checking the last missed lower bound

and working backwards from this point. Therefore, the first to be checked is LB9. If

this is infeasible (i.e., it is a lower bound), the value found at LB10 (i.e. UB) is optimal,

else UB becomes LB9 and we check LB8 and so on.

Computational Results

The data set pr439 was run with the enhancements SubE1, AddE2 and JumpE3 where

jump = 5. In other words, the next lower bound taken is the fifth lowest radius

above the current lower bound. The results showed another decrease in the overall

computational time for all values of k, with the fastest having an average of 10.20

seconds (k = 4). The full results for k = 4 can be found in Table 5.5.

After studying the results, several interesting observations are highlighted. Firstly,

123

Figure 5.15: Jumping back demonstration where jump = 5

p Z∗ jump = 2 jump = 5

Iterations # LB
Updates

CPU Time
(secs)

Iterations # LB
Updates

CPU Time
(secs)

10 1716.510 202 140 1.05 110 30 0.61
20 1029.715 260 167 2.26 153 52 1.03
30 739.193 309 172 3.81 210 68 3.18
40 580.005 604 400 19.97 372 160 12.09
50 468.542 664 449 58.53 382 165 20.13
60 400.195 402 173 7.58 297 64 10.22
70 357.946 599 342 18.54 386 131 9.27
80 312.500 652 368 30.49 412 34 20.36
90 280.903 555 259 24.13 390 91 15.44

100 256.680 393 117 11.02 337 40 9.63

Average 614.22 464 259 17.75 305 94 10.20

⊥ Best result for k = 1, . . . , 10.

Table 5.5: Results for the Reverse Relaxation Algorithm with SubE1, AddE2,
JumpE3⊥ where n = 439, k = 4, jump = 2 and jump = 5

even though the computational time is shorter, the average number of iterations is still

larger than expected according to Equation (5.9). For example, originally for p = 50,

k = 4, it took 1022 iterations to find the optimal solution. According to Equation

(5.9), if jump = 5, the number of iterations that should be saved is 814. This would

therefore allow the optimal solution to be found after 208 iterations. However, Table

5.5 states that 382 iterations were needed. This is because demand points are added

to the relaxed subset, and so more circles are generated that have radius rj such that

LB5(t−1) < rj < LB5t for iteration t. Therefore, instead of having only four missed

values, there are more circles (and so lower bound values) to check through once an

upper bound has been established.

124

For this reason, a balance must be found between making a jump as large as pos-

sible whilst minimising the number of circles to check through once an upper bound

has been established. This issue will be addressed in the next part of this section.

A dynamic jumping scheme

This scheme aims to get the best of both worlds by making jump large at the begin-

ning so that redundant lower bounds can be checked through quickly, whilst decreasing

jump as the algorithm gets closer to the optimal solution and thus tightening the gap

between the current lower bound and the first upper bound found. This variation of

JumpE3 will be referred to as DyJumpE3.

This is a non increasing but discontinuous function of iterations jump(t) with t denot-

ing the tth iteration, jump(t) ∈ N. As the value of jump will change throughout the

algorithm, the computational time savings (No
(jump)
q) have been generalised for any

value of jump.

No(jump)q =

δ − [δ
jump

− 1] if q = 0,

δ − [δ−q
jump

+ 1 + (jump− q)] if q > 0.

(5.10)

The maximum number of jumps, jumpMax, must be chosen. In other words, the

maximum number of lower bounds that are missed in an iteration. This is so the

scheme has a range of integer numbers to choose from where

2 ≤ jump(t) ≤ jumpMax ∀t.

Initially jump = jumpMax, and the scheme uses the proportion of uncovered demand

points to decrease the value of jump. Let N t
u be the number of uncovered demand

points at iteration t. Using the proportion of demand points not covered at iteration t

compared to the total number of demand points, the value of jump can be determined

125

from its range using Equation (5.11).

jump(t) = bjumpMax − (jumpmax × (1− N t
u

N
) + 0.5c. (5.11)

This scheme was tested on the data set pr439 where jumpMax = 10 and k = 1, . . . , 10.

The results are given in Table 5.6, where the best result is found when k = 4 with an

average of 6.40 seconds. The worst computational time recorded was when k = 1, where

the average required amount of computational time was recorded as 16.95 seconds.

Therefore, we can claim that even the worst scenario has improved the computational

time significantly. This suggests that the dynamic scheme delivers very promising

results, and is worthwhile incorporating into the enhanced algorithm.

p Z∗ # Iterations # LB Updates CPU Time (secs)

10 1716.510 147 21 0.56
20 1029.715 234 22 0.97
30 739.193 353 56 2.47
40 580.005 549 123 10.75
50 468.542 549 118 12.13
60 400.195 524 51 5.60
70 357.946 617 102 8.03
80 312.500 680 109 8.92
90 280.903 688 78 8.49
100 256.680 627 36 6.04

Average 614.22 497 72 6.40

Table 5.6: Results for the Reverse Relaxation Algorithm with SubE1, AddE2 &
DyJumpE3⊥ where k = 4

5.3.4 A Dynamic Scheme for the Determination k (Step 4b in

Figure 5.2)

When the enhanced algorithm did not include DyJumpE3, the best results were often

determined when k = 2 or 3. However, in Table 5.5 the best computational times were

found when k = 4. This suggests that the value of k is very influential and critical to

the success of the algorithm.

One way to identify the most appropriate estimator for k would be to perform a

thorough statistical analysis. However, this requires relying on performing such exper-

126

iments with the expectation that a similar performance will remain valid when tested

on new data sets. Another approach, which we think to be more robust, is to develop

a self−learning method that will learn as the search progresses while incorporating

the characteristic of the p−centre problem. Our final enhancement, PointE4, uses a

self−learning method to determine the value of k during the algorithm. This scheme is

developed using very similar ideas to the dynamic jumping scheme described previously.

It may seem unnatural to add a fixed number of demand points to the subset in each

iteration, as the number of demand points that are uncovered is constantly decreas-

ing. Therefore, by setting k to be a certain percentage of uncovered demand points,

a proportional amount of demand points can be added to the subset. As the subset

gets larger (and so the algorithm begins to slow) the number of demand points added

to the subset gets smaller and hence the algorithm stays at a relatively good speed. It

also means more points are added to the subset at the beginning, thus finding many

necessary demand points quickly. Our fourth enhancement, PointE4, incorporates this

idea to find a balance between adding more demand points at the beginning and de-

creasing the value of k as the algorithm starts to slow.

Previous results show that the reverse relaxation algorithm generally works best when

k > 1. Therefore, at iteration t we set k to be

k(t) = Min(p,Max(2, b(0.02×N t
u) + 0.5c)). (5.12)

In other words, the minimum value of k is 2 while being bounded by a maximum of p.

Incorporating all Four Enhancements

Table 5.7 shows the final results for pr439 with all four enhancements combined. For

comparison, the computational times from the original implementation (Chen & Chen’s

and ours) are also shown. For simplicity, we did not record the detailed results for each

enhancement as performed in the previous chapter, though more detailed computations

could be added here.

It is clear that the algorithm with all four enhancements incorporated into it finds

127

Original CPU Time Reverse Relaxation

Chen &
Chen’s
(k = 2)

Original Im-
plementation
(k = 2)

Original Im-
plementation
(k = 3)

With SubE1 & AddE2 &
DyJumpE3 & PointE4

p Z∗ CPU Time
(secs)

CPU Time
(secs)

CPU Time
(secs)

Iterations # LB
Updates

CPU Time
(secs)

10 1716.510 0.84 2.41 4.18 40 11 0.78
20 1029.715 2.63 3.02 3.22 53 9 1.48
30 739.193 6.16 7.62 3.75 68 9 2.86
40 580.005 93.38 66.54 38.69 93 13 9.97
50 468.542 207.45 95.46 63.62 107 26 13.79
60 400.195 62.19 161.96 24.49 99 12 10.00
70 357.946 103.28 461.17 57.12 130 25 16.77
80 312.500 172.59 68.12 41.62 126 19 14.95
90 280.903 157.07 49.70 63.24 139 17 20.83
100 256.680 60.40 68.13 17.32 128 7 15.55

Average 614.220 86.60 98.41 31.73 98 15 10.70

Table 5.7: Results for the Reverse Relaxation Algorithm with SubE1, AddE2,
DyJumpE3 & PointE4 (n = 439)

the optimal solution in a faster computational time compared to Chen & Chen. These

results are very encouraging as it means the developed, deterministic algorithm is more

efficient and faster than the non-deterministic algorithm.

Furthermore, when comparing the results to Table 5.6, we can see the new average

computational time is slightly higher with PointE4. However, it is worth pointing out

that in this variant we do not rely on the given value k, but instead let it take its

value from Equation (5.12) making the method more stable. One other aspect worth

mentioning is that there is a significant decrease in the average number of iterations

when using Point E4. This result is also useful, as it is very desirable to minimise the

number of iterations as each one may require larger computational times, especially

when solving in larger instances which will be shown next.

5.4 The Enhanced Reverse Relaxation Algorithm

& Overall Results

Figure 5.16 describes the enhanced algorithm that incorporates all four enhancements

discussed in this chapter. This algorithm will now be referred to as the Enhanced

Reverse Relaxation Algorithm (ERRA).

128

1. Set the lower bound LB = 0, c = 1, t = 0 and jumpMax = 10.

2. Select the initial subset of demand points using Initial Subset Algorithm given in
Figure 5.5.

3. Set t = t + 1. Determine if Sub has a feasible solution for the p−centre problem,
feasible, with a solution value, Zt ≤ LB.

a) If feasible cannot be found, determine the value of jump using Equation

(5.11) and find the jumpth smallest lower bound, LBjump, that is larger

than LB. Set LB = LBjump and go back to the beginning of Step 3.

b) If feasible can be found, find the number of uncovered demand points,

N t
u, and continue to Step 4.

4. Determine whether feasible is feasible for the full problem.

a) If it is, determine whether Sub has a feasible solution, feasible, with a

solution value ≤ LB(jump−c).

If not, return LBjump−(c−1) as the final solution value.

Else set c = c+ 1 and repeat Step 4(a).

b) Determine the value of k using Equation (5.12). Add k demand points to

Sub using the Point Selection Algorithm in Figure 5.12 and go to Step 3.

Figure 5.16: The Enhanced Reverse Relaxation Algorithm (ERRA)

The ERRA was first tested on the larger, real-life data that were used in the pre-

vious chapter, namely the TSP-library data sets rat575, rat783, pr1002 and rl1323.

For consistency, the ERRA was also tested on our newly generated data sets (first

introduced in the previous chapter) to demonstrate how efficient the algorithm is with

differently distributed data. Each data set was given a time limit of 24 hours for each

value of p, and the result found is either the optimal solution or the best lower bound

established in this time limit.

Scenario One: Results using the TSP-Library data sets

Tables 5.8-5.11 are structured in the following way. The first column, titled p, shows

the number of required facilities. The second column, ZH , gives the upper bound found

for the best heuristic solution (see Elshaikh et al (2016)) that used when generating

all the potential solution circles to obtain the next lower bound. The third column,

titled Z∗, gives the optimal or best found solution. The final three columns state the

total number of iterations of the algorithm to find the corresponding Z∗ value, the

129

total number of times the lower bound was updated and the total computational time

for the ERRA respectively.

Best Heuristic Enhanced Reverse Relaxation

p ZH Z∗ # Iterations # LB Updates CPU Time (secs)

10 67.926 67.926 110 68 11.42
20 45.621 45.475 342 233 590.42
30 35.556 35.556 335 188 1412.07
40 30.265 30.063 434 253 76647.60
50 26.173 25.826 332 159 16354.00
60 23.662 23.163 294 117 22277.80
70 21.059 20.858 283 100 28210.70
80 19.510 19.026 253 68 9789.67
90 17.923 17.460 239 60 1114.37
100 16.511 16.420 243 53 3696.07

Average 30.421 30.178 287 130 16010.41

Table 5.8: Results for TSP-Lib rat575 using the Enhanced Reverse Relaxation
Algorithm

Results show that optimal solutions were found in a reasonable computational time for

the larger data sets. The ERRA showed its superiority by discovering optimal results

for the first time, for example when p ≤ 30 for the data set rl1323.

Best Heuristic Enhanced Reverse Relaxation

p ZH Z∗ # Iterations # LB Updates CPU Time (secs)

10 79.313 79.313 151 102 24.14
20 53.441 53.332 386 268 1181.29
30 42.395 42.307 638 460 39558.80
40 35.962 35.249⊥ 417 259 86400.00
50 31.184 30.647⊥ 401 236 86400.00
60 28.053 27.067⊥ 276 134 86400.00
70 25.446 24.521⊥ 250 114 86400.00
80 23.560 22.519⊥ 261 112 86400.00
90 21.710 20.940⊥ 265 103 86400.00
100 20.334 19.526⊥ 254 90 86400.00

Average 36.140 −−− 330 188 64556.42

⊥ Best lower bound found within 86400 seconds.

Table 5.9: Results for TSP-Lib rat783 using the Enhanced Reverse Relaxation
Algorithm

Furthermore, it can be observed that the fastest computational times to optimally solve

the TSP-Library data set was found when p = 10 for each instance. These two observa-

tions suggest that the enhanced reverse relaxation algorithm is particularly effective for

smaller values of p. This is a promising result, especially as the Drezner enhanced al-

gorithm (DEA) developed in Chapter 4 found optimally solving the p−centre problem

130

for smaller values of p more challenging. Therefore, DEA and the ERRA compliment

each other.

Best Heuristic Enhanced Reverse Relaxation

p ZH Z∗ # Iterations # LB Updates CPU Time (secs)

10 2389.36 2389.36 119 69 17.97
20 1609.54 1607.53 471 336 5066.19
30 1231.36 1231.36 330 185 2072.17
40 1030.40 1021.41 307 159 1091.56
50 901.455 895.342 333 170 10874.10
60 801.474 795.709 328 137 23724.40
70 727.154 725.431 366 142 10545.50
80 664.798 655.746 269 89 1492.98
90 604.152 604.152 270 67 670.39
100 559.017 555.662 256 51 391.07

Average 1051.870 1048.170 305 141 5594.63

Table 5.10: Results for TSP-Lib pr1002 using the Enhanced Reverse Relaxation
Algorithm

Best Heuristic Enhanced Reverse Relaxation

p ZH Z∗ # Iterations # LB Updates CPU Time (secs)

10 2897.49 2987.49 328 242 666.71
20 1886.82 1868.92 674 543 5485.95
30 1466.97 1466.97 858 670 81009.20
40 1236.38 1225.74⊥ 666 486 86400.00
50 1060.82 1051.82⊥ 557 384 86400.00
60 941.870 930.977⊥ 472 297 86400.00
70 844.967 841.578⊥ 571 323 86400.00
80 774.764 770.532⊥ 495 267 86400.00
90 720.625 706.145 428 202 9863.38
100 662.936 658.267⊥ 424 195 86400.00

Average 1249.364 −−− 547 361 61542.52

⊥ Best lower bound found within 86400 seconds.

Table 5.11: Results for TSP-Lib rl1323 using the Enhanced Reverse Relaxation
Algorithm

Further comparison of the results found using ERRA and DEA suggest that both al-

gorithms are similar in efficiency, with the DEA requiring slightly less computational

time. However, it is important to note that the total computational time required for

the DEA relies on the initial upper bound found using a powerful heuristic, whereas

ERRA does not rely on external methods.

Finally, after comparing the best upper bound solution given (ZH) to the best lower

bound found using ERRA within the time limit of 86400 seconds, we can observe that

131

the lower bound value is always proportionally very close to the value of the best upper

bound, with the worst-case being a 4.4% difference (n = 783, p = 80). This therefore

suggests that the solution found for the instances where the total amount of computa-

tional time has been used could be either be optimal or near optimal. It is also worth

mentioning that such lower bounds can be used to access the performance of every

metaheuristic that will be developed.

Scenario Two: Results using our new generated data sets

Tables 5.12-5.14 display the results for the generated data sets, and are structured in

the following way. The first column displays the data’s distribution type, which are

discussed in Section 4.9.2, Chapter 4. The second column displays the number of fa-

cilities located, p. The third column shows the initial upper bound value, Z1 found

using the H2 heuristic used in the previous chapter, and the fourth column displays

corresponding optimal solution, Z∗. This is followed by the number of iterations, lower

bound updates and total computational time taken to find that optimal solution re-

spectively using the enhanced reverse relaxation algorithm.

For consistency with Chapter 4, we compare the average computational times spent

for each value of n for the three distribution types using Figure 5.17.

H2 Heuristic Enhanced Reverse Relaxation
Dist p Z1 Z∗ # Iterations # LB Updates CPU Time (secs)
Cl 25 56.871 53.677 60 10 1.623
Cl 50 38.082 32.660 94 18 4.929
Cl 75 31.827 24.279 117 15 8.939
Cl 100 25.480 19.963 124 14 8.814

Average 63 38.065 32.645 98.75 14 6.08

S-Cl 25 103.393 89.098 82 23 3.836
S-Cl 50 72.890 53.891 89 16 4.13
S-Cl 75 60.891 38.852 99 9 5.353
S-Cl 100 49.498 29.568 105 8 6.811

Average 63 93.694 52.852 94 14 5.03

R 25 119.474 107.353 190 91 81.508
R 50 82.619 67.151 156 46 28.514
R 75 63.389 51.574 146 26 16.527
R 100 54.722 40.140 127 12 10.069

Average 63 80.051 66.554 155 44 34.15

Table 5.12: Solutions for the generated data set where n = 400 using the Enhanced
Reverse Relaxation Algorithm

132

H2 Heuristic Enhanced Reverse Relaxation
Dist p Z1 Z∗ # Iterations # LB Updates CPU Time (secs)
Cl 25 64.070 57.618 106 40 15.48
Cl 50 44.003 36.739 147 41 37.93
Cl 75 34.436 25.986 146 34 28.76
Cl 100 30.566 20.826 162 36 37.51

Average 63 43.269 35.292 140 38 29.92

S-Cl 25 73.135 64.368 198 101 88.62
S-Cl 50 51.587 41.904 210 83 128.36
S-Cl 75 41.135 31.275 168 37 45.16
S-Cl 100 35.203 24.323 139 25 22.98

Average 63 50.273 40.468 179 62 71.28

R 25 74.402 67.979 340 219 654.73
R 50 52.366 44.411 313 146 5570.63
R 75 41.001 33.616 233 73 159.93
R 100 35.249 27.023 191 34 56.89

Average 63 50.005 43.257 269 118 1610.54

Table 5.13: Solutions for the generated data set where n = 600 using the Enhanced
Reverse Relaxation Algorithm

H2 Heuristic Enhanced Reverse Relaxation
Dist p Z1 Z∗ # Iterations # LB Updates CPU Time (secs)
Cl 25 63.776 60.879 71 6 6.458
Cl 50 48.089 40.265 194 71 80.684
Cl 75 36.634 30.446 236 83 161.411
Cl 100 31.544 24.824 246 63 169.914

Average 63 45.011 39.104 187 56 104.62

S-Cl 25 90.593 81.238 294 167 556.611
S-Cl 50 62.332 51.051 228 88 287.611
S-Cl 75 50.487 38.596 204 63 95.348
S-Cl 100 45.900 31.205 215 63 122.563

Average 63 62.328 50.523 235 95 265.53

R 25 126.385 115.444 370 254 1252.63
R 50 89.059 75.935 407 222 63067.20
R 75 71.218 58.217 335 145 28511.00
R 100 61.890 48.545 315 103 6060.80

Average 63 87.128 74.535 357 181 24722.90

Table 5.14: Solutions for the generated data set where n = 800 using the Enhanced
Reverse Relaxation Algorithm

Results suggest that the more clustered a data’s distribution is, then the quicker the

algorithm will find the crucial demand points needed to define the locations of the p

facilities and therefore the optimal solution (we note that this is similar to the results

for the generated data found using the DEA proposed in Chapter 4, except these

findings remain consistent regardless of data set size). This is to be expected, as the

demand points that are required to find the optimal solution in a clustered distribution

will most likely be located on the outside of clustered areas. Thus their positioning

133

makes it easier for the enhancement AddE2 to find and add these points to the subset.

