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This paper revisits an early but interesting optimal algorithm first proposed by Drezner to solve the con- 

tinuous p -centre problem. The original algorithm is reexamined and efficient neighbourhood reductions 

which are mathematically supported are proposed to improve its overall computational performance. The 

revised algorithm yields a considerably high reduction in computational time reaching, in some cases, a 

decrease of 96%. This new algorithm is now able to find proven optimal solutions for large data sets with 

over 1300 demand points and various values of p for the first time. 
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1. Introduction 

The p -centre problem seeks to minimise the maximum distance

or travel time whilst ensuring all the n demand points are cov-

ered by at least one of the p chosen facilities. This problem can be

categorised as either the vertex p -centre problem or the absolute

p -centre problem. In the former, which is the discrete case, the op-

timal facilities are part of a set of the potential facility sites which

can be either the demand points or other known sites. However,

in the latter the facilities can be located anywhere along network

edges (as introduced but not solved by Hakimi (1965) ) or in the

plane. 

In this paper, we will explore the absolute p -centre problem in

the plane, which is also known as the continuous or the planar

p -centre problem. It is worth noting that the continuous p -centre

problem, besides being used for interesting real life location appli-

cations that will be briefly mentioned next, could also provide a

greenfield solution which can be used as a guide to identify po-

tential sites for the discrete case as in some cases this data can

be very expensive to gather. In addition, the p -centre problem can

also be used as a basis for academic research in the general area
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f global optimisation including other continuous related location

roblems. 

Here are some of the papers describing real-life problems tack-

ed by p -centre models. One of the earliest applications is by

ichard, Beguin, and Peeters ’s (1990) who used the p -centre prob-

em to locate fifteen fire stations in the Belgian province of Luxem-

ourg. Pacheco and Casado (2004) located a number of health re-

ources such as geriatric and diabetic health care clinics in the ru-

al area of Burgos in Spain. Wei, Murray., and Xiao (2006) adapted

heir Voronoi-based algorithm developed for the constrained con-

inuous p -centre problem to locate twenty-five emergency warning

irens in Dublin, Ohio. Kavah and Nasr (2011) modified a harmony

earch heuristic to locate bicycle stations in Isfahan, Iran by solv-

ng the conditional and unconditional discrete p -centre problem.

inally, Lu (2013) used the p -centre problem to locate a number of

rgent relief distribution centres after the 7.3 Richter scale earth-

uake in Taiwan. 

Most of the real-life applications for the p -centre problem have

een solved successfully using powerful heuristics and metaheuris-

ics. However, recent developments in exact methods, with the ad-

ances in computing power, memory management and powerful

ommercial optimisation software such as IBM ILOG CPLEX, mean

hat the proven optimal solution can now be worth exploring for

arger problems. This study aims to respond to such scientific and

echnological change. In addition, if an optimal solution can be

ound in a reasonable amount of time, this will provide flexibil-

ty in performing scenario analysis for strategic planning purposes

hich is of extreme importance in practice due to the massive in-

estment usually required. 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 
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.1. A brief literature review 

The single facility minimax location problem (1-centre) in the

ontinuous space has a long history and was posed originally in

857 by the English mathematician James Joseph Sylvester (1814–

897). A few years later, in 1860, he proposed an algorithm to solve

t. Elzinga and Hearn (1972) developed an efficient and widely used

eometrical-based algorithm to solve the problem optimally. Their

lgorithm was adapted and enhanced by many authors including

lshaikh, Salhi, and Nagy (2015) . For more information on contin-

ous centre problems and references therein, see Drezner (2011) .

he idea was extended to find solutions to multi-facility location

roblems including the p -centre problem. Hakimi (1965) was the

rst to formulate the continuous 1-centre problem in a network,

nd Minieka (1970) studied the case where p > 1. The first paper

iscussing the p -centre problem in the plane was by Chen (1983) .

he problem has been shown to be NP-hard when p is variable,

ee Megiddo and Supowit (1984) . For a fixed value of p the prob-

em can be solved in polynomial time, O (n 2 p+4 ) , though requiring

n excessive amount of computational effort especially for larger

alues of p , see Drezner (1984) . 

There exist a few variations of the continuous p -centre prob-

em. For example, Chen and Handler (1993) proposed an efficient

lgorithm to solve the conditional p -centre problem. Here, the aim

s to locate p facilities given that q facilities already exist. Wei

t al. (2006) suggested a Voronoi-based algorithm to solve the con-

trained continuous p -centre problem where the facilities cannot

e located within some forbidden regions such as rivers, lakes, mil-

tary areas etc. Chen and Chen (2013) used Minieka’s algorithm

nd the relaxation method to solve the α-neighbour p -centre prob-

em. In this variation, each demand point is covered by at least α
acilities which can be important in the case of facility disruption. 

Among the most recent theoretical work is the use of the re-

axation concept, where a large problem is broken down into rel-

tively much smaller and more manageable sub-problems that

re easier to solve. For more details on this particular topic, see

hen and Handler (1987) , Chen and Chen (2009) and Chen and

hen (2010) . For the discrete case, though not directly related to

ur research, the following studies by Elloumi, Labbe, and Pochet

2004) , Brandenberg and Roth (2009) and Caruso, Colorni, and Aloi

2003) can be found to be interesting and also informative. In both

he discrete and the continuous problems, Cooper ’s (1964) Multi-

tart method, which is based on the locate-allocate principle, is of-

en used to produce an upper bound for optimal methods or initial

olutions for metaheuristics. 

This paper will be analysing the original continuous p -centre

roblem by revisiting an interesting, though originally very slow,

ptimal algorithm proposed thirty years ago by Drezner (1984) .

his older method used a subset of facility locations based on spe-

ific circles rather than demand points. As this algorithm is the ba-

is of our research, it is detailed in the next section. 

The contributions of this study include: 

(i) revisiting an early but slow optimal algorithm for the con-

tinuous p -centre problem; 

(ii) introducing neighbourhood reduction schemes supported 

mathematically to improve drastically the computational

performance of this exact method; 

(iii) embedding an adaptive CPLEX policy to further enhance its

efficiency; 

(iv) solving optimally for the first time relatively much larger

problems with up to 1300 demand points and up to 100 fa-

cilities. 

The paper is organised as follows: the investigated exact

ethod is introduced and described in Section 2 , alongside ini-

ial results based on the original algorithm. Section 3 proposes the
uggested enhancements to the algorithm which are supported by

ew lemmas and proofs. The computational results are given in

ection 4 followed by an adaptive CPLEX policy in Section 5 mak-

ng this revised optimal algorithm even more efficient. The overall

omputational results are given in Section 6 . Our conclusions and

uggestions are summarised in the final section. 

. Drezner’s optimal algorithm 

.1. Introduction 

Drezner’s algorithm is based on the idea of Z-maximal circles . A

ircle is defined as maximal based on a given upper bound, Z . The

et of maximal circles based on Z is then identified and their re-

pective centres are then used as a subset for the potential facility

ocations. 

Let us define the following notations. 

