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Abstract—This paper jointly optimizes the precoding matrices
and the set of active remote radio heads (RRHs) to minimize the
network power consumption for a cloud radio access network
(C-RAN) where both the RRHs and users all have multiple
antennas. Both users’ rate requirements and per-RRH power
constraints are considered. Due to these conflicting constraints,
this optimization problem may be infeasible. We propose to solve
this problem with two phases. In Phase I, a new approach
is proposed to check the feasibility of the original problem.
If the feasibility is guaranteed, in Phase II, a low-complexity
algorithm is proposed to solve the original optimization problem.
Simulation results demonstrate the rapid convergence of the
proposed algorithms and the benefits of equipping multiple
antennas at the user side.

I. INTRODUCTION

Recently, C-RAN has been proposed as a promising solution
to support the exponential growth of mobile data traffic [1],
[2]. In C-RAN, all the baseband processing is performed at
the baseband unit (BBU) pool, while the remote radio heads
(RRHs) perform the basic functionalities of signal processing
[3], [4] and are connected to the BBU pool via fiber links.
Hence, centralized signal processing can be realized and
significant performance gains can be achieved. In addition, the
RRHs can be densely deployed with low operation cost due
to their simple functionalities, which can reduce the average
access distance for the users. Despite these merits, the power
consumption issue should be resolved. When a large number
of RRHs are deployed in the network, the network power
consumption of the C-RAN will become considerable due
to the increasing circuit power consumption of the RRHs.
Fortunately, it was reported in [5] that the traffic load varies
substantially over both time and space due to user mobility
and varying channel state. Hence, the network power can be
significantly reduced by putting some RRHs with light load
into sleep mode while maintaining the quality of service (QoS)
requirements of the users, which is the focus of this paper.

Recently, the network power minimization problem for C-
RAN has been extensively studied in [6]–[11]. However, all
of the above researches only considered the single-antenna
user (SAU) case. With the increasing development in antenna
technology [12], it is possible to equip the wireless devices
with multiple antennas. Unfortunately, the above techniques
dealing with the SAU case cannot be extended directly to the
multiple-antenna user (MAU) case. The reasons are as follows.
Firstly, since the rate constraints and power constraints are
conflicting with each other, this problem may be infeasible. In

the SAU networks, the rate requirements can be equivalently
represented as signal-to-interference-plus-noise ratio (SINR)
constraints, which can be transformed into an SOCP problem.
Hence, the feasibility of the original problem can be easily
checked by solving the SOCP feasibility problem. However,
the rate constraints in the MAU case is non-convex and much
more complex, which cannot be transformed into the SOCP
formulation as in the SAU case. Hence, new techniques need to
be developed to check the feasibility of the original problem.
Secondly, even though the original problem is checked to
be feasible, how to solve it is still difficult, since it cannot
be transformed into an SOCP problem as in the SAU case.
Recently, [13] proposed the weighted minimum mean square
error (WMMSE) method to solve the rate maximization prob-
lem for multiple-input multiple-output (MIMO) interfering
broadcast channels. However, the rate expression is in the
objective function, rather than in the constraints.

This paper considers the joint RRH and precoding optimiza-
tion problem with the objective of minimizing the network
power in the MAU based C-RAN. We divide the solution into
two phases: feasibility checking and algorithm design. The
main contributions of this paper are summarized as follows:

1) In Phase I, a new approach is proposed to check the
feasibility of the network power minimization problem
by solving an alternative problem, where one auxiliary
variable is introduced. This alternative problem is always
feasible. The introduced auxiliary variable is proved to
be increasing during the iterative procedure of the FBC
algorithm.

2) In Phase II, a low-complexity algorithm is proposed to
solve the original network power minimization problem
if it is declared to be feasible in Phase I. Specifically, the
re-weighted 𝑙1-norm minimization method is adopted to
convert the original non-smooth optimization problem
into a series of smooth weighted power minimization
(WPM) problems.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System model

Consider a downlink C-RAN consisting of 𝐼 RRHs and 𝐾
users, where each RRH is equipped with 𝑀 transmit antennas
and each user has 𝑁 receive antennas, as shown in Fig. 1. In
this architecture, there is a BBU pool that centrally controls
the whole network. It is assumed that each RRH is connected
to the BBU pool via a high-speed transport link and the BBU
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Fig. 1. Illustration of a C-RAN with nine RRHs that are connected to a BBU
pool through transport links. In this example, the first RRH and the second
RRH can be shut off to save power since they are far away from users.

pool has access to all users’ channel state information (CSI),
and can distribute all users’ data to all the RRHs through
transport links by using precoding matrices.