This is not the case for a randomly distributed data set, and so these distribution types

are more challenging to solve optimally.

Figure 5.17: Average computational time for generated clustered, semi-clustered and
randomly distributed data sets

5.5 Summary

This chapter has investigated the method of relaxation to optimally solve the contin-

uous p−centre problem. Recent and effective algorithms that use this method were

introduced, and a further investigative work highlighted the best algorithm to enhance

with an aim to develop a faster algorithm that could optimally solve large data sets.

Four enhancements were introduced, mathematically supported where applicable and

tested to show the enhanced reverse relaxation algorithm required less computational

time than the original reverse relaxation algorithm suggested by Chen & Chen (2009).

The enhanced algorithm was tested on four large real-life data sets from the TSP-

Library, namely pr439, rat575, rat783, pr1002 and rl1323, and six generated data sets

to test the efficiency of the algorithm for different distributions. The enhanced algo-

rithm showed its strength by finding optimal solutions for the first time in some of the

real-life instances, for example when p < 30 for the data set rl1323. Investigative work

using the generated data sets revealed that the enhanced reverse relaxation algorithm

requires less computational time when solving data sets with clustered distributions.

The next chapter will create a new matheuristic, designed to find a good feasible

solution that can be embedded into the enhanced algorithms given in Chapters 4 and

5 to obtain the optimal solution.

134

Chapter 6

A Facility-Based Relaxation Algorithm

6.1 Introduction

This chapter investigates the use of relaxation on the number of facilities, rather than

the number of demand points, to solve the p−centre problem using a new matheuristic.

The matheuristic begins by finding an efficient subset of facilities, and the next section

examines the two selection methods used in this study to find this subset. The first

option involves a known geometric-based method using the Voronoi diagram and the

second option is a simplified version of the first. We then discuss the initial results and

observations that led to introducing an adapted matheuristic inspired by the Variable

Neighbourhood Search metaheuristic. A diversification method is also developed and

incorporated into the matheuristic, and results using the adapted matheuristic are

recorded and discussed. Finally, the last section displays the optimal results found for

larger data sets from the TSP-Library and the generated data sets, first introduced

in Chapter 4, when the feasible solutions generated from the new matheuristic are

embedded into the exact algorithms developed in Chapters 4 and 5.

6.2 A New Matheuristic

6.2.1 Overview

For clarity, in this chapter we shall refer to the subset of demand points as Sub and

the subset of facilities as FSub. Furthermore, for consistency with previous chapters,

we define the solution circle of the p−centre problem to be the largest covering circle

found in the feasible solution, with facility frMax located at its centre. Let us now

define the full set of circles that form the feasible solution to the p−centre problem as

the set of solution circles. Lastly, let us define Dj1,j2 as the Euclidean distance between

facility j1 and facility j2.

135

As previously noticed by Drezner (1984a), if a solution to the p−centre problem is

not optimal, then the size of the largest covering circle (i.e. the solution circle) must

be decreased to allow the solution to converge towards the optimal solution. It is this

logic that inspired the exploration and development into the new matheuristic, which

we shall refer to as the relaxed p′ matheuristic (where p′ < p).

In brief, the matheuristic finds a feasible solution to the p−centre problem and iden-

tifies the facility frMax. We obtain FSub from the remaining facilities based on their

distance and location to frMax. The demand points that are covered by this subset of

facilities are then treated as a relaxed problem to solve in order to improve the overall

solution value. Therefore, this matheuristic targets and improves a specific area defined

by the neighbouring space of the solution circle in the current feasible solution. This

scheme allows a better feasible solution to be found quickly and efficiently by guiding

the solution value as the matheuristic progresses, and therefore allowing it to converge

towards the optimal solution.

Figure 6.1 demonstrates the basic idea with an example of the first three iterations

of the matheuristic. In iteration 1, the solution circle is shown as the highlighted cir-

cle. The set of circles that lie inside the dashed circle form the subset of facilities FSub,

and the demand points (not shown) inside these circles form the relaxed problem that

will be solved optimally. Iteration 2 shows this area is now covered more efficiently,

and so there is now a new solution circle, which is highlighted. Again, the dashed circle

shows the new subset of facilities, FSub, and the demand points covered by FSub are

treated as a relaxed problem to be solved optimally. Iteration 3 shows that, once again,

there is a new solution circle to continue the process with.

Figure 6.1: The new matheuristic targets specific facilities in the feasible solution and
optimally solves the sub-problem

136

The main challenge of this matheuristic is to find a good subset of facilities (FSub)

such that an improvement amongst the corresponding subset of demand points would

lead to an overall improvement for the full problem. In this study, two methods are

adopted to find a suitable subset of facilities. The first one uses the Voronoi diagram,

whereas the second one relies on an approximation to define FSub. A brief introduction

to the Voronoi diagram is outlined in the next sub-section.

6.2.2 The Voronoi Diagram-Based Method

This sub-section will begin with a brief background on the Voronoi diagram. Let there

be p facilities in a plane. The Voronoi diagram partitions the plane into p polygons

with exactly one facility inside each polygon. Each polygon, or Voronoi polygon, is

defined by the area in the plane that lies closest to its associated facility in terms of

Euclidean distance. As an example, Figure 6.2a shows a set of facilities in the plane

and its corresponding Voronoi diagram is shown in Figure 6.2b.

(a) (b)

Figure 6.2: A Voronoi diagram example

Let there be a plane of n demand points and p facilities. Each facility is situated inside

strictly one polygon, which we refer to as its corresponding Voronoi polygon V orj′

where j′ = 1, . . . , p . We can record the demand points i ∈ I that lie in V orj′ as follows

V orj′ = {i ∈ I | di,j′ < di,k for k = 1, . . . , p : k 6= j′}. (6.1)

If we connect the centres of the adjacent Voronoi polygons with a straight line, we get

the Delaunay graph (or Delaunay triangulation), see Figure 6.3. Two points connected

by an edge of the Delaunay graph can be considered “neighbours”, inasmuch as their

Voronoi polygon’s share an edge.

137

Figure 6.3: The relationship between Delaunay Triangulation and the Voronoi
Polygon

There are a number of efficient methods to calculate the Voronoi diagram running in

O(nlogn) time, such as Fortune’s algorithm. Further information on Fortune’s algo-

rithm and Voronoi diagrams can be found in Chapter 7 in De Berg et al (2000).

The first selection method for the matheuristic adds the facilities to FSub that are as-

sociated with the edges of the Voronoi polygon surrounding the facility with the largest

circle (i.e. the Delaunay neighbours), and will be referred to as the Voronoi-based

method. As this requires only a section of the Voronoi diagram to be calculated,

Fortune’s algorithm was not used as it could not be easily adapted to allow only one

specific Voronoi polygon to be found as opposed to computing the full diagram. In-

stead, we used the following method to find the single required Voronoi polygon.

Once an initial solution for the p−centre problem is found, the Voronoi-based method

begins by identifying frMax. The (p− 1) midpoints between frMax and the remaining

facilities are then found. For each midpoint, the line of equation that both passes

through it and is perpendicular to the line that passes through the given midpoint and

frMax is then calculated. This creates (p − 1) half planes. The common intersection

between each line is then computed, and the smallest polygon defined by a subset of the

intersections that encompasses frMax is the Voronoi polygon of interest. The intersec-

tion points create the Voronoi polygon’s corners, and the lines of equation associated

with these intersections form the Voronoi polygon’s edges. The facilities associated

with the Voronoi polygon edges are added to FSub. The detailed procedure of the

Voronoi-based method is given in Figure 6.4.

138

1. Input: F . Set F ′ = F . Define the facility centre points as (xcf ′ , y
c
f ′) where f ′ ∈ F ′.

2. Identify the facility, frMax, associated with the solution circle. Set FSub =
{frMax} and F ′ = F ′ \ {frMax}.

3. For each f ′ 6= frMax, find the set of midpoints (XM × YM) as follows

XM = {xMf ′ : xMf ′ =
xcf ′ + xcfrMax

2
},

and

YM = {yMf ′ : yMf ′ =
ycf ′ + ycfrMax

2
}.

4. Find the set of gradients for the lines that pass through each midpoint and frMax.

G = {mf ′ : mf ′ =
yMf ′ − ycfrMax

xMf ′ − xcfrMax

∀ f ′ 6= frMax}.

5. Find the set of gradients for the perpendicular lines in G, namely G⊥ where

G⊥ = {m⊥f ′ : m⊥f ′ = − 1

mf ′
∀ mf ′ ∈ G}.

6. Find all intersection points of lines determined by point (xMf ′ , y
M
f ′) and gradient

m⊥f ′ ∀ f ′ ∈ F ′.

7. While |F ′| 6= 0 do:

i) Find the closest intersection point to (xcrMax, y
c
rMax). Let the two lines

that form this intersection be l1 and l2, and their respective facilities f1

and f2. Set FSub = FSub ∪ {f1, f2} and F ′ = F ′ \ {f1, f2}.
ii) Identify which side of the line frMax lies on for l1. For all f ′ ∈ F ′ that sit

on the opposite side of l1, set F ′ = F ′ \ {f ′}. Repeat for line l2.

8. Return FSub.

Figure 6.4: The Voronoi-based Method

Figure 6.5 demonstrates finding FSub based on facility frMax using the Voronoi-based

method. The perpendicular lines that pass through the midpoints of frMax and the

required facilities are shown as hashed lines. The intersection of these hashed lines

highlights the Voronoi polygon area that encompasses frMax. The facilities that are

added to FSub in this example are represented by highlighted circles. We can see in

this instance that |FSub| = 6 when selecting facilities using the Voronoi-based method.

The time complexity of the Voronoi-based method is bounded by Step 6 in Figure

6.4, and so has a time complexity of O(p2).

139

Figure 6.5: Finding FSub using the Voronoi-based method

6.2.3 The Simpler Neighbouring Facilities Method

The second method, which is a simpler and approximate version to the Voronoi-based

method, is referred to as the simpler neighbouring facilities method. Facilities

are chosen based on their distance and location to frMax in a less complicated way,

thus making it easier to identify the facilities for FSub. The process is described in

Figure 6.6.

1. Input: F . Set F ′ = F .

2. Identify the facility, frMax, associated with the solution circle. Set FSub =
{frMax} and F ′ = F ′ \ {frMax}.

3. While |F ′| 6= 0 do:

i) Find f ∗ = Arg((Min
f ′∈F ′
{Df ′,frMax

})) and set FSub = FSub ∪ {f ∗}

and F ′ = F ′ \ {f ∗}.
ii) Find the line that passes through frMax and f ∗, say l.

iii) Find the perpendicular line to l that passes through f ∗, say l⊥.

iv) For all f ′ ∈ F ′ lying on the opposite side of l⊥ to frMax, set

F ′ = F ′ \ {f ′}.

4. Return FSub.

Figure 6.6: The Simpler Neighbouring Facilities Method

Much like the Voronoi-based method, the simpler neighbouring facilities method begins

140

by identifying fMax. From the set of potential neighbouring facilities, F ′, the algorithm

then finds the closest facility, f ∗, to fMax. The line, l, that passes through fMax and

f ∗ is constructed, allowing us to obtain the line, l⊥, that both passes through f ∗ and

is perpendicular to line l. We then determine which side of l⊥ the facility fMax lies on,

and all f ′ ∈ F ′ that lie on the opposite side to fMax are deleted from F ′ as potential

neighbouring facilities. The process continues until F ′ = ∅.

For clarity, the new method of establishing the simpler neighbouring facilities, or neigh-

bouring facilities, of frMax is illustrated in Figures 6.7a & 6.7b using the same con-

figuration as in Figure 6.5. In Figure 6.7a, the closest facility to frMax is determined

and labelled as f ∗. The line, l, that passes through both facilities is found, as is the

perpendicular line, l⊥, that passes through facility f ∗. As frMax lies below l⊥, any

facilities that lie above (as the arrows indicate) must be eliminated from the search as

they cannot be a neighbouring facility.

Figure 6.7b shows all the neighbouring facilities of frMax. The intersection of the lines

of the equation passing through their centres show the corners defining the neighbour-

ing facilities polygon. In this example, we can see |FSub| = 5 using the neighbouring

facilities selection method. In other words, one more facility is identified using the

Voronoi-based method.

(a) Finding One Neighbouring Facility for frMax (b) All Neighbouring Facilities for frMax

Figure 6.7: Finding FSub using the Neighbouring Facilities Method

Note that the time complexity of the simpler neighbouring facilities method is bounded

by calculating the closest facility to fMax and so has a complexity of O(p). Further-

141

more, note that other neighbourhood graphs exist in the literature, such as the Gabriel

Graph proposed by Gabriel & Sokal (1969), and the Relative Neighbourhood Graph

proposed by Toussaint (1980).

These two facility selection methods shall be compared for their strengths and weak-

nesses in the next section, but first we shall describe the new matheuristic that incor-

porates such a partitioning.

6.2.4 The Relaxed p′ Matheuristic

The algorithm for the new matheuristic, which we refer to as the relaxed p′ matheuris-

tic, is described in Figure 6.8.

1. Find a feasible solution yielding the initial set of facilities F where |F | = p.

2. Find FSub using the Voronoi-based method (Figure 6.4), or the simpler
neighbouring facilities method (Figure 6.6) where p′ = |FSub|.

3. Set Sub = {i ∈ I : di,f ′ ≤ rf ′∀ f ′ ∈ FSub}.

4. Solve the p′−centre problem for Sub. This yields new p′ facility locations ∆
where ∆ = {δ1, . . . , δp′} and solution value Z.

5. Set F = (F \ FSub) ∪∆.

6. Locate-allocate procedure: Allocate all i ∈ I to their closest f ∈ F and find
a new feasible solution and set of facilities F . Repeat until the configuration
of the solution circles do not change.

7. Check stopping criteria.

(a) If there is no change in the facility configuration, return the best

feasible solution found and stop.
(b) Else, record the solution value and configuration, and go back to

Step 2.

Figure 6.8: The Relaxed p′ Matheuristic

The proposed matheuristic first finds an initial solution which can be achieved using

a simple heuristic or a more powerful metaheuristic if necessary. The facility frMax is

identified, and FSub is established using either the Voronoi or the simpler neighbour-

ing facilities method described in the previous sub-sections. As stated previously, the

142

demand points that are encompassed by the facilities in FSub form a subset of demand

points which are optimally solved using the classic p−centre formulation, Forpc (see

Section 3.2.2, Chapter 3) where, in this instance, p = |FSub|. This yields an improved

solution value for FSub (i.e. the radius of the largest covering circle is reduced) and

creates new positions for the facilities in the subset F . These new positions replace the

original positions, and a locate-allocate heuristic is then used to identify the new and

improved feasible solution for the full problem. This process is repeated until there is

no further improvement is found (i.e. the configuration of the solution circles do not

change).

In this study, an initial solution is found using the H2 heuristic to remain consis-

tent with results from previous chapters. This is so a comparison between the different

methods developed in this thesis can be as fair and as accurate as possible.

A simple improvement for the relaxed p′ matheuristic

Before any initial results were found using the relaxed p′ matheuristic, an obvious

improvement was incorporated into the matheuristic. Instead of solving the subset

optimally using the traditional formulation (Forpc), this was solved faster using the

Enhanced Reverse Relaxation Algorithm (ERRA) given in Figure 5.16, Chapter 5.

Therefore, Step 4 in Figure 6.8 was changed to Step 4’, as this allows the subset to be

optimally solved in less computational time and thus creates a more efficient algorithm.

Step 4’. Solve the p′−centre problem for Sub using the ERRA described in

Figure 5.16 in Chapter 5. This yields new p′ facility locations ∆ where

∆ = {δ1, . . . , δp′} and solution value Z.

It is important to note that the overall solution of the relaxed p′ matheuristic is affected

by the initial solution’s largest facility and its surrounding facilities.

A basic adjustment to the ERRA

A small adjustment was made to the ERRA with respect to the minimum number of

demand points to be added to the subset. Here, a minimum of one, rather than two,

points is used as instances occur where there is only one demand point not covered

by the current solution, and so only one point must be added to the subset. These

143

instances are more likely to occur if the cardinality of Sub is small.

6.3 Initial Implementation & Observations

The relaxed p′ matheuristic was first implemented for the TSP-Library data set pr439

where p = 10, 20, . . . , 100, and the results are given in Table 6.1. An initial solution was

found using 100 iterations of the H2 heuristic, and this solution value, Z1, is displayed

in the second column of Table 6.1. A comparison of the results found with the relaxed

p′ matheuristic using the simpler neighbouring facilities method and the Voronoi-based

method are given in columns 3 − 6 and columns 7 − 10 respectively.

H2 Simpler Neighbouring Facilities Method Voronoi Method

p Z1 Z1st |FSub1| Z⊥ # Itera-
tions

Z1st |FSub1| Z⊥ # Itera-
tions

10 1990.290 1990.290 4 1990.290 2 1990.290 3 1990.290 2
20 1453.530 1453.530 5 1453.530 2 1453.530 3 1453.530 2
30 1226.020 1226.020 4 1226.020 2 1226.020 3 1226.020 2
40 1211.960 1126.730 4 1008.170 5 1126.730 4 1125.280 4
50 1125.280 1008.170 5 1008.170 3 1008.170 5 1008.170 3
60 760.345 760.345 4 760.345 2 760.345 7 760.345 2
70 608.790 584.433 6 584.433 3 584.433 5 584.433 3
80 606.347 606.347 3 606.347 2 606.347 3 606.347 2
90 570.008 570.008 3 570.008 2 570.008 5 570.008 2
100 570.008 570.008 3 570.008 2 570.008 5 570.008 2

Average 1012.258 992.024 4 977.732 2 989.588 4 989.443 2

Table 6.1: First results using the relaxed p′ matheuristic for pr439

Columns 3 & 7 and 4 & 8 in Table 6.1 show the first upper bound found, Z1st , and the

size of the first subset of facilities, FSub1, found with the simpler neighbouring facilities

method and the Voronoi-based method respectively. This gives a fair and interesting

comparison as both facility selection methods started with the same initial solution.