I : set of demand points indexed by i = 1 . . . n ; 

J : set of all possible circles indexed by j = 1 . . . m ; 

C j : circle j defined by its centre (x c 
j 
, y c 

j 
) and radius r j , j ∈ J ; 

K : subset of I ; 

R ( K ): the radius of the smallest circle encompassing all points

in K ; 

d i , j : Euclidean distance from demand point i to the centre of

circle C j , i ∈ I , j ∈ J ; 

p : number of facilities to locate; 

d ′ 
i,l 

: Euclidean distance from demand point i to demand point l ;

Z : the upper bound at a given iteration; 

J Z : set of Z-maximal circles ( J Z ⊂ J ). 

efinition 2.1. The closure of circle C j is the set of demand points

ncompassed by circle C j which is defined as 

l j = { i ∈ I| d i, j ≤ r j } ∀ j = 1 . . . m. 

efinition 2.2. The minimum covering circle ( MCC ) of the set K

s the smallest circle encompassing all points in K with radius R ( K ).

We can now define a Z -maximal circle in the following way, as

iven by Drezner (1984) . 

efinition 2.3. A circle C j with radius r j is said to be Z-maximal

often simply called maximal) if: 

1. r j < Z ; 

2. For every demand point i �∈ Cl j , R ( Cl j ∪ { i }) ≥ Z . 

Drezner proposed two ways to solve the p -centre problem us-

ng Z-maximal circles. The first, which will be referred to as CP (a ) 
0 

,

ses the set covering problem to find the minimum number of Z-

aximal circles needed. First, let the input A i , j be defined as 

 i, j 

{
1 if i ∈ Cl j , 

0 else. 

(CP (a ) 
0 

) Minimise 
∑ 

j∈ J Z 
x j (1) 

ubject to 

∑ 

j∈ J Z 
A i, j x j ≤ 1 ∀ i ∈ I, (2) 

 j ∈ { 0 , 1 } ∀ j ∈ J Z , (3)

here x j = 

{
1 if Z − maximal circle C j is selected, 

0 else. 

The objective function (1) refers to minimising the number

f Z-maximal circles. Constraint (2) guarantees that every de-

and point is encompassed, or covered, by at least one Z -maximal

ircle. 
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Fig. 1. Drezner’s original algorithm ( Drezner, 1984 ). 

Fig. 2. The FMC algorithm given a threshold Z . 
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In the second method, referred to as CP (b) 
0 

, a new constraint

(4) is added to CP (a ) 
0 

to impose that the number of covering circles

has to be equal to p , while the objective function (1) is omitted

turning the problem into a feasibility problem. 

( CP (b) 
0 

): Find x j ∈ {0, 1} ∀ j ∈ J Z 

subject to (2) and (3) , ∑ 

j∈ J Z 
x j = p. (4)

If the minimum number of covering circles found in (1) is ≤ p or

if CP (b) 
0 

is feasible, then the upper bound is decreased by setting Z

to the radius of the largest Z -maximal circle from the obtained so-

lution, and the process of identifying the Z -maximal circles is then

repeated. Otherwise (i.e. the minimum number is > p or CP (b) 
0 

is

infeasible), the current upper bound Z is taken as the optimal so-

lution and the algorithm terminates. 

Before we use Drezner’s optimal algorithm, as described in

Fig. 1 , we shall first define the following additional notations. 

C 1 
J 

: the set of null circles created from one critical point only

(i.e., note: r j = 0 ∀ C j ∈ C 1 J ); 

C 2 
J 

: the set of circles created from two critical points defining

its diameter; 

C 3 
J 

: the set of circles made up from three critical points forming

an acute triangle. 

It is important to note that an appropriate heuristic must be

used to find an initial upper bound in Step 2. For instance, a simple

multi start heuristic can be used. In this study we opted for the H 2 

heuristic proposed by Drezner (1984) for consistency reasons. 

2.2. Initial results & the need for an improved implementation 

Our initial results were found for two TSP-Library (2015) data

sets, namely pr 439 and rat 575 which represent a 439-city
roblem and a 575-rattled grid problem, respectively. Note that

he basic tricks of using squared distances were also adopted here

hen required to improve code efficiency (e.g. when distances are

ompared, or for non-acute triangle detection). 

Both CP (a ) 
0 

and CP (b) 
0 

were initially used to solve the p -centre

roblem, and both were found to take a considerable amount of

omputational time as a large number of iterations was required.

s an illustrative example, we show the result found for the TSP-

ibrary data sets pr 439 and rat 575 where p = 90 . For the data set

r 439, the 90 -centre problem was optimally solved using CP (a ) 
0 

re-

uiring more than 38 hours (i.e. 137692.6 seconds) and 4580 it-

rations. When using CP (b) 
0 

, the time was reduced to just below

 hours (10654.30 seconds) while using 393 iterations only. For

at 575, an optimal result was obtained using CP (b) 
0 

, however it re-

uired nearly 30 hours (107916.0 seconds) and 2729 iterations. Fur-

hermore, when using CP (a ) 
0 

, the program was stopped after the

ime limit of 2 days with only one feasible solution found with

 value of 21.471 (a percentage difference of 18% from the opti-

al solution). It will be shown later that the optimal solution can

e found in less than half an hour (996.43 seconds) with our im-

roved method. This example highlights the importance of devel-

ping ways to enhance the efficiency of Drezner’s algorithm opti-

al algorithm. 

.3. Modification of the covering problem (enhancement zero) 

Traditionally, the continuous p -centre problem is formulated as

he Euclidean unweighted p -centre problem. This multiple facility

ocation problem has been examined by a small number of au-

hors, see Plastria (2002) and the references therein. It can also

e formulated as a non-linear mathematical programming formu-

ation. However, the formulation that we will use in this paper is

imilar to Drezner’s CP (b) 
0 

formulation with two commonly used

dditions consisting of (a) an objective function that aims to min-

mise the largest radius (5) and (b) an extra constraint to deal with

he characteristics of the p -centre (8) . This formulation, referred to
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Table 1 

Number of Z -maximal circles required & previously identified for the first 10 itera- 

tions ( n = 439 , p = 100 ). 

Iteration # # Original # Z -maximal # Circles Extra % 

circles circles previously required 

identified 

1 9281 860 − −
2 9189 855 780 8 .77 

3 8835 797 597 25 .09 

4 8796 805 758 5 .84 

5 8652 809 684 15 .45 

6 8449 798 640 19 .80 

7 8384 804 735 8 .58 

8 7922 756 478 36 .77 

9 7855 767 693 9 .64 

10 7637 770 601 21 .95 

Average 850 0.0 0 802.10 662.88 16 .88 
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s CP 1 , will be used throughout this work. 

(CP 1 ) Minimise D (5) 

ubject to 

∑ 

j∈ J Z 
A i, j x j ≥ 1 ∀ i ∈ I, (6)

 

j∈ J Z 
x j = p, (7) 

 j r j ≤ D ∀ j ∈ J Z , (8)

 j ∈ { 0 , 1 } ∀ j ∈ J Z . (9)

here 

D : the maximum distance between a facility and a demand

oint. 

The use of CP 1 is first tested on the previous two data sets.

t was observed that for p = 90 and 100, the computational times

ere 1258 and 462 seconds respectively, approximately 9 (resp. 7)

imes faster than using C P (a ) 
0 

(resp. C P (b) 
0 

). It is also worth noting

hat CP 1 has an advantage over Drezner’s original suggestions as

he optimal solution value D is much tighter leading to requiring a

elatively smaller number of iterations. Although it may be harder

o solve CP 1 than C P (a ) 
0 

or C P (b) 
0 

, the last two require a large num-

er of iterations, each including a lengthy Z -maximal circles iden-

ification step. 