Let V𝑖,𝑘 ∈ ℂ
𝑀×𝑑 be the precoding matrix used by the

𝑖th RRH to transmit data vector s𝑘 ∈ ℂ
𝑑×1 to the 𝑘th user,

where 𝑑 is the number of data streams for each user, and
s𝑘 is a Gaussian distribution vector with 𝔼

[
s𝑘s

H
𝑘

]
= I𝑑 and

𝔼
[
s𝑘s

H
𝑙

]
= 0, for 𝑙 ∕= 𝑘. Let H𝑘 = [H1,𝑘, ⋅ ⋅ ⋅ ,H𝐼,𝑘] ∈

ℂ
𝑁×𝑀𝐼 be the channel matrix from all the RRHs to the 𝑘th

user, where H𝑖,𝑘 ∈ ℂ
𝑁×𝑀 denotes the channel matrix from

the 𝑖th RRH to the 𝑘th user. By introducing a network-wide

precoding matrix V𝑘 =
[
VH

1,𝑘,V
H
2,𝑘, ⋅ ⋅ ⋅ ,VH

𝐼,𝑘

]H
∈ ℂ

𝑀𝐼×𝑑,
the received signal vector at the 𝑘th user, denoted as y𝑘 ∈
ℂ

𝑁×1, is given by
y𝑘 = H𝑘V𝑘s𝑘 +

∑
𝑗 ∕=𝑘

H𝑘V𝑗s𝑗 + n𝑘, (1)

where n𝑘 is the noise vector at the 𝑘th user, which is
an additive Gaussian noise vector following the distribution
𝒞𝒩 (

0, 𝜎2
𝑘I𝑁

)
. Then, the achievable rate (nat/s/Hz) of the 𝑘th

user is given by [14]
𝑅𝑘(V) = log

∣∣I+H𝑘V𝑘V
𝐻
𝑘 H𝐻

𝑘 J−1
𝑘

∣∣ , (2)

where log(⋅) is the base of natural logarithm, J𝑘 =∑
𝑗 ∕=𝑘 H𝑘V𝑗V

𝐻
𝑗 H𝐻

𝑘 + 𝜎2
𝑘I is the interference-plus-noise co-

variance matrix at the 𝑘th user, and V is the collection of all
precoding matrices.

Let ℐ = {1, ⋅ ⋅ ⋅ , 𝐼} denote the set of all RRHs, 𝒜 the active
RRH set. The total power consumption can be modeled as

𝑃 (𝒜,V) =
∑
𝑖∈𝒜

1

𝜂𝑖
𝑃 tr
𝑖 (V)+

∑
𝑖∈𝒜

𝑃 c
𝑖 +

∑
𝑖∈ℐ

𝑃 tl
𝑖 + 𝑃BBU,(3)

where 𝜂𝑖 is a constant accounting for the efficiency of the
power amplifier of the 𝑖th RRH, 𝑃 tr

𝑖 (V) is the transmit power
at the 𝑖th RRH, given by 𝑃 tr

𝑖 (V) =
∑𝐾

𝑘=1 ∥V𝑖,𝑘∥2𝐹 , 𝑃 c
𝑖

denotes the circuit power consumption of the 𝑖th RRH, 𝑃 tl
𝑖

is a constant accounting for the power consumed on the 𝑖th
transport links, and 𝑃BBU is a constant accounting for the
power consumed for signal processing in the BBU pool.

B. Problem Formulation
This paper aims to select some RRHs and optimize the

precoding matrices to minimize the total network power con-
sumption while guaranteeing all users’ rate requirements and

each RRH’s power constraint, which can be formulated as

min
𝒜,V

∑
𝑖∈𝒜

1
𝜂𝑖

𝐾∑
𝑘=1

∥V𝑖,𝑘∥2𝐹 +
∑
𝑖∈𝒜

𝑃 𝑐
𝑖

s.t. 𝑅𝑘(V) ≥ 𝑅𝑘,min, ∀𝑘,
𝐾∑

𝑘=1

∥V𝑖,𝑘∥2𝐹 ≤ 𝑃𝑖,max, 𝑖 ∈ 𝒜,
𝐾∑

𝑘=1

∥V𝑖,𝑘∥2𝐹 = 0, 𝑖 ∈ ℐ∖𝒜,

(4)

where 𝑅𝑘,min is the rate requirement for the 𝑘th user, and
𝑃𝑖,max is the transmit power constraint at the 𝑖th RRH.