Columns 5 & 9 show the solution value found, Z⊥, using the relaxed p′ matheuristic.

The total number of iterations of the matheuristic is given in columns 6 & 10 for the

simpler neighbouring facilities method and the Voronoi-based method respectively.

144

(a) The Neighbouring Facilities Method (|FSub| = 7) b) The Voronoi Method (|FSub| = 6)

Figure 6.9: An example when the neighbouring facilities method yields a larger FSub

Two main observations can be concluded from the information given in Table 6.1.

Firstly, we observe that sometimes |FSub| is larger when using the simpler neigh-

bouring facilities method rather than the Voronoi-based method. This is due to the

positioning of the facilities around frMax. An example can be seen in Figure 6.9, where

Figure 6.9a shows the facilities found using the simpler neighbouring facilities method

and Figure 6.9b shows the facilities found using the Voronoi-based method. Due to

both the positioning of frMax and the distribution of the data, the simpler neighbouring

facility method picks a larger, and less efficient, subset to the Voronoi-based method.

This small example highlights the potential strengths the Voronoi-based method may

have in comparison to the simpler neighbouring facilities method.

Our second observation from Table 6.1 discovers that the matheuristic cannot run

for many iterations as it becomes caught in a local minimum very quickly (i.e. the

configuration of the full problem does not change between the locate-allocate heuristic

solution and when solving the subset optimally). As this greatly affects the overall

capability of the matheuristic, further refinements need to be looked at in order to cre-

ate a more efficient algorithm that does not become stuck easily in a local minimum.

One way to leave a local minimum is to change the neighbourhood of the subset of

facilities. Several ways in which the neighbourhood can be changed and enlarged in

order to escape a local minimum are investigated in the next section.

145

6.4 Changing the Neighbourhood of FSub

If the matheuristic gets stuck in a local minimum, additional facilities from the neigh-

bouring area can be introduced to FSub using several different approaches. As this is

vital to keep the matheuristic running, we investigated three different variants which

will be explained in detail and individually tested. All three options were inspired by

the Variable Neighbourhood Search (V NS) metaheuristic.

When the V NS becomes stuck at a local minimum, it systematically uses a larger

neighbourhood in order to escape. In other words, a specified number of points (e.g.

1 point) around the current solution is generated. This forms the first neighbourhood

of the initial solution, N1. If an improved solution cannot be found with N1, then the

problem is enlarged by randomly generating a second specified number of points (e.g.

2 points) to create the second neighbourhood, N2. The problem continues to generate

larger neighbourhoods until either a better solution is found or stopping criterion is

reached. Further information on the Variable Neighbourhood Search can be found in

Salhi (2006) and references therein, and various variations and their applications in

Hansen et al (2010).

6.4.1 A Randomly Generated Neighbourhood (Variant (a))

The first variant for our matheuristic finds the neighbourhood NR
p⊥(x) where p⊥ new

facilities are randomly added to FSub where p⊥ = 1, 2, . . . , pmax. In other words, if

the matheuristic is stuck in a local minimum, one facility is added at random to FSub.

If the heuristic continues to be stuck in a local minimum, two facilities are added at

random to FSub instead. This process continues until either the algorithm escapes the

local minimum or the maximum number of facilities (pmax) has been added to FSub.

The process of this approach, which we refer to as for variant (a), is described in Figure

6.10. The technique used to determine pmax is given next.

Determining the value of threshold pmax

As the matheuristic is a relaxation-based approach, we wish to improve the feasible

solution value whilst minimising the cardinality of Sub as much as possible. However,

as the matheuristic progresses, the feasible solutions tend to be closer to the optimal

146

1. Input: FSub, F . Set p⊥ =1.

2. Randomly select f /∈ FSub and set FSub = FSub ∪ {f}. Repeat p⊥ − 1
times.

3. Complete Steps (3− 6) in Figure 6.15.
If there is no change in the configuration of the full feasible solution and
pmax has not been reached, go to Step 4.
Else, set FSub = ∅ and go to Step 2 in Figure 6.15.

4. Remove the p⊥ facilities from FSub selected in Step 2. Set p⊥ = p⊥+ 1. and
go to Step 2.

Figure 6.10: Changing the Neighbourhood Randomly (Variant (a))

solution and so more facilities need to be added to FSub in order to escape a local

minimum. In other words, a maximum number of demand points in Sub must be es-

tablished so that the algorithm halts when the relaxed problem becomes too large to

be solved in reasonable time.

Let Subt be the subset of demand points at iteration t and let N ′ = N − |Sub1|

(i.e. the number of remaining demand points not in Sub after the first iteration).

If

|Subt| > |Sub1|+
N ′

100
× 30, (6.2)

then the number of demand points in the subset has exceeded the maximum. In other

words, Sub is allowed to increase by an extra 30% of the original number of the remain-

ing demand points. Therefore, pmax is the number of facilities in FSub that causes the

size of Sub to go over this threshold.

This threshold is incorporated into Step 3 of the Enhanced Relaxed p′ Matheuristic.

6.4.2 A Deterministically Generated Neighbourhood

(Variant (b))

The second variant finds the neighbourhood ND
p⊥ where the p⊥ facilities that have the

closest sum distance to all facilities in FSub are added to the subset of facilities. The

use of the sum distance allows the facilities added to FSub to be both close to frMax

147

whilst able to be spread apart from one another. This approach therefore finds facilities

for FSub in a deterministic way rather than the random approach given in variant (a).

The process for variant (b) is given in Figure 6.11.

1. Input: FSub, F .

2. Find f such that

f = Arg(Min
f∈F

(
∑

f ′∈FSub

Df,f ′ : f /∈ FSub)).

Set FSub = FSub ∪ {f}.

3. Complete Steps (3− 6) in Figure 6.15.
If there is no change in the configuration of the full feasible solution and
pmax has not been reached, go to Step 2.

Else, set FSub = ∅ and go to Step 2 in Figure 6.15.

Figure 6.11: Changing the Neighbourhood Deterministically (Variant (b))

It is important to note that another possible option is to find the p⊥ closest circles to

frMax. There is, however, a potential weakness for this approach as shown using the

following worst-case scenario example.

An Illustrative Example

Figure 6.12 shows the facility with the largest covering cirlce, frMax, and the set of

selected facilities FSub with the highlighted circles. If the closest facility to frMax is

selected, the facility labeled F1 would be added to FSub. As this facility lies close to

F ′, it is likely that the heuristic will remain stuck in the local optimum and therefore

require another facility to be added to FSub. In this instance, the two facilities with

the closest distance to FSub would be facility F1 (found previously) and F2. Following

that, the three facilities that have the closest distances are F1, F2 and F3. This may

continue to cause difficulty escaping the local minimum as the facilities selected form

a cluster in a small area of the plane. Therefore, it is far more desirable to use the

closest sum distance such that a compromise is found between selecting a facility that

lies in a close proximity to frMax whilst being spread out from the other facilities in

FSub.

148

Figure 6.12: Finding the closest to frMax

6.4.3 Generating a Neighbourhood using Alternating

Methods (Variant (c))

The third variant finds a new neighbourhood by alternating between variants (a) and

(b). This method therefore wishes to find a balance between locating facilities close

to frMax whilst incorporating randomisation to discourage the matheuristic from be-

coming caught in a local minimum. Therefore, we define the neighbourhood NA
p⊥ to

be

NA
p⊥ =

N
R
p⊥ if p′′mod 2 = 1,

ND
p⊥ if p′′mod 2 = 0 ,

(6.3)

where p′′ is the number of consecutive times the neighbourhood is enlarged, k′ =

p′′mod2 and p⊥ = p′′+k′

2
. Thus we get the neighbourhood structureNA

p⊥ = {NR
1 , N

D
1 , N

R
2 ,

ND
2 , . . . , N

R
pmax , N

D
pmax}. The process for variant (c) is given in Figure 6.13.

Example

Let the matheuristic be stuck in a local minimum, and let us wish to change the

neighbourhood using variant (c). According to Figure 6.13, variant (c) begins with

p′′ = 1. Therefore, we can see that k′ = 1mod2 = 1 and p⊥ = 1+1
2

= 1. We therefore

change the neighbourhood using NR
1 (i.e. randomly add one facility to FSub).

149

1. Input: FSub, F . Set p⊥ =1.

2. If p⊥ = 1 mod 2 do:

Randomly select f /∈ FSub and set FSub = FSub∪{f}. Repeat p⊥−1

times.

Else,

Find f such that

f = Arg(Min
f∈F

(
∑

f ′∈FSub

Df,f ′ : f /∈ FSub)).

Set FSub = FSub ∪ {f}. Repeat p⊥ − 1 times.

3. Complete Steps (3− 6) in Figure 6.15.
If there is no change in the configuration of the full feasible solution and
pmax has not been reached, go to Step 4.

Else, set FSub = ∅ and go to Step 2 in Figure 6.15.

4. Remove the p⊥ facilities added to FSub in Step 2. Set p⊥ = p⊥ + 1. Go to
Step 2.

Figure 6.13: Changing the Neighbourhood Alternately (Variant (c))

6.4.4 The Enhanced Relaxed p′ Matheuristic & Diversification

As stated previously, the algorithm for the relaxed p′ matheuristic stops if |Sub| >

|Sub1|+ N ′

100
× 30. This is because there are too many demand points in Sub and thus

the use of the relaxation method is negated as the problem becomes too large to solve

in a reasonable amount of time.

1. Input: I, L, Divmax, F and set It = 0.

2. If L = Divmax, return best feasible solution and stop.
Else, set L = L+ 1.

3. Find FSub using the Voronoi-based method (Figure 6.4), or the neighbouring
facilities method (Figure 6.6) where |FSub| = p′. Set F = FSub.

4. Find Sub2 = {i ∈ I : di,f ′ > rf ′ ∀ f ′ ∈ F}.

5. Randomly select i ∈ Sub2 and set F = F ∪ {i}. Repeat until |F | = p.

6. Locate-allocate all i ∈ I to their closest f ∈ F to find a new feasible solution and
set of facilities F . Go to Step 2 in Figure 6.15.

Figure 6.14: The Diversification Method

150

However, in an attempt to tighten the solution value further and find a better feasi-

ble solution, a diversification method was developed. This means that in the instance

where FSub becomes too big, instead of halting the algorithm we can diversify the

solution. This therefore allows more opportunity for the algorithm to find an improved

feasible solution. In brief, the diversification method randomly selects new locations for

the facilities f /∈ FSub. For clarity, each time the matheuristic is diversified, we shall

refer to it as entering a new loop, L, and the total number of times the matheuristic is

allowed to diversify is Divmax. Therefore, once L = Divmax, the algorithm returns the

best feasible solution found and stops.

The full description for the diversification method is presented in Figure 6.14. The

enhanced relaxed p′ matheuristic algorithm that incorporates the different neighbour-

hood selection variants and the diversification method is given in Figure 6.15.

1. Input: N , Divmax. Set FSub = ∅, It = 0 and L = 1. Find a feasible solution
yielding the initial set of facilities F where |F | = p.

2. Find FSub using the Voronoi-based method (Figure 6.4), or the neighbouring
facilities method (Figure 6.6) where |FSub| = p′.

3. Set It = It + 1 and SubIt = {i ∈ I : di,f ′ ≤ rf ′∀ f ′ ∈ FSub}. If It = 1,
record |Sub1|.

(a) If |SubIt| > |Sub1| + (30 × N−|Sub1|
100

)), diversify the solution using the
diversification method given in Figure 6.14.

(b) Else, go to Step 4.

4. Solve the p′−centre problem for Sub using the ERRA. This yields new p′

facility locations ∆ where ∆ = {δ1, . . . , δp′} and solution value Z.

5. Set F = (F \ FSub) ∪∆.

6. Locate-allocate procedure: Allocate all i ∈ I to their closest f ∈ F and find
a new feasible solution and set of facilities F . Repeat until the configuration
of the solution circles do not change.

7. If there is a change in the configuration between Steps 5 & 6, set FSub = ∅
and go back to Step 2.

Else, change the neighbourhood of FSub using either variant (a) (Figure

6.10), variant (b) (Figure 6.11) or variant (c) (Figure 6.13).

Figure 6.15: The Enhanced Relaxed p′ Matheuristic

151

6.5 The Enhanced Relaxed p′ Matheuristic Results

This section will discuss the results found using the enhanced relaxed p′ matheuristic.

Firstly, we shall test the different variations of generating a new neighbourhood in order

the establish the most efficient method. We shall then investigate the robustness of the

solution found using the enhanced relaxed p′ matheuristic by embedding its solution

into exact methods. Finally, we shall conclude with computational experiments on the

larger TSP-Library data sets and the generated data sets.

6.5.1 Allowing Changing Neighbourhoods & Incorporating the

Diversification Method

The relaxed p′ matheuristic was implemented for the data set pr439 for p = 10, 20,

. . . , 100 where the neighbourhood was changed when the matheuristic became caught

in a local minimum using the three variants described in the previous section. The

diversification method was also incorporated into the matheuristic where Divmax = 10.

For a fair comparison, the same initial solutions that were found using H2 were re-

cycled. Tables 6.2, 6.3 and 6.4 show the solution value found using the relaxed p′

matheuristic using both the simpler neighbouring facilities method and the Voronoi-

based method where the neighbourhoods were changed using variants (a), (b) and (c)

respectively.

H2 Simpler Neighbouring Facilities Method Voronoi Method
p Z1 Z⊥ CPU

Times
(secs)a

Average
Total Itera-
tions

Best
Div

Z⊥ CPU
Times
(secs)a

Average
Total Itera-
tions

Best
Div

10 1990.290 1716.510 11.83 78 9 1790.620 7.83 46 3
20 1453.530 1125.280 22.73 113 6 1029.715 29.06 166 5
30 1226.020 818.917 64.74 372 9 760.345 48.58 399 7
40 1211.960 619.770 64.43 525 5 621.742 69.87 564 2
50 1125.280 497.808 85.75 941 8 473.014 120.35 899 7
60 760.345 426.651 106.26 1063 2 426.651 92.88 963 2
70 608.790 362.500 173.59 1639 5 363.361 127.95 1341 8
80 606.347 327.304 197.02 1823 9 347.311 137.24 1396 4
90 570.008 291.815 215.73 2101 6 290.743 210.28 1991 3
100 570.008 268.386 300.63 2755 9 267.783 277.48 2430 9

Average 1012.258 645.494 124.27 1141 7 637.128 112.15 1018 5

a This excludes computational time for the H2 heuristic.

Table 6.2: Results for the Relaxed p′ Heuristic for pr439 with Changing
Neighbourhood (Variant (a) and the Diversification Method (Divmax = 10))

152

H2 Simpler Neighbouring Facilities Method Voronoi Method
p Z1 Z⊥ CPU

Times
(secs)a

Average
Total Itera-
tions

Best
Div

Z⊥ CPU
Times
(secs)a

Average
Total Itera-
tions

Best
Div

10 1990.290 1761.360 28.11 105 3 1790.620 9.13 80 7
20 1453.530 1226.020 45.83 168 1 1226.020 25.13 156 2
30 1226.020 900.087 42.92 258 2 874.271 52.87 391 4
40 1211.960 606.347 66.99 460 9 621.742 41.57 337 4
50 1125.280 544.576 59.26 580 10 606.347 62.49 583 1
60 760.345 437.500 131.56 1142 7 606.347 56.09 560 8
70 608.790 362.500 192.80 1519 2 362.500 339.85 2419 7
80 606.347 427.466 186.67 1726 4 400.000 105.81 950 6
90 570.008 353.736 128.63 1228 1 314.740 184.54 1572 1
100 570.008 268.386 348.56 1981 4 353.740 137.70 1165 1

Average 1012.258 688.798 123.13 917 4 715.633 101.52 821 4

a This excludes computational time for the H2 heuristic.

Table 6.3: Results for the Relaxed p′ Heuristic for pr439 with Changing
Neighbourhood (Variant (b) and the Diversification Method (Divmax = 10))

H2 Simpler Neighbouring Facilities Method Voronoi Method
p Z1 Z⊥ CPU

Times
(secs)a

Average
Total Itera-
tions

Best
Div

Z⊥ CPU
Times
(secs)a

Average
Total Itera-
tions

Best
Div

10 1990.290 1716.510 38.72 97 5 1716.510 23.97 147 6
20 1453.530 1125.280 23.52 218 3 1088.720 27.49 203 6
30 1226.020 739.193 63.69 522 7 809.514 42.81 468 8
40 1211.960 580.005 83.56 878 8 580.005 120.68 1055 8
50 1125.280 481.047 100.97 1117 2 481.047 124.56 1265 3
60 760.345 427.566 164.68 1798 3 424.632 190.32 1996 10
70 608.790 362.500 284.81 2716 2 362.500 252.60 2533 10
80 606.347 316.258 329.35 3049 8 332.283 309.15 2996 4
90 570.008 282.013 472.65 4200 2 282.013 449.69 3768 6
100 570.008 265.754 542.84 4663 8 265.754 423.84 3587 7

Average 1012.258 629.613 210.48 1926 5 634.298 196.49 1802 7

a This excludes computational time for the H2 heuristic.

Table 6.4: Results for the Relaxed p′ Heuristic for pr439 with Changing
Neighbourhood (Variant (c) and the Diversification Method (Divmax = 10))

The tables are organised in the following way. The first two columns show the number

of facilities located, p, and the second column shows the initial upper bound value

found using the H2 heuristic. The next eight columns display the solution value found

using the enhanced matheuristic, Z⊥, the total computational time for the matheuris-

tic only (i.e. not including the H2 heuristic), the total number of iterations and the

loop number that obtained the best solution using the simpler neighbouring method

and the Voronoi method respectively.

Tables 6.2−6.4 show that variant (b) produced the weakest result as it yielded the

largest upper bound values with the least amount of iterations on average. This result

153

is expected as variant (b) focuses purely on a specific area of the feasible solution and

hence never allows a wider spread of facilities to be added to FSub. This leads to the

matheuristic becoming stuck at a local minimum more easily in comparison to variants

(a) or (c).

Variants (a) and (c) both show strengths and weaknesses. Variant (a) produced good

solution values for both facility selection methods and took the least computational

time on average out of all three variants. However, variant (c) did allow many more

iterations on average which increased the overall computational time, but yielded the

best solution values. In other words, variant (c) establishes a good compromise be-

tween a deterministic and randomised selection for FSub, and therefore was chosen as

the variant in subsequent iterations.