.4. Observations 

Optimal solutions for p = 10 , 20 . . . , 100 were found using CP 1 
nstead of CP (a ) 

0 
or CP (b) 

0 
for the TSP-Library data sets pr 439 and

at 575. The results are given in the Appendix under Tables A.1 ,

.2 and Fig. A.1 . Based on these results, it can be observed that

here are two areas where enhancements could be introduced in

n attempt to shorten the overall computational time. These in-

lude: 

(a) the way the Z -maximal circles are identified from one itera-

tion to the next; 

(b) a choice of a compromise between the quality of a feasi-

ble solution and its corresponding computational time when

solving CP 1 (i.e. finding an optimal solution or just a good

feasible solution). 

This paper will now investigate several ways in which the

riginal algorithm using CP 1 can be efficiently implemented.

ections 3 –5 will cover (a) and Section 6 will deal with (b). 

Note that the introduction of CP 1 , instead of using CP (a ) 
0 

or

P (b) 
0 

, could be considered as our first enhancement due to gener-

ting tighter bounds. However, for simplicity and conciseness, the

esults of CP 1 will be used as our starting point from which we

ill base our improvements. 

. The Z -maximal circles-based enhancements 

.1. Enhancement one: EHA-based implementation 

The Elzinga–Hearn algorithm ( EHA ) is used to find the MCC of a

et of demand points. As this is repeatedly needed in Step 3 of the

MC algorithm, in order to calculate R ( Cl j ∪ { i }), two ways in which

he overall time performance can be enhanced are highlighted. 

arly termination 

The EHA starts with a circle made from any two selected points

nd continues to find a covering circle of increasing size until all

oints are covered. It is important to realise that in the FMC al-

orithm, the exact centre point and the radius of the MCC are not

eeded: we simply aim to establish whether or not the radius of

he MCC will be larger or smaller than the upper bound Z . 
If the MCC is smaller than the upper bound, then the EHA will

ontinue until the end as normal. However, it can be terminated

arly if the circle’s radius exceeds Z during the algorithm. This is

ecause at each iteration in the EHA , the new circle’s radius is ei-

her the same or larger. Therefore, if a circle has a radius ≥ Z at

ny point in the algorithm there is no need to continue as the fi-

al circle (the MCC ) will be even larger. 

ore informative initial points 

Instead of starting the EHA from random points or selecting

oints using selection rules, such as the ones adapted by other au-

hors including Welzl (1991) and Elshaikh et al. (2015) , we take

nto account the information we have already found. In other

ords, the two or the three critical points that defined the circle

ound at a current iteration are the points that we choose as our

nitial points for the EHA . This makes the selection deterministic

nd yields faster results. 

This double enhancement, referred to as Enh1, is incorporated

nly into Step 3 of the FMC algorithm and does not affect the total

umber of iterations of the algorithm. 

.2. Enhancement two: efficient recording of the Z -maximal circles 

At each new iteration in Drezner’s algorithm, the process of

nding the Z -maximal circles begins again from the start irrespec-

ive of earlier iterations. However, when examining the first set of

esults it was observed that many of the same circles were being

lassified as Z -maximal during successive iterations. 

As an example, Table 1 shows the number of Z -maximal circles

ound at each of the first 10 iterations of the original algorithm for

he data set pr 439 with p = 100 . In this example, approximately

7% of the new Z -maximal circles need to be identified at each

teration only, as the other ones have already been found in pre-

ious iterations. Therefore, a technique to identify whether a circle

s Z -maximal or not in subsequent iterations is worthwhile con-

tructing. 

emma 1. If circle C j is Z t -maximal at iteration t , then it is also Z t+1 -

aximal for iteration t + 1 if and only if its radius r j < Z t+1 . 

roof. We know at each iteration t , the upper bound Z strictly

ecreases. Therefore, we can say Z t > Z t+1 . For circle C j to be a

 -maximal circle at iteration t , the following two conditions need

o be satisfied: 

1. r j < Z t ; 

2. for every demand point i ∈ I such that i �∈ Cl j , R ( Cl j ∪ { i }) ≥ Z t . 

As Z t+1 < Z t , we can deduce that R (Cl j ∪ { i } ) > Z t+1 . Thus if

 j < Z t+1 , circle C j will still be a Z -maximal circle by definition at

teration t + 1 . �



726 B. Callaghan et al. / European Journal of Operational Research 257 (2017) 722–734 

 

 

C

 

 

 

 

 

 

C  

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C  

Fig. 3. Checking area for circle C j . 
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The information denoting whether or not circle C j has been

found to be Z -maximal or not can be stored in a binary or logi-

cal vector CircMax where 

ircMax j = 

{
1 if C j ∈ J Z t , 

0 else. 

This result is incorporated into Steps 2 and 3 of the FMC algo-

rithm to avoid performing redundant calculations. We will refer to

this enhancement as Enh2. 

3.3. Enhancement three: fast identification of some non- Z -maximal 

circles 

This enhancement, which we will refer to as Enh3, aims to

quickly identify some non- Z -maximal circles without performing

unnecessary calculations. As an example, take circle C j with a cen-

tre point (x c 
j 
, y c 

j 
) and radius r j < Z . We can now create a new circle

 

+ 
j 

centered at (x c 
j 
, y c 

j 
) and with radius Z . Therefore, it is clear that

 j ⊂ C + 
j 

. 

Lemma 2. If s ∈ I is not covered by C j (i.e. s �∈ Cl j ) but is strictly cov-

ered by C + 
j 
, then circle C j is not Z-maximal. 

Proof. Let s ∈ I with s �∈ Cl j but strictly covered by C + 
j 

. Then the

smallest circle, C , containing s and the whole circle C j , contains

all the points in Cl j and is strictly contained in C + 
j 

. Hence, C ’s ra-

dius is at least R ( Cl j ∪ { s }) and is strictly less than Z . It follows that

R ( Cl j ∪ { s }) < Z , and so C j is not Z -maximal. �

Thus a minimum distance, or threshold, of value Z is estab-

lished. In other words, if there is at least one demand point not

covered by circle C j which lies within this distance, then the circle

cannot be classified as Z -maximal. 

In summary, if 

∃ i / ∈ Cl j | d i, j < Z, (10)

we can conclude that circle C j is not Z -maximal. 

Additionally, a maximum threshold of 2 Z can also be added us-

ing Lemma 3 . 

Lemma 3. Take any demand point s ∈ I not covered by C j . In case

d s , j ≥ 2 Z , then R ( Cl j ∪ { s }) > Z. 

Proof. Take s ∈ I with d s , j ≥ 2 Z . Consider the circle C with centre

s and radius 2 Z . As r j < Z , the centre of C j is not encompassed by

C . Therefore, the circle arc of C j lying within C is strictly less than

half the circle. 

