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Abstract—Millimetre waves (mm-Waves) with massive multiple
input and multiple output (MIMO) have the potential to fulfill
fifth generation (5G) traffic demands. In this paper, a hybrid
digital-to-analog (D-A) precoding system is investigated and a
particle swarm optimisation (PSO) based joint D-A precoding
optimisation algorithm is proposed. This algorithm maximises the
capacity of the hybrid D-A mm-Wave massive MIMO system. The
proposed algorithm is compared with three known hybrid D-A
precoding algorithms. The analytical and simulation results show
that the proposed algorithm achieves higher capacity than the
existing hybrid D-A precoding algorithms.

Index Terms—Beamforming, hybrid beamforming, optimisa-
tion, particle swarm optimisation (PSO), Millimetre wave.

I. INTRODUCTION

Mobile networks have been growing exponentially, leading
to a scarcity of bandwidth. Recent studies anticipated that the
global mobile data traffic will reach a 66% annual growth
rate in the next five years [1]. Recently, it is shown that
millimetre-wave (mm-Wave), operating in the (30− 300) GHz
spectrum, offers a promising approach for meeting this de-
mand by providing a larger bandwidth [1]. A reasonable short
wavelength of this band enables packing a large number of
antennas in the same physical space [2]. Therefore, the feasi-
bility of implementing a massive multiple input and multiple
output (MIMO) in a small aperture area is possible [3]. In a
fully-digital beamforming (BF) solutions the number of radio
frequency (RF) chains is equivalent to the number of transmit
antennas which increase the computation complexity and power
consumption of the system [3, 4]. Therefore, fully-digital BF
cannot be directly applied to mm-Wave massive MIMO system,
due to the fact that a large number of RF chains are required.

A simpler approach will be to use either an analog precoder
system or a hybrid digital-to-analog (D-A) precoding system,
where the number of RF chains is less than the number of trans-
mitting antennas [4–11]. A fully-antenna array was used for the
hybrid D-A precoding, where each RF chain was connected to
all the transmit antennas [5, 6]. Nonetheless, the fully-antenna
array has limitations as 𝑎) it involves higher complexity at the
analog precoder [5, 9] and 𝑏) more energy is consumed since the
number of phase shifters scales linearly with the number of RF
chains and antennas [12]. A sub-antenna array structure for the
hybrid D-A precoding was proposed, where each RF chain was
connected to a specific sub-antenna array [7–11]. Therefore, in
this case, the phase shifters are independent of the number of
RF chains. Substantially, the sub-antenna array structure for the

hybrid D-A precoding can reduce the computation complexity
and power consumption of the system as compared to the fully-
antenna array.

Precoding for the hybrid D-A BF system has already been
proposed in [5–11]. An iterative algorithm was proposed in [4],
where the analog precoder was optimised to improve the capac-
ity of the mm-Wave system. However, the capacity achieved
by [4] is much lower than the capacity of the hybrid D-A
precoding system as shown in [9]. The digital precoder is
fixed to an identity matrix while the analog precoder is ex-
actly the normalised conjugate transpose of the channel as
proposed in [7, 8, 10, 11]. However, in this case, the precoders
have not been designed jointly. Recently, a joint analog and
digital precoders have been investigated, where an iterative
algorithm for the hybrid D-A precoding by utilizing the idea
of a singular value decomposition (SVD) is proposed in [9].
SVD algorithm is known for its higher complexity as it requires
matrix inversion [13]. The scheme in [9], optimised every RF
chain successively, however, the complexity of this method
is very high [13]. Therefore, in this paper, a particle swarm
optimisation (PSO) algorithm is proposed to design the hybrid
D-A precoding jointly. PSO is an evolutionary approach, which
refines the estimates through a group of agents searching the
solution space and finding the global or near an optimum
solution after several iterations [14]. In this contribution, the
reasons for choosing PSO is: firstly, this algorithm requires
minimal tuning parameters, thereby, can be implemented in
real-time applications. Secondly, PSO only requires the cost-
function and does not require any differentiation, matrix inver-
sion, resulting in reduced complexity [15]. Therefore, it can be
implemented adaptively, thereby, decreasing the complexity of
the system. Our simulation results, show that PSO outperforms
the existing algorithms in [4, 7, 8, 10, 11]. Furthermore, the
results illustrate that the proposed scheme scales easily with the
increased number of RF chains and transmit antennas. Finally,
the computational complexity of PSO is much lower than the
SVD-based hybrid D-A precoding algorithm while the iterative
analog precoder has a lower complexity.

