University of

"1l Kent Academic Repository

Varignon, Julien, Bristowe, Nicholas C. and Ghosez, Philippe (2016) Electric
Field Control of Jahn-Teller Distortions in Bulk Perovskites. Physical Review
Letters, 116 (5). ISSN 0031-9007.

Downloaded from
https://kar.kent.ac.uk/60250/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1103/PhysRevLett.116.057602

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).



https://kar.kent.ac.uk/60250/
https://doi.org/10.1103/PhysRevLett.116.057602
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Electric field control of Jahn-Teller distortions in bulk perovskites
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The Jahn-Teller distortion, by its very nature, is often at the heart of the various electronic
properties displayed by perovskites and related materials. Despite the Jahn-Teller mode being
non-polar, we devise and demonstrate in the present letter an electric field control of Jahn-Teller
distortions in bulk perovskites. The electric field control is enabled through an anharmonic lattice
mode coupling between the Jahn-Teller distortion and a polar mode. We confirm this coupling
and quantify it through first-principles calculations. The coupling will always exist within the
Pb21m space group, which is found to be the favoured ground state for various perovskites under
sufficient tensile epitaxial strain. Intriguingly, the calculations reveal that this mechanism is not
only restricted to Jahn-Teller active systems, promising a general route to tune or induce novel
electronic functionality in perovskites as a whole.

Perovskite ABO3 compounds, and related materials,
are fascinating systems exhibiting a diverse collection of
properties, including ferroelectricity, magnetism, orbital-
ordering, metal-insulator phase transitions, superconduc-
tivity and thermoelectricity!. Despite the wide range of
physical behaviour, a common point at the origin of many
of them can be identified as being the Jahn-Teller dis-
tortion?3. The Jahn-Teller distortion is itself intimately
linked to electronic degrees of freedom, since traditionally
it manifests to remove an electronic degeneracy, opening
a band gap and favouring a particular orbital ordering,
which in turn can affect magnetic ordering. Furthermore
it plays an important role, for example, in colossal mag-
netoresistance phenomena in doped manganites 4, super-
conductivity®® or the strong electronic correlation ob-
served in the thermoelectric NaCoOs family”.

It would be highly desirable, for device functionality for
example, to be able to tune the Jahn-Teller distortion and
hence its corresponding electronic properties, with the
application of an external electric field. However, Jahn-
Teller distortions are non-polar and hence not directly
tunable with an electric field.

Recently, the concept of “hybrid improper ferroelec-
tricity” has emerged within the community of oxide per-
ovskites® 1. This concept is related to an unusual cou-
pling of lattice modes, giving rise in the free energy ex-
pansion to a trilinear term —AP.R;.R, linking the polar
motion P to two independent non-polar distortions R;
and Ry. Such a coupling was identified in various lay-
ered perovskites®? 12715 metal-organic framework!%:7
and can even appear in bulk ABOjs perovskites'®19,
Interestingly, in Ruddlesden-Popper compounds®2® and
ABO3/A’BOj superlattices®!, this trilinear coupling ap-
peared as a practical way to achieve electric control of
non-polar antiferrodistortive (AFD) motions associated
to the rotation of the oxygen octahedra (i.e. monitoring
P with an electric field will directly and sizeably tune the
non-polar modes R; and/or Ry).

Following this spirit, achieving an electric field con-

a) Py

FIG. 1. Schematic view of the main four lattice distortions in-
volved in the Pb2;m phase of perovskites under tensile epitax-
ial strain. a) Polar distortion (irreps I';) b) QF Jahn-Teller
distortion (irreps My ) c¢) Anti-polar A distortion (irreps My )
d) a®a®ct ¢F antiferrodistortive motion (irreps M ).

trol of Jahn-Teller distortions can be realised through
the identification of a material exhibiting by symmetry
a similar “trilinear” term involving both the polariza-
tion and the Jahn-Teller distortion, which to the best
of our knowledge has not yet been discovered in bulk
ABOj3 perovskites!!. In the present letter we identify
such conditions, and demonstrate explicitly an electric
field control, in bulk perovskites using a combination of
symmetry analysis and first-principles calculations.