6.5.2 Integrating the Relaxed p′ Matheuristic with the Opti-

mal Methods - Initial Results

As stated previously, the purpose of the new matheuristic is to find a tight feasible

solution such that either a) the solution value found can be used as an initial up-

per bound for the Drezner enhanced algorithm to solve the problem optimally (see

Chapter 4) or b) we use the critical points of the solution circles to create an initial

subset of demand points for the ERRA to solve the problem optimally (see Chapter 5).

Table 6.4 shows that the simpler neighbouring facilities method found better solution

values for the relaxed p′ matheuristic compared to the Voronoi-based method. How-

ever, as there is a limited investigative work into this comparison it is worth testing

both facility selection methods initially.

The result from the relaxed p′ matheuristic was incorporated into the Drezner enhanced

algorithm (where the initial upper bounds are the Z⊥ values for the corresponding fa-

cility selection method taken from Table 6.4) and the ERRA. Table 6.5 shows the

optimal solution for each value of p under the column titled Z∗. For reference, the

previous best computational times spent finding the exact solution using the two ex-

act algorithms stated above (taken from Chapters 4 and 5) are given in columns 3

154

CPU Time (secs)
Drezner Enhanced Enhanced Reverse Relaxation

p Z∗ Previous Best
(Chapter 4)

Simpler
Neigh-
bouring
Facilities
Methodb

Voronoi
Methodb

Previous Best
(Chapter 5)

Simpler
Neigh-
bouring
Facilities
Methodb

Voronoi
Methodb

10 1716.510 342.78 350.13 343.28 0.78 0.39 0.27
20 1029.715 2856.38 4158.49 4155.32 1.48 1.69 1.05
30 739.193 2146.67 33.12 33.09 2.86 1.84 2.73
40 580.005 1515.29 11.28 11.31 9.97 9.23 8.55
50 468.542 159.49 28.75 28.88 13.79 18.56 11.70
60 400.195 170.38 30.95 30.83 10.00 12.26 11.14
70 357.946 97.63 5.91 5.93 16.77 14.49 13.79
80 312.500 73.52 6.86 6.91 14.95 20.43 16.49
90 280.903 38.01 3.54 3.56 20.83 16.22 13.95
100 256.680 16.77 6.18 6.18 15.55 10.61 13.94

Average 614.220 741.69 463.52 462.53 10.70 10.57 9.55
b This excludes computational time for the enhanced relaxed p′ matheuristic.

Table 6.5: Total Computational Time Spent Finding the Optimal Solution with and
without using the Relaxed p′ Matheuristic

& 6 respectively. These results are followed by the time spent to optimally solve the

problem where the result from the relaxed p′ matheuristic using simpler neighbouring

facilities method (columns 4 & 7) and the Voronoi-based method (columns 5 & 8) was

incorporated into the exact algorithm appropriately.

Table 6.5 shows that incorporating the results found from the relaxed p′ matheuristic

has decreased the overall computational time required for both exact algorithms on

average. Furthermore, the computational time is shortest on average when using the

Voronoi-based method. This demonstrates that even if a slightly higher solution value

is found using the relaxed p′ matheuristic compared to other heuristic methods, the

critical points of the solution circles may form a more efficient initial subset of demand

points for exact algorithms such as the ERRA.

This is an encouraging result, as it means that the relaxed p′ heuristic can be used

further to help optimally solve larger problems, such as rat575, rat783, pr1002 and

rl1323. As variant (c) of the changing neighbourhoods techniques paired with the

Voronoi facility selection method yielded the best results, this is therefore taken as our

overall choice for the relaxed p′ matheuristic to use for further analysis with the larger

data sets.

155

6.5.3 Computational Results for Larger Instances

For consistency with Chapters 4 and 5, the relaxed p′ matheuristic is also tested on

four larger TSP-Library data sets, namely rat575, rat783, pr1002 and rl1323, and on

the nine generated data sets, see Section 4.9.2, Chapter 4.

Scenario One: Results using the TSP-Library data sets

An initial upper bound, Z1, was found for the TSP-Library data sets rat575, rat783,

pr1002 and rl1323 where p = 10, 20, . . . , 100 using 100 iterations of the H2 heuristic.

This was performed so that results remained consistent with that of the data set pr439.

The initial solution was then used to begin the relaxed p′ matheurisitic. This yielded

a tight feasible solution and a solution value, Z⊥. The critical points of the solution

circles then form an initial subset of demand points that was embedded into the ERRA

to find the optimal solution, Z∗.

It is important to note that only one exact algorithm is needed to optimally solve

the data sets, and the ERRA was chosen due to the quality of the solution values col-

lected from the relaxed p′ matheuristic. Although the matheuristic found tight solution

values, in general the corresponding ZH value was tighter. As the Drezner enhanced

algorithm has already been implemented using these ZH values as its starting upper

bound for these data sets (see Chapter 4), the ERRA was therefore chosen as the

optimal method used to establish if either a) the total computational time could be

improved or b) optimal solutions could be found where previously they were unknown.

Tables 6.6-6.9 are arranged in the following way. The first column shows the num-

ber of facilities, p, that are required. For comparison, the second column shows the

best known heuristic results, ZH , found in Elshaikh et al (2015). The third column

shows the initial solution value found using 100 iterations of the H2 heuristic. The

fourth and fifth columns correspond to the solution value, Z⊥, and computational time

spent for the enhanced relaxed p′ matheuristic only respectively. Finally, the sixth

column, labelled Z∗, shows the optimal solution found (or best solution found if in-

dicated), and the seventh column shows the respective computational time required.

To remain consistent with previous chapters, a time limit of 86400 seconds was set for

156

each p value. If optimality was not reached in this time, then this is indicated and the

best lower bound found is given.

Relaxed p′ Matheuristic Enhanced Reverse Relaxation Algorithm

p ZH Z1 Z⊥ CPU Time (secs)a Z∗ CPU Time (secs)b

10 67.926 71.491 69.223 33.15 67.926 9.74
20 45.621 53.694 46.744 229.38 45.475 668.75
30 35.556 41.182 36.249 419.98 35.556 1159.08
40 30.265 37.607 30.700 857.64 30.063 85704.40
50 26.173 32.324 27.244 1178.15 25.826 16508.50
60 23.662 30.548 23.880 1017.14 23.163 26356.00
70 21.059 27.117 21.476 1427.56 20.858 32199.70
80 19.510 26.332 19.417 2145.32 19.026 15137.60
90 17.923 24.037 17.805 2013.23 17.460 1415.08
100 16.551 22.738 16.621 2517.60 16.420 7086.69

Average 30.421 36.707 30.936 1183.92 30.178 18624.60
a This excludes computational time for the H2 heuristic.

b This excludes computational time for the enhanced relaxed p′ matheuristic.

Table 6.6: Results found for rat575 using the Relaxed p′ Matheuristic

Relaxed p′ Matheuristic Enhanced Reverse Relaxation Algorithm

p ZH Z1 Z⊥ CPU Time (secs)a Z∗ CPU Time (secs)b

10 79.313 83.474 82.163 18.10 79.313 26.01
20 53.441 59.158 54.002 121.99 53.332 1379.11
30 42.395 49.554 42.852 1204.53 42.307 40613.60
40 35.962 42.244 36.637 2405.47 35.171⊥ 86400.00
50 31.184 38.791 32.068 1895.61 30.540⊥ 86400.00
60 28.053 34.714 28.889 2115.47 27.117⊥ 86400.00
70 25.446 31.520 26.086 2251.02 24.453⊥ 86400.00
80 23.560 29.488 23.363 2610.17 22.589⊥ 86400.00
90 21.710 27.122 22.001 4546.07 20.887⊥ 86400.00
100 20.334 26.420 19.987 5427.31 19.558⊥ 86400.00

Average 36.140 42.248 36.805 2259.57 −−− 64681.87
⊥ Best lower bound found in 86400.00 secs

a This excludes computational time for the H2 heuristic.
b This excludes computational time for the enhanced relaxed p′ matheuristic.

Table 6.7: Results found for rat783 using the Relaxed p′ Matheuristic

For the largest data set (i.e. n = 1323), a maximum time limit of 500 seconds was given

for each loop. In other words, after 500 seconds the matheuristic automatically diversi-

fies the solution to keep the algorithm as quick and efficient as possible. It is important

to note that this condition was only needed for n = 1323 where p > 70, as the smaller

data sets and values of p diversified the solution before taking 500 seconds in each loop.

When comparing to the best known heuristic value, we see that the relaxed p′ matheuris-

157

tic does find tighter upper bound solution values in some instances (e.g. p = 80 & 90

for rat575), thus obtaining a tighter feasible solution. However, mixed results can be

found over the different TSP-Library data sets when embedding the result from the

relaxed p′ matheuristic into the ERRA. Some instances require less computational

time to find the optimal solution, such as the data set pr1002 where p = 10, 20, 50, 60

& 100, which is the desired result. However, the other p values for this data set require

more computational time (greatly in some instances), and therefore the average com-

putational time needed has increased. This highlights the ERRA’s sensitivity to the

initial subset of demand points.

Relaxed p′ Matheuristic Enhanced Reverse Relaxation Algorithm

p ZH Z1 Z⊥ CPU Time (secs)a Z∗ CPU Time (secs)b

10 2389.36 2799.02 2425.20 13.20 2389.36 15.68
20 1609.54 1771.52 1677.05 51.81 1607.53 1733.07
30 1231.36 1491.08 1284.54 234.15 1231.25⊥ 86400.00
40 1030.40 1226.02 1029.27 511.02 1021.41 1323.71
50 901.455 1067.06 946.258 320.82 895.342 10092.8
60 801.474 1007.78 827.647 548.24 795.709 6593.11
70 727.154 923.870 732.913 1153.88 725.431 7648.74
80 664.798 864.459 687.841 1224.99 655.746 1819.98
90 604.152 811.327 625.000 1252.83 603.078⊥ 86400.00

100 559.017 790.569 579.871 1313.05 555.662 330.91

Average 1051.870 1275.271 1081.559 662.40 −−− 20235.80
⊥ Best lower bound found in 86400.00 secs

a This excludes computational time for the H2 heuristic.
b This excludes computational time for the enhanced relaxed p′ matheuristic.

Table 6.8: Results found for pr1002 using the Relaxed p′ Matheuristic

Promising results were found for the more challenging data sets (i.e. rat783 and

rl1323), as tighter lower bounds were obtained for the data set rat783 in the maximum

time limit when p = 60, 80 & 100 compared to the results in the previous chapter, and

tighter lower bounds were obtained for the data set rl1323 in the maximum time limit

when p = 40, 60, 70 & 80. Furthermore, an optimal solution was found for the first

time for the data set rl1323 where p = 100 (highlighted in bold in Table 6.9).

It is interesting to see that the initial subset of demand points found using the re-

laxed p′ matheuristic appears to be more efficient the larger the data set is. The next

section will investigate the performance of the matheuristic further to see if any pat-

terns can be revealed using the generated data sets.

158

Relaxed p′ Matheuristic Enhanced Reverse Relaxation Algorithm

p ZH Z1 Z⊥ CPU Time (secs)a Z∗ CPU Time (secs)b

10 2897.49 3059.26 3018.75 17.83 2897.489 973.70
20 1886.82 2046.31 1959.13 118.97 1868.921 1643.50
30 1466.97 1646.39 1494.83 573.68 1466.970 64058.82
40 1236.38 1434.84 1240.62 522.74 1226.848⊥ 86400.00
50 1060.82 1333.30 1072.45 605.67 1048.929⊥ 86400.00
60 941.870 1115.00 959.591 1103.64 931.919⊥ 86400.00
70 844.967 1046.04 872.325 2035.63 841.976⊥ 86400.00
80 774.764 959.908 785.973 2767.02 770.753⊥ 86400.00
90 720.625 895.898 736.912 2914.48 706.145 9192.26

100 662.936 843.894 685.596 2226.94 658.997 59703.30

Average 1249.364 1438.084 1282.618 1288.66 −−− 56757.16
⊥ Best lower bound found in 86400.00 secs.

a This excludes computational time for the H2 heuristic.
b This excludes computational time for the enhanced relaxed p′ matheuristic.

Table 6.9: Results found for rl1323 using the Relaxed p′ Matheuristic

Scenario Two: Results using our new generated data sets

This section displays the results found using the relaxed p′ matheuristic for the gen-

erated data sets in Tables 6.10-6.12. The first column displays the data’s distribution

type, which are discussed in Section 4.9.2, Chapter 4. The second column displays the

number of facilities located. The third column shows the upper bound found using

100 iterations of the H2 heuristic, which was used as an initial solution for the relaxed

p′ matheuristic. The fourth and fifth columns displays the solution value found using

the relaxed p′ matheuristic and its overall computational time respectively. The sixth

and seventh columns display the optimal solution found when embedding the result

from the matheuristic into ERRA and the overall computational time respectively.

Finally, the eighth column shows how far the solution value found using the enhanced

relaxed p′ matheuristic deviates from the optimal solution. Note that the deviation

was calculated by
Z⊥ − Z∗

Z∗
.

Results show that the relaxed p′ matheuristic found a tight upper bound on the optimal

solution in reasonable time for all values of p and distribution types. It is evident that

the matheuristic is most efficient at obtaining a tight upper bound for clustered data

sets. If we study the deviation of Z⊥ from Z∗ we see that the best solutions are

159

found with the clustered data with an average deviation of 0.008 for all three data

sets. Furthermore, there are several instances where the relaxed p′ matheuristic found

the optimal solution for this distribution type (i.e. the deviation is 0) and for the

semi-clustered data.

H2 Heuristic Relaxed p′ Matheuristic Enhanced Reverse Relaxation Algorithm
Dist p Z1 Z⊥ CPU Time (secs)a Z∗ CPU Time (secs)b Deviation
Cl 25 71.586 53.677 137.82 53.677 1.45 0.000
Cl 50 49.189 33.245 334.68 32.660 6.55 0.018
Cl 75 33.971 24.279 649.84 24.279 10.35 0.000
Cl 100 28.055 19.983 974.223 19.981 19.96 0.000

Average 63 45.700 32.791 574.14 32.645 6.60 0.005
S-Cl 25 125.071 91.100 24.78 89.098 4.78 0.022
S-Cl 50 82.607 53.891 168.26 53.891 3.50 0.000
S-Cl 75 72.222 38.852 432.37 38.852 7.58 0.000
S-Cl 100 63.118 29.568 601.18 29.568 4.52 0.000

Average 63 85.755 53.353 306.65 52.852 5.09 0.006
R 25 132.171 110.637 93.87 107.353 95.80 0.031
R 50 91.800 71.143 286.57 67.151 23.18 0.059
R 75 66.532 53.388 424.29 51.574 15.32 0.035
R 100 59.483 40.577 677.89 40.140 9.72 0.011

Average 63 87.497 68.936 370.66 66.554 36.00 0.034
a This excludes computational time for the H2 heuristic.

b This excludes computational time for the enhanced relaxed p′ matheuristic.

Table 6.10: Results found for the generated data where n = 400 using the Relaxed p′

Matheuristic

H2 Heuristic Relaxed p′ Matheuristic Enhanced Reverse Relaxation Algorithm
Dist p Z1 Z⊥ CPU Time (secs)a Z∗ CPU Time (secs)b Deviation
Cl 25 74.500 59.010 62.06 57.618 13.50 0.024
Cl 50 44.444 37.620 299.41 36.739 22.18 0.024
Cl 75 38.484 26.077 525.66 25.986 29.03 0.024
Cl 100 41.150 21.101 824.741 20.826 31.83 0.013

Average 63 49.645 35.952 427.968 35.292 24.13 0.016
S-Cl 25 81.416 65.324 81.37 64.368 70.30 0.015
S-Cl 50 53.740 42.500 310.96 41.904 161.62 0.014
S-Cl 75 46.406 31.336 624.27 31.275 31.27 0.002
S-Cl 100 40.008 25.224 799.59 24.323 24.32 0.037

Average 63 55.393 41.096 454.05 40.468 76.81 0.017
R 25 74.577 70.738 110.61 67.979 1022.72 0.041
R 50 55.009 46.374 460.63 44.411 4166.66 0.044
R 75 46.652 34.515 742.16 33.616 213.12 0.027
R 100 38.916 27.166 1116.57 27.023 55.37 0.005

Average 63 53.789 44.698 607.49 43.257 1364.47 0.029
a This excludes computational time for the H2 heuristic.

b This excludes computational time for the enhanced relaxed p′ matheuristic.

Table 6.11: Results found for the generated data where n = 600 using the Relaxed p′

Matheuristic

Figure 6.16 displays the deviation for the three distribution types where n = 400, 600

& 800. The semi-clustered data appears to deviate more from the optimal solution

160

as the problem size increases. This trend can be explained by examining how the

matheuristic may behave for this distribution type. For a semi-clustered data set, some

areas are highly concentrated with demand points and some are sparsely populated.

This makes it more likely that the matheuristic will become stuck in a highly populated

area as it is unable to incorporate the sparsely distributed demand points into its

neighbourhood. Therefore, the matheuristic may need to diversify its solution in order

to escape becoming stuck in a local minimum more often. Thus as the problem size

grows, the quality of the solution value may decrease.

H2 Heuristic Relaxed p′ Matheuristic Enhanced Reverse Relaxation Algorithm
Dist p Z1 Z⊥ CPU Time (secs)a Z∗ CPU Time (secs)b Deviation
Cl 25 84.465 60.879 193.577 60.879 5.76 0.000
Cl 50 49.218 40.265 811.70 40.265 40.265 0.000
Cl 75 38.604 30.446 2121.07 30.446 120.05 0.000
Cl 100 33.136 25.125 3547.93 24.824 139.57 0.012

Average 63 51.356 39.179 1668.57 39.104 105.38 0.003
S-Cl 25 97.572 84.678 99.98 81.238 519.45 0.042
S-Cl 50 70.991 53.866 331.24 51.051 379.27 0.055
S-Cl 75 55.587 38.601 782.99 38.596 100.464 0.000
S-Cl 100 46.335 32.596 990.80 31.205 122.37 0.045

Average 63 67.621 52.476 551.249 50.523 280.39 0.036
R 25 140.424 117.183 166.61 115.444 942.97 0.015
R 50 95.784 77.820 827.19 75.935 57548.00 0.025
R 75 74.575 59.161 1181.02 58.217 30230.70 0.016
R 100 68.793 50.447 1858.29 48.545 9881.95 0.039

Average 63 94.894 76.153 1008.28 74.535 24650.90 0.024
a This excludes computational time for the H2 heuristic.

b This excludes computational time for the enhanced relaxed p′ matheuristic.