Notation: Bold uppercase letters 𝑋𝑋𝑋 , and lowercase letters,
𝑥𝑥𝑥, denote matrices and vectors, respectively. Transposition and
conjugate transposition of a matrix are respectively denoted
by (⋅)𝑇 and (⋅)𝐻 . ∣.∣ and ∣∣.∣∣𝐹 denote the determinant and
Frobenius norm of a matrix, respectively, ∣∣.∣∣ denotes the norm
of a vector. The diagonal matrix is denoted as diag(.), and the
operator vec(.) maps the 𝑃 ×𝑋 matrix to a 𝑃𝑋 vector. Finally,



ℂ denote as a complex number, while
√
. is a square root of a

number and ∪ is denoted as union of event.

II. SYSTEM MODEL

The block diagram of the downlink mm-Wave massive
MIMO system for a hybrid D-A BF is shown in Fig. 1. A
digital precoder represented as 𝐷𝐷𝐷 = diag[𝑑1, 𝑑2, ⋅ ⋅ ⋅ , 𝑑𝑁 ],
where 𝑑𝑛 ∈ ℂ for 𝑛 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 [9]. Due to the fact
that 𝐷𝐷𝐷 is a diagonal matrix, the inter-symbol interference does
not exist [7]. 𝑁 data symbols are precoded by 𝐷𝐷𝐷 and after
that, symbol 𝑑𝑛 passes through the 𝑛-th RF chain. The digital
domain signal from one RF chain is fed to𝑀 transmit antennas
to perform analog precoding. The analog precoder vector is
denoted by 𝑎𝑎𝑎𝑛 ∈ ℂ

𝑀×1, where all the elements of 𝑎𝑎𝑎𝑛 have the
same amplitude 1/

√
𝑀 but different phase shifts [9]. Finally,

every data symbol is transmitted by the sub-antenna array of𝑀
antennas.

A. Channel Model

Rayleigh fading or multipath Rayliegh fading has been
adopted into microwave radio channel [16–29]. Mm-Wave
channel will no longer follow the low frequencies conventional
Rayleigh fading due to the limited number of scatters [9].
Therefore, in this paper geometric 3−dimensional (3D) Saleh-
Valenzuela (SV) channel model is used as mentioned in [9, 30–
32]. Channel model for the 𝑛-th RF chain is represented as

ℎ̄ℎℎ𝑛 =

√
𝑁𝑀

𝐿

𝐿∑
𝑙=1

(
ℎ3𝐷𝑛,𝑚 𝑠𝑣𝑠𝑣𝑠𝑣𝑟(𝜃

𝑟
𝑙 , 𝜙

𝑟
𝑙 )𝑠𝑣𝑠𝑣𝑠𝑣

𝐻
𝑡 (𝜃𝑡𝑙 , 𝜙

𝑡
𝑙)

)
,(1)

where ℎ̄ℎℎ𝑛 ∈ ℂ
1×𝑀 , 𝐿 is the number of multipaths [9]. The

3D BF gain for every transmitter (Tx) antenna element ℎ3𝐷𝑛,𝑚
is given in (2). 𝜃𝑡𝑙 (𝜙