The two required lattice distortions are pictured in fig-
ure 1. a) and b). ABOj3 perovskites often exhibit a non-
polar Pbnm ground state, resulting in a combination of
three AFD motions (a~a~ ¢t pattern of rotations of the
oxygen octahedra in Glazer’s notation®?). In this sym-
metry, Howard and Carpenter??® pointed out that a Jahn-
Teller distortion pattern automatically appears, which



was later explained in terms of a trilinear coupling with
AFD motions'?%. As a consequence, a Jahn-Teller dis-
tortion is not necessarily electronically driven, but can
instead arise from lattice mode couplings in which case a
splitting of the electronic states may develop even in the
absence of an electronic instability. The present Jahn-
Teller lattice motion corresponds to a Q2 mode as de-
fined by Goodenough?, corresponding to two B-O bond
length contractions and two B-O elongations. This mo-
tion orders at the M point of the Brillouin zone and hence
consecutive layers along the ¢ axis of the Pbnm phase
present in-phase distortions. This motion is labelled Q;
throughout the whole manuscript.

Starting from the reference Pm3m cubic perovskite
phase, the condensation of the polar mode P (irreps I';')
and the JT mode QF (irreps My ) lowers the symmetry
to a Pb2;m phase, a polar subgroup of Pbnm. We then
perform a free energy expansion?® (around the reference
structure) in terms of the lattice distortions allowed by
symmetry in this new phase and we identify, among all
the possible terms, some intriguing couplings :

Fx PQ3 A+ P*Q3¢F + PoTA+ Q307 A% (1)

In this phase, the first two terms of equation 1 provide a
link between the polarization and the Jahn-Teller distor-
tion. These terms also involve two additional distortions:
one anti-polar A motion pictured in figure 1. ¢) and one
a’a’ct AFD motion (labelled ¢F) pictured in figure 1.
d). Among all the terms, the lowest order trilinear term
of the form PQ;’ A provides the desired direct coupling
between the polarization and the JT distortion. Thus,
acting on the polarization with an external electric field
may modify the amplitude of the JT motion, and there-
fore all related electronic properties.

However, the Pb2;m symmetry is not the common
ground state in bulk perovskites?®. Strain engineering,
through thin film epitaxy for example, can provide a pow-
erful tool to unlock a polar mode in perovskites'%:2732,
This is the case for BiFeO3 which was recently proposed
to adopt an unusual Pb2;m symmetry under large epi-
taxial tensile strain®33-35, This particular phase was
shown to develop both polar, anti-polar and a®a’ct AFD
motions??, which were later demonstrated to be coupled
together through the third term of eq. 1'8. Amazingly,
the authors reported the existence of an orbital ordering
of the Fe3* 3d orbitals, explained from the coexistence of
the polar and the anti-polar motion yielding a particular
lattice distortion pattern®3. This orbital-ordering is un-
usual since in this system no Jahn-Teller effect is required
to form a Mott insulating state (Fe3T are in a half filled
- high spin #3 e configuration). A Jahn-Teller effect or
distortion are yet to be reported in the Pb2;m phase of
BiFeO3 to the best of our knowledge. From our symme-
try analysis, we clearly demonstrate that as this Pb2ym
develops the three aforementioned distortions (P, A and
¢1), the free energy of eq. 1 is automatically lowered
through the appearance of a fourth lattice distortion: a
Jahn-Teller Q5 motion. Therefore, whilst it may not it-

self be unstable, the Jahn-Teller motion is forced into the
system via this “improper” mechanism arising from the
trilinear coupling®. This result clarifies the origin of the
unusual orbital-ordering displayed by BiFeOs and more-
over, it provides a pathway to achieve an electric field
control of the orbital-ordering in bulk perovskites.

