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Abstract. This paper analyzes the private provision of public goods where consumers

interact within a fixed network structure and may benefit only from their direct neigh-

bors’ provisions. We present a proof of the existence and uniqueness of a Nash equi-

librium for general networks and best-reply functions. In addition, we investigate the

neutrality result of Warr [38] and Bergstrom, Blume, and Varian [6] whereby consumers

are able to undo the impact of income redistribution as well as public provision financed

by lump-sum taxes. To this effect, we show that the neutrality result has a limited scope

of application beyond a special network architecture in the neighborhood of the set of
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1. Introduction

The private provision of public goods is a subject of ongoing interest in several strands

of the economics literature ranging from taxation to political economy. Private contribu-

tions to public goods are important phenomena for many reasons. Voluntary contribu-

tions by members of a community are vital for the provision of essential social infrastruc-

ture, while at the aggregate level charitable giving accounts for a significant proportion

of GDP in many countries. The seminal contribution of Bergstrom, Blume, and Varian

[6], built on an earlier striking result by Warr [38], provides a rigorous investigation of the

standard model of private provision of pure public goods.1 Their main results, with sharp

testable implications, are the invariance of individual private and public goods consump-

tion, the so-called neutrality result, to income redistribution among contributors that

leaves unchanged the composition of the set of contributors, and the related complete

crowding-out of public provision financed by lump-sum taxes.

The findings of the private provision model rest on the assumption that each consumer

benefits from the public goods provisions of all other consumers. Often, for various public

goods such as information gathering, new products experimentation, and local amenities,

a consumer may benefit from provisions accessible only through his social interactions

or geographical position. For instance, there is strong empirical evidence that farmers

perceive the experimentation of a new technology as a public good and adjust their

experimentation level in the opposite direction to their neighbors’ provision (see, for

example, Foster and Rosenzweig [22]). Moreover, consumers often first seek information

from friends, colleagues, or even their various online communities before sampling the

products themselves.

In this paper, we investigate the private provision of public goods where consumers

interact within a fixed network structure and benefit only from their direct neighbors’

provisions. Recently, the economics of networks has gained prominence as a new ap-

proach to understanding varied economic interactions (see Goyal [27] and Jackson [32]).

The main insights on formation and stability of networks are powerful predictive tools

for both positive and normative analysis in many fields, including development econom-

ics and labor economics. Public goods provision within networks was first studied in

1There is a special issue in the Journal of Public Economics celebrating the 20th anniversary of Bergstrom,
Blume, and Varian [6].
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the key paper by Bramoullé and Kranton [10]. Their analysis, under complete informa-

tion, distinguishes between specialized and hybrid contribution equilibria and shows that

specialized contribution equilibria correspond to the maximal independent sets of the

network. Galeotti, Goyal, Jackson, Vega-Redondo, and Yariv [25] show that the possibil-

ity that consumers hold partial information about the network can shrink considerably

the potentially large set of equilibria that arise under complete information. Galeotti and

Goyal [25] study a more general model of information sharing where consumers simulta-

neously decide on their information acquisition, that is, their contribution to the public

good, and connections. Bramoullé, Kranton, and D’Amours [11] investigate games of

strategic substitutes2 on networks with linear best-reply functions and unearth a network

measure, related to the lowest eigenvalue of the adjacency matrix of the network,3 as

a key to equilibrium analysis. Elliott and Golub [19] develop an innovative normative

approach to public goods provision on networks that, among other things, decentralizes

a Lindahl-like allocation. Acemoglu, Garćıa-Jimeno, and Robinson [1] propose a network

based approach to explore the link between investments in local state capacity, including

public goods provision, and economic development.

This paper presents a proof of the existence and uniqueness of a Nash equilibrium in

the private provision of public goods on networks. The existence of a Nash equilibrium

is guaranteed by Brouwer’s fixed point theorem. Our key assumption to establish the

uniqueness of a Nash equilibrium, called network normality, stipulates that each con-

sumer’s marginal propensity to consume the public good is strictly bounded: it must be

less than one, and greater than one plus the inverse of the lowest eigenvalue. Together,

these conditions correspond to a standard normality of the private good and a strong

normality of the public good. Our existence and uniqueness results simultaneously ex-

tend similar results on the private provision of public goods in Bergstrom, Blume, and

Varian [6] to a network setting and results on games of strategic substitutes in Bramoullé,

Kranton, and D’Amours [11] to nonlinear best-reply functions.

2The private provision of public goods falls into this category since a consumer has incentives to adjust
his public goods provision in the opposite direction to his neighbors’ provisions.
3As far as we know, such a measure has not been used previously in any of the fields related to networks,
including social networks, biology, and physics. Moreover, Bramoullé, Kranton, and D’Amours [11]
provide an excellent discussion on the structural properties of the network that may affect the magnitude
of the lowest eigenvalue.
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The closely related literature on clubs/local public goods also investigates the strategic

interactions underlying the formation of clubs and communities. If one thinks of a network

as a collection of clubs formed by either the vertices or the edges then the public goods

network literature and the club/local public goods literature are essentially equivalent.