Table 6.12: Results found for the generated data where n = 800 using the Relaxed p′

Matheuristic

Figure 6.16: Deviation of the relaxed p′ matheuristic solution from the optimal
solution

Interestingly, the larger the problem size, the closer the relaxed p′ matheuristic’s solu-

161

tion is to the optimal solution for the randomly distributed data. This may be because

the matheuristic is able to incorporate more demand points into its neighbourhood

when the data set is larger as, although the demand points are sparsely distributed,

the concentration per unit of space may be higher. Therefore, the matheuristic is able

to find a tighter solution value in this instance.

The results for the generated data sets are therefore consistent with our findings for

the TSP-Library data sets.

6.6 Summary

This chapter has developed a new matheuristic that was used to optimally solve large

data sets from the TSP-Library and nine generated data sets. The matheuristic com-

bined the well-known locate-allocate heuristic with elements from the ERRA proposed

in Chapter 5 in order to find a tight upper bound and feasible solution to the p−centre

problem. This feasible solution was then embedded into the enhanced exact algorithms

developed in Chapter 4 and 5 to find the optimal solution. The two most crucial parts

to the algorithm consisted of a) selecting a good subset of facilities and b) changing the

neighbourhood efficiently. These two vital areas were investigated with several vari-

ants in order to establish the most appropriate matheuristic, and the best variant was

chosen as the final matheuristic according to the computational time, number of iter-

ations and the overall solution value found. Results show that in some instances, the

matheuristic finds a better solution value than the best known heuristic solution, and

for the largest TSP-Library data set an optimal solution was obtained for the first time.

The next chapter will adapt the relaxation-based algorithm developed in Chapter 5

to solve related location problems.

162

Chapter 7

Relaxation-Based Method to Related

p−Centre Problems: Formulations &

Managerial Insights

7.1 Introduction

This chapter will explore the adaptation of the Enhanced Reverse Relaxation Algorithm

(ERRA) for two variations of the classic p−centre problem, namely the α− neighbour

p−centre problem and the conditional p−centre problem. These two related location

problems demonstrate the effectiveness and the flexibility of this optimal method. The

first section will investigate an adaptation of the ERRA for the α− neighbour p−centre

problem, followed by experiments where α = 2 and 3. For managerial insight, we also

conduct a scenario analysis where the coverage demand (i.e. the number of facilities

that are required to cover a demand point) varies between the demand points. The sec-

ond section investigates the conditional p−centre problem where a modified algorithm

that is based on ERRA is proposed and compared to a recently published approach

with encouraging results.

7.2 The α− Neighbour p−Centre Problem

7.2.1 Introduction

As previously stated in Section 2.2.5, Chapter 2, the α− neighbour p−centre problem

aims to minimise the maximum distance between each demand point and its closest

facility such that every demand point is covered by at least α facilities (where α < p).

This is equivalent to ensuring that each demand point is covered by at least α covering

circles (see Figure 7.1 for an example where α = 3). A strength of this classification

type is that it allows for either failure or closure of α− 1 facilities whilst ensuring that

163

each demand point is still covered. This provides extra safety and security, which is

particularly important when locating emergency facilities as the closure of a facility

could result in a deeply upsetting or damaging outcome if there is no alternative facility

that can be relied on. Note that for α = 1, the problem reduces to the classical p−centre

problem.

Figure 7.1: Demand point P1 is covered by 3 facilities for the solution value Z

Chen & Chen (2013) were the first to propose an optimal algorithm for the α−neighbour

p−centre problem. They adapted and compared two exact algorithms, namely Minieka’s

(1970) algorithm used to solve the discrete and continuous p−centre problem, and their

earlier classic relaxation algorithm (Chen & Chen (2009)). They showed experimen-

tally that the latter is more efficient. We therefore wish to enhance the efficiency of

such an optimal algorithm by adapting ERRA.

7.2.2 Adapting ERRA for the α−Neighbour p−Centre

Problem

Chen & Chen (2013) stated the adjustments that need to be made to the classic relax-

ation algorithm to optimally solve the α−neighbour p−centre problem. ERRA shares

many similar properties to the classic relaxation algorithm, and so some adaptations

for ERRA are similar though some are different. Therefore, the four modifications

that we propose will be presented next.

1. Changes to the Formulation

The formulation for the classic p−centre problem, Forpc given in Section 3.2.2, Chapter

3, is modified accordingly for the α− neighbour p−centre problem. The modified

164

formulation, Forαpc, is given here.

Forαpc : Minimise W (7.1)

subject to
∑
j∈J

Ai,jxj ≥ α ∀i ∈ I, (7.2)

∑
j∈J

xj = p, (7.3)

W ≥ xjrj ∀j ∈ J, (7.4)

xj ∈ {0, 1} ∀i ∈ I,∀j ∈ J, (7.5)

W ≥ 0, (7.6)

where

α: the minimum number of facilities needed to cover a demand point.

All other notations are as previously given in Chapter 3.

The objective function (7.1) minimises the maximum distance between any demand

point and facility. Constraint (7.2) guarantees that every customer i is covered by at

least α facilities. Constraint (7.3) ensures that only p facilities are located and con-

straint (7.4) imposes that W is the maximum distance. Constraint (7.5) and constraint

(7.6) refer to the binary decision variable and the continuous decision variable respec-

tively.

Note that ERRA uses the set covering based formulation rather than the classical

p−centre problem formulation to solve the subset of demand points optimally. There-

fore, the set covering problem, given in Section 3.2.1, Chapter 3, is modified to accom-

modate the characteristics of the new problem which we refer to as Forαsc.

Forαsc: Minimise
∑
j∈J

xj (7.7)

subject to (7.2) and (7.5).

The objective function (7.7) is to minimise the number of open facilities, and the

constraints are as given previously.

165

2. Adjusting the Enhancement AddE2

For both the classic relaxation algorithm and ERRA, if the solution to the subset is

not feasible for the full problem, then k demand points are added to the subset of de-

mand points. In the case of the classic relaxation algorithm, Chen & Chen added the k

demand points that lie furthest from the p covering circles. However, after identifying

a weakness with this selection method in Chapter 5, we proposed the following method

which we shall briefly reiterate here for convenience.

Artificial circles with radii Zt are constructed around each facility, where Zt is the

solution value at iteration t. The demand points that are not encompassed by their

closest artificial circles are identified. This creates at most p clusters of uncovered

demand points. The k furthest demand points from these clusters are added to the

subset of demand points such that only one demand point is selected from each cluster.

In the case of the α− neighbour p−centre problem, Chen & Chen adjusted the classic

relaxation algorithm so that the k demand points that lie the furthest from their αth

nearest facility were added to the subset of demand points instead.

We therefore amend Step 2 in the Point Selection Algorithm (see Figure 5.12, Chapter

5) to form the Adapted Point Selection Algorithm given in Figure 7.2.

1. Step 1 in Figure 5.12.

2. Allocate all the demand points i ∈ I to their α closest facility j ∈ F and
define the allocation matrix Ai,j where Ai,j = 1 if demand point i is allocated
to facility j, else Ai,j = 0. Record Z = Max(rj : j ∈ F).

3. Steps 3− 5 in Figure 5.12.

Figure 7.2: Adapted Point Selection Algorithm

3. Finding the Solution Value

The p−centre problem wishes to minimise the worst case scenario, and therefore the

solution value for the classic p−centre problem is simply the radius of the largest

covering circle. For the α− neighbour p−centre, the worst case scenario would be the

166

failure of the closest (α− 1) facilities serving a demand point. Therefore, the solution

value for this problem is also the radius of the largest covering circle.

4. Co-Location of Facilities

Co-location of facilities means that more than one facility to be situated at the same

location. This is not a possibility for the classic p−centre problem, as the extra facility

could be located inside the solution circle to improve the solution value assuming the

solution circle is unique. However, this observation does not apply to the α−neighbour

p−centre problem as co-location may be beneficial in some instances.

For clarity, let (xic , yic) be the Cartesian coordinates of demand point i and (xjc , yjc)

the Cartesian coordinates of facility j.

Let

i′ = Arg[Max
i∈I
{di,j ∀ j ∈ J : (xjc , yjc) 6= (xic , yic)}],

where J ′ is the set of α closest circles to demand point i′, and ZDP is the optimal

solution value for the α−neighbour p−centre problem for a given set of demand points,

denoted DP . Finally, let 1 < α < p.

Lemma 1. If ∃ di′,j′′ > ZI\{i′} for j′′ ∈ J ′, then the co-location of facilities will improve

the solution value ZI .

Proof. We know that the optimal solution, with solution value ZI\{i′}, for the α−neighbour

p−centre problem covers demand points I \ {i′}. Therefore, ZI must cover demand

point i′ with α circles. We also know that at least one j′′ ∈ J ′ has a distance

di′,j′′ > ZI\{i′}

to demand point i′, which implies

ZI > ZI\{i′}.

Therefore, in order to reduce ZI (i.e. ZI = ZI\{i′}), p′ facilities must be co-located at

a facility site j′′ ∈ J ′ such that di′,j′′ ≤ ZI\{i′} where 1 < p′ ≤ α.

167

Figure 7.3: A simple set of demand points

A Simple Illustrative Example

Let us demonstrate the usefulness of co-location with a simple example. Figure 7.3

shows a small set of demand points. Figure 7.4a shows the solution to the 2−neighbour

4−centre problem for this data set where co-location is not permitted, yielding a so-

lution value of 6.72. Figure 7.4b displays the solution for the 2−neighbour 4−centre

problem for the same data set where co-location is allowed. In this case, two facilities

are located at each site yielding an improved solution with value 2.83.

(a) Co-location is not allowed (b) Co-location is allowed

Figure 7.4: Solving the 2−neighbour 4−centre problem

In order to allow co-location of facilities, constraint (7.5) in Forαsc was altered to

constraint (7.8) where xj becomes a bounded integer variable instead of a binary one.

xj ∈ {0, α} ∀j ∈ J. (7.8)

It is worth noting that this new constraint does not affect the solution value found

using Forαsc.

168

The four adaptations were incorporated into ERRA to form the Adapted Enhanced

Reverse Relaxation Algorithm (AERRA), which is given in Figure 7.5 for complete-

ness.

1. Input: α. Set the lower bound LB = 0, c = 1, t = 0 and jumpMax = 10.

2. Select the initial subset of demand points using Initial Subset Algorithm given in
Figure 5.5.

3. Set t = t+1. Determine if Sub has a feasible solution for the α−neighbour p−centre
problem, feasible, with a solution value, Zt ≤ LB.

a) If feasible cannot be found, determine the value of jump using Equation

(5.11) and find the jumpth smallest lower bound, LBjump, that is larger

than LB. Set LB = LBjump and go back to the beginning of Step 3.

b) If feasible can be found, find the number of uncovered demand points,

N t
u, and continue to Step 4.

4. Determine whether feasible is feasible for the full problem.

a) If it is, determine whether Sub has a feasible solution, feasible, with a

solution value ≤ LB(jump−c).

If not, return LBjump−(c−1) as the final solution value.

Else set c = c+ 1 and repeat Step 4(a).

b) Determine the value of k using Equation (5.12). Add k demand points to

Sub using the Adapted Point Selection Algorithm given in Figure 7.2 and

go to Step 3.

Figure 7.5: The Adapted Enhanced Reverse Relaxation Algorithm (AERRA)

7.2.3 Computational Results

In this section, we first present the results of AERRA for n = 439 and α = 2 where

previous results exist, followed by α = 3 where no published results are available. We

then test the method further on larger instances where the optimal results for the

α−neighbour p−centre problem for the TSP-Library data sets rat575, rat783, pr1002

and rl1323 are produced for the first time.

a) Comparing AERRA to existing results

AERRA optimally solved the α−neighbour p−centre for the TSP-Library data set

pr439 where p = 10, 20, . . . , 100 and α = 2. For comparison purposes, the results in

169

Table 7.1 are also given alongside Chen & Chen’s (2013) results.

Classic Relaxation (Chen & Chen) AERRA
p Z∗ CPU (secs) SubMax # Iterations CPU (secs) SubMax # Iterations
10 2752.639 0.37 52 82 0.37 35 24
20 1716.510 3.04 108 162 0.84 60 37
30 1271.830 18.32 158 237 0.94 75 35
40 1008.170 27.20 196 314 3.40 120 59
50 874.271 605.65 250 389 4.53 125 63
60 739.193 978.71 260 404 7.90 154 78
70 621.742 1888.61 306 493 25.81 193 104
80 580.005 1576.88 322 515 24.80 210 112
90 530.477 1737.54 341 565 49.18 247 140
100 463.175 1443.72 352 587 26.89 234 115

Average 1055.801 828.004 235 375 14.52 145 77

Table 7.1: Results for the 2−neighbour p−centre problem for pr439 using AERRA

Table 7.1 is structured in the following way. The first column states the number of

facilities located, p. The second column, titled Z∗, shows the optimal solution found

for the corresponding p value. The next three columns show Chen & Chen’s results,

with the third column referring to the total amount of computational time required,

the fourth to the maximal size of the relaxation sub-problem (SubMax) and the fifth to

the number of sub-problems (iterations) solved. The next three columns are ordered

identically, except the results correspond to those found using AERRA.

Results show that AERRA found the optimal solutions for the 2−neighbour p−centre

problem for the data set pr439 more efficiently compared to the adapted classic re-

laxation algorithm used by Chen & Chen. AERRA was found to be superior as it

required 98.25% less computational time, 38.30% fewer demand points in the subset

and 79.47% fewer iterations to solve the problem optimally. These encouraging results

show that ERRA is both reliable and efficient when adapted to optimally solve this

related p−centre problem.

AERRA was tested further for the data set pr439 with α = 3 where no published

results are available. Table 7.2 shows the number of facilities located, the optimal

results found, the total computational time spent, the maximal size of the subset of

demand points, and the number of iterations required. Some instances show that less

computational time is required for this larger α value (i.e. when p = 40, 50, 60, 70 &

170

α = 3
p Z∗ CPU (secs) SubMax # Iterations
10 3989.302 0.49 29 34
20 2347.505 6.27 76 114
30 1716.510 2.01 61 93
40 1407.624 3.21 98 91
50 1226.020 3.23 93 81
60 1019.986 5.76 110 150
70 946.457 17.48 141 215
80 853.028 54.00 172 275
90 739.193 21.18 165 211
100 657.885 77.69 186 384

Average 1490.35 19.05 113 164

Table 7.2: Results for the 3−neighbour p−centre problem for pr439 using AERRA

90) when compared to the results for α = 2. This may be because the number of

demand points needed in the subset has decreased due to the solution value for the

(α+1)−neighbour p−centre problem being either the same or higher than the solution

value for the α−neighbour p−centre problem (this observation will be discussed next).

However, for other values of p, the required computational time has increased. A pos-

sible reason for this could be as the value of α increases, the solution value becomes

larger and so the problem size becomes bigger.

An Observation & Sensitivity Analysis

Let Zα denote the solution value to the α−neighbour p−centre problem. As first noted

by Chen & Chen (2013), we observe that Zα ≥ Zα−1 as the coverage need for each

demand point has increased. In other words, if at least one demand point is not covered

by α facilities, then at least one covering circle will need to increase in size in order to

establish a feasible solution. Figure 7.6 demonstrates this observation for the data set

pr439 where p = 10, . . . , 50 and α = 1, 2 and 3.

We can conclude that Zα−1 can be used as an initial lower bound when solving the

α−neighbour p−centre problem.

Furthermore, Table 7.3 shows the percentage increase in the solution value, and there-

fore additional coverage required, as the value of α increases. In this particular instance,

there is a dramatic increase in the solution value on average when α = 3 compared to

171

Figure 7.6: The optimal solution value, Z∗, for the data set pr439 where
p = 10, . . . , 50 and α = 1, 2 & 3.

α=1 α = 2 α = 3

p Z∗ Z∗ % Increase Z∗ % Increase

10 1716.51 2752.639 58.99 3989.302 132.41
20 1029.715 1716.510 66.70 2347.505 127.98
30 739.193 1271.830 72.06 1716.51 132.21
40 580.005 1008.17 73.82 1407.624 142.69
50 468.542 874.271 86.59 1226.02 161.67

Average 906.793 1574.684 71.632 2137.392 139.39

Table 7.3: Sensitivity analysis when solving the α−neighbour p−centre problem
where n = 439 and α = 1, 2 & 3

α = 1. From a managerial perspective, this means it may be more desirable to find a

balance between reducing the value of α as much as possible whilst ensuring that all

demand points have the required coverage. This compromise introduces an alternative

setup to the α−neighbour p−centre problem which will be discussed in the next section.

b) Computational results for the larger data sets

For consistency with the previous chapters, the α−neighbour p−centre problem was

also solved for the TSP-Library data sets rat575, rat783, pr1002 and rl1323 where

α = 2 & 3. The optimal results are shown for the first time in Tables 7.4-7.7. Further-

more, a maximum time limit of 86400 seconds was given for each value of p in order to

remain consistent with previous experiments in this thesis.

Results show that AERRA can yield optimal solutions for the large TSP-Library data

sets, however the process can be slow. Although there is some evidence to suggest that

the required computational time is slightly less for larger values of α, optimal solutions

172

could not be obtained in the time limit for many instances where p > 40.

α = 2 α = 3
p Z∗ CPU

(secs)
SubMax # Iterations Z∗ CPU

(secs)
SubMax # Iterations

10 114.064 13.29 71 55 137.023 1.77 41 37
20 67.926 110.95 118 111 89.885 67.00 116 80
30 54.073⊥ 86400.00 235 287 67.926 87.72 121 158
40 44.782⊥ 86400.00 258 295 58.592 15674.13 238 468
50 39.061⊥ 86400.00 269 267 49.941⊥ 86400.00 245 483
60 34.599⊥ 86400.00 274 235 44.406⊥ 86400.00 228 363
70 31.099⊥ 86400.00 281 171 40.736⊥ 86400.00 261 508
80 28.513⊥ 86400.00 298 183 37.207⊥ 86400.00 276 527
90 26.727⊥ 86400.00 335 221 34.558⊥ 86400.00 295 518

100 25.008⊥ 86400.00 346 198 32.070⊥ 86400.00 284 426
Average −−− 69132.42 249 202 −−− 53423.06 210 356

⊥ Best lower bound found in 86400.00 secs

Table 7.4: Results for the α−neighbour p−centre problem for rat575 and α = 2 & 3

α = 2 α = 3
p Z∗ CPU

(secs)
SubMax # Iterations Z∗ CPU

(secs)
SubMax # Iterations

10 131.846 20.84 79 73 160.721 0.87 33 32
20 79.312 87.30 121 118 106.304 171.29 126 118
30 63.343⊥ 86400.00 247 373 79.313 248.15 139 202
40 52.131⊥ 86400.00 268 314 69.065⊥ 86400.00 236 796
50 45.868⊥ 86400.00 273 238 58.831⊥ 86400.00 257 898
60 40.336⊥ 86400.00 302 264 51.886⊥ 86400.00 246 1073
70 36.433⊥ 86400.00 283 173 47.383⊥ 86400.00 249 860
80 33.634⊥ 86400.00 318 198 43.276⊥ 86400.00 254 747
90 31.117⊥ 86400.00 321 154 40.083⊥ 86400.00 295 773

100 29.300⊥ 86400.00 352 165 37.314⊥ 86400.00 270 632
Average −−− 69130.81 256 207 −−− 60522.03 210 613

⊥ Best lower bound found in 86400.00 secs

Table 7.5: Results for the α−neighbour p−centre problem for rat783 and α = 2 & 3

For the instances where the time limit was reached, it is important to note that an

optional extra step could be completed to find a feasible, but not necessarily optimal,

solution. This can be achieved by embedding the current locations of the p covering

circles (i.e. the facilities) found using AERRA into a heuristic, such as Cooper’s locate-

allocate heuristic, as the initial facility locations in order to yield an upper bound, and

therefore a feasible solution. As a small example, the data sets rat575 and rl1323 were

re-run for p = 100, and the last locations of the facilities found using the AERRA were

saved. All demand points were allocated to their α closest saved facility where α = 2.