𝑡
𝑙) and 𝜃𝑟𝑙 (𝜙

𝑟
𝑙 ) incorporates the zenith

(azimuth) direction of departure and arrival (AOD,AOA), re-
spectively. The steering vector 𝑠𝑣𝑠𝑣𝑠𝑣𝑖 in (1) where 𝑖 ∈ [𝑟 , 𝑡], is
given by [5, 30]

𝑠𝑣𝑠𝑣𝑠𝑣𝑖(𝜃
𝑖
𝑙 , 𝜙

𝑖
𝑙) = vec[𝑠𝑣𝑠𝑣𝑠𝑣𝑖𝑥(Ψ)𝑠𝑣𝑠𝑣𝑠𝑣𝑇𝑖𝑦 (Φ)], 𝑖 ∈ [𝑟 , 𝑡] (3)

where

𝑠𝑣𝑠𝑣𝑠𝑣𝑖𝑥(Ψ) =
1√
𝑀𝑥

[
1, 𝑒𝑗Ψ, ⋅ ⋅ ⋅ , 𝑒𝑗(𝑀𝑥−1)Ψ

]𝑇
, (4)

𝑠𝑣𝑠𝑣𝑠𝑣𝑖𝑦 (Φ) =
1√
𝑀𝑦

[
1, 𝑒𝑗Φ ⋅ ⋅ ⋅ , 𝑒𝑗(𝑀𝑦−1)Φ

]𝑇
. (5)

As the uniform planar antenna (UPA) structure is a preferred
choice for 3D channel, we adopted a 𝑀 =𝑀𝑥 ×𝑀𝑦 structure
antennas, where 𝑀𝑥 represents the 𝑥-axis while 𝑀𝑦 represents
the 𝑦-axis. The steering vectors 𝑠𝑣𝑠𝑣𝑠𝑣𝑖𝑥 , 𝑠𝑣𝑠𝑣𝑠𝑣𝑖𝑦 represent the 𝑥-axis
and 𝑦-axis respectively. The values of Ψ and Φ are calculated
as
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Figure 1. Block diagram of a Hybrid D-A BF mm-Wave Transmitter System.

Ψ = −2𝜋𝜆−1𝑢𝑥 sin(𝜃
𝑖
𝑙) cos(𝜙

𝑖
𝑙), 𝑖 ∈ [𝑟 , 𝑡] (6)

Φ = −2𝜋𝜆−1𝑢𝑦 sin(𝜃
𝑖
𝑙) sin(𝜙

𝑖
𝑙), 𝑖 ∈ [𝑟 , 𝑡] (7)

where 𝑢𝑥 and 𝑢𝑦 is the inter-element distance in the 𝑥 and
𝑦-axis, respectively. In (2), 𝑃𝑚 is the power of the 𝑚-th Tx
antenna, and is calculated assuming a single slope exponen-
tial power delay profile by [30]. 𝐹𝑅𝑥,𝑍 and 𝐹𝑅𝑥,𝐴 are the
receiver (Rx) beam pattern for the zenith (Z) and azimuth
(A) polarizations. 𝜗𝑙 and 𝜑𝑙 are the zenith and azimuth AoA,
respectively. 𝐹𝑇𝑥,𝑛,𝑍 and 𝐹𝑇𝑥,𝑛,𝐴 are the Tx beam pattern
for the 𝑛-th RF chain and 𝜃𝑙,𝑚 and 𝜙𝑙,𝑚 are the zenith and
azimuth AoD, respectively. 𝜙𝑍𝑍

𝑙 , 𝜙𝑍𝐴
𝑙 , 𝜙𝐴𝑍

𝑙 , 𝜙𝐴𝐴
𝑙 are the initial

random phases for zenith (ZZ), cross (ZA, AZ), and azimuth
polarizations (AA) for the 𝑙 tap. 𝜅𝑚 is the intra-cluster Rician
𝐾-factor associated with the 𝑚-th Tx antenna cluster [30].