However, such an equivalence is not very useful since a network is then a collection of

overlapping clubs and, so far, only a few papers have explored the Nash equilibrium with

an overlapping clubs structure. Bloch and Zenginobuz [8] present a model of local public

goods allowing spillovers between communities, and hence violating one of Tiebout’s

assumptions, which may be interpreted as a weighted network. Eshel, Samuelson, and

Shaked [21] and Corazzini and Gianazza [14] adapt Ellison’s [20] local interaction model

to public good games played on a spatial structure, which in a network setting correspond

to a circulant network.

It is worth noting that the range of the network normality assumption may be quite

small since, depending on the structure and size of the network, the magnitude of the low-

est eigenvalue may be quite large. This constitutes the main limitation of our uniqueness

analysis. Nonetheless, this also leads to another important contribution in Bramoullé,

Kranton, and D’Amours [11]: in addition to being key to the uniqueness of a Nash equi-

librium, the lowest eigenvalue is a measure of how a small change in consumers’ provisions

is dampened or amplified through the network. More precisely, the larger the magnitude

of the lowest eigenvalue, the more a small change in players’ actions reverberates in the

network. A key insight that emerges from their analysis, when multiple equilibria arise

and in the presence of players with identical payoffs and symmetric network positions,

is that symmetric contribution Nash equilibria not only may be unstable, but also may

coexist with asymmetric contribution Nash equilibria that are stable. As a consequence,

when there are multiple equilibria, the focus on symmetric and interior Nash equilibria

may seem inappropriate when selecting among them.

Of the policy questions that arise in connection with the private provision of public

goods, the impact of income redistribution is of central importance. In motivation, this

has similar implications for policy design to the Second Welfare Theorem although, unlike

the competitive equilibrium, the Nash equilibrium of private provision will typically be

inefficient. For pure public goods, which correspond to a complete network of interactions,

the question has, to a large extent, been settled by the neutrality result mentioned above.
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However, it appears that there has been no attempt in the literature on the economics of

networks to explore whether the neutrality result holds beyond pure public goods. To this

effect, we provide an innovative approach to explore the impact of income redistribution

in networks. In particular, for preferences of general form, our results relate the neutrality

of a transfer to the network structure of interactions in a simple and intuitive way. As

a consequence, we are able to show that the neutrality result will not in general hold

beyond a special network architecture in the neighborhood of the set of contributors.

Furthermore, we show that the impact of income redistribution on the aggregate pro-

vision of public goods is related to the Bonacich centrality, due to Bonacich [9]. This

was first introduced to economics in the seminal paper of Ballester, Calvó-Armengol, and

Zenou [5] as being proportional to Nash equilibrium actions in a linear best-reply game.

Bonacich centrality, which usually measures prestige and influence in social networks, is

shown here to summarize information on each consumer’s impact on the aggregate pro-

vision after income redistribution. In particular, such information is useful in outlining

conditions on the network structure for the invariance of aggregate provision to hold. In

addition, partly due to our spectral approach to Bonacich centrality, sharper predictions

on the patterns of change in aggregate provision can be obtained for the particular case

of Gorman polar form preferences.

The paper is organized as follows. In Section 2, we present the model of private provi-

sion of public goods on networks. In Section 3, we establish the existence and uniqueness

of a Nash equilibrium. In Section 4, we investigate the stability of the Nash equilibrium.

Section 5 investigates the validity of the neutrality result in general networks. Section 6,

for the particular case of Gorman polar form preferences, explores the composition of the

set of contributors and further investigates the impact of income redistribution. Section

7 concludes the paper.

2. The model

There are n consumers embedded in a connected fixed network g. Let G = [gij]

denote the adjacency matrix of the network g, where gij = 1 indicates that consumer

i and consumer j are neighbors in the network g and gij = 0 otherwise. In particular,

we assume that gii = 0 for each consumer i. We denote by N = {1, . . . , n} the set of

consumers and by Ni = {j ∈ N | gij = 1} the set of consumer i’s neighbors. Given a
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subset of consumers S, let gS denote the subnetwork induced by S, that is, the network

obtained by removing consumers not belonging to S as well as all the links emanating

from them and GS denote the adjacency matrix of gS.

The adjacency matrix of the network, G, is symmetric with nonnegative entries and

therefore has a complete set of real eigenvalues (not necessarily distinct), denoted by

λmin(G) = λn ≤ . . . ≤ λ1 = λmax(G), where λmin(G) is the lowest eigenvalue and

λmax(G) is the largest eigenvalue of G. By the Perron–Frobenius Theorem, it holds that

0 < −λmin(G) ≤ λmax(G). (2.1)

Moreover, it holds that G = VDVT , where D = diag(λ1, . . . , λn) is a diagonal ma-

trix whose diagonal entries are the eigenvalues of G and V is a matrix whose columns,

v1, . . . ,vn, are the corresponding eigenvectors of G that form an orthonormal basis of

Rn. As usual, let I denote the identity matrix.