173

This yielded the upper bound values 31.085 & 1205.85 for the 2-neighbour p−centre

problem for rat575 and rl1323 respectively. Due to time restrictions, as well as the

current focus being on optimal methods, this could not be performed on all data sets in

this study, however this method is worth considering and exploring for future research.

α = 2 α = 3
p Z∗ CPU

(secs)
SubMax #

Itera-
tions

Z∗ CPU
(secs)

SubMax #
Itera-
tions

10 3641.566 1.76 51 34 5268.064 2.96 45 39
20 2389.356 193.89 128 127 3107.089 21.83 93 75
30 1916.540 72557.25 262 396 2389.356 123.40 131 125
40 1568.679⊥ 86400.00 268 243 2038.961 45414.38 260 385
50 1347.869 3525.44 293 217 1760.26⊥ 86400.00 251 328
60 1221.289⊥ 86400.00 332 249 1563.75⊥ 86400.00 292 301
70 1110.214⊥ 86400.00 351 247 1430.211⊥ 86400.00 307 311
80 1011.461⊥ 86400.00 420 267 1290.213⊥ 86400.00 302 233
90 940.597⊥ 86400.00 383 232 1221.17⊥ 86400.00 357 276

100 866.083⊥ 86400.00 360 176 1135.70⊥ 86400.00 336 240
Average −−− 59467.83 285 218 −−− 56396.26 237 231

⊥ Best lower bound found in 86400.00 secs

Table 7.6: Results for the α−neighbour p−centre problem for pr1002 and α = 2 & 3

α = 2 α = 3
p Z∗ CPU

(secs)
SubMax #

Itera-
tions

Z∗ CPU
(secs)

SubMax #
Itera-
tions

10 4441.013 8.56 67 52 6200.039 2.85 46 39
20 2882.010⊥ 86400.00 237 433 3716.203 40.39 144 110
30 2222.236⊥ 86400.00 259 452 2880.940⊥ 86400.00 252 430
40 1827.67⊥ 86400.00 279 471 2372.675⊥ 86400.00 264 662
50 1587.654⊥ 86400.00 299 335 2090.673⊥ 86400.00 287 783
60 1428.493⊥ 86400.00 324 321 1809.207⊥ 86400.00 264 675
70 1275.304⊥ 86400.00 335 213 1648.718⊥ 86400.00 293 935
80 1173.849⊥ 86400.00 378 252 1503.291⊥ 86400.00 296 637
90 1087.53⊥ 86400.00 365 216 1417.600⊥ 86400.00 293 693

100 1009.66⊥ 86400.00 394 205 1326.82⊥ 86400.00 334 807
Average −−− 77760.86 294 297 −−− 69124.32 247 577

⊥ Best lower bound found in 86400.00 secs

Table 7.7: Results for the α−neighbour p−centre problem for rl1323 and α = 2 & 3

As previously mentioned, a more promising approach with an alternative setup for the

α−neighbour p−centre problem will be investigated in the next section.

174

7.2.4 The Variable α−neighbour p−centre Problem

It may be beneficial from a managerial view to investigate the case where the number

of times a demand point needs to be covered by a facility varies. In other words, not

every demand point needs to be covered by exactly α facilities, but rather each may

require αi facilities covering them.

There are many real life cases where the coverage for one demand point may be more

vital than the coverage for another. For example, if a demand point represents a school,

it may be more important to locate several hospitals nearby in case one of the allocated

hospitals fails or closes. Furthermore, demand points may be ranked by their impor-

tance; the more important the demand point is, the more facilities should cover it. This

problem has been considered for other types of location problem. For example, Church

& Gerrard (2003) investigated the multi-level set covering problem where the number

of facilities covering a demand point varied. For the case of the p−centre problem, we

shall name this problem the variable α−neighbour p−centre problem.

As each demand point i is now assigned a specific α value, say αi, constraint (7.2)

in Forαsc is altered, and constraint (7.5) is also adjusted. For clarity, the full formula-

tion of this variable α−neighbour p−centre problem, Forαvarsc , is shown below.

Forαvarsc : Minimise
∑
j∈J

xj (7.9)

subject to
m∑
j=0

Ai,jxj ≥ αi ∀ i ∈ I, (7.10)

xj ∈ {0, αMax} ∀ j ∈ J, (7.11)

where

αi is the required number of times demand point i needs to be covered

(i.e., 1 ≤ αi ≤ αMax).

αMax being the maximum number of times any demand point needs to be covered.

All other definitions are as previously given.

The objective function (7.9) minimises the number of facilities located. Constraint

175

(7.10) ensures that every demand point i is covered by at least the required αi facili-

ties, and constraint (7.11) represents the integer decision variable xj.

Defining the αi Value

There are many ways the coverage demand for each demand point may be constructed.

For example, the data could be partitioned into clustered, semi-clustered and sparsely

distributed regions. The demand points in the more clustered areas could be assigned

higher α values to accommodate for the higher concentration of demand. Furthermore,

each demand point could also be assigned its α value based on its importance. In other

words, the α value could be based on the demand point’s importance ranking (i.e. high,

medium or low).

However, for simplicity, and to provide the possibility for other researchers to conduct

similar experiments, in our investigation we allocated the αi value for each demand

point based on its position in the data set. In other words, for each demand point

i ∈ I we set

αi =


1 if i mod 3 = 1,

2 if i mod 3 = 2,

3 if i mod 3 = 0.

(7.12)

This therefore demonstrates a simple example where the demand points are assigned

one of three potential α values.

Computational Results for the variable α−neighbour p−centre problem

The variable α−neighbour p−centre problem was tested on the TSP-Library data sets

pr439, rat575, rat783, pr1002 & rl1323. The results are given in Tables 7.8-7.12 which

are structured as follows. The first column shows the number of facilities located, p,

and the second column displays the optimal solution value, Z∗. The last three columns

show the total computational time in seconds, the maximum number of demand points

in the subset, SubMax, and the total number of iterations respectively. For consistency

with previous results, a maximum time limit of 86400 seconds was given to optimally

solve each data set for each p value. If an optimal solution could not be found then

176

the best lower bound for the optimal solution obtained is shown.

It can be observed that optimal results were obtained in much less computational

time compared to the classic α−neighbour p−centre problem. An example can be

seen when studying the data set rat575. When solving the 3−neighbour p−centre

problem for this data set, optimal solutions could not be found in the time limit of

86400 seconds for p = 50, 60, . . . , 100. However, when solving the variable α−neighbour

p−centre problem, optimal solutions were found for all values of p with an average over-

all computational time of only 2209.90 seconds. Furthermore, optimal solutions were

obtained for the most challenging data sets (i.e. rat783 & rl1323). This is a positive

result, especially from a managerial perspective, as varying the number of facilities to

cover each demand point may be a more realistic and desirable option.

p Z∗ CPU (secs) SubMax # Iterations
10 3855.779 1.41 49 67
20 2298.267 1.87 68 94
30 1636.784 2.03 87 94
40 1381.179 4.75 110 142
50 1125.972 3.40 115 81
60 936.833 8.85 148 154
70 850.827 13.91 151 245
80 748.853 11.88 168 177
90 637.377 20.72 205 170
100 586.090 15.70 198 154

Average 1405.796 8.45 129 137

Table 7.8: Results for the variable α−neighbour p−centre problem for pr439

p Z∗ CPU (secs) SubMax # Iterations
10 131.787 6.06 45 67
20 88.996 18.30 92 88
30 64.979 79.24 129 112
40 55.322 341.73 178 179
50 46.507 531.97 209 165
60 41.599 914.78 246 187
70 38.108 779.68 225 255
80 34.567 653.07 260 190
90 31.847 16573.05 345 257
100 29.904 2200.61 302 231

Average 56.362 2209.90 206 170

Table 7.9: Results for the variable α−neighbour p−centre problem for rat575

177

p Z∗ CPU (secs) SubMax # Iterations
10 157.728 21.01 59 83
20 105.643 26.03 94 82
30 76.820 199.37 141 177
40 65.526 1423.54 200 260
50 55.626 5404.38 267 261
60 49.323 33549.65 296 342
70 44.769⊥ 86400.00 309 268
80 40.812 11710.84 366 253
90 37.962⊥ 86400.00 373 252
100 35.471 34130.75 440 265

Average −−− 25926.56 255 224
⊥ Best lower bound found in 86400.00 secs

Table 7.10: Results for the variable α−neighbour p−centre problem for rat783

p Z∗ CPU (secs) SubMax # Iterations
10 5250.952 2.23 43 50
20 2962.790 86.57 106 116
30 2324.059 48.27 127 83
40 1948.236 1010.83 200 190
50 1676.313 6813.59 257 236
60 1494.094 15979.66 320 285
70 1367.708 15070.05 325 277
80 1226.020 5784.52 356 201
90 1155.231 7296.74 363 237
100 1068.878 2628.73 352 189

Average 2047.428 5472.12 244 186

Table 7.11: Results for the variable α−neighbour p−centre problem for pr1002

p Z∗ CPU (secs) SubMax # Iterations
10 6097.429 0.98 37 21
20 3677.728 345.055 132 131
30 2789.975 9415.31 209 373
40 2313.391 31059.45 280 378
50 2022.358 23532.27 299 379
60 1776.000 31290.30 348 432
70 1604.88⊥ 86400.00 303 418
80 1464.19⊥ 86400.00 318 310
90 1351.72⊥ 86400.00 309 243
100 1264.73⊥ 86400.00 370 295

Average −−− 44124.34 261 298
⊥ Best lower bound found in 86400.00 secs

Table 7.12: Results for the variable α−neighbour p−centre problem for rl1323

178

7.3 The Conditional p−centre Problem

In this section, we will adapt ERRA to optimally solve another related location problem

to the p−centre problem, namely the conditional p−centre problem.

7.3.1 Introduction

The conditional p−centre, or (p, q)−centre, problem wishes to locate p facilities such

that q facilities already exist. When locating emergency facilities, it may be unrealistic

to wish to locate p new emergency facilities amongst a set of demand points whilst

assuming that there are no existing facilities that need to be accounted for. Therefore,

a strength of the conditional p−centre problem is that it addresses the real data more

effectively, and therefore provides a more accurate and efficient solution value.

This section will enhance an existing optimal algorithm for the (p, q)−centre problem

by incorporating ERRA, as well as adding two enhancements that were inspired by

ERRA. The existing algorithm, proposed by Chen & Chen (2010), shall be described

first, followed by the proposed enhancements. The two algorithms’ performance will be

compared to highlight areas of strength, as well as areas for possible improvement. The

efficiency of the enhanced algorithm will then be demonstrated by optimally solving

the (p, q)−centre problem where q = 20 for the large TSP-Library data sets.

7.3.2 The Algorithms

Chen & Chen’s Algorithm

As briefly described in Chapter 2, Drezner (1989) proposed an optimal algorithm to

solve the conditional p−centre problem. First, the set of demand points are allocated

to their nearest % ∈ Q, where Q is the set of existing facilities. The demand points,

and their corresponding nearest distances to the existing facilities, are then sorted into

descending order of Euclidean distance. This yields an ordered set of demand points

(OrdI) and ordered distance vector (OrdD). A bisection algorithm is then used to

solve a succession of sub-problems until the solution value for the subset is greater

than or equal to the next furthest distance in the list.

179

Chen & Chen (2010) incorporated their reverse relaxation algorithm into Drezner’s

algorithm to optimally solve the sub-problems. They began by creating OrdI and

OrdD as suggested by Drezner. The subset of demand points was then solved us-

ing the reverse relaxation algorithm, where the subset initially consisted of the first

demand point only in OrdI. If the solution value for the subset exceeded the next

furthest distance in OrdD, then all the demand points are covered by this solution

value and so the optimal solution has been found. Otherwise, the next demand point

in the ordered list was added to the subset and the process was repeated. Chen &

Chen’s algorithm for the conditional p−centre problem is described in Figure 7.7 and

will be referred to as CON CCA.

1. Input: The set of existing facilities Q.

2. Set the lower bound, LB=0, the subset of demand points Sub = ∅ and k = 1.

3. Allocate all i ∈ I to their nearest % ∈ Q. Sort the demand points in descend-
ing order of Euclidean distance. Let OrdD = {M1,M2, . . . ,Mn} be the set or
ordered distances, and OrdI = {i′1, i′2, . . . , i′n} be the set of ordered demand
points.

4. Add i′k to Sub.

5. Determine if there is a feasible solution, with solution value Zk, for the
p−centre problem for Sub where Zk ≤ LB.

6. If so, determine whether Zk ≥Mk+1.

i) If so, determine if Zk < Mk.
If so, return Zk as the optimal solution value and stop.
Else, return Max(Zk−1,Mk) as the optimal solution value and stop.

ii) Else, set k = k + 1 and go back to Step 4.

Else, set LB as the smallest radius larger than the current LB and go back
to Step 5.

Figure 7.7: Chen & Chen’s (2010) algorithm for the conditional p−centre
(CON CCA)

Note that in CON CCA, the optimal solution value is determined in Step 5. It is

important to observe that once Zk ≥Mk+1, either Zk, Zk−1 or Mk can be determined

as the optimal solution value, which we will now demonstrate with a simple example.

180

Let M1 = 8, M2 = 5,M3 = 3 and M4 = 2, and let Z1 = 0, Z2 = 2 and Z3 = 4.

We can observe that CON CCA will find Zk ≥ Mk+1 when k = 3. In other words,

when the subset consists of the first three demand points in OrdI, the solution value

for the p−centre problem for this subset is larger than the next largest distance in

OrdD, and so all the demand points are covered with the solution value 4. However,

further analysis must be carried out in order to determine the optimal solution value.

We observe that Z3 > M3. Therefore, we must check where to ‘split’ the set of demand

points such that we can obtain the minimum solution value required to cover both

partitions. If we ‘split’ the set of demand points at demand point k, the first k demand

points in OrdI will be covered by the new facilities with a maximum solution value

4, and the remaining demand points will be covered by the existing facilities with a

maximum solution value 2. This would make the overall solution value 4. However,

this can be improved if we ‘split’ the subset of demand points at the (k− 1)th position,

as the first (k− 1) demand points in OrdI would be covered by the new facilities with

a maximum solution value 2, and the remaining demand points would be covered by

the existing facilities with a maximum solution value 3. This option therefore yields

an overall, and optimal, solution value 3. Therefore, if Zk ≥ Mk, CON CCA returns

Max(Zk−1,Mk) as the optimal solution.

We shall now discuss how ERRA was incorporated into Chen & Chen’s algorithm

(Figure 7.7) in order to speed up such an optimal algorithm. Furthermore, two further

enhancements that were inspired by ERRA will also be discussed.

Enhancing Chen & Chen’s Algorithm

1. Incorporating ERRA

For small problems, the CON CCA is very efficient. However, as the problem size

increases, so does |Sub|. This means large subsets are required to be solved optimally,

which leads to computational issues (e.g. memory issues) due to the problem size. We

therefore propose incorporating ERRA into the CON CCA to optimally solve the

subset, with an aim to create a more efficient algorithm that can solve larger problems

due to the use of the relaxation method.

181

2. Enhancement One: An Efficient Initial Sub

The initial Sub in the CON CCA consists of a single demand point. However, this can

be improved by adding a further (p− 1) demand points, as there must be at least this

number of demand points in Sub to find a feasible solution for the p−centre problem.

Thus by adding them straight away, at least (p−1) iterations are spared. We therefore

set the initial Sub = i′1, i
′
2, . . . , i

′
p where i′ ∈ OrdI.

3. Enhancement Two: Adding more than One Demand Point to Sub

Each time feasibility cannot be found for the full problem, the CON CCA adds one

demand point only to Sub and repeats the process again. This approach is effective

on smaller data sets, but as the problem size increases, so does the final cardinality of

Sub. Therefore, the process of adding one demand point at a time yields many itera-

tions until the optimal solution is attained, which greatly increases the total amount of

computational time and effort required to solve the problem. However, the algorithm’s

efficiency can be improved by applying Chen & Chen’s (2009) approach of adding more

than one demand point to the subset at a time. In other words, instead of adding the

next demand point only in the ordered list to Sub, the next k′ demand points are added

where k′ > 1.

A dynamic scheme to determine the value of k′, similar to PointE4 proposed in Chap-

ter 5, could be investigated for the CON CCA. However, as a simple demonstration

that provides a foundation for further research, in this study we added the next two

demand points in the ordered list to Sub (i.e. k′ = 2). This means that the algorithm

has fewer iterations and so can secure the final subset of demand points faster.

In order to obtain the optimal solution value, first either Zk,Mk or Zk−1 (where Zk−1 is

the solution value for the subset of demand points Sub \ {ik}) is saved as the potential

optimal solution value, optimal, after the analysis described in the previous example.

Then the missed solution value, Zk−1, must be analysed further. If Zk−1 < Mk, then

optimal is the optimal solution value. However, if Zk−1 ≥ Mk, then the algorithm

investigates if Zk−1 < Mk−1. If so, Zk−1 is the optimal solution, else Max(Zk−2,Mk−1)

is the optimal solution.

182

1. Input: The set of existing facilities Q.

2. Set the subset of demand points Sub = ∅, and binary tracker TAG = 0.

3. Allocate all i ∈ I to their nearest % ∈ Q. Sort the demand points in descend-
ing order of Euclidean distance. Let OrdD = {M1,M2, . . . ,Mn} be the set or
ordered distances, and OrdI = {i′1, i′2, . . . , i′n} be the set of ordered demand
points.

4. Set Sub = {i′1, . . . , i′p} and k = p.

5. Solve the p−centre problem for Sub using the Enhanced Reverse Relaxation
algorithm (Chapter 5, Figure 5.16). This yields solution value Zk.

6. If TAG = 1:

If Zk ≥Mk+1.