B. Received Signal of Hybrid D-A BF System

The received signal for all 𝑁 data symbols 𝑦𝑦𝑦 =
[𝑦1, 𝑦2, ⋅ ⋅ ⋅ , 𝑦𝑁 ]𝑇 , is expressed as

𝑦𝑦𝑦 =𝐻𝐻𝐻𝐴𝐴𝐴𝐷𝐷𝐷𝑠𝑠𝑠+ nnn =𝐻𝐻𝐻𝐺𝐺𝐺𝑠𝑠𝑠+ nnn, (8)

where 𝐻𝐻𝐻=[ℎℎℎ1,ℎℎℎ2, ⋅ ⋅ ⋅ ,ℎℎℎ𝑁 ] ∈ ℂ
𝑁×𝑁𝑀 ,

ℎℎℎ𝑛=[0001×𝑀(𝑛−1), ℎ̄ℎℎ𝑛, 0001×𝑀(𝑁−𝑛)] ∈ ℂ
1×𝑁𝑀 , and ℎ̄ℎℎ𝑛 is

given in (1). The analog precoder𝐴𝐴𝐴 is represented as

𝐴𝐴𝐴 =

⎡
⎢⎢⎢⎢⎢⎣

𝑎𝑎𝑎1 000 ⋅ ⋅ ⋅ 000

000 𝑎𝑎𝑎2
... 000

...
...

. . .
...

000 000
... 𝑎𝑎𝑎𝑁

⎤
⎥⎥⎥⎥⎥⎦ (9)

where 𝐴𝐴𝐴 = diag[𝑎𝑎𝑎1, ⋅ ⋅ ⋅ , 𝑎𝑎𝑎𝑁 ] = [𝑎𝑎𝑎1, 𝑎𝑎𝑎2, ⋅ ⋅ ⋅ , 𝑎𝑎𝑎𝑁 ],
𝑎𝑎𝑎𝑛 = [0001×𝑀(𝑛−1); 𝑎𝑎𝑎𝑛; 0001×𝑀(𝑁−𝑛)] ∈ ℂ

𝑁𝑀×1. 𝑁 data
symbols are represented as 𝑠𝑠𝑠 = [𝑠1, 𝑠2, ⋅ ⋅ ⋅ , 𝑠𝑁 ]𝑇 , and
nnn = [𝑛1, ⋅ ⋅ ⋅ , 𝑛𝑁 ], where 𝑛𝑛 is the complex Gaussian random
variable with zero means and a variance of 𝜎2. 𝐺𝐺𝐺 = 𝐴𝐷𝐴𝐷𝐴𝐷,
represents the joint hybrid precoding matrix of size (𝑁𝑀×𝑁).

ℎ3𝐷𝑛,𝑚 =
√
𝑃𝑚

𝐿∑
𝑙=1

[
𝐹𝑅𝑥,𝑍(𝜑𝑙, 𝜗𝑙)
𝐹𝑅𝑥,𝐴(𝜑𝑙, 𝜗𝑙)

]𝑇 [
𝑒𝑗𝜙

𝑍𝑍
𝑙

√
𝜅−1
𝑚 𝑒𝑗𝜙

𝑍𝐴
𝑙√

𝜅−1
𝑚 𝑒𝑗𝜙

𝐴𝑍
𝑙 𝑒𝑗𝜙

𝐴𝐴
𝑙

] [
𝐹𝑇𝑥,𝑛,𝑍(𝜃𝑙,𝑚, 𝜙𝑙,𝑚)
𝐹𝑇𝑥,𝑛,𝐴(𝜃𝑙,𝑚, 𝜙𝑙,𝑚)

]
(2)



In order to achieve the maximum capacity of the system, an
appropriate𝐺𝐺𝐺 has to be found which is calculated as