The preferences of each consumer i = 1, . . . , n are represented by the utility function

ui(xi, qi + Q−i), where xi is consumer i’s private good consumption, qi is consumer i’s

public good provision, and Q−i =
∑

j∈Ni
qj is the sum of public good provisions of

consumer i’s neighbors. For simplicity, we assume the public good can be produced from

the private good with a unit-linear production technology. The utility function ui is

continuous, strictly increasing in both arguments, and strictly quasi-concave. Consumer

i faces the following maximization problem:

max
xi,qi

ui(xi, qi +Q−i)

s.t. xi + qi = wi and qi ≥ 0,

where wi > 0 is his income (exogenously fixed). It follows from the strict quasi-concavity

that consumer i’s public good provision is determined by a (single-valued) best-reply

function fi.

At a Nash equilibrium q∗ = (q∗1, . . . , q
∗
n)T , every consumer’s choice is a best-reply to the

sum of his neighbors’ public good provisions, that is, q∗i = fi(Q
∗
−i) for each consumer i =

1, . . . , n. Let C = {i ∈ N | q∗i > 0} denote the set of contributors. A subset of contributors

S that induces a component of gC
4 will be called a “component of contributors”.

4As usual, a component of a network is a maximal connected subnetwork.
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Following a standard modification in the public economics literature, the utility max-

imization problem can be rewritten with consumer i choosing his (local) public good

consumption, Qi, rather than his public good provision, qi, that is,

max
xi,Qi

ui(xi, Qi)

s.t. xi +Qi = wi +Q−i and Qi ≥ Q−i.

If we ignore the last constraint Qi ≥ Q−i in the above maximization problem, we obtain

a standard utility maximization problem of consumer demand theory. Hence a standard

demand function for consumer i’s public good consumption can be expressed by Qi =

γi(wi + Q−i), where wi + Q−i may be interpreted as consumer i’s “social income” and

γi is consumer i’s Engel curve. In view of this, acknowledging the constraint Qi ≥ Q−i

again leads to Qi = max{γi(wi +Q−i), Q−i}, which in turn implies

qi = Qi −Q−i = max{γi(wi +Q−i)−Q−i, 0} = fi(Q−i). (2.2)

Hence, consumers can only contribute a positive amount of the public good determined

by their autarkic demand for the public good, their income, and also their neighbors’

public good provisions.

3. Existence and uniqueness of a Nash equilibrium

In this section, we shall prove the existence and uniqueness of a Nash equilibrium for

general networks and best-reply functions. In the case of a pure public good, which

corresponds to a complete network structure of interactions, Bergstrom, Blume, and

Varian [6] rely on the assumption of normality of private and public goods to establish the

existence and uniqueness of the Nash equilibrium. We introduce the following network-

specific normality assumption:

Network normality. For each consumer i = 1, . . . , n, the Engel curve γi is differentiable

and it holds that 1 + 1
λmin(G)

< γ′i(·) < 1.

The network normality assumption allows for a nonlinear relationship between the de-

mand for both private and public goods, and the income of each consumer, but places

bounds on the marginal propensity to consume these goods. Indeed, the left-hand-side

inequality stipulates a strong normality of the public good, which depends on the lowest

eigenvalue of the network, while the right-hand-side inequality is the standard normality
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of the private good. Nonlinear Engel curves arise in many areas of economics, including

public economics (see, for example, Moffitt [34]), since it is plausible that consumers may

not have a constant marginal propensity to spend on some given goods.

Theorem 1. Assume network normality. Then there exists a unique Nash equilibrium

in the private provision of public goods on networks.

Proof. The proof of Theorem 1, together with all of our other proofs, appears in Ap-

pendix A.�

We have the following two corollaries:

First, note that for a complete network it holds that λmin(G) = −1.5 Thus, in the case

of a pure public good, the normality of both private and public goods implies network

normality.

Corollary 1. (Bergstrom, Blume, and Varian [6]) Assume that the public good is pure

and that both private and public goods are normal goods. Then there exists a unique Nash

equilibrium.

Second, a linear strategic substitute game coincides with a suitably constructed pri-

vate provision game, which, provided that network normality holds, has a unique Nash

equilibrium.

Corollary 2. (Bramoullé, Kranton, and D’Amours [11]) Consider a game such that

for each consumer i = 1, . . . , n, it holds that qi = max{1 − αi
∑

j∈Ni
qj, 0} with αi ∈

]0,− 1
λmin(G)

[. This game coincides with the private provision game, where γ′i(·) = 1− αi
and wi = 1

1−αi
. Thus, there exists a unique Nash equilibrium.