Problem (4) is an MINLP problem and is NP-hard as
proved in [15]. A brute-force solution to this problem is
through the exhaustive search. However, the exhaustive search
has exponentially prohibitive complexity, which is hard to be
implemented in practice. Hence, this motivates us to develop
low-complexity algorithms to solve Problem (4).

In addition, Problem (4) may be infeasible even when all
RRHs are set in active mode due to the conflicting constraints
of rate requirements and per-RRH power limits. Hence, we
divide the solution to Problem (4) into two phases: In Phase I,
we propose a method to check the feasibility of Problem (4);
In Phase II, a low-complexity iterative algorithm is proposed
to solve Problem (4).

III. PHASE I: FEASIBILITY CHECK METHOD

We construct an alternative problem by introducing an
auxiliary variable 𝛼:

max
𝛼≥0,V

𝛼

s.t. 𝑅𝑘(V) ≥ 𝛼2𝑅𝑘,min, ∀𝑘,
𝐾∑

𝑘=1

∥V𝑖,𝑘∥2𝐹 ≤ 𝑃𝑖,max, ∀𝑖.
(5)

Obviously, Problem (5) is always feasible. This variable can
be regarded as a feasibility indicator of the original Problem
(4): if the optimal solution of 𝛼 is larger than or equal to one,
the original Problem (4) is feasible; Otherwise, we claim that
it is infeasible. However, due to the first set of constraints in
(5), Problem (5) is a non-convex problem, which is difficult
to solve. To handle this difficulty, we apply the relationships
between WMMSE and the rate expression.

We consider the linear receiver filter so that the estimated
signal vector is given by

ŝ𝑘 = U𝐻
𝑘 y𝑘, ∀𝑘. (6)

where U𝑘 ∈ ℂ
𝑁×𝑑 is the receiver filter of the 𝑘th user.

Since the signal vectors s𝑘’s and noise n𝑘’s are mutually
independent, the mean square error (MSE) matrix at the 𝑘th
user is given by

E𝑘 =
(
U𝐻

𝑘 H𝑘V𝑘 − I𝑑
) (

U𝐻
𝑘 H𝑘V𝑘 − I𝑑

)𝐻
+
∑
𝑗 ∕=𝑘

U𝐻
𝑘 H𝑘V𝑗V

𝐻
𝑗 H𝐻

𝑘 U𝑘 + 𝜎2
𝑘U

𝐻
𝑘 U𝑘. (7)

By introducing a set of auxiliary matrices {W𝑘 ર 0}, we
define the following functions

ℎ𝑘 (V,U𝑘,W𝑘) = log ∣W𝑘∣ − Tr (W𝑘E𝑘) + 𝑑, ∀𝑘. (8)

The following lemma establishes the relationships between the
rate expression and function ℎ𝑘 (V,U𝑘,W𝑘).



3

Lemma 1 [13] : ℎ𝑘 (V,U𝑘,W𝑘) is a concave function
for each set of the matrices V, U𝑘 and W𝑘 when the other
two are given. Given V, ℎ𝑘 (V,U𝑘,W𝑘) is the lower-bound
of the data rate 𝑅𝑘(V) in (2). The optimal U𝑘,W𝑘 for
ℎ𝑘 (V,U𝑘,W𝑘) to achieve the data rate is given by

U★
𝑘=

⎛
⎝ 𝐾∑

𝑗=1

H𝑘V𝑗V
𝐻
𝑗 H𝐻

𝑘 +𝜎2
𝑘I

⎞
⎠

−1

H𝑘V𝑘,W
★
𝑘=E★−1

𝑘 , ∀𝑘,

(9)
where E★

𝑘 is obtained by plugging the expression of U★
𝑘 into

the 𝑘th user’s MSE in (7)

E★
𝑘 = I𝑑 −V𝐻

𝑘 H𝐻
𝑘

⎛
⎝ 𝐾∑

𝑗=1

H𝑘V𝑗V
𝐻
𝑗 H𝐻

𝑘 + 𝜎2
𝑘I

⎞
⎠

−1

H𝑘V𝑘.