𝐶(𝐺𝐺𝐺∗) = argmax
𝐺𝐺𝐺∈ C1,C2

log2

(∣∣∣∣𝐼𝐼𝐼𝑁 +
𝐻𝐻𝐻𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐻𝐻𝐻

𝜎2

∣∣∣∣
)
, (10)

where 𝐼𝐼𝐼𝑁 is an identity matrix with a dimension of 𝑁 .
The optimisation problem in (10) is a (𝑁𝑀 × 𝑁) matrix
optimisation problem which is quite difficult to solve [5, 9].
Similar to [4, 5, 9] as𝐺𝐺𝐺 is a precoder matrix it cannot be chosen
freely and has to satisfy the following constraints:
C1: The Frobenius norm of 𝐺𝐺𝐺 should satisfy ∣∣𝐺𝐺𝐺∣∣2𝐹 ≤ 𝑁 to
meet the total transmit power constraint.
C2: As𝐷𝐷𝐷 is a diagonal matrix, and the amplitude of the analog
precoding 𝑎𝑎𝑎𝑛 of each RF chain is fixed to 1/

√
𝑀. Therefore,

for each non-zero elements of𝐺𝐺𝐺, the amplitude should be equal.

III. PRECODER DESIGN FOR HYBRID D-A BF SYSTEM

In this section, we discuss the design of the hybrid D-A
precoding, where analog and digital precoders are jointly de-
signed. As RF chains do not cause inter RF interference,
𝐺𝐺𝐺 = [𝑔𝑔𝑔1, 𝑔𝑔𝑔2, ⋅ ⋅ ⋅ , 𝑔𝑔𝑔𝑁 ] can be designed as a block matrix where
𝑔𝑔𝑔𝑛 = [0001×𝑀(𝑛−1); 𝑔𝑔𝑔𝑛; 0001×𝑀(𝑁−𝑛)] ∈ ℂ

𝑁𝑀×1, the matrix
optimisation problem can now be solved as a 𝑁 independent
vectors optimisation problem. The advantages are: 𝑎) it allows
us to apply our scheme for every RF chain independently and 𝑏)
the result of𝐻𝐺𝐻𝐺𝐻𝐺 becomes exactly a diagonal matrix with equal
elements and the upper bound is achieved in the capacity.

The capacity of the system is given as

𝐶(𝑔𝑔𝑔1, 𝑔𝑔𝑔2, ⋅ ⋅ ⋅ , 𝑔𝑔𝑔𝑁 ) =
𝑁∑

𝑛=1

log2

(
1 +

ℎ̄ℎℎ𝑛𝑔𝑔𝑔𝑛𝑔𝑔𝑔
𝐻
𝑛 ℎ̄ℎℎ

𝐻
𝑛

𝜎2

)
. (11)

Undoubtedly, the design of 𝐺𝐺𝐺 will makes the optimisation
problem much easier to solve. Furthermore, each RF chain is
now independently resolved and can be designed to maximise
its capacity. These algorithms are independent to one another
and they will be initialised simultaneously. The 𝑛-th RF chain
is optimised by designing the precoding vector 𝑔𝑔𝑔𝑛 as

𝐶𝑛(𝑔𝑔𝑔𝑛) = argmax
𝑔𝑔𝑔𝑛∈ C1,C2

log2

(
1 +

ℎ̄ℎℎ𝑛𝑔𝑔𝑔𝑛𝑔𝑔𝑔
𝐻
𝑛 ℎ̄ℎℎ

𝐻
𝑛

𝜎2

)
. (12)