Discussion of related literature. At the heart of the equilibrium analysis of the pure

public good model of Bergstrom, Blume, and Varian [6] lies the elegant proof of the

uniqueness of a Nash equilibrium. The proof is divided into various steps, in which con-

sumers’ best-reply functions are transformed in order to take advantage of the normality

of both private and public goods. Yet, the many subtleties of their uniqueness proof

technique may not have fully revealed the intuition behind the proof or shown what a

5The adjacency matrix of the complete network G = F− I, where F is the all-ones matrix. Since F has
eigenvalues n and 0 with multiplicities 1 and n− 1, respectively, we see that the complete network has
eigenvalues n− 1 and −1 with multiplicities 1 and n− 1.
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familiar uniqueness argument is at work (see, for example, Bergstrom, Blume, and Varian

[7], Fraser [23], and Cornes and Hartley [15] for discussions and alternative proofs). The-

orem 1 extends the uniqueness result of Bergstrom, Blume, and Varian [6] to the more

general setting of local public goods shaped by local interactions. As a consequence, an

inherent advantage of the proof technique of Theorem 1 is the insights it provides on

what is driving the uniqueness of the Nash equilibrium in the private provision of public

goods.

Bramoullé, Kranton, and D’Amours [11] show that the local interaction model with

linear best-reply functions lends itself nicely to the theory of potential games of Mon-

derer and Shapley [35]. In a potential game, consumers’ optimal strategies concur in a

common maximization problem of a potential function whose strict concavity provides

the uniqueness of a Nash equilibrium.6 Games of strategic substitutes with nonlinear

best-reply functions can also be investigated, as suggested in Bramoullé, Kranton, and

D’Amours [11], using local approximation techniques, although, as they acknowledge,

Nash equilibrium uniqueness in a game with nonlinear best-reply functions cannot be

inferred from uniqueness in the locally approximating games with linear best-reply func-

tions. Unlike local approximation techniques, the proof of Theorem 1 overcomes the lack

of linear structure by appealing to the network normality assumption, which stipulates

global bounds on the slopes of the nonlinear best-reply functions.

Finally, key to the uniqueness of the Nash equilibrium in Theorem 1 is our assumption

of network normality, whose range is the inverse of the magnitude of the lowest eigenvalue.

Given that the magnitude of the lowest eigenvalue, which depends on both the structure

and the size of the network, may be quite large, the range of network normality may

be quite small.7 This is the main limitation of our uniqueness analysis. Yet, for some

network structures the lowest eigenvalue is bounded from below, regardless of the size

of the network, and as a result the network normality assumption can be checked easily

for a fixed range of marginal propensities. An example of such a network structure is

the complete network since λmin(G) = −1, as mentioned above. The following example

provides another network structure:

6The uniqueness result of Bramoullé, Kranton, and D’Amours [11] also can be viewed as a network
application of the well-known uniqueness result of Rosen [37], which we discuss in Appendix B.
7Even though, in view of (2.1), it encompasses the range of strategic interactions that yields uniqueness
in Ballester, Calvó-Armengol, and Zenou [5].



10

Example 1. The “line network” of a network g, denoted by L(g), is obtained by

interchanging vertices and edges, that is, the vertices of L(g) are the edges of g and two

vertices of L(g) are adjacent whenever the corresponding edges of g have a vertex in

common. Below we have an example of a network g and its line network L(g):

a

b d

c

a

b c

d

g L(g)

Figure 1: The line network.

In interpretation, in the network L(g) consumers are the edges of g, whose end vertices

may be thought of as (overlapping) clubs in which a member’s provision benefits all other

members. İlkiliç [31] shows that line networks are useful to characterize equilibrium flows

in a network of multiple commons and users. Here, quite differently, we show that a

spectral property of line networks ensures a fixed range for which the network normality

assumption holds. Indeed, let L(G) denote the adjacency matrix of the line network L(g);

then it holds that −2 ≤ λmin(L(G)).8 Hence, given that 1 + 1
λmin(L(G))

≤ 1
2
, whenever

1
2
< γ′i(·) < 1 for each consumer i = 1, . . . , n, the network normality assumption holds in

the network L(g).

4. Stability of the Nash equilibrium

We shall now investigate the issue of stability of the Nash equilibrium in the private

provision of public goods on networks. Stability is of paramount importance to the study

of comparative statics. If, following a small perturbation of parameters, the new equilib-

rium can be reached by a dynamic adjustment process, then the analysis of comparative

statics is strengthened. In this respect we closely follow Dixit [18] and consider a myopic

8This follows immediately from the fact that the matrix L(G) + 2I = NTN, where N is the incidence
matrix of g, is obviously positive semidefinite.
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adjustment process defined, for each consumer i = 1, . . . , n, by

.
qi =

dqi
dt

= σi(fi(Q−i)− qi),

where σ1, . . . , σn > 0 are the adjustment speeds.