□
By replacing the first set of constraints in (5) with its lower-

bound ℎ𝑘 (V,U𝑘,W𝑘), Problem (5) becomes
max

𝛼≥0,V,W,U
𝛼

s.t. ℎ𝑘 (V,U𝑘,W𝑘) ≥ 𝛼2𝑅𝑘,min, ∀𝑘,
𝐾∑

𝑘=1

∥V𝑖,𝑘∥2𝐹 ≤ 𝑃𝑖,max, ∀𝑖,
(10)

where U and W are the collection of matrices U𝑘, ∀𝑘 and
W𝑘, ∀𝑘, respectively.

To solve Problem (10), we apply the block coordinate
descent method: given V, update U and W by using (9);
update 𝛼 and V with given U and W. We only need to solve
the latter one. Putting the MSE expression in (7) into the first
set of constraints in Problem (10) yields

max
𝛼≥0,V

𝛼

s.t.Tr

((
H̃𝑘V𝑘−I𝑘

)𝐻

W𝑘

(
H̃𝑘V𝑘−I𝑘

))
+𝛼2𝑅𝑘,min

+
∑
𝑗 ∕=𝑘

Tr
(
V𝐻

𝑗 H̃𝐻
𝑘 W𝑘H̃𝑘V𝑗

)
≤ 𝑡𝑘, ∀𝑘,

𝐾∑
𝑘=1

∥V𝑖,𝑘∥2𝐹 ≤ 𝑃𝑖,max, ∀𝑖.

(11)

where H̃𝑘 = U𝐻
𝑘 H𝑘, ∀𝑘 and 𝑡𝑘 = log ∣W𝑘∣ + 𝑑 −

𝜎2
𝑘Tr

(
U𝐻

𝑘 U𝑘W𝑘

)
. Problem (11) can be equivalently trans-

formed into the following problem

max
𝛼≥0,V

𝛼

s.t.∥x𝑘∥2 ≤
√
𝑡𝑘, ∀𝑘,

∥y𝑖∥2 ≤
√
𝑃𝑖.max, ∀𝑖,

(12)

where x𝑘 is given by

x𝑘=

[
vec

(
V𝐻

1 H̃𝐻
𝑘 W

1/2
𝑘

)𝐻

, ⋅ ⋅ ⋅, vec
((
V𝐻

𝑘 H̃𝐻
𝑘 −I𝑘

)
W

1/2
𝑘

)𝐻

,

⋅ ⋅ ⋅ , vec
(
V𝐻

𝐾H̃𝐻
𝑘 W

1/2
𝑘

)𝐻

, 𝛼
√

𝑅𝑘,min

]𝐻

and y𝑖 is given by

y𝑖 =
[
vec(V𝑖,1)

𝐻
, ⋅ ⋅ ⋅ , vec(V𝑖,𝐾)

𝐻
]𝐻

. (13)

Problem (12) is an SOCP that can be efficiently solved.
Based on the above analysis, the FBC algorithm for check-

ing the feasibility of the original optimization problem (4) is
formally described in Algorithm 1.

Algorithm 1 FBC Algorithm
1: Initialize iterative number 𝑛 = 1, the maximum number

of iterations 𝑛max. Initial precoding matrices V(0) such
that the per-RRH power constraints are satisfied. Calculate
U(0) and W(0) by using (9) with V(0);

2: With U(𝑛−1) and W(𝑛−1), update 𝛼(𝑛) and V(𝑛) by
solving the SOCP problem (12);

3: Update U(𝑛) and W(𝑛) as in (9) with V(𝑛);
4: If 𝛼(𝑛) ≥ 1, declare that Problem (4) is feasible and output

V(𝑛) for the initialization of Phase II and terminate; If
𝛼(𝑛) < 1 and 𝑛 ≥ 𝑛max, declare that Problem (4) is
infeasible and terminate; Otherwise, set 𝑛 ← 𝑛 + 1 and
go to step 2.

Theorem 1: The sequence of 𝛼 generated during the
iterative procedure of the FBC algorithm is monotonically
increasing.

Proof: The details are omitted due to space limit. □

IV. PHASE II: A LOW-COMPLEXITY ALGORITHM TO

SOLVE PROBLEM (4)

In this section, we provide a low-complexity algorithm to
solve Problem (4) if it is claimed to be feasible in Phase I.