A. Particle Swarm Optimisation

PSO is a stochastic optimisation technique and details can
be found in [14, 15] and the references therein. PSO algorithm
is an optimisation strategy which became popular due to the
fact that it is simple to implement, and quickly convergence
to the desired solution [15]. It is robust against local minimas
which make it appealing for real-time applications [14]. The
coordinates of an agent represent the solution to the problem.
Furthermore, in each iteration of PSO, velocity of each agent
is adjusted towards the best location and toward the best agent.
Following steps are involved to find the solution for each RF
chain:
For the 𝑛-th RF chain
Initialisation. For this problem 𝑔𝑔𝑔𝑛 needs to be optimised which

is a 𝑀 × 1 dimensional vector. Initialise 𝑃 agents with random
positions 𝑔𝑔𝑔1(0), 𝑔𝑔𝑔2(0), ⋅ ⋅ ⋅ , 𝑔𝑔𝑔𝑝(0). All positions are normalised
to ensure that power of 𝑛-th RF chain is 1. The position of
the agent is used to evaluate (12) and the position of the
agent which maximises (12) is denoted as 𝑓𝑓𝑓best. After that, the
velocity of all the agents is randomly initialised. The 𝑝-th agent
velocity is represented as 𝑣𝑣𝑣𝑝. After initialisation, the following
iterative process is performed.
Step 1. Update the velocity 𝑣𝑣𝑣𝑝 and position 𝑔𝑔𝑔𝑝 of 𝑝-th agent

𝑣𝑣𝑣𝑝(𝑖+ 1) = 𝑣𝑣𝑣𝑝(𝑖) + 𝑐1𝑤̄𝑤𝑤1 ⊙
(
𝑔𝑔𝑔best(𝑖)− 𝑔𝑔𝑔𝑝(𝑖)

)
+ 𝑐2𝑤̄𝑤𝑤2 ⊙

(
𝑓𝑓𝑓best − 𝑔𝑔𝑔𝑝(𝑖)

)
, (13)

𝑔𝑔𝑔𝑝(𝑖+ 1) = 𝑔𝑔𝑔𝑝(𝑖) + 𝑣𝑣𝑣𝑝(𝑖+ 1), (14)

where 𝑤̄𝑤𝑤1, 𝑤̄𝑤𝑤2 are uniformly distributed random numbers. The
element-wise multiplication is denoted by ⊙, 𝑐1 and 𝑐2 are
positive acceleration coefficients. In the first iteration 𝑔𝑔𝑔best =
𝑔𝑔𝑔𝑝. After that, each agent keeps track of its own best posi-
tion, which is associated with achieving the maximum value
in (12). Once the position of the 𝑝-th agent is updated, its
fitness 𝐶𝑛(𝑔𝑔𝑔𝑝(𝑖 + 1)) is evaluated. If the updated fitness of the
agent is more than the previous best-fitness of the agent, then
𝑔𝑔𝑔best(𝑖) = 𝑔𝑔𝑔𝑝(𝑖+ 1).
Step 2. Finally, we compare the fitness of all the 𝑃 agents and
the agent which maximises (12) is compared with previous
𝑓𝑓𝑓best and the one which maximised (12) becomes the global
best agent 𝑓𝑓𝑓best.
Step 3. Repeat step-1 and step-2 until the number of iterations
are complete. Now, 𝑓𝑓𝑓best = 𝑔𝑔𝑔𝑛.
End for 𝑛-th RF chain
Note that, 𝑔𝑔𝑔𝑛 = 𝑑𝑛𝑎𝑎𝑎𝑛 for all the sub-antenna array and the
optimal solution 𝑔𝑔𝑔𝑛 have a similar form. After obtaining the
precoder vector 𝑔𝑔𝑔𝑛 for the 𝑛-th RF chain, the same algorithm
is applied to other chains. Penultimately, it is worth mentioning
here that as the RF chains are independent,𝑁 independent PSO
algorithms are required. After optimising the last RF chain,
the optimal digital, analog, and joint hybrid precoding matrices
𝐷𝐷𝐷,𝐴𝐴𝐴, and𝐺𝐺𝐺 are obtained.
Output
𝐺𝐺𝐺 = diag[𝑔𝑔𝑔1, 𝑔𝑔𝑔2, ⋅ ⋅ ⋅ , 𝑔𝑔𝑔𝑁 ],
𝐴𝐴𝐴 = diag[𝑎𝑎𝑎1, 𝑎𝑎𝑎2, ⋅ ⋅ ⋅ , 𝑎𝑎𝑎𝑁 ],
𝐷𝐷𝐷 = diag[𝑑1, 𝑑2, ⋅ ⋅ ⋅ , 𝑑𝑁 ].