In interpretation, starting at a public good provision level, each consumer increases his

provision if he anticipates a higher utility level from doing so. The Nash equilibrium q∗ is

“locally asymptotically stable” if there exists a neighborhood of q∗ such that if the above

system starts at any point inside this neighborhood, it converges to q∗. For simplicity,

for the remainder of this paper, we assume that the set of knife-edge non-contributors,

characterized by γi(wi +Q∗−i) = Q∗−i, is empty, which is likely to be the case.9

The following result, as far as we know, is the first to investigate stability for general

networks and best-reply functions:

Theorem 2. Assume network normality. Then the unique Nash equilibrium of the private

provision of public goods on networks is locally asymptotically stable.

Theorem 2 shows that under the network normality assumption, whose range depends

on the magnitude of the lowest eigenvalue, stability and uniqueness of a Nash equilibrium

are closely related. More generally, Bramoullé, Kranton, and D’Amours [11] show that

not only does the magnitude of the lowest eigenvalue reveal interesting details about the

structural properties of the network,10 but it is also a key measure of how the network

absorbs or reverberates a small change in consumers’ provisions, with linear best-reply

functions. Following their insightful approach for nonlinear best-reply functions, the

network normality assumption can be restated as:

For each consumer i = 1, . . . , n, it holds that γ′i(·) < 1 and |λmin(G)| < 1/(1− γ′i(·)).
This has a two fold implication. First, for fixed marginal propensities to consume the

public good, the larger the magnitude of the lowest eigenvalue, the more a small change in

consumers’ provisions reverberates in the network. For instance, a small change generates

9Bramoullé, Kranton, and D’Amours [11] show that, in their setting, the set of knife-edge non-
contributors is empty for any network and for any degree of substitutability between own and neighbors’
actions except may be for a finite number of values.
10In particular, it emerges that, among all possible network structures, the magnitude of the lowest
eigenvalue is maximized when the network has a similar structure to a complete bipartite network with
almost equal sides. A complete bipartite graph consists of vertices divided into two sets with the edges
connecting each vertex from one set to all the vertices in the other set.
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larger adjustment effects in a complete bipartite network than in a complete network. Sec-

ond, given a fixed network structure of interactions, the higher the marginal propensities

to consume the public good, the less a small change in consumers’ provisions reverberates

in the network. In interpretation, the higher the marginal propensities to consume the

public good, the less consumers substitute and adjust to their neighbors’ provisions.

5. Income redistribution in networks

In this section, we shall explore the impact of income redistribution on private provision

of public goods on networks, as a tool of economic policy. Similar to the Second Welfare

Theorem, the policy instrument employed is a lump-sum redistribution, even though,

unlike the competitive equilibrium, the Nash equilibrium of private provision of a public

good will typically be inefficient.

Let ti denote the income transfer made to consumer i, which may be either a tax

(ti < 0) or a subsidy (ti ≥ 0), and let “transfer” denote t = (t1, . . . , tn)T ∈ Rn, which

lists all income transfers made to consumers. Every transfer is budget balanced; hence∑n
i=1 ti = 0. Similar to Warr [38] and Bergstrom, Blume, and Varian [6], we will focus

on transfers that are relatively small in magnitude so that the income redistribution does

not change the composition of the set of contributors, and we will call such transfers

“relatively small”. Note that transfers between non-contributors and contributors are

relatively small as long as the composition of the set of contributors is unchanged.

Let q∗C (resp. qt
C) denote the provisions of contributors before income redistribution

(resp. after income redistribution). The following result describes the impact of relatively

small income redistributions on provisions in general networks:

Proposition 1. Assume network normality. Then, for any relatively small transfer t it

holds that

qt
C − q∗C = (I + ACGC)−1(I−AC)tC ,

where AC = diag(1− γ′i(βi))i∈C for some βi and tC = (ti)i∈C .

Proposition 1, which will be key to the rest of our analysis of the impact of income

redistribution, relates the change in consumers’ public good provisions to the network

structure of interactions, the marginal propensities of consumers, and the transfer.
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5.1. Neutrality of income redistribution in networks. In the case of a pure public

good, which corresponds to a complete network of interactions, the invariance result of

Warr [38] and Bergstrom, Blume, and Varian [6], the so-called neutrality result, shows

that income redistribution among contributors that does not change the composition of

the set of contributors, yields a new equilibrium such that each consumer has precisely

the same individual consumption of the private and the public good as he had before.