But the critical points of C j span at least half the circle, and

so cannot all lie within C . Therefore, ∃ i ∈ Cl j such that d i , s > 2 Z ,

which implies that R ( Cl j ∪ { s }) > Z . �

Thus if a point that lies at a distance ≥2 Z from (x c 
j 
, y c 

j 
) is added

to the set of points encompassed by the circle C j , the MCC that

covers all these points would have a radius ≥ Z . Thus, if this in-

formation is known, any point in this area does not need to be

checked again and hence computational time can be saved with-

out affecting the quality of the solution. 

In summary, if 

d i, j ≥ 2 Z ∀ i / ∈ Cl j , (11)

then we can conclude that circle C j is Z -maximal. 

These two observations lead to the construction of a checking

area for circle C j , say Check j . This is represented by the shaded area

in Fig. 3 , and is defined as follows: 

heck j = { i / ∈ Cl j | Z ≤ d i, j < 2 Z} . (12)
e can therefore conclude that further calculations must be per-

ormed only if the two observations above are not true and

heck j � = ∅ . 
We incorporate Enh3 into Steps 2 and 3 of the FMC algorithm. 

.4. Enhancement four: identifying non- Z -maximal circles 

If circle C j is not maximal, then there must be a demand point

 �∈ Cl j such that R ( Cl j ∪ { i }) < Z . If this point is recorded, in the next

teration this demand point can be the first to be checked and hence

epeated computations can be discarded. If the MCC of the next it-

ration is still < Z , then we can deduce that this circle is still not

 -maximal thus saving computational time. If the MCC is ≥ Z , we

ither continue with calculations and conclude it is now classified

s Z -maximal, or we record the next demand point to cause C j to

e non- Z -maximal if it exists. In other words, either way will pro-

ide us with useful information that can be used in subsequent

terations. 

As an example, say at iteration t it takes q j points to find a de-

and point that determines circle C j as not Z -maximal. This means

he next iteration ought to start with the q th 
j 

point instead of start-

ng from scratch at the beginning. This saves the computational

ime it takes to check the previous (q j − 1) points, say Sa v t 
j 
. As this

cheme is applied to C j where j = 1 , . . . , m 

′ , the saving at iteration

 could be significant and of the order of 
∑ m 

′ 
j=1 Sa v t 

j 
. 

Let Start be an integer vector of dimension m . The entry Start j 
enotes which demand point i should be checked first in the next

teration to see if circle C j is Z -maximal or not. 

This enhancement, referred to as Enh4, is incorporated into

teps 2 and 3 of the FMC algorithm. 

. Analysing the Z -maximal circle-based enhancements 

.1. Individual performances 

The enhancements were first analysed separately so that each

ne’s improvement in computational time could be assessed and

ts impact measured. For illustrative purposes, the computational

imes for the individual enhancements for the data set pr 439

here p = 70 , 80 , 90 and 100 are first shown in Fig. 4 . This is then

ollowed by combining all the refinements together using a cer-

ain order that will be based on the individual enhancement per-

ormances. 

Fig. 4 suggests that the best enhancement, giving an average

ecrease in computational time of 84.42%, is Enh3. By provid-

ng minimum and maximum thresholds by which the demand

oints are checked reduces many calculations as many points sit
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Fig. 4. Individual performances. 

Fig. 5. Comparison on CPU time for the enhancements. 
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utside the checking area. Enh4 yields the second best result with

n average decrease of 83.26% in computational time. By starting

t the last known non- Z -maximal circle all previous demand points

an be disregarded, thus avoiding the unnecessary calculations that

hey incur. Enh1 is the third best at improving the overall compu-

ational time, with an average decrease of 50.65%. This enhance-

ent reduces the number of calculations by terminating the EHA

lgorithm earlier whenever possible. Also, by choosing the current

ritical points as the initial points, the EHA will have less iterations

o find the MCC . Finally, Enh2 improves the computational time the

east. This is due to not dealing with the Z -maximal circle calcula-

ions directly; it simply minimises how many circles are needed

or these calculations. The average improvement of computational

ime for Enh2 is 26.26%, which is still significant. 

.2. Combined performance 

The four enhancements are embedded into Drezner’s original

lgorithm that uses formulation CP 1 . These are added in the order

f individual performances observed earlier which is as follows:

nh3 - Enh4 - Enh1 - Enh2. To assess the incremental gain of these

nhancements we also conduct the following experiment: in the

rst run we use Enh3, in the second we use Enh3 and Enh4, and

n the third Enh3, Enh4 and Enh1 are used. The fourth run consists

f the overall algorithm with all the enhancements incorporated as

oted earlier. The results are shown in Fig. 5 . 

It is clear that the enhancements greatly improve the computa-

ional time. The first enhancement reduces the total computational

ime by an average of 84.49% as noted earlier, and by adding Enh4

his is decreased further to 90.26%. After the addition of Enh1, the

verage decrease becomes 96.46% and finally with all enhance-

ents added this reaches a massive saving of 96.71%. In other

ords, just above 3% of computational time is really needed on

verage, leading to an exciting and strong result. 
It is also worth noting that the incremental decrease in com-

utational time is not directly additive as there is a high level of

ssociation between their individual contributions. For instance, af-

er gaining 84% with Enh3, one might expect Enh4 to yield 83% of

he remaining 16%. This would therefore give a new decrease of

pproximately 97%. However, it only decreases it to just over 90%

i.e., an extra 5.8% only). 

.3. The complete revised optimal algorithm 

The revised FMC algorithm is given in Fig. 6 . It is similar to

he original FMC algorithm except Steps 2 and 3 in Fig. 2 have

een modified accordingly to accommodate the enhancements de-

cribed in this study. The revised Drezner algorithm is similar to

he Drezner’s original algorithm stated previously in Fig. 1 , except

hat in Step 5 the formulation CP 1 is used instead of CP (a ) 
0 

or CP (b) 
0 

nd an extra step (Step 3 shown in Fig. 7 ) has been added to

ccommodate the enhancements. For completeness, we reproduce

he full revised optimal algorithm in Fig. 7 . 

. Computational results 

The proposed algorithm was coded in C + + on a HP Elitebook

570w with 12GB of memory. The IBM ILOG CPLEX 12.6 console

as incorporated into the program using default parameters. 

Tables 2 and 3 show the results found for the data sets pr 439

nd rat 575. The first column titled p shows the required number of

acilities. The initial upper bound value, denoted by Z in column 2,

as found from a 10 0 0 iteration runs of the H 2 heuristic described

n Drezner (1984) . The next column, titled Z ∗, shows the optimal

olution value, followed by the computational time (in seconds) re-

uired for the revised Drezner optimal algorithm to find Z ∗ in the

oop CPU Time column. Note that this result excludes the compu-

ational time consumed by the H 2 heuristic. 

Other information, such as how many loops (iterations) are

eeded to get the optimal solution value, the total time spent on

omputing the Z -maximal circles and the total time spent on com-

uting the result in CPLEX are reported alongside their correspond-

ng percentages in the remaining columns. (Note that these two

ndividual percentages when added are below 100% due to other

alculations.) 

For completeness, we also produced a summary result in

able 4 to show for both instances and for each value of p the new

nd the old duration including the percentage decrease. It is clear

o see that the enhanced method has greatly reduced the compu-

ational time for both data sets. As an example, it took just over

 hours average computational time for the data set pr 439 previ-

usly, whereas now the average time is just over 12 minutes lead-

ng to a massive average reduction of 96%. Note that these com-

utational times do not include the computational time for the H 2 

euristic. 