Determine if Zk < Mk.
If so, return Zk as the optimal solution value and stop.
Else, return Max(Zk−1,Mk) as the optimal solution value
and stop.

Else return optimal as the optimal solution value and stop.

If TAG = 0:

If Zk ≥Mk+1.

Determine if Zk < Mk.
If so, set Zk as optimal.
Else, set Max(Zk−1,Mk) as optimal.

Set Sub = Sub \ {i′k}, TAG = 1, k = k − 1 and go back to
Step 5.

Else, set k = k + 2, Sub = Sub ∪ {i′k−1, i′k} and go back to Step 5.

Figure 7.8: The CON ERRA

For clarity, the enhanced algorithm, CON ERRA, that incorporates ERRA and the

two enhancements given above is provided in Figure 7.8.

7.3.3 Computational Results

In this section. we will compare the performance of the two algorithms CON CCA

and CON ERRA in terms of computational time, subset size and number of iterations

to determine which is the most efficient.

The (p, q)−centre problem was solved using both the CON CCA and the CON ERRA

for the TSP-Library data set pr439. Tables 7.13 shows the results for both algorithms

183

where q = 10 & 20. The first column shows the number of new facilities located, p. For

comparison purposes, the maximum total number of facilities was 100 (i.e. p+q ≤ 100).

The next three columns correspond to the results for q = 10, where the second column

displays the corresponding optimal solution, Z∗ and columns three and four represent

the total computational time in seconds for the CON CCA and the CON ERRA

respectively. The remaining three columns display the same information, but referring

to the results where q = 20.

q = 10 q = 20
p Z∗ CPU (secs) Z∗ CPU (secs)

CON CCA CON ERRA CON CCA CON ERRA
10 1429.434 1.83 11.41 981.150 0.79 2.10
20 958.188 2156.90 64.28 880.696 4.67 4.29
30 655.016 4231.22 138.42 705.780 212.90 40.23
40 558.038 9475.67 167.67 545.722 1499.01 91.78
50 439.638 3620.33 229.09 445.939 1904.46 171.03
60 394.305 3248.75 358.61 370.928 1083.08 274.27
70 356.000 2502.21 524.31 334.448 950.40 419.15
80 307.459 996.35 610.03 297.321 464.02 529.33
90 276.699 478.62 734.54 N/A N/A N/A

Average 597.197 2967.99 354.80 570.256 764.92 191.52

Table 7.13: Results for the conditional p−centre problem for pr439 where
q = 10 & 20

Table 7.13 shows that the CON ERRA performs better than the CON CCA as, on av-

erage, optimal solutions were obtained using approximately 81.5% less computational

time due to the enhancements previously discussed. Therefore, the CON ERRA is

used to solve the conditional p−centre problem for the large TSP-Library data sets.

Computational Results for the Larger Data Sets

The efficiency of the CON ERRA is demonstrated by solving the (p, q)−centre prob-

lem optimally for the TSP-Library data sets rat575, rat783, pr1002 and rl1323 where

q = 20. The results are produced, for the first time in this literature, in Table 7.14.

The first column represents the number of new facilities added, p, and the second and

third columns shows the optimal solution value, Z∗, and corresponding computational

time in seconds for data sets rat575, rat783, pr1002 and rl1323 respectively.

Table 7.14 shows that optimal solutions were obtained for all data sets in a reasonable

184

amount of time which is an encouraging result. It is important to note that memory

issues meant that only an upper bound on the optimal solution for the largest TSP-

Library data set rl1323 where p = 70 was found. In this instance, the best upper bound

found (alongside the corresponding computational time) is given. However, all optimal

solutions are found within a maximum computational time of 23159.05 seconds for the

remaining TSP-Library data sets which is very promising.

rat575 rat783 pr1002 rl1323
p Z∗ CPU

(secs)
Z∗ CPU

(secs)
Z∗ CPU

(secs)
Z∗ CPU

(secs)
10 45.113 1.59 52.660 2.45 1595.712 1.34 1860.859 2.15
20 39.665 16.62 47.184 18.42 1362.369 40.06 1644.258 35.56
30 32.104 97.47 37.165 182.57 1147.007 264.17 1352.777 603.99
40 26.673 287.22 32.466 1210.18 957.209 1233.67 1111.14 2995.96
50 23.345 627.22 28.306 3010.33 845.932 3561.78 973.382 7971.74
60 21.412 1114.18 25.775 6441.97 755.811 4526.57 857.13 9866.43
70 19.559 1903.97 23.505 13975.64 682.825 6454.95 1137.754∧ 2391.66
80 17.901 2131.41 21.552 14764.33 622.268 6460.20 718.441 23159.05

Average 28.222 772.458 33.577 4950.736 996.142 2817.84 −−− 5878.32
∧ Best upper bound obtained (with corresponding time) before memory issues

Table 7.14: Results for the conditional p−centre problem where q = 20

7.4 Summary

This chapter has adapted ERRA developed in Chapter 5 to optimally solve two related

practical location problems. Firstly, it was adapted such that it can be used to solve the

α−neighbour p−centre problem. This was compared to Chen & Chen’s adapted clas-

sic relaxation algorithm for the TSP-Library data set pr439. The Adapted Enhanced

Reverse Relaxation Algorithm (AERRA) was found to be superior as it required sub-

stantially less computational time, demand points in the subset and iterations to solve

the problem optimally. This therefore demonstrates that AERRA is the most efficient

optimal algorithm known to date to solve this problem type. Optimal results for larger

data sets from the TSP-Library are produced for the first time. Furthermore, a scenario

analysis was conducted for managerial insight into the case where the coverage need

for each demand point varied. The computational results found were very encouraging,

as optimal solutions could be attained quickly for all the large TSP-Library data sets.

Secondly, ERRA was incorporated into a known algorithm for the conditional p−centre

185

problem, first proposed by Drezner (1989) and developed by Chen & Chen (2010), to

create a more efficient algorithm, CON ERRA. Furthermore, two enhancements in-

spired by ERRA were also briefly discussed and added. The computational results

showed that the CON ERRA was more efficient compared to Chen & Chen’s algo-

rithm, and it was further used to optimally solve the conditional p−centre problem for

the larger TSP-Library data sets for the first time.

The next chapter will summarise the findings of this thesis and outline any areas

where further research may be worthwhile.

186

Chapter 8

Conclusions and Suggestions

This aim of this chapter is to summarise the research and findings given in this thesis

and to highlight any research that could be implemented in the future based on the

algorithms and ideas developed in this dissertation.

8.1 Conclusion

This thesis has investigated and developed several methods to solve the continuous

p−centre problem, focusing particularly on optimal methods. The first chapter began

by establishing the research question to be thoroughly investigated and answered in

this thesis. It then proceeded to provide a brief history on location problems to estab-

lish the evolution of research in this area, before analysing the relevant and interesting

classifications of the p−centre problem. These included classifications such as distin-

guishing between discrete and continuous problems, identifying the objective function

and establishing if the problem is orientated, conditional or constrained. Finally, the

exact and heuristic methodologies used to solve location problems were discussed, and

the specific methods used in this research were highlighted.

The second chapter provided a literature review on location problems with a focus

on the continuous p−centre problem. The first section focused on the work directly

used in this research, such as the exact methods like Drezner’s method, the Elzinga-

Hearn algorithm or the relaxation method, as well as the heuristic methods that are

also incorporated into this research, such as Cooper’s multi start method and Drezner’s

H2 heuristic. The second section dealt with the related literature where the ideas and

methods were adopted or used as inspiration for this research. This includes the liter-

ature for the discrete p−centre problem and metaheuristic methods, as well as several

variations for the continuous p−centre problem such as the constrained p−centre prob-

lem. The chapter built a clear picture of the development of the continuous p−centre

problem, critiques the various methods used to solve the p−centre problem and high-

187

lights the areas where further contributions can be achieved.

The third chapter introduced the main formulations, relevant ideas and new meth-

ods that were used in the main body of the research. The first section formulated the

locations problems that were relevant or directly used in this report, namely the set

covering problem, the discrete p−centre problem and the continuous p−centre prob-

lem. For clarity, the objective function and constraints for each problem were clearly

indicated and explained. The second section described the preliminary experiments

that were incorporated into or used as a springboard for the main body of research

conducted in this thesis. This covered an initial research into heuristic methods, such

as investigating the embedment of a good quality heuristic solution into exact methods

to solve the p−centre problem optimally. Furthermore, a new and interesting idea

that obtains all the potential facility locations defined by the circles made from three

demand points in significantly less computational time compared to a well-known and

popular method is described.

The fourth chapter begins the main research completed in this report by examining an

interesting optimal algorithm first proposed by Drezner over 30 years ago. The method

uses a subset of potential facility locations, namely maximal circles, to optimally solve

the p−centre problem. Drezner’s original algorithm was tested, and this revealed two

areas for possible enhancement. The first area enhanced the way maximal circles are

identified from one iteration to the next. The second proposed an adaptive policy that

finds a compromise solution between the feasible and the optimal solution at each it-

eration to create an efficient enhanced algorithm for any data distribution type. The

Drezner enhanced algorithm (DEA) showed its superiority by producing optimal so-

lutions for the first time for the TSP-Library data sets rat575, rat783, pr1002, and

rl1323 whilst requiring a 96% decrease in computational time in some instances. It

was also tested on generated data sets where n = 400, 600 & 800 to show the algo-

rithm’s efficiency with different distributions. This illustrated further its effectiveness

at optimally solving different distribution types.

The fifth chapter investigated an optimal method used to solve the p−centre prob-

lem called the relaxation method. This is where large problems are broken down into

188

smaller sub-problems that are solved successively until optimality is reached. Two

new algorithms proposed by Chen & Chen (2009), called binary relaxation and re-

verse relaxation, are initially investigated. These early investigations revealed that

the reverse relaxation showed the most potential for enhancement, and was therefore

chosen for further development. Four enhancements were mathematically supported

and explained, and incorporated into the algorithm to form the Enhanced Reverse Re-

laxation Algorithm (ERRA). The ERRA was tested against Chen & Chen’s original

reverse relaxation algorithm, and the results were encouraging as it showed an im-

proved performance compared to Chen & Chen’s original reverse relaxation algorithm

by requiring 87.64% less computational time to optimally solve the problem. Further-

more, the ERRA is robust as it is deterministic which means that the results can

be replicated easily. The ERRA was tested on the TSP-Library data sets mentioned

above, and optimal results were obtained for the first time. For consistency, it was also

tested with the generated data sets from the previous chapter to show the algorithm’s

efficiency with different distributions.

The sixth chapter explored a new approach of heuristically solving the p−centre prob-

lem using relaxation of facilities rather than demand points. The chapter developed a

new matheuristic that was used to find a tight upper bound on the optimal solution

to the p−centre problem. This solution value was then embedded into one of the two

optimal methods previously developed in Chapters 4 and 5 to find the optimal solution.

The matheuristic incorporates both the well known locate-allocate heuristic method

and the enhanced reverse relaxation algorithm developed in Chapter 5. The two most

important parts of the matheuristic were identified, and several variants were investi-

gated for each area in order to evolve the most efficient matheuristic. These two areas

were a) obtaining a good subset of facilities and b) efficiently changing the neighbour-

hood to avoid becoming stuck in a local minimum. The best variant in each case was

highlighted, and the finalised matheuristic was used to find a tight upper bound on the

optimal solution for the TSP-Library data sets. In some instances, the matheuristic

found a better solution value than the best known heuristic solution value. For consis-

tency, the matheuristic was also tested on the generated data sets previously mentioned

to cast further light on the matheuristic’s efficiency with different distributions. The

matheuristic was found to be most efficient with clustered data. Interestingly, it was

189

also found to be most efficient with larger random data sets than smaller random data

sets.

The seventh chapter adapted the ERRA to solve the α−neighbour p−centre prob-

lem, whilst also modifying an existing algorithm for the conditional p−centre problem

to demonstrate the flexibility of this optimal method for location problems related to

the classical p−centre problem. When studying the α−neighbour p−centre problem,

the Adapted Enhanced Reverse Relaxation Algorithm (AERRA) was tested against

the adapted classic relaxation algorithm proposed and used by Chen & Chen (2014)

to solve the 2−neighbour p−centre problem for the TSP-Library data set pr439. The

results showed that the AERRA required much less computational time, iterations and

demand points in the subset to optimally solve the 2−neighbour p−centre problem.

Furthermore, optimal solutions are found for the first time for the data set pr439 where

α = 3. To provide insights for a managerial point of view, a scenario analysis was also

conducted where the number of facilities required to cover each demand point varied,

and computational results were given for the first time for the TSP-Library data sets

that are used throughout this thesis. When studying the conditional p−centre prob-

lem, ERRA was incorporated into an existing algorithm, and two enhancements were

also proposed to create an improved algorithm that showed promising results. This

strength of this enhanced algorithm was demonstrated by optimally solving the con-

ditional p−centre problem for the large TSP-Library data sets where the number of

preexisting facilities was 20.

8.2 Further Research Suggestions

We shall now highlight several areas where further research could be worthwhile ex-

ploring in the future.

Firstly, two enhancements proposed in Chapter 4 could be developed further with

the aim to create a more efficient algorithm. Firstly, it could be worth investigating if

the ‘checking area’ found using Enh3 could be made tighter with slight alterations to

Lemmas 4.4.3 and 4.4.3 in order to speed up the enhanced algorithm further. Further-

more, Enh4 could potentially be made more efficient by first reordering the demand

190

points in terms of Euclidean distance from each facility, and checking each demand

point in order. However, this would involve creating a large matrix of ordered demand

points, and so the computational time and computer memory needed to create the

matrix must be compared with the overall computational time saved before it can be

added to the algorithm as an enhancement.

Secondly, Chapter 5 selected Chen & Chen’s reverse relaxation algorithm instead of

the binary relaxation algorithm to be enhanced based on its experimental performance.

However, had we not tested the two relaxation algorithms ourselves, it would may have

been justified to choose the binary relaxation algorithm for further development based

purely on Chen & Chen’s results. This shows that the binary relaxation algorithm

does show potential, and therefore further research and/or similar enhancements for

this relaxation-based algorithm may be worthwhile.

Chapter 6 introduced an interesting matheuristic used to find a good feasible solu-

tion for the continuous p−centre problem. As this is a new and alternative approach

to the relaxation method, there are many variants and areas of further research that

could be considered. For example, the choice of facilities forming the subset could

be explored further. Our algorithm initially chooses only the facilities that form the

Voronoi polygon or the neighbouring facilities polygon. However, a second level of each

polygon could also be considered for FSub. In other words, the Voronoi or neighbour-

ing facilities polygon for each facility in FSub could be found, and the facilities forming

these polygons could also be added to FSub. This would form a larger FSub initially,

but it may yield a more efficient subset and so could be worthwhile exploring.

Finally, Chapter 7 gives two examples that demonstrate how the optimal method de-

veloped in Chapter 5 can be adapted for related p−centre problems. As these alternate

classifications often represent a more realistic location problem, it may be worthwhile

adapting the optimal methods given in this report for other classification types. An

example of an interesting related problem that could be considered is the previously

mentioned constrained p−centre problem. The issue here is how to direct the search

from an optimal but infeasible solution, towards a feasible one that retains optimal

conditions. This is a challenging problem that deserves further investigation.

191

Bibliography

[1] Albareda-Sambola, M., Dáiz, J., & Fernández, E. (2010). Lagrangean Duals and

Exact Solution to the Capacitated p−center Problem. European Journal of Oper-

ational Research, 201, pp. 71-81.

[2] Alharbi, A. M. (2010). Combining Heuristic and Exact Approach for the vertex

p−centre problem and other related location problems. PhD Thesis, The Univer-

sity of Kent, pp. 55-81.

[3] Al-Khedhairi, A., & Salhi, S. (2005). Enhancements to Two Exact Algorithms for

Solving the Vertex P−Centre Problem. Journal of Mathematical Modelling and

Algorithms, 4, 2, pp. 129-147.

[4] Averbakh, I., & Berman, O. (1997). Minimax Regret p−Center Location on a

Network with Demand Uncertainty. Location Science, 5, 4, pp. 247-254.

[5] Barber, C., Dobkin, D., & Huhdanpaa, H. (1996). A Quickhull Algorithm for

Convex Hulls. ACM Transactions on Mathematical Software , 22, 4, pp 469-483.

[6] Berman, O., & Drezner, Z. (2008). A new formulation for the conditional

p−median and p−center problems. Operations Research Letters, 36, pp. 481-483.

[7] Berman, O., & Simchi-Levi, D. (1990). The Conditional Location Problem on

Networks. Transportation Science, 24, pp. 77-78.

[8] Berman, O., Wang, J., Drezner, Z., & Wesolowsky, G. O. (2003). A Probabilistic

Minimax Location Problem on the Plane. Annals of Operations Research, 122,

pp. 59-70.

[9] Brimberg, J., & Mladenović, N. (1996). A Variable Neighbourhood Algorithm for

Solving the Continuous Location-Allocation Problem. Stud Loc Analysis, 10, pp.

1-12.

[10] Centre of Logistics and Heuristic Optimisation. (2015). The University of

Kent. http://www.kent.ac.uk/kbs/research/research-centres/clho/datasets.html

(accessed 12/07/2016).

192

[11] Chen, R. (1983). Solution of Minisum and minimax Location-Allocation Problems

with Euclidean Distances. Naval Research Logistics Quarterly, 30, pp. 449-459.

[12] Chen, D., & Chen, R. (2009). New Relaxation-based Algorithms for the Optimal

Solution of the Continuous and Discrete Problems. Computers and Operations

Research, 36, pp. 1646-1655.

[13] Chen, D., & Chen, R. (2010). A relaxation based algorithm for solving the condi-

tional p−center problem. Operations Research Letters, 38, pp. 215-217.

[14] Chen, D., & Chen, R. (2013). Optimal Algorithms for the α−Neighbor P−Center

Problem. European Journal of Operational Research, 225, pp. 36-43.

[15] Chen, R., & Handler, G. Y. (1987). Relaxation Method for the Solution of the Min-

imax Location-Allocation Problem in Euclidean Space. Naval Research Logistics,

34, pp. 775-788.

[16] Chen, R., & Handler, G. Y. (1993). The Conditional P−Center Problem in the

Plane. Naval Research Logistics, 40, pp. 117-127.

[17] Church, R. L. (1984). The Planar Maximal Covering Location Problem. Journal

of Regional Science, 24, 2, pp. 185-201.

[18] Church, R. L., & Gerrard, R. A. (2003). The Multi-Level Location Set Covering

Model. Geographical Analysis, 35, 4, pp. 277-289.

[19] Church, R., & ReVelle, C. (1974). The maximal covering location problem. Papers

of the Regional Science Association, 32, 1, pp. 101-118.

[20] Cooper, L. (1963). Location-Allocation Problems. Operations Research, 3, pp.

331-343.