The predicted highly strained Pb2;m phase in bulk
perovskites is not restricted to BiFeOs, and it was pre-
dicted to occur also in some titanates (CaTiOsz and
EuTiO3)33, in BaMnO33? and even in a Jahn-Teller ac-
tive compound TbMnQ336. The highly strained bulk per-
ovskites are then an ideal playground to demonstrate our
coupling between the polarization and the Jahn-Teller
distortion. In order to check the generality of our con-
cept, we propose in this letter to investigate several types
of highly strained perovskites on the basis of first princi-
ples calculations: i) non magnetic (NM) SrTiOs (t9,€]);
ii) magnetic BaMnO3®" (t3,e0) and BiFeOs (3,€2); iii)

Jahn-Teller active YMnOg (3 e}).

First-principles calculations were performed with the
VASP package®®3?. We used the PBEsol**+U frame-
work as implemented by Lichtenstein et al*! (see the
supplementary material for a discussion on the choice
of the U and J parameters). The plane wave cut-off
was set to 500 eV and we used a 6x6x4 k-point mesh
for the 20 atom Pb2;m phase. PAW pseudopotentials*?
were used in the calculations with the following valence
electron configuration: 3s23p%4s? (Sr), 4s524p%5s% (Ba),
4524p85524dt (Y), 6s%6p> (Bi), 3p4s23d? (Ti), 3pS4s23d®
(Mn), 3p®4s23d5 (Fe) and 2s?2p* (O). Spontaneous po-
larizations were computed using the Berry-phase ap-
proach and phonons and Born effective charges were com-
puted using the density functional perturbation theory®3.
The electric field effect was modelled using a linear re-
sponse approach by freezing-in some lattice distortion
into the system®*%°. Symmetry mode analyses were per-
formed using the Amplimodes software from the Bilbao
Crystallographic server®6:47,

We begin by investigating the possibility of a Pb21m
ground state under large epitaxial tensile strain (the
growth direction is along the [001] axis of the Pbnm
structure). Beyond around 5% tensile strain, the four

SI‘TiOg BaMn03 BlFQOg YMHO3

strain (%) +7.35%% +6.1%% 4581 44018

magnetism NM FM AFMG AFMG
P (o) (A) 0.615 0421  0.346 0.753
5/ (uC.em™2) 76 45 29 749

QFf M) (A) 0.232  0.190 0.644 0.737
A (M) (A) 0.558  0.217  1.072  0.940
¢ (MF) (A) 0.640  0.059 1.668 1.733
gap (eV) 3.02 0.28 1.88 1.88

TABLE I. Epitaxial strain (%), magnetic ground state, am-
plitudes of distortions (A) and electronic band gap value (eV)
for each material. We emphasize that only the relevant dis-
tortions are summarized in the present table.
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FIG. 2. Potentials with respect to the amplitude of dis-
tortions of the four lattice motions producing the required
Pb21m for SrTiOs (black filled circles), BaMnOs (red filled
squares), YMnOg (blue filled diamonds) and BiFeOs (green
filled triangles) starting from the ideal P4/mmm phase.

compounds indeed develop the desired Pb2;m ground
state.  Strained BaMnOjs (ferromagnetic FM) and
YMnO3 (G-type antiferromagnetic AFMG) exhibit a
different magnetic ground state compared to the bulk
(AFMG and E-type antiferromagnetic - ™M}l zig-zag
chains coupled antiferromagnetically along the ¢ axis
- respectively) while BiFeOs (G-type antiferromagnetic
AFMG) remains in its bulk magnetic ground state. We
then perform a symmetry mode analysis with respect to a
hypothetical P4/mmm phase (corresponding to Pmdm
for unstrained bulk compounds) in order to extract the
amplitude of the relevant lattice distortions® (see ta-
ble I). As expected, the four materials develop the re-
quired distortions, and amazingly, the magnitude of the
QF Jahn-Teller distortion is relatively large, being for
instance of the same order of magnitude as the one de-
veloped in the prototypical Jahn-Teller system LaMnOg
(around 0.265 AS').  Additionally, the values of the
spontaneous polarization are rather large, reaching 76
uC.cm~2 for SrTiOs for instance. Despite being highly
strained, all materials remain insulating, adopting rea-
sonable electronic band gap values (see table I).