A. Reweighted 𝑙1-norm minimization

By using the 𝑙0-norm, the objective function of Problem (4)
is equivalent to

𝐼∑
𝑖=1

1

𝜂𝑖

𝐾∑
𝑘=1

∥V𝑖,𝑘∥2𝐹 +

𝐼∑
𝑖=1

∥∥∥∥∥
𝐾∑

𝑘=1

∥V𝑖,𝑘∥2𝐹
∥∥∥∥∥
0

𝑃 𝑐
𝑖 . (14)

Then the non-smooth 𝑙0-norm objective can often be approx-
imated by a re-weighted 𝑙1-norm,∥∥∥∥∥

𝐾∑
𝑘=1

∥V𝑖,𝑘∥2𝐹
∥∥∥∥∥
0

≈ 𝑎
(𝑛)
𝑖

𝐾∑
𝑘=1

∥V𝑖,𝑘∥2𝐹 (15)

where 𝑎(𝑛)𝑖 is a weight factor of the 𝑖th RRH at the 𝑛th iteration
that is iteratively updated as

𝑎
(𝑛)
𝑖 =

1
𝐾∑

𝑘=1

∥∥∥V(𝑛)
𝑖,𝑘

∥∥∥2
𝐹
+ 𝛿

, ∀𝑖, (16)

where 𝛿 is a small constant parameter and V
(𝑛)
𝑖,𝑘 is the solution

in the 𝑛th iteration.
By using the approximation in (15), we have the following

problem that should be solved in the 𝑛-th iteration

min
V

𝐼∑
𝑖=1

𝜔
(𝑛−1)
𝑖

𝐾∑
𝑘=1

∥V𝑖,𝑘∥2𝐹
s.t. 𝑅𝑘(V) ≥ 𝑅𝑘,min∀𝑘,

𝐾∑
𝑘=1

∥V𝑖,𝑘∥2𝐹 ≤ 𝑃𝑖,max, ∀𝑖
(17)

where
𝜔
(𝑛−1)
𝑖 =

1

𝜂𝑖
+ 𝑎

(𝑛−1)
𝑖 𝑃 𝑐

𝑖 . (18)

Based on the above analysis, the re-weighted 𝑙1-norm (RLN)
algorithm to solve Problem (4) is given in Algorithm 2.
Problem (17) can be similarly solved as Problem (5) by using
the WMMSE method.
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Algorithm 2 RLN algorithm
1: Initialize a small 𝛿, the iterative number 𝑛 = 1, the

maximum number of iterations 𝑁max. Initialize V(0) with
the outputs given by Phase I, calculate {𝜔(0)

𝑖 , ∀𝑖} in (18);
2: Given {𝜔(𝑛−1)

𝑖 , ∀𝑖}, solve Problem (17) to get V(𝑛) by
using the WMMSE algorithm;

3: Update {𝜔(𝑛)
𝑖 , ∀𝑖} as in (18) with V(𝑛);

4: If 𝑛 ≥ 𝑁max, terminate. Otherwise, set 𝑛 ← 𝑛 + 1 and
go to step 2.

Fig. 2. Convergence performance of the FBC algorithm under different
numbers of receive antennas.

V. SIMULATION RESULTS

In this section, we present simulation results to evaluate
the performance of the proposed algorithms. Consider one
square C-RAN network with [−1000 1000] × [−1000 1000]
meters. It is assumed that all the users and RRHs are uniformly
and independently distributed in this region. We adopt the
channel model that consists of four parts: 1) the long term
evolution (LTE) standard path loss model: 𝑃𝐿𝑖,𝑘 = 148.1 +
37.6log10𝑑𝑖,𝑘 (dB), where 𝑑𝑖,𝑘 (in km) is the distance from the
𝑖th RRH to the 𝑘th user; 2) Log-normal shadowing with zero
mean and 8 dB standard derivation; 3) Rayleigh fading with
zero mean and unit variance [16]–[18]; 4) transmit antenna
power gain of 9 dBi. Each user is assumed to have the same
rate requirement, i.e., 𝑅min = 𝑅𝑘,min, ∀𝑘. The number of data
streams is set as 𝑑 = min{𝑀,𝑁}. Unless stated otherwise,
the system parameters are set as follows: error tolerance is
𝜀 = 10−3, system bandwidth is 10 MHz, thermal noise power
density is -174 dBm/Hz, 𝐼 = 10, 𝐾 = 8, 𝑀 = 2, 𝑁 = 2,
𝑃𝑖,max = 5𝑊 , 𝜂𝑖 = 25% [19], 𝑃 c

𝑖 = 5.6𝑊 , 𝑃 tl
𝑖 = 5.05𝑊 ,∀𝑖,

𝑃BBU = 20𝑊 [8], [20].
Fig. 2 shows the convergence behaviour of the FBC algorith-

m for different numbers of receive antennas 𝑁 when 𝑀 = 4
and 𝑅min = 10 nats/s/Hz. It can be seen from Fig. 2 that
the value of 𝛼 monotonically increases during the iterative
procedure, which verifies the theoretical results in Theorem
1. It is also observed that the convergence speed is slightly
affected by the number of receive antennas. As expected, the
converged value of 𝛼 increases with the number of receive
antennas since more degrees of freedom are available with
more receive antennas. This means that more receive antennas
can support more users.