What is remarkable about the neutrality result is that it holds regardless of the form

of the preferences. The intuition behind it may be explained as follows: assume that

after income redistribution each consumer adjusts his public good provision by exactly

the amount of the income transfer made to him and leaves unchanged his private good

consumption. Since the transfer, being budget balanced, leaves unchanged the aggregate

public good provision, it follows that such allocation, with unchanged private and public

goods consumption for each consumer, is not only individually optimal but also a Nash

equilibrium. In order to investigate the neutrality of income redistribution in general

networks, we first shed some light on how the neutrality of a particular transfer is related

to the network structure of interactions. Formally, a transfer t is “neutral” if it leaves

unchanged the individual consumption of the private and public goods for each consumer

i, that is,

(xti , Q
t
i ) = (x∗i , Q

∗
i ).

Now let us introduce a local balance condition for the transfer determined by the network.

We say a transfer t is “neighborhood balanced” if it is balanced in each consumer’s

neighborhood, that is, for each consumer i in his neighborhood, i∪Ni, formed by himself

and his neighbors, it holds that

ti +
∑
j∈Ni

tj = 0.

Neighborhood balance seems compelling since it requires that each consumer’s neigh-

borhood is, in aggregate, neither taxed nor subsidized. The following proposition shows

that a further relationship holds: neighborhood balance together with another basic con-

dition on the transfer is equivalent to transfer neutrality:

Proposition 2. Assume network normality. Then a relatively small transfer is neutral

if and only if it is neighborhood balanced and confined to contributors.
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Proposition 2 characterizes, in a simple and intuitive way, relatively small neutral trans-

fers. Quite similar to what has already been emphasized by Warr [38] and Bergstrom,

Blume, and Varian [6] in the pure public good case, the condition that the transfer is

confined to contributors is essential for neutrality to hold.

Now suppose that for some political, institutional, or even practical constraints, trans-

fers are confined to a subset of contributors rather than all contributors. A question that

may arise naturally is “Under what conditions on the network structure does neutrality

hold for all such relatively small transfers?” To proceed further with our analysis, we

introduce a condition on the network architecture in the neighborhood of the subset of

contributors. We say that a subset of consumers S is “neighborhood-homogenous” if all

consumers in S have identical neighborhoods in the network, that is, for any i, j in S it

holds that

i ∪Ni = j ∪Nj.

An example of a neighborhood-homogenous subset of consumers is the core of a fully

connected core-periphery network.11 Actually, (an alternative definition of) neighborhood

homogeneity of a subset of consumers amounts to removing all edges not emanating from

it, inducing a fully connected core-periphery component, with the subset being the core.

Note that the network architecture is arbitrary beyond the component and hence the

network may have multiple, and possibly non-overlapping, neighborhood homogenous

subsets of consumers. An example of this is the complete network, where any subset of

consumers is neighborhood homogenous.

Intuitively, as far as income redistribution is concerned, if a subset of consumers is

neighborhood homogenous, then its members are not only fully connected but also in-

distinguishable in terms of their network position from the other consumers, which is, as

shown below, an ideal network structure for neutrality to hold.

Theorem 3. Assume network normality. Given a subset of contributors S, neutrality

holds for all relatively small S-confined transfers if and only if S is neighborhood homoge-

nous. In particular, neutrality holds for all relatively small transfers among contributors

if and only if the set of contributors is neighborhood-homogenous.

11A fully connected core-periphery network structure is obtained as follows: start with a star network
and simply add duplicates of the center to the network, and connect them to each other and to the
periphery vertices.
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Theorem 3 shows that neighborhood homogeneity of a subset of contributors ensures

the neutrality of all relatively small transfers confined to it. The following example

illustrates some neighborhood homogenous subsets of contributors:

Example 2. In the networks g1 and g2 below, let vertices in black represent contributors

and vertices in white represent non-contributors. The smallest neighborhood-homogenous

subset of contributors is composed of two contributors, and g1 has three of them: {c4, c5},
{c8, c9}, and {c1, c12}. Understandably, a larger neighborhood-homogenous subset of con-

tributors, such as {c1, c2, c3} in g2, imposes greater restrictions on the network structure.

c11

c12

c1c2

c3

c4

c5

c6

c7 c8

c9

c10

c4

c7

c5

c6

c10

c11

c12

c8 c9

c1c2

c3

g1 g2

Figure 2: Neighborhood-homogenous subsets of contributors.

Note that in Example 2 the network position of contributors/non-contributors beyond

a neighborhood-homogenous subset of contributors, including immediate neighbors of

the subset, is arbitrary. Nevertheless, if this is further restricted by assuming transfers

are confined to the entire set of contributors, then Theorem 3 shows that neighborhood

homogeneity of the set of contributors characterizes the neutrality of relatively small

transfers among contributors.

In particular, given that the set of contributors in a complete network is always neigh-

borhood homogenous, it follows that:
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Corollary 3. (Bergstrom, Blume, and Varian [6]) Suppose the public good is pure, that

is, the network is complete, and assume both public and private goods are normal goods.

Then relatively small transfers among contributors are neutral.