Finally, as each RF chain has equivalent power of 1, there-
fore, the total transmit power constraint as mentioned in (C1)
is satisfied

∣∣𝐺𝐺𝐺∣∣2𝐹 = ∣∣diag {𝑔𝑔𝑔1, ⋅ ⋅ ⋅ , 𝑔𝑔𝑔𝑁} ∣∣2𝐹 ≤ 𝑁. (15)

In addition, all non-zero emlents of 𝑎𝑎𝑎𝑛 have fixed amplitude
which makes (C2) satisfied.

IV. SIMULATION RESULTS

In this section, to validate the performance of our pro-
posed algorithms, capacity performance per time slot versus
the signal-to-noise-ratio (SNR = 1/𝜎2) per antenna element is
compared when using different algorithms. The first algorithm
employs analog precoder [4]. The second algorithm, named a as
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Figure 2. Learning curve of a mm-Wave communication system with respect
to different agents when SNR is fixed to 5 dB.

hybrid D-A precoding based on analog precoder 𝐴𝐴𝐴, is exactly
the normalised conjugate transpose of 𝐻𝐻𝐻, while the digital
precoder matrix𝐷𝐷𝐷 = 𝐼𝐼𝐼 is an identity matrix is implemented [7,
8, 10, 11]. The third algorithm, a hybrid D-A precoding based
on SVD method, which has been proposed in [9] is considered.
Finally, an optimal unconstrained hybrid D-A precoding pro-
posed in [9] is implemented based on the sub-antenna array
architecture as a benchmark. Furthermore, different RF chains
have also been implemented and multi-beampattern have been
plotted. The channels are generated according to the channel
model (1). The number of channel paths is set to 𝐿 = 3.
The transmitter antenna array is assumed as UPA with antenna
spacing 𝑢𝑞 = 𝜆

2 , 𝑞 ∈ [𝑥 , 𝑦]. The AoAs and AoDs are taken
independently from the uniform distribution within [0, 2𝜋].

Fig. 2 shows the learning curves of the PSO based algorithm
with a different number of agents at SNR = 5 dB. The capacity
achieved is averaged over 10, 000 independent realizations of
the channel. It is be observed from Fig. 2 that by increasing the
number of agents, the algorithm converges faster and achieved
higher capacity value. However, the higher number of agents
requires more complexity as more agents have to be initialised
and more calculations have to be carried out. From Fig. 2, it can
be observed that the convergence of population size of 5 and 50
is similar. Therefore, in the sequel, the number of agents is fixed
to 10, the number of iterations is fixed to 40.

Fig. 3 and Fig. 4 plot the capacity versus SNR of the hybrid
D-A BF mm-Wave system. From Fig. 3 and Fig. 4 it is observed
that as the SNR improves, the capacity of the system increases.
The capacity achieved by analog precoder in [4] is always
lower than the capacity achieved by PSO. For example, when
SNR = 0 dB the capacity gap between the analog precoder [4]
and PSO is about 4 bits/s/Hz, while when SNR = 30 dB, the
capacity gap increases to about 14 bits/s/Hz. It can be observed
that the capacity achieved by hybrid D-A precoders proposed
in [7, 8, 10, 11] is lower than the capacity of proposed PSO.
The capacity gap between PSO and the capacity that achieved
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Analog precoder optimised  [4], N=2, M = 16.

D = I, A = normalised of HH [7,8,10,11],
N=2, M = 16.
SVD−based hybrid D−A precoding,[9], N=2, M = 16.
Proposed PSO based on hybrid D−A precoding, N=2, M = 16.
Optimal unconstrained precoding (sub−antenna array) [9]
N=2, M = 16.