To show the benefits of equipping multiple antennas at each
user, Fig. 3 shows the effect of the number of receive antennas

Fig. 3. Feasibility probabilities under different numbers of receive antennas
with 𝑀 = 4.

Fig. 4. (a) Total power consumption versus the number of iterations; (b) The
number of active RRHs versus the number of iterations. The rate requirement
for each user is set as 𝑅min = 2 nats/s/Hz.

on the feasibility percentage, which is defined as the ratio of
the number of feasible channel realizations to the total number
of channel realizations. For each number of receive antennas,
500 randomly generated channels are checked. As seen from
Fig. 3, the feasibility percentage dramatically increases with
the number of receive antennas, which means more receive
antennas can admit more users.

The convergence performances of the RLN algorithm are
shown in Figs. 4 (a) and (b) for the total power consumption
and the number of the remaining RRHs in each iteration,
respectively. Three different values of 𝛿 are tested, i.e., 𝛿 =
10−3, 10−5 and 10−9. One randomly generated channel that is
checked to be feasible by the FBC algorithm is used to obtain
the convergence behaviour. It can be seen from the figures
that for all considered values of 𝛿, both the number of active
RRHs and the total power consumption decrease rapidly. At
the converged state, only six RRHs are active. Compared to
the full cooperation strategy where all RRHs are active, we
can save large amount of power as seen from Fig. 4 (a).

Next, we compare the performance of the RLN algorithm
with the following RRH selection methods:

∙ Exhaustive search (Exhau-search) method: In this
method, we check all possible 𝒜 and choose one with
the least power consumption. It has an exponential com-
plexity, which serves as the performance benchmark.

∙ Successive RRH selection (Succesive-sel) method: This
method first lets all the RRHs be active and then gradually
removes the RRHs according to their transmit power
from the lowest to the highest until the problem becomes
infeasible.
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Fig. 5. (a) Total power consumption versus the number of receive antennas
𝑁 ; (b) The corresponding average number of active RRHs versus the number
of receive antennas 𝑁 . The rate requirements for each user are set as 𝑅min =
3 nats/s/Hz.

∙ Full cooperative (Full-coop) method: In this method, all
the RRHs are active.

Figs. 5 (a) and (b) show the average total power consump-
tion and their corresponding number of active RRHs respec-
tively versus the number of receiver antennas. It is seen the
total power consumption of the RLN algorithm is very close
to that of the exhaustive search method, especially when the
number of receive antennas is small. Also, the RLN algorithm
is observed to require lower total power consumption and
fewer active RRHs than the successive RRH selection method.
As expected, the RLN algorithm outperforms the full cooper-
ative transmission scheme significantly and the performance
gain increases with the number of receive antennas. It is
observed that there is a dramatic decrease in the total power
consumption when the number of receive antennas increases
from 1 to 2, i.e., the total power reduction is roughly 36%.
However, when the number of receive antennas increases from
3 to 5, the reduction in both the total power consumption and
the number of active RRHs is small. This is due to the fact
that enough spatial degrees of freedom become available to
regulate the multi-user interference and the additional receive
antennas can only achieve some diversity gain rather than
spatial multiplexing gain.

VI. CONCLUSION

In this paper, a joint selection of active RRHs and op-
timization of the precoding matrices which minimizes the
network power consumption for the MIMO C-RAN, while
guaranteeing users’ rate requirements and per-RRH power
constraints, has been studied. A novel approach was pro-
posed to check the feasibility of this problem by solving
an alternative problem with one introduced variable. Then a
low-complexity iterative algorithm, based on the reweighted
𝑙1-norm minimization method and WMMSE algorithm was
proposed to solve the original network power minimization
problem. Simulation results show that the proposed algorithms
converge fast, which is attractive for practical implementation.
Also, more antennas at the user side can admit more users.
Moreover, our proposed algorithm was shown to achieve much
greater power savings than the full cooperation method, and

the performance loss compared with the optimal approach is
insignificant.
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