For the data set rat 575, the computational time has also been

educed. For the smaller values of p (10, 20 and 30), the majority

f the time was taken computing the Z -maximal circles leading to

 reduction of over 90%. However, for the other values of p the ma-

ority of the computational time is taken up solving the problem in

PLEX leading to an overall relatively small though still significant

eduction of nearly 50%. This observation led us to face a challenge

hat will be explored in the next section. 

Furthermore, our findings could be compared to the relaxation-

ased algorithms of Chen and Chen (2009) for the only reported

esults for the TSP-Library data set pr 439. In this particular in-

tance, our total computational time (inclusive of the computa-

ional time required for the H 2 heuristic) is found to be greater

han theirs. However, it is also important to note that our optimal

lgorithm is deterministic and hence relatively more robust, as it
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Fig. 6. The FMC -revised algorithm. 

Fig. 7. The revised Drezner optimal algorithm. 

Table 2 

n = 439 TSP-Lib with enhancements. 

p H 2 Heuristic Optimal Solution 

Z CPU Time Z ∗ Loop CPU Time # Loops Max Circles CPLEX Max Circles (%) CPLEX (%) 

(seconds) (seconds) a (seconds) (seconds) 

10 1716 .510 96 .88 1716 .510 342 .78 2 278 .96 34 .52 81 .38 10 .07 

20 1169 .540 170 .28 1029 .715 2856 .38 36 359 .05 282 .05 12 .57 9 .87 

30 975 .0 0 0 205 .36 739 .193 2146 .67 49 229 .60 207 .87 10 .70 9 .68 

40 874 .271 218 .9 580 .005 1515 .29 67 171 .14 200 .49 11 .29 13 .23 

50 580 .005 235 .61 468 .542 159 .49 38 21 .90 51 .09 13 .73 32 .04 

60 570 .088 246 .86 400 .195 170 .38 48 23 .24 53 .20 13 .64 31 .22 

70 503 .271 256 .30 357 .946 97 .63 47 13 .77 36 .71 14 .11 37 .60 

80 467 .039 300 .01 312 .500 73 .52 52 9 .61 31 .62 13 .07 43 .02 

90 391 .511 276 .20 280 .903 38 .01 48 4 .71 20 .85 12 .39 54 .86 

100 315 .486 332 .53 256 .680 16 .77 32 1 .50 11 .06 8 .93 65 .93 

Average 756 .272 233 .90 614 .218 741 .69 42 111 .35 92 .95 19 .18 30 .75 

a This excludes computational time for the H 2 heuristic. 
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Table 3 

n = 575 TSP-Lib with enhancements. 

p H 2 Heuristic Optimal solution 

Z CPU Time Z ∗ Loop CPU Time # Loops Max Circles CPLEX Max Circles (%) CPLEX (%) 

(seconds) (seconds) a (seconds) (seconds) 

10 69 .426 98 .34 67 .926 5572 .02 10 693 .86 336 .28 12 .45 6 .04 

20 48 .107 175 .62 45 .475 1616 .05 11 109 .75 495 .80 6 .79 30 .68 

30 39 .655 238 .26 35 .556 1023 .14 14 46 .20 544 .21 4 .51 53 .19 

40 33 .365 296 .90 30 .063 37660 .80 11 17 .41 37514 .80 0 .05 99 .61 

50 30 .336 403 .76 25 .826 6352 .86 15 12 .85 6247 .59 0 .20 98 .34 

60 27 .951 422 .18 23 .163 26870 .00 18 9 .26 26800 .50 0 .03 99 .74 

70 25 .578 558 .85 20 .858 26123 .80 19 6 .22 26082 .30 0 .02 99 .84 

80 24 .135 535 .90 19 .026 32343 .20 17 4 .41 32343 .20 0 .01 99 .91 

90 21 .932 743 .20 17 .460 2167 .610 18 3 .04 2149 .99 0 .14 99 .19 

100 20 .402 795 .13 16 .420 25074 .40 15 1 .93 25074 .40 0 .01 99 .95 

Average 34 .089 426 .81 30 .177 16480 .39 15 90 .49 15 .758.90 2 .42 78 .65 

a This excludes computational time for the H 2 heuristic. 

Table 4 

Original vs. revised Drezner’s algorithm for n = 439 TSP-Lib and n = 575 TSP-Lib. 

p pr 439 rat 575 

Original CPU Time 

(seconds) a 
New CPU Time 

(seconds) a 
Percentage 

Decrease (%) 

Original CPU Time 

(seconds) a 
New CPU Time 

(seconds) a 
Percentage 

Decrease (%) 

10 6252 .72 342 .78 94 .52 83898 .60 5572 .02 93 .36 

20 56753 .00 2856 .38 94 .97 19087 .6 0 1616 .05 91 .53 

30 37017 .10 2146 .67 94 .20 9743 .91 1023 .14 89 .50 

40 31355 .00 1515 .29 95 .17 41733 .00 37660 .80 9 .76 

50 4939 .25 159 .49 96 .77 9612 .60 6352 .86 33 .91 

60 4956 .45 170 .38 96 .56 28344 .00 26870 .00 5 .20 

70 3170 .89 97 .63 96 .92 40256 .90 26123 .80 35 .11 

80 2186 .27 73 .52 96 .64 40181 .70 32343 .20 19 .51 

90 1258 .22 38 .01 96 .98 4260 .10 2167 .61 49 .12 

100 462 .30 16 .77 96 .37 33694 .00 25074 .40 25 .58 

Average 14835 .1197 741 .6913 95 .91 31081 .242 16480 .39 45 .26 

a This excludes computational time for the H 2 heuristic. 

Fig. 8. Average computational time % in CPLEX per iteration vs. last iteration for 

rat 575. 
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s not sensitive to several factors including the initial subset of de-

and points or the number of demand points added to the subset

t each iteration. 

. A self-adaptive CPLEX policy 

In this section, we investigate how to balance the time spent

etween computing the Z -maximal circles and the level of the so-

ution quality which we consider to be acceptable when solving

P 1 . However, to guarantee optimality, we need to show at one

tage that CP 1 has no feasible solution and hence the final iteration

eeds to run to the very end. In other words, it is not possible to

educe the computational time by terminating the search earlier in

he last run. 
Table 5 shows the total time taken in CPLEX compared to the

ime consumed in the last iteration in CPLEX. Though a relatively

onsiderable amount of time is used in the last iteration account-

ng for approximately 10–20% of the total computational time, the

omputational time taken in the previous iterations is nonetheless

orth exploring for possible improvement. A compromise feasible

olution to save computational time in CPLEX while limiting the

otal number of iterations of the entire algorithm will be our focus

n this section. 

There are several ways in which the search can be terminated

arly in previous runs whilst producing a feasible solution for CP 1 .

n example would be to impose a time limit, however this does

ot always guarantee that a feasible solution will be found within

hat time and so other options are investigated. 