Figure 3. Capacity of the mm-Wave system when three different algorithms are
considered, 𝑁 = 2,𝑀 = 16.

in the hybrid D-A precoders proposed in [7, 8, 10, 11] when
SNR = 0 dB is about 3 bits/s/Hz, while when SNR = 30 dB,
the capacity gap increase to around 4 bits/s/Hz. Hybrid D-A
precoding where 𝐺𝐺𝐺 = 𝐴𝐴𝐴𝐷𝐷𝐷 is proposed, with the help of
PSO, the capacity is more than the capacity of hybrid D-A BF
system in [4, 7, 8, 10, 11]. In addition, PSO achieves the same
capacity as SVD-based hybrid D-A precoding achieved, which
is near optimal solution [9]. Likewise, the loss of PSO capacity
is due to less number of chosen agents. The capacity of PSO
can be improved by using more number of agents. Finally, it is
observed from Fig. 3 and Fig. 4 that as the number of antennas
are increasing from 𝑀 = 16 to 𝑀 = 64, the overall capacity
of the system is enhanced despite 𝑁 RF chains are fixed.

Finally, in this paper, as a 3D BF gain is considered which
means, the beampattern should be a 3D pattern. Furthermore,
when 𝑀 is large enough that will lead to negligible (inter RF
and inter-user)- interference. Therefore, the minimum angle for
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Analog precoder optimised  [4], N=2, M = 64.

D = I, A = normalised of HH [7,8,10,11],
N=2, M = 64.
SVD−based hybrid D−A precoding, [9], N=2, M = 64.
Proposed PSO based on hybrid D−A precoding, N=2, M = 64.
Optimal unconstrained precoding (sub−antenna array) [9]
N=2, M = 64.

Figure 4. Capacity of the mm-Wave system when three different algorithms are
considered, 𝑁 = 2,𝑀 = 64.



3D beampatterns between two users that can be distinguished
and without interference to each other is investigated in this
paper. A beampattern function is equal to array factor (AF) that
has been modeled in [12], and we may rearrange AF in the
following form

AF =
sin
(
𝑀𝑥

2 Λ𝑥

)
sin
(

𝑀𝑦

2 Λ𝑦

)
(

𝑀𝑥𝑀𝑦

4 Λ𝑥Λ𝑦

) , (16)

where Λ𝑥 = 2𝜋𝜆−1𝑢𝑥 sin(𝜃
𝑖
𝑙) cos(𝜙

𝑖
𝑙) + 𝛽𝑥, Λ𝑦 =

2𝜋𝜆−1𝑢𝑦 sin(𝜃
𝑖
𝑙) sin(𝜙

𝑖
𝑙) + 𝛽𝑦, 𝑖 ∈ [𝑟 , 𝑡], and 𝛽𝑥, 𝛽𝑦 is

determined by user position in small cell.
Fig. 5 shows that the beam pattern generated by a transmitter

with a 𝑀 = 64 planar array. In this case, the users can be
separated by 𝜃𝑡 and 𝜙𝑡 directions. The patterns are generated
by using PSO precoder. It can be noticed that the beam pattern
of these beams are highly directional and each user can be
separated easily with the help of different angles.
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Figure 5. Beam pattern square array by using the proposed scheme for an array
of size 𝑀 = 64, 𝑁 = 2, with different angles.

V. CONCLUSIONS

In this paper, a new method based on PSO for a hybrid D-A
precoding system based on a sub-antenna array architecture
for a mm-Wave system has been proposed. This algorithm has
maximised the capacity of the hybrid D-A BF for the mm-
Wave massive MIMO system. Simulation results showed that
PSO was able to achieve higher capacity than the existing
hybrid D-A precoding algorithms for the mm-Wave system.
In addition, our simulation result verified that the proposed
PSO achieved a close performance as compared to the optimal
unconstrained precoding.
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