Corollary 3 establishes the standard neutrality result of Warr [38] and Bergstrom,

Blume, and Varian [6] by following an alternative approach based on analysis of the

private provision of public goods on networks. More generally, the light shed by Theorem

3 on the neutrality of income redistribution in networks is insightful. In interpretation,

although one might not expect the neutrality result from the usual pure public good

setting to extend to other settings with local interaction patterns accounted for, it is still

important to point out that the neutrality result has some serious limitations as it fails

in all networks where the set of contributors is not neighborhood homogenous.

5.2. Invariance of aggregate provision in networks. A fundamental question in

public economics, especially in the charitable giving literature, is how private provision

of public goods responds to public provision. In this regard, the standard model of pri-

vate provision of pure public goods identifies the testable prediction that public provision

financed by lump-sum taxation completely crowds-out “dollar-for-dollar” private provi-

sion. Intuitively, the reason that crowding-out is complete is that, since public provision

is financed by lump-sum taxation, in view of budget balance it may be simply interpreted

as a form of income redistribution, which, being neutral in the case of a pure public good,

leaves aggregate provision unchanged. Yet, while the aggregate public good provision co-

incides with the individual public good consumption enjoyed by each consumer in the

case of a pure public good, this may no longer be true when the public good is locally

enjoyed. As a consequence, the invariance of aggregate provision is characterized differ-

ently from neutrality (invariance of individual private and public good consumption of

each consumer) in general networks.

In the following, we show that the impact of income redistribution on the aggregate

public good provision in general networks is closely related to the Bonacich centrality.

Bonacich centrality, due to Bonacich [9], has been widely employed in the theoretical and

empirical economics of networks literature since it was first shown by Ballester, Calvó-

Armengol, and Zenou [5] to be proportional to the Nash equilibrium actions of a linear
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best-reply game. Bonacich centrality is defined, for a ψ that is small in magnitude, by

b(G, ψ) = (I− ψG)−11 =
+∞∑
k=0

ψkGk1, (5.1)

where 1 is the all-ones vector. Since the ijth entry of the matrix Gk denotes the number

of walks of length k in g emanating from i and terminating at j, it follows that the

ith coordinate bi(G, ψ) of Bonacich centrality is the sum of all walks in g emanating

from i weighted by ψ to the power of their length. In that sense, Bonacich centrality is

interpreted as a measure of prestige, power, and network influence.

Let Q∗ =
∑n

i=1 q
∗
i (resp. Qt =

∑n
i=1 q

t
i ) denote the aggregate public good provision

before income redistribution (resp. after income redistribution). The next result follows

directly from Proposition 1.

Proposition 3. Assume network normality. Then for any relatively small transfer t it

holds that

Qt −Q∗ = bdw(GC ,−AC)T (I−AC)tC , where bdw(GC ,−AC)T = 1T (I + ACGC)−1.

In the case of nonlinear best-reply functions, the above proposition shows that the

impact of income redistribution on aggregate provision is determined by bdw(GC ,−AC),

which may be thought of as a “diagonally weighted” Bonacich centrality since consumers

carry different diagonal weights. Recent contributions of Golub and Lever [26] and Cando-

gan, Bimpikis, and Ozdaglar [13] have proposed other useful generalizations of Bonacich

centrality, which, provided that they are well defined, characterize equilibria outcomes in

some classes of games. In this paper, quite differently, the diagonally weighted Bonacich

centrality summarizes information concerning each consumer’s impact on aggregate pro-

vision. Understandably, such information is useful in outlining conditions on the network

structure for the invariance of aggregate provision to hold.

Theorem 4. Assume network normality. Then aggregate public good provision is invari-

ant to relatively small transfers among contributors if and only if the set of contributors

is a clique.12

12A clique is a fully connected subset of vertices.
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Theorem 4 shows that the invariance of aggregate provision to relatively small transfers

among contributors is equivalent to the set of contributors being a clique, which obviously

holds if the set of contributors is neighborhood homogenous as stipulated by neutrality.

To conclude, although the invariance of aggregate provision is a weaker requirement

than neutrality it still imposes the considerable restriction that contributors must be

closely tied as a clique. Notwithstanding, as far as testable implications are concerned,

this may sound quite promising in view of the ample empirical and experimental evidence

that public provision crowds-out private provision at a rate significantly less than com-

plete “dollar-for-dollar” (see, for example, Andreoni [4] for a discussion of the various

results in the literature).

6. Gorman polar form preferences

In order to obtain further insights into the impact of income redistribution, as well as

to gain a basic understanding of the composition of the set of contributors, we confine

our attention to particular preferences of consumers, the so-called Gorman polar form,

of which Cobb–Douglas preferences are a special case.13

Gorman polar form preferences. Preferences of consumers yield Engel curves with

identical constant slopes, that is, γ′i(·) = 1− a for each consumer i = 1, . . . , n.