To shed more light on the origin of this unusual Pb2;m
phase we compute the energy potentials with respect
to the four distortions by condensing individually each
modes in an hypothetical P4/mmm phase (see figure 2).
Surprisingly, the appearance of the Pb2;m phase is rather
different for the four materials. SrTiOs and BaMnOs
only exhibit a polar instability, producing an Amm2 sym-
metry, consistent with previous reports of a polar phase
for these two materials under tensile strain?”°2. Com-
puting the phonons in this particular Amm?2 symmetry,
only one hybrid unstable phonon mode is identified for
these two materials, having a mixed character between

O=W
ARERERER

0,05F

Dens;ity of States (arb. units)

EE_ (V) E-E_  (eV)

Fermi Fermi

FIG. 3. Projected density of states on the d levels on two
neighboring B sites in the (ab)-plane of SrTiOs, BaMnOs,
BiFeO3s and YMnOs3. Local axes of the orbitals are displayed
on figure 1. The Fermi level is located at 0 eV.

the A, ¢F and Q;‘ distortions. For BiFeO3 and YMnOsg,
the a®a’ct AFD motion is already unstable, which is ex-
pected since the Pb21m symmetry for these two systems
is derived from their bulk R3c/Pbnm phases®®. Addi-
tionally, the JT lattice distortion is also unstable in the
P4/mmm phase of YMnOj3 and appears as an electronic
instability®3, which is expected since YMnOs is known
to be Jahn-Teller active in the bulk. We emphasize at
this stage that the polar mode in BiFeOs (and YMnOg)
is not unstable and therefore highly strained BiFeO3 ap-
pears as an improper ferroelectric in contradiction to ref-
erence 18%4. Computing the phonons in the intermediate
strained Pbnm phase of both BiFeO3 and YMnO3 com-
pounds reveals only one hybrid unstable mode, having a
mixed character between P and A distortions. Despite
the apparent universal stability of this highly-strained
polar phase, the mechanism yielding it is suprisingly dif-
ferent between the compounds and seems linked to the
tolerance factor.

Regarding the electronic structure, we checked for
the appearance of an orbital ordering as observed in
BiFeO333. For the four compounds we report the pro-
jected density of states on the d levels of two neighboring
B sites in the (ab)-plane (see figure 3). For SrTiOs, a
splitting of the ¢o4 states, and especially between the d.
and d, orbitals, located at the bottom of the conduction
band arises. For BaMnOj3 and BiFeOg, a similar splitting
between the ty, levels is observed near the Fermi level,
even if it is less pronounced for BaMnOg since it has the
smallest Q3 distortion. Finally, YMnOj3 displays an or-
bital ordering of the e, levels with predominantly dg2_,
occupation. This splitting is known to result from the
Jahn-Teller distortion in this A3*Mn3+Og class of mate-
rial®®. Additionally, an orbital ordering of the ¢, levels is
occurring both in the conduction and the valence bands.
To prove that the Jahn-Teller distortion, and not another
motion, is solely responsible for the orbital ordering we
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FIG. 4. Electric field effect on the amplitude of the Jahn-
Teller distortion (top panel) and the electronic gap value (bot-
tom panel) on the four different compound.

have condensed all the modes individually and studied
the density of states (see supplementary figure 1).