[21] Cooper, L. (1964). Heuristic Methods for Location-Allocation Problems. SIAM

Review, 6, pp. 37-53.

[22] Dantrakul, S., & Likasiri, C. (2012). A Maximal Client Coverage Algorithm for

the p−center Problem. Thai Journal of Mathematics, 10, 2, pp. 423-432.

[23] Daskin, M. S. (1995). Network and discrete location: Models, algorithms and ap-

plications. John Wiley & Sons.

193

[24] Davidović, T., Ramljak, D., Šelmić, M., & Teodorović , D. (2011). Bee colony

optimization for the p−centre problem. Computers and Operations Research, 38,

pp. 1367-1376.

[25] Davoodi, M., Mohades, A., & Rezaei, J. (2011). Solving the constrained p−center

problem using heuristic algorithms. Applied Soft Computing, 11 , pp. 3321-3328.

[26] De Berg, M., van Kreveld, M., Overmars,M., & Schwarzkopf, O. (2000). Compu-

tational Geometry. 2nd Edition, Springer-Verlag, NY.

[27] Drezner, Z. (1984a). The p−centre problem Heuristic and Optimal Algorithms.

Operational Research Society, 35, pp. 741-748.

[28] Drezner, Z. (1984b). The planar two-centre and two-median problems. Transporta-

tion Science, 18, pp. 351-361.

[29] Drezner, Z. (1987). On the rectangular p−centre problem. Naval Research Logis-

tics, 34, pp. 229-234.

[30] Drezner, Z. (1989). Conditional p−center problems. Transportation Science, 23,

pp. 51-53.

[31] Drezner, Z. (1995). On the conditional p−median problem. Computers and Oper-

ations Research, 22, pp. 525-530.

[32] Drezner, Z., & Hamacher, H. W. (2001). Facility Location: Applications and The-

ory. Springer.

[33] Drezner, Z., & Shelah, S. (1987). On the Complexity of the Elzinga-Hearn Algo-

rithm for the 1−Center Problem. Mathematics of Operations Research, 12, 2, pp.

255-261.

[34] Drezner, Z., & Wesolowsky, G.O. (1993). Finding the circle or rectangle containing

the minimum weight of points. Location Science, 2, pp. 83-90.

[35] Dyer, M.E., & Frieze, A.M. (1985). A Simple Heuristic for the p−Centre Problem

Operations Research Letters, 3, pp. 285-288.

[36] Eiselt H. A., & Marianov, V. (2011). Foundations of Location Analysis. Springer.

194

[37] Elshaikh, A., Salhi, S., & Nagy, G. (2015). The continuous p−centre problem: An

investigation into variable neighbourhood search with memory, European Journal

of Operational Research, 241, pp. 606-621

[38] Elshaikh, A., Salhi, S., Brimberg, J., Mladenović, N., Callaghan, B., & Nagy, G.

(2016). Adaptive Perturbation-Based Heuristics: An Application for the Contin-

uous p−Centre Problem. Computers & Operations Research, 75, pp. 1-11.

[39] Elzinga, J., & Hearn, D. (1972). Geometric Solutions for some Minimax Location

Problems. Transportation Science, 6, pp. 379-394.

[40] Gabriel, K. R., & Sokal, R. R. (1969). A New Statistical Approach to Geographic

Variation Analysis. Systematic Biology, 18, 3, pp. 259-278.

[41] Gomory, R. (1958). Outline of an algorithm for integer solutions to linear pro-

grams. Bulletin of the American Mathematical Society, 64, pp. 275-278.

[42] Hakimi, S. L. (1964). Optimum Locations of Switching Centers and the Absolute

Centers and medians of a Graph. Operations Research, 12, pp. 450-459.

[43] Hakimi, S. L. (1965). Optimum Location of Switching Centers in a Communica-

tions Network and some related Graphical Theoretic Problems. Operations Re-

search, 13, pp. 462-475.

[44] Handler, G.Y. (1978). Finding Two-Centers of a Tree: The Continuous Case.

Transportation Science, 12, 2, pp. 93-106.

[45] Handler, G. Y., & Mirchandani, P. B. (1979). Locations on Networks: Theory and

Algorithms. Cambridge, MA: MIT Press.

[46] Hansen, P., Mladenović, N., & Pérez, J. A.M. (2010). Variable Neighbourhood

Search: Methods and Applications. Annals of Operations Research, 175, pp. 367-

407.

[47] Hogan, K., & ReVelle, C. (1986). Concepts and Applications of Backup Coverage.

Management Science, 32, 11, pp. 1434-1444.

[48] Ilhan, T., & Pinar, M. C. (2001). An Efficient Exact Algo-

rithm for the Vertex p−center problem. http://www.optimization-

online.org/DB HTML/2001/09/376.html. (accessed 19/05/14).

195

[49] Irawan, C. (2014). Investigating Large Conditional and Unconditional p−median

and p−centre problems. PhD thesis, The University of Kent.

[50] Irawan, C. A., Salhi, S., & Drezner, Z. (2016). Hybrid Meta-heuristics with VNS

and Exact Methods: Application to Large Unconditional and Conditional Vertex

p−Centre Problems. Journal of Heuristics, 22 pp. 507-537.

[51] Kavah, A., & Nasr, H. (2011). Solving the conditional and unconditional p−centre

problem with modified harmony search: A real case study. Scientia Iranica, 4, pp.

867-877.

[52] Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization. Proceedings of

IEEE International Conference on Neutral Networks, pp. 1942-1948.

[53] Khuller, S., Pless, R., & Sussmann, Y. J. (2000). Fault tolerant K−center prob-

lems. Theoretical Computer Science, 242, pp. 237-245.

[54] Krumke, S.O. (1995). On a generalization of the p−centre problem. Information

Processing Letters, 56, pp. 67-71.

[55] Kuby, M. J. (1987). Programming Models for Facility Dispersion: The

p−dispersion and Maxisum Dispersion Problems. Geographical Analysis, 19,4, pp.

315-329.

[56] Love, R.F., Morris, J. G., & Wesolowsky, G. O. (1988). Facilities Location: Models

and Methods. North Holland, NY.

[57] Lowe, T. J., & Wendall, R. E. (2011). Exact Solution of Two Location Problems

via Branch-and-Bound. In: Eiselt H. A., & Marianov, V. (Eds). Foundations of

Location Analysis. Springer, pp. 291-314.

[58] Lu, C. (2013). Robust weighted vertex p−center model considering uncertain data:

An application to emergency management. European Journal of Operational Re-

search, 230, pp. 113-121.

[59] Megiddo, N., & Supowit, K.J. (1984). On the Complexity of some common Geo-

metric Location Problems. Society for Industrial and Applied Mathematics, 13, 1,

pp. 182-196.

196

[60] Mehrez, A., & Stulman, A. (1982). The Maximal Covering Location Problem

with Facility Placement on the Entire Plan. Journal of Regional Science, 22, 3,

pp. 361-365.

[61] Meihle, W. (1958). Link-Length Minimization in Networks. Operations Research,

6, 2, pp. 232-243.

[62] Minieka, E. (1970). The m−centre problem. SIAM Review, 12, pp. 138-139.

[63] Minieka, E. (1980). Conditional Centers and Medians on a Graph. Networks, 10,

pp. 265-272.

[64] Mladenović, N., & Hansen, P. (1997). Variable neighbourhood search. Computers

and Operations Research, 24, pp. 1097-1100.

[65] Mladenović, N., Labbé, M., & Hansen, P. (2003). Solving the p−Center Problem

with Tabu Search and Variable Neighborhood Search. Networks, 42, 1, pp. 48-64.

[66] Murray, A., O’Kelly, M. E., & Church, R. (2006). Regional Service Coverage

Modelling. Computers and Operations Research, 35, pp. 339-355.

[67] Murray, A. T., & Wei, R. (2013). A computational approach for eliminating error

in the solution of the location set covering problem. European Journal of Opera-

tional Research, 224, pp. 52-64.

[68] Özsoy, F. A., & Pinar, M. . (2006). An Exact Algorithm for the Capacitated Vertex

p−Center Problem. Computers and Operations Research, 33, pp. 1420-1436.

[69] Pacheco, J. A., & Casado, S. (2004). Solving two location models with few facilities

by using a hybrid heuristic: a real health resources case. Computers and Operations

Research, 32, pp. 3075-3091.

[70] Plastria, F. (2002). Continuous Covering Location Problems. In: Drezner, Z., &

Hamacher, H. W. (Eds). Facility Location: Application and Theory. Springer, New

York, pp. 37-79.

[71] Plesńık, J. (1987). A Heuristic for the p−center Problem in Graphs. Discrete

Applied Mathematics, 17, pp. 263-268.

197

[72] Rabie, H. M., El-Khodary, I. A., & Tharwat, A. A. (2013). A Particle Swarm Opti-

mization Algorithm for the Continuous p−center Location Problem with Euclidean

Distance. International Journal of Advanced Computer Science and Applications,

4, 12, pp. 101-106.

[73] Richard, D., Beguin, H., & Peeters, D. (1990). The location of fire stations in a

rural environment: a case study. Environment and Planning, 22, pp. 39-52.

[74] Roth, R. (1969). Computer Solutions to Minimum-Cover Problems. Operations

Research, 17, pp. 455-465.

[75] Salhi, S. (1997). A perturbation heuristic for a class of location problems. Journal

of Operational Research Society, 48, pp. 1233-1240.

[76] Salhi, S. (1998). Heuristic Search Methods. In: Marcoulides, G. A. (Ed). Modern

Methods for Business Research. LEA, New Jersey, pp. 147-175.

[77] Salhi, S. (2006). Heuristic Search: The Science of Tomorrow. In: Salhi, S. (Ed).

OR48 Keynotes Papers Operational Research Society, pp. 39 - 58.

[78] Salhi, S., & Al-Khedhairi, A. (2010). Integrating heuristic information into exact

methods: The case of the vertex p−centre problem. Journal of the Operational

Research Society, 61, pp. 1619-1631.

[79] Saski, Y., & Box, P. (2003). Agent-Based Verification on von Thünens Lo-

cation Theory. Journal of Artificial Societies and Social Stimulation, 6, 2.

http://jasss.soc.surrey.ac.uk/6/2/9.html (last accessed 21/09/2016).

[80] Schilling, D., Jayaraman, V., & Barkhi, R. (1993). A review of covering problems

in facility location. Locations Science, 1, 1, pp. 25-55.

[81] Scott, A. J. (1970). Location-Allocation Systems: A Review. Geographical Analy-

sis, 2, pp. 95-119.

[82] Shier, D. R. (1977). The Min-Max Theorem for p−Center Problems on a Tree.

Transportation Science, 11, 3, pp. 243-252.

[83] Suzuki, A., & Drezner, Z. (1996). The p−Centre Location Problem in an Area.

Location Science, 4, pp. 69-82.

198

[84] Suzuki, A., & Okabe, A. (1995). Using Voronoi Diagrams. In: Drezner, Z. (Ed).

Facility Location: A Survey of Applications and Methods. Springer-Verlag New

York, pp. 103-118.

[85] Toregas, C. (1971). Location Under Maximal Travel Time Constraints. Ph.D. Dis-

sertation, Cornell University.

[86] Toregas, C., Swain, R., ReVelle, C., & Bergman, L. (1971). The location of emer-

gency service facilities. Operations Research, 19, pp. 1363-1373.

[87] Toussaint, G, T. (1980). The relative neighbourhood graph of a finite planar set.

Pattern Recognition, 12, 4, pp. 261-268.

[88] Travelling Salesman Problem Library. (2015). http://comopt.ifi.uni-

heidelberg.de/software/TSPLIB95/tsp/ (accessed 12/07/2016).

[89] Vijay, J. (1985). An Algorithm for the p−center Problem in the Plane. Trans-

portation Science, 19, 3, pp. 235-245.

[90] Weber, A. (1909). Über den Standort der Industrien, Erster Teil: Reine Theorie

des Standortes. Tübingen: Mohr.

[91] Wei, H., Murray A. T., & Xiao, N. (2006). Solving the continuous space p−center

problem: planning application issues. IMA Journal of Management Mathematics

17, 4, pp. 413-425.

[92] Weiszfeld, E. (1937). Sur le point par lequel la somme des distances den points

donnés est minimum. Tôhoku Mathematical Journal, 43, pp. 355-386.

[93] Welzl, E. (1991). Smallest enclosing disks (balls and ellipsoids). In: Maurer, H.

(Ed). New Results and New Trends in Computer Science. Springer, pp.359-370.

[94] Wesolowsky, G.O. (1972). Rectangular Distance Location under the Minimax Op-

timality Criterion. Transportation Science, 6, pp. 103-111.

[95] Wesolowsky, G. O. (1977). Probabilistic weights in the one-dimensional facility

location problem. Management Science, 24, 2, pp. 224-229.

[96] Wesolosky, G. O. (1993). The Weber Problem: History and Perceptives. Location

Science, 1, pp. 5-23.

199

[97] Wilamowsky, Y., Epstein, S., & Dickman, B. (1994). How the oldest recorded mul-

tiple facility location problem was solved. Location Science: a multi-disciplinary

journal, 3, pp. 55-60.

200

Appendix A: Tables

H2 Heuristic Optimal Solution

n p Z CPU Time Z∗ Loop CPU
Time
(secs) a

Loops Maxi
Circles
(secs)

CPLEX
(secs)

Maxi
Cir-
cles
(%)

CPLEX
(%)

439 100 315.486 332.53 256.680 540.75 1428 36.54 464.56 6.76 85.91
575 100 20.402 795.13 20.234⊥ 57600.00 211 355.60 57238.40 0.62 99.37

a This excludes computational time for the H2 heuristic.
⊥Best result found in the time limit of 57600 seconds

Table A.1: Sample results when using when using the For
(a)
0 formulation with the

Drezner enhanced algorithm

H2 Heuristic Optimal Solution

p Z CPU Time Z∗ Loop CPU
Time
(secs) a

Loops Maxi
Circles
(secs)

CPLEX
(secs)

Maxi
Circles
(%)

CPLEX
(%)

90 391.511 276.20 280.90 206.60 393 21.58 159.75 10.45 77.32
100 315.486 332.53 256.68 73.00 200 6.59 57.85 9.03 79.24

Average 353.50 304.37 268.79 139.80 297 14.09 108.80 9.74 78.28
a This excludes computational time for the H2 heuristic.

Table A.2: Sample results for n= 439 TSP-Lib when when using the For
(b)
0

formulation with the Drezner enhanced algorithm

H2 Heuristic Optimal Solution

p Z CPU Time Z∗ Loop CPU
Time
(secs) a

Loops Maxi
Circles
(secs)

CPLEX
(secs)

Maxi
Circles
(%)

CPLEX
(%)

90 21.932 743.20 17.462 3111.74 2624 165.59 2787.04 5.32 89.57
100 20.402 795.13 16.420 15224.20 1808 94.01 15035.80 0.62 98.76

Average 21.167 769.17 16.941 9167.99 2216 129.80 8911.41 2.97 94.16
a This excludes computational time for the H2 heuristic.

Table A.3: Sample results for n = 575 TSP-Lib when using the For
(b)
0 formulation

with the Drezner enhanced algorithm

201

H2

Heuristic
Optimal Solution

p Z Z∗ Loop
CPU
Time
(secs) a

Loops Max
Circles
(secs)

CPLEX (secs) Max
Circles
(%)

CPLEX
(%)

Total Last
Loop

10 1716.510 1716.510 347.747 2 283.97 34.62 17.18 81.66 9.95
20 1169.540 1029.710 2880.03 36 362.98 285.11 7.07 12.60 9.90
30 975.000 739.193 2181.77 49 234.27 213.08 3.35 10.74 9.77
40 874.271 580.005 1612.02 84 186.09 241.58 1.84 11.54 14.99
50 580.005 468.542 360.345 177 47.38 207.81 2.06 13.15 57.67
60 570.088 400.195 314.654 177 41.14 165.16 0.71 13.08 52.49
70 503.271 357.946 190.84 160 24.42 110.31 0.55 12.80 57.80
80 467.039 312.500 141.54 165 16.67 86.40 0.36 11.78 61.05
90 391.511 280.903 95.133 165 10.03 67.77 0.32 10.54 71.23
100 315.486 256.680 27.894 65 2.49 20.19 0.38 8.93 72.38

Average 756.272 233.900 815.20 108 120.94 143.20 3.38 18.68 41.72

a This excludes computational time for the H2 heuristic.

Table A.4: Solutions for n = 439 TSP-Lib with Enhancements and the Adaptive
CPLEX Policy

202

Appendix B: Contributions

This section outlines the main research contributions. This includes any papers pre-

sented at Operational Research conferences, as well as research papers that are ac-

cepted, under review or in the preparation stage to be submitted shortly.

Conferences

1. Callaghan, B., Salhi, S., & Nagy, G. (2015). Drezner’s Exact Method for the

Continuous p−Centre Problem Revisited. EURO Conference 2015, Glasgow,

UK, July 2015. This presentation was based on Chapter 4.

2. Callaghan, B., Salhi, S., & Nagy, G. (2016). Drezners Exact Method for the

Continuous p−Centre Problem Revisited. European Chapter on Combinatorial

Optimization, Budapest, Hungary, May 2016 (A refereed conference publication).

This presentation was based on Chapter 4.

3. Callaghan, B., Salhi, S., & Nagy, G. (2016). A Powerful Relaxation-Based Algo-

rithm for the p−Centre Problem on the Plane. EURO Conference 2016, Poznań,

Poland, July 2016. This presentation was based on Chapter 5.

4. Callaghan, B., Salhi, S., & Nagy, G. (2016). Enhancing a Relaxation-Based Al-

gorithm for the p−Centre Problem.. International Symposium on Combinatorial

Optimisation, Canterbury, UK, September 2016. This presentation is based on

Chapters 5 & 7.

5. Callaghan, B., Salhi, S., & Nagy, G. (2016). Enhancing a Relaxation-Based

Algorithm for the p−Centre Problem. OR58 Annual Conference, Portsmouth,

UK, September 2016. This presentation is based on Chapters 5 & 7.

Papers

1. Elshaikh, A., Salhi, S., Brimberg, J., Mladenović, N., Callaghan, B., & Nagy, G.

(2016). Adaptive Perturbation-Based Heuristics: An Application for the Contin-

uous p−Centre Problem. Computers & Operations Research, 75, pp. 1-11. This

paper uses results found in Chapter 4.

2. Callaghan, B., Salhi, S., & Nagy, G. Speeding up the Optimal Method of Drezner’s

203

for the p−Centre Problem in the Plane. European Journal of Operational

Research, (2016), 10.1016/j.ejor.2016.08.038. This paper is based on Chapter 4.

3. Callaghan, B., Salhi, S., & Nagy, G. (2016). A Relaxation-Based Algorithm for

the Continuous p−Centre Problem. Omega, (preparation). This paper is based

on Chapter 5 and Chapter 7.

204