Our study adopts a strategy by which we manipulate the du-

lity gap so that CPLEX terminates earlier with a good feasible,

ut not necessarily optimal, solution whenever it manages to find

t least one. However, the value of the duality gap can be both

ensitive and critical which can make our algorithm less robust.

he algorithm cannot terminate too early as it could simply in-

rease the number of iterations greatly, and therefore increase the

ime spent computing the Z -maximal circles. It is therefore im-

ortant to find a reasonable compromise that we wish to de-

ise. In this study, we propose the following self - learning CPLEX

olicy which takes into consideration information from previous

terations. 

It is worth noting that the following duality gap policy is only

mplemented when CPLEX finds at least one feasible solution in

ny run of CPLEX. However, if no feasible solution has been iden-

ified in a given run, CPLEX continues until the maximum time

imit is reached where the search terminates. Hence the obtained
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Table 5 

CPLEX Durations (seconds) for both the total and the last iteration in the case of n = 575 TSP-Lib 

p CPLEX Loop CPU 

Time (seconds) 

CPLEX Final Iteration 

CPU Time (seconds) 

Percentage 

Use (%) 

# Loops Average(%) per Loop 

excluding last iteration 

Overall Average (%) 

per Loop 

10 336 .28 31 .81 9 .46 10 11 .11 10 .00 

20 495 .80 105 .96 21 .37 11 10 .00 9 .09 

30 544 .21 68 .25 12 .54 14 7 .69 7 .14 

40 37514 .80 12789 .40 35 .81 11 10 .00 9 .09 

50 6247 .59 673 .42 10 .78 15 7 .15 6 .67 

60 26800 .50 3821 .60 14 .26 18 5 .88 5 .56 

70 26082 .30 2231 .55 8 .56 19 5 .56 5 .26 

80 32343 .20 647 .03 2 .00 17 6 .25 5 .88 

90 2149 .99 41 .48 1 .93 18 5 .88 5 .56 

100 25074 .40 4577 .57 18 .26 15 7 .14 6 .67 

Average 15758 .91 2498 .81 15 .86 15 7 .14 6 .67 
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Z value of the previous run is used as the final solution, which ob-

viously cannot be guaranteed to be optimal. 

An adaptive CPLEX policy 

At iteration t , the moving average for the computational time

for calculating Z -maximal circles ( T Max ) and solving the problem in

CPLEX ( T CPLEX ) based on the last α iterations is respectively defined

as follows. 

G 

α
t (A ) = 

∑ t 
t ′ = t−α A 

t ′ 

α
(13)

where A = { T Max , T CPLEX } , and A 

t ′ is the corresponding time at iter-

ation t ′ . 
We define α as 

α = 

{
t 
2 

if t ≥ K, 

t else. 

In other words, the classical average is used if t < K , otherwise

the moving average over half of the past iterations is adopted. In

this study, we used K = 6 based on preliminary results. 

We use the following scheme based on the performance ratio

ξ = 

G αt (T Max ) 

G αt (T CPLEX ) 
; 

(a) If 

ξ ≥ 1 (14)

then the time for computing the Z -maximal circles is much

larger than the time spent solving the problem in CPLEX.

Therefore, the number of iterations need to be reduced as

much as possible, and so we set the duality gap to 0%. 

(b) However, if 

ξ ≤ 0 . 4 (15)

then the majority of the computational time is spent solving

the problem in CPLEX, and therefore we wish to exit CPLEX

sooner with a feasible solution rather than seeking an opti-

mal one, hence we set the duality gap to be 1%. 

(c) If ξ has any other value, then the computational times are

considered to be more or less similar. In this case, we wish

to reach a balance between finding the near optimal solution

and leaving CPLEX early, hence we set the duality gap to be

0.5%. 

In summary, the following conditions related to the duality gap

are given. 

Duality Gap = 

{ 

0 if ξ ≥ 1 , 

0 . 5% if 0 . 4 < ξ < 1 , 

1% if ξ ≤ 0 . 4 . 

(16)

This policy, which uses adaptive learning, is less sensitive to

the effect of the data’s distribution on the computational time and

therefore it is very reliable. 
The final results for rat 575, that include the results where the

PLEX adaptive policy is incorporated, are found in Table 6 , dis-

layed alongside the total computational time required to opti-

ally solve this data set using the enhanced algorithm without the

uality gap policy. This table also shows that the average decrease

n computational time is now 72.91% from the original CPU times,

nd it has decreased a further 50.05% from this new computational

ime when incorporating the duality gap with the enhancements.

his is a promising result and demonstrates that the CPLEX adap-

ive policy has a large and positive effect on the overall efficiency

f this enhanced algorithm. 

It is important to recognise that for some values of p , such as

p = 10 , the total duration could be slightly increased as in this in-

tance the majority of time is spent computing Z -maximal circles.

his is because in the first iteration, we do not know whether the

ajority of time will be spent on computing the Z -maximal circles

r solving the problem in CPLEX as CPLEX has not run yet. To re-

pond to this issue, we have therefore set a duality gap of 0.5% for

he first iteration. 

. Overall computational results 

Our algorithm was tested on the TSP-Lib data sets rat 575,

at 783, pr 1002 and rl 1323. For information, the data set rat 783 rep-

esents a 783-rattled grid problem, and the data sets pr 1002 and

l 1323 refer to a 1002 and 1323-city problem respectively. As we

im to obtain optimal solutions, we used the best known heuristic

esults from Elshaikh et al. (2015) as our initial upper bound. This

eviates from the method previously used, where the initial upper

ound was found using the simple H 2 heuristic whose solutions

ay be relatively loose and hence may require an unnecessarily

arger overall computational time. Note also that the computational

imes given here do not include this heuristic step, but these times

re recorded in Elshaikh et al. (2015) . 

As these data sets are very large, a maximum time limit of 24

ours was set for each value of p . If the algorithm happens to take

onger than the cutoff time, the program is terminated and the up-

er bound at that time is recorded as the best feasible solution. 

Tables 7 –10 are arranged similarly to the tables in Section 5 ,

ith the newly found optimal solutions highlighted in bold. How-

ver, extra information for the computational time spent in CPLEX

s provided. In order to establish how much computational time

annot be improved on (the last iteration) the column represent-

ng the time spent in CPLEX is now divided into two, with one half

howing the total time spent in CPLEX and the other half show-

ng how long the last iteration took in CPLEX. Therefore, in the

nstance where the algorithm reaches the maximum time limit,

he result in the second half of this column may not be show-

ng the time spent to reach optimality. However, in each of these

ircumstances, no further feasible solution was found in the final

teration (except for the case where n = 783 , p = 40 ). Thus, this
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Table 6 

n = 575 TSP-Lib with enhancements and duality gap policy. 

p Optimal solution 

Loop CPU Time w/o Loop CPU Time Percentage # Loops Max Circles CPLEX (seconds) Max Circles (%) CPLEX (%) 

Duality Gap (seconds) a (seconds) a Decrease (%) (seconds) Total Last Loop 

10 5572 .02 5732 .12 -2 .86 10 690 .69 340 .37 32 .89 12 .05 5 .93 

20 1616 .05 1634 .74 -1 .15 11 112 .83 471 .74 108 .68 6 .90 28 .86 

30 1023 .14 1254 .57 -22 .62 30 58 .88 730 .55 69 .97 4 .69 58 .23 

40 37660 .80 25949 .90 31 .10 15 19 .55 25793 .20 12936 .20 0 .08 99 .40 

50 6352 .86 3161 .59 50 .23 23 14 .17 3052 .89 675 .08 0 .45 96 .56 

60 26870 .00 9134 .14 66 .01 29 10 .49 9063 .42 3733 .39 0 .11 99 .26 

70 26123 .80 15961 .50 38 .91 24 6 .53 15920 .30 2219 .57 0 .04 99 .74 

80 32372 .30 5656 .99 82 .53 74 8 .80 5619 .18 642 .85 0 .16 99 .33 

90 2167 .61 996 .43 54 .03 34 3 .98 976 .77 41 .86 0 .40 98 .03 

100 25086 .30 12862 .90 48 .73 23 2 .29 12850 .30 4614 .62 0 .02 99 .90 

Average 16484 .48 8234 .49 50 .05 27 92 .82 7481 .87 2507 .51 2 .49 78 .52 

a This excludes computational time for the H 2 heuristic. 