Up to here we have demonstrated the existence of a JT
distortion and a related orbital ordering in the desired
Pb21m polar phase. Now, we quantify how the trilinear
couplings allow to achieve practical electric field control
of the JT distortion. To that end, we compute the mag-
nitude of the JT distortion as a function of the electric
field E, and exemplify its consequences on the electronic
band gap. Results are displayed in figure 4. The Jahn-
Teller distortion is effectively tuned by the application
of an electric field along the polar axis through the first
and second terms of equation 1. As the electric field in-
creases, the amplitude of the JT distortion is either am-
plified or decreased, being renormalized to around 175%
for SrTiOj3 for an electric field around 20 MV.cm™—!. The
largest effect is however reached for YMnOg which dis-
plays a renormalization of 130% under moderate electric
field (around 5 MV.cm™!). Therefore, this renormaliza-
tion of the JT distortion has consequences for instance on
the electronic band gap value, with an opening/closure

around 0.6 eV for YMnOs or 0.25 eV for SrTiOs3. It
is then possible, through the coupling between the po-
larization and the Jahn-Teller distortion to act on the
electronic properties.

Here we have exemplified a sizeable electric control of
the band gap of direct interest for electro-chromic and
photovoltaic applications. Acting directly on the am-
plitude of the JT distortion might alternatively allow
one to control the magnetic state with an electric field,
as recently proposed independently in superlattices'*
and metal organic frameworks!®, or to control Metal-
Insulator phase transitions.

In conclusion, we have demonstrated in the highly-
strained Pb2;m phase of bulk ABO3 perovskites the ex-
istence of a trilinear coupling involving a polar mode and
the Jahn-Teller distortion. This improper anharmonic
coupling, established on universal symmetry arguments,
enables an electric field control of the Jahn-Teller distor-
tion, even in the case of non-electronically Jahn-Teller
active systems. The generic mechanism may open novel
functionalities in perovskites as it will have consequences
on related electronic properties as proposed in the present
Letter. For instance, such couplings may allow the elec-
tric control of optical and magnetic properties as well as
the tuning of Metal-Insulator phase transitions.
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tions are nearly canceling each others, resulting in a weak
polarization. For the three other compounds, both A and
B cations move in opposite direction to O anions, maxi-
mazing the polarization.

We only report in table I the relevant distortions for the
proposed mechanism. One should notice that due to a small
tolerance factor, BiFeO3s and YMnO3 still develop large
a~a” crotations in their ground state, in addition to other
antipolar modes. Their Pb2;m phase may appear to be
derived from a R3c or Pbnm structure respectively.

J. H. Lee, K. T. Delaney, E. Bousquet, N. A. Spaldin, and
K. M. Rabe, Physical Rev. B 88, 174426 (2013).

J. M. Rondinelli, A. S. Eidelson, and N. A. Spaldin, Phys.
Rev. B 79, 205119 (2009).

The JT distortion in YMnOj3 appears through an electronic
instability mechanism in the high symmetry phase. Indeed,
only removing the symmetry on the electronic wavefunc-
tion while keeping the centrosymmetric positions for the
cations produces already an energy gain, that is then am-
plified by the resulting JT lattice distortions.

In reference 18, authors report a relatively weak polar in-
stability in the P4/mmm phase that we do not obtain in
our simulations. This contradiction may be related to tech-
nical details or the magnitude of the strain applied, but in
any case will not affect the final result of the present letter.



55 The two average ab-plane Mn-O bond lengths are evalu- only the sole Q;‘ distortion, the two in-plane Mn-O bond
ated to be (damo),, ;= 1.903 A and (darno),, .= 2.438 lengths are 2.294 A and 1.772 A while the out of plane
A while the average Mn-O bond length along the ¢ axis is bond length is 1.769 A.

around (darno),= 1.900 A. Consequently, the d,z2,2 orbital °¢ J. Varignon and P. Ghosez, Phys. Rev. B 87, 140403(R)
should be more stable than the d.,2 orbital. Considering (2013).