Table 7 

Solutions for n = 575 TSP-Lib using the revised Drezner’s algorithm starting from best heuristic value. 

p Best heuristic Optimal solution 

Z Z ∗ Loop CPU Time # Loops Max Circles CPLEX (seconds) Max Circles (%) CPLEX (%) 

(seconds) a (seconds) Total Last Loop 

10 67 .926 67 .926 489 .53 1 413 .20 32 .37 32 .37 84 .41 6 .612 

20 45 .6212 45 .475 384 .79 3 49 .50 272 .52 107 .70 12 .86 70 .82 

30 35 .556 35 .556 87 .16 1 11 .19 68 .84 68 .84 12 .83 78 .99 

40 30 .265 30 .063 20898 .30 5 6 .57 20880 .01 13085 .80 0 .03 99 .91 

50 26 .173 25 .826 2476 .32 10 4 .35 2462 .60 670 .71 0 .18 99 .45 

60 23 .622 23 .163 8888 .40 12 3 .03 8878 .01 3749 .88 0 .03 99 .88 

70 21 .059 20 .858 16283 .70 9 1 .64 16277 .80 2238 .12 0 .01 99 .9 

80 19 .510 19 .026 3893 .66 13 1 .45 3887 .75 646 .53 0 .04 99 .85 

90 17 .923 17 .460 868 .39 18 1 .22 863 .18 41 .75 0 .14 99 .40 

100 16 .551 16 .420 13268 .80 8 0 .55 13265 .40 4626 .44 0 .00 99 .97 

Average 6753 .90 8 49 .27 6688 .86 2526 .81 11 .05 85 .49 

a This excludes computational time for the heuristic step. 

Table 8 

Solutions for n = 783 TSP-Lib using the revised Drezner’s algorithm starting from best heuristic value. 

p Best heuristic Optimal (or best) solution 

Z Z ∗ Loop CPU Time (seconds) a # Loops Max Circles (seconds) CPLEX (seconds) Max Circles (%) CPLEX (%) 

Total Last Loop 

10 79 .313 79 .313 5696 .39 2 2918 .48 978 .14 402 .57 51 .23 17 .17 

20 53 .441 53 .332 2884 .05 8 224 .16 2410 .67 400 .08 7 .77 83 .59 

30 42 .395 42 .307 21833 .60 4 55 .52 21714 .00 13229 .40 0 .25 99 .45 

40 35 .962 35 .861 ∗ 86400 .00 1 19 .30 86380 .00 86370 .00 0 .02 99 .98 

50 31 .184 31 .041 ∗ 86400 .00 10 14 .81 86355 .50 33887 .70 ⊥ 0 .01 99 .95 

60 28 .053 27 .880 ∗ 86400 .00 14 10 .95 86365 .10 80032 .39 ⊥ 0 .01 99 .96 

70 25 .446 25 .239 ∗ 86400 .00 3 4 .21 86381 .60 39254 .10 ⊥ 0 .004 99 .98 

80 23 .560 23 .192 ∗ 86400 .00 9 5 .43 86384 .24 1530 .90 ⊥ 0 .006 99 .98 

90 21 .710 21 .319 ∗ 86400 .00 12 5 .01 86384 .30 54352 .70 ⊥ 0 .005 99 .98 

100 20 .334 19 .999 ∗ 86400 .00 7 2 .03 86387 .10 50190 .10 ⊥ 0 .002 99 .99 

Average 7 325 .99 62974 .05 35964 .00 5 .94 90 .00 

a This excludes computational time for the heuristic step. 
∗ best feasible solution found within 86400 seconds. 
⊥ no feasible solution found in the last iteration within the time limit allowed. 
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ndicates that the solution found in the previous iteration may be

he optimal solution. 

Furthermore, in the instance where n = 783 and p = 40 , a fea-

ible solution was found but the duality gap policy value had not

een reached. The program was therefore allowed to run for a fur-

her hour (with the solution found at this iteration as its new up-

er bound) to see if this solution could be improved. Again, no fur-

her feasible solution was found which shows that the last feasible

olution could be optimal. This last feasible solution found is the

ne given in Table 8 . 
It is important to note that for smaller values of p (i.e. p = 10

or pr 1002 and p ≤ 20 for rl 1323) computer memory becomes an

ssue leading to no results being found. This could be due the ini-

ial upper bound being higher in these instances, leading to a rel-

tively large number of circles being considered and thus making

he ILP model too big to be handled. 

In summary, the results show that the revised Drezner optimal

lgorithm can now find very good and even optimal solutions for

hese large data sets. In addition, we can also claim that optimal

olutions are found for the first time for the large data sets such
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Table 9 

Solutions for n = 1002 TSP-Lib using the revised Drezner’s algorithm starting from best heuristic value. 

p Best heuristic Optimal solution 

Z Z ∗ Loop CPU Time (seconds) a # Loops Max Circles (seconds) CPLEX (seconds) Max Circles (%) CPLEX (%) 

Total Last Loop 

10 + 2389 .360 − − − − − − − −
20 1609 .540 1607 .530 4904 .66 10 825 .07 2786 .07 340 .83 16 .82 56 .80 

30 1231 .360 1231 .360 881 .26 1 86 .42 739 .83 739 .83 9 .81 83 .95 

40 1030 .400 1021 .410 1778 .08 29 121 .62 1404 .82 190 .49 6 .84 79 .01 

50 901 .455 895 .342 13011 .90 12 42 .29 12867 .60 353 .84 0 .33 98 .89 

60 801 .474 795 .709 8961 .03 22 40 .29 8843 .69 785 .27 0 .45 98 .69 

70 727 .154 725 .431 1502 .26 3 10 .86 1458 .29 1436 .05 0 .72 97 .07 

80 664 .798 655 .746 917 .42 15 16 .35 853 .75 78 .91 1 .78 93 .06 

90 604 .152 604 .152 373 .52 1 4 .20 349 .55 349 .55 1 .12 93 .58 

100 559 .017 555 .662 123 .78 10 6 .82 91 .64 12 .70 5 .51 74 .04 

Average 11 128 .21 3266 .13 476 .39 4 .82 86 .12 

a This excludes computational time for the heuristic step. 
+ could not be computed due to computer memory. 

Table 10 

Solutions for n = 1323 TSP-Lib using the revised Drezner’s algorithm starting from best heuristic value. 

p Best heuristic Optimal (or best) solution 

Z Z ∗ Loop CPU Time (seconds) a # Loops Max Circles (seconds) CPLEX (seconds) Max Circles (%) CPLEX (%) 

Total Last Loop 

10 + 2897 .490 − − − − − − − −
20 + 1886 .820 − − − − − − − −
30 1466 .970 1466 .970 29522 .00 2 1605 .09 26403 .90 12725 .60 5 .43 89 .44 

40 1236 .380 1235 .660 ∗ 86400 .00 5 199 .23 86150 .77 19277 .17 ⊥ 0 .23 99 .71 

50 1060 .820 1060 .420 ∗ 86400 .00 2 48 .08 85933 .90 400 .00 ⊥ 0 .06 99 .46 

60 941 .870 940 .483 ∗ 86400 .00 7 43 .10 86333 .90 18895 .60 ⊥ 0 .05 99 .90 

70 844 .967 843 .801 13454 .40 12 38 .72 13323 .10 6278 .02 0 .29 99 .02 

80 774 .764 774 .764 51229 .30 1 9 .45 51164 .10 51164 .10 0 .02 99 .87 

90 720 .625 706 .145 5942 .07 33 46 .91 5750 .88 119 .51 0 .80 96 .78 

100 662 .936 658 .997 37388 .90 15 20 .53 37273 .30 6915 .90 0 .05 99 .69 

Average 10 251 .39 49041 .73 14471 .99 0 .87 97 .98 

a This excludes computational time for the heuristic step. 
∗ best feasible solution found within 86400 seconds. 
+ could not be computed due to computer memory. 
⊥ no feasible solution found in the last iteration within the time limit allowed. 
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as n = 575 , n = 1002 and n = 1323 and some for n = 783 while re-

quiring a reasonable amount of computational time only for such

strategic decision problems. 

8. Conclusions and suggestions 

This paper has revisited an optimal and interesting algorithm

proposed by Drezner (1984) thirty years ago to solve the contin-

uous p -centre problem. Opportunities to improve the algorithm

were highlighted, and enhancements were developed, mathemat-

ically supported and empirically tested. The two areas of interest

include the way the Z -maximal circles are identified from one it-

eration to the next, and the proposed adaptive CPLEX scheme to

find a compromise solution at each iteration between the quality

of the feasible solution and the optimal solution when solving the

covering problem CP 1 . 

The proposed algorithm was tested on five existing TSP-Library

data sets, namely pr 439, rat 575, rat 783, pr 1002 and rl 1323 for p =
10 , . . . , 100 . The results show that the enhanced optimal method

gives a very significant decrease in computational time which

sometimes reaches an average reduction of 96%, yielding an algo-

rithm that is superior, faster and more efficient meaning that it

can be used to optimally solve the continuous p -centre problem

for large data sets for the first time. 
One potential research avenue which we believe to be use-

ul would be to incorporate a fast and good heuristic to gener-

te a feasible solution to the covering problem CP 1 instead of us-

ng CPLEX all the time. However, as mentioned earlier, at a cer-

ain iteration CPLEX or equivalent commercial solver needs to be

sed to prove infeasibility as this task is mandatory and cannot

e performed by a heuristic to guarantee infeasibility. This leads

o adopting a new strategy that could combine the exact method

nd the heuristic approach to solve CP 1 which would identify

he appropriate time when the switching from using the heuris-

ic to CPLEX should take place. This is a challenging but interest-

ng task that deserves a thorough investigation. Lastly, research is-

ues related to the tightening of the checking area and in the way

he demand points are recorded during the search could also be

orth enhancing even further. These aspects are currently being

nvestigated. 
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ppendix 
Fig. A.1. Comparing time spent to calculate Z -maximal circles, the cplex solution and other. 

able A.1 

ptimal results using the original Drezner’s Algorithm n = 439 TSP-Lib with the CP 1 formulation at each iteration. 

H 2 Heuristic Optimal Solution 

p Z CPU Time Z ∗ Loop CPU Time (seconds) a # Loops Maxi Circles (seconds) CPLEX (seconds) Maxi Circles (%) CPLEX (%) 

10 1716 .510 96 .88 1716 .510 6252 .72 2 6154 .93 36 .39 98 .44 0 .58 

20 1169 .540 170 .28 1029 .715 56753 .00 36 54203 .60 297 .90 95 .51 0 .52 

30 975 .0 0 0 205 .36 739 .193 37017 .10 49 35024 .50 222 .96 94 .62 0 .60 

40 874 .271 218 .90 580 .005 31355 .00 67 29986 .40 209 .61 95 .64 0 .67 

50 580 .005 235 .61 468 .542 4939 .25 38 4781 .67 59 .91 96 .81 1 .21 

60 570 .088 246 .86 400 .195 4956 .45 47 4794 .88 57 .77 96 .74 1 .17 

70 503 .271 256 .30 357 .946 3170 .89 46 3076 .31 39 .04 97 .02 1 .23 

80 467 .039 300 .01 312 .500 2186 .27 53 2109 .08 37 .33 96 .47 1 .71 

90 391 .511 276 .20 280 .903 1258 .22 48 1214 .45 23 .80 96 .52 1 .89 

100 315 .486 332 .53 256 .680 462 .30 32 437 .38 13 .93 94 .61 3 .01 

Average 756 .272 233 .89 614 .218 14835 .12 42 14178 .32 99 .87 96 .24 1 .26 

a This excludes computational time for the H 2 heuristic. 

Table A.2 

Optimal results using the original Drezner’s algorithm for n = 575 TSP-Lib with the CP 1 formulation at each iteration. 

H 2 Heuristic Optimal Solution 

p Z CPU Time Z ∗ Loop CPU Time (seconds) a # Loops Maxi Circles (seconds) CPLEX (seconds) Maxi Circles (%) CPLEX (%) 

10 69 .426 98 .34 67 .926 83898 .60 10 78805 .90 351 .59 93 .93 0 .42 

20 48 .107 175 .62 45 .475 19087 .06 11 17513 .80 519 .37 91 .75 2 .72 

30 39 .655 238 .26 35 .556 9743 .91 14 8698 .37 577 .51 89 .27 5 .93 

40 33 .365 296 .90 30 .063 41733 .00 11 3240 .15 38342 .30 7 .76 91 .88 

50 30 .336 403 .76 25 .826 9612 .61 15 2515 .16 6985 .51 26 .17 72 .67 

60 27 .951 422 .18 23 .163 28344 .00 18 1938 .64 26327 .70 6 .84 92 .89 

70 25 .578 558 .86 20 .858 40256 .90 20 1449 .39 38756 .30 3 .60 96 .27 

80 24 .135 535 .90 19 .026 40181 .70 17 892 .371 39247 .90 2 .22 97 .68 

90 21 .932 743 .20 17 .460 4260 .10 18 696 .769 3532 .50 16 .36 82 .92 

100 20 .402 795 .13 16 .420 33694 .00 15 405 .90 33262 .20 1 .20 98 .72 

Average 34 .089 426 .81 30 .177 31081 .242 14 .9 11615 .65 18790 .29 33 .91 64 .21 

a This excludes computational time for the H 2 heuristic. 
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