For Gorman polar form preferences, consumers have constant, as well as identical,

marginal propensities to consume the public good. More precisely, it holds that the

autarkic public good provision of consumer i is

q̂i = (1− a)wi + qsi , (6.1)

where qsi is the intercept of the Engel curve. In interpretation, although consumers may

allocate their income differently between private and public goods, each consumer must

allocate an additional unit of income in the same proportion.

6.1. The set of contributors. So far we have carried out our analysis of the private

provision of public goods on networks without discussing the important issue of who

contributes to the public good. In the standard model of private provision of a pure

13In the literature, the theoretical and empirical attraction of preferences of the Gorman polar form
is that one can treat a society of utility-maximizing consumers as a single consumer. Such a concept,
albeit different, bears a great methodological similarity to the concept of potential games of Monderer
and Shapley [35].
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public good, the distribution of income and preferences of consumers, together, determine

the composition of the set of contributors. For instance, Bergstrom, Blume, and Varian

[6] show that if consumers’ preferences are identical, then only the upper tail of the

income distribution contributes to the public good. In the private provision of public

goods on networks, matters become more complicated since the network structure is

also a determinant of the composition of the set of contributors. As highlighted in

Bramoullé, Kranton, and D’Amours [11], if consumers have identical linear best-reply

functions and substitute little of their neighbors’ provisions so that initially they are all

contributors, then gradually increasing the degree of substitutability between own and

neighbors’ provisions induces more (Bonacich) central consumers to cease contributing

first to the public good.

Now, for the particular case of Gorman polar form preferences, we explore how income

distribution, consumers’ preferences, and network structure interact to yield Nash equi-

librium. Indeed, in view of (2.2) and (6.1), the public good provision of each consumer i

can be expressed as:

qi = max{q̂i − aQ−i, 0}.

Let q̂ = (q̂1, . . . , q̂n)T denote the autarkic provisions of consumers and GN\C,C denote

edges from non-contributors to contributors. The following proposition simply extends

to arbitrary autarkic provisions the conditions for Nash equilibrium of proposition 1 in

Bramoullé, Kranton, and D’Amours [11] and, as shown there, it can provide a procedure

to identify the set of contributors in Nash equilibrium.

Proposition 4. Assume network normality holds and preferences are of the Gorman

polar form. Then q∗ is the unique Nash equilibrium if and only if

(1) (I + aGC)q∗C = q̂C ,

(2) aGN\C,Cq
∗
C ≥ q̂N\C .

From Proposition 4 it follows that q̂ yields a Nash equilibrium where all consumers

are contributors whenever condition (1) holds for the entire set of consumers, that is,

(I + aG)q∗ = q̂, which is equivalent to q̂ being spanned by the columns of the matrix

I + aG. In particular, a q̂ proportional to the principal eigenvector14 v1 always yields

a Nash equilibrium where all consumers are contributors since Gq̂ = λmax(G)q̂ implies

14Also known as the eigenvector centrality.
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that (I + aG) q̂
1+aλmax(G)

= q̂. In this case for each consumer i it holds that

q̂i =
1

λmax(G)

∑
j∈Ni

q̂j,

which has a recursive nature as it stipulates that the autarkic provision of a consumer is

proportional to the sum of his neighbors’ autarkic provisions. Intuitively, all other things

being constant, a consumer whose neighbors have high autarkic provision must have a

proportionally high autarkic provision himself in order to contribute to the public good.

Note that in a regular network almost equal autarkic provisions, being almost propor-

tional to the principal eigenvector v1 = 1, will always lead to a Nash equilibrium where

all consumers are contributors. The following example illustrates in a star network the

set of contributors for different income distributions:

Example 3. There are four consumers with identical Cobb–Douglas preferences ui(xi, qi+

Q−i) = x
1
2
i (qi+Q−i)

1
2 for i = 1, 2, 3, 4, located on a star network g with consumer 1 being

the center. It is worth recalling that Cobb–Douglas preferences fall within the family

of Gorman polar form preferences, and in particular it holds that q̂ = (1 − a)w. Since

λmax(G) = −λmin(G) =
√

3,15 network normality holds and guarantees a unique Nash

equilibrium. Note that w1 is proportional to v1 = (3
√

2
6
,
√

6
6
,
√

6
6
,
√

6
6

); hence all consumers

are contributors. This also holds for income distributions almost proportional to v1 but,

obviously, not w2 or w3. As usual, vertices in black represent contributors while vertices

in white represent non-contributors.

c1

c2

c3

c4 c1

c2

c3

c4 c1

c2

c3

c4

w1 = (
√

3, 1, 1, 1) w2 = (3, 1, 1, 1) w3 = (
√

3
3
, 1, 1, 1)

Figure 3: The set of contributors in a star network.

15More generally, provided that G is connected, the equality −λmin(G) = λmax(G) holds if and only if
G is a bipartite network (see, for example, Cvetković, Rowlinson, and Simić ([17], p.15)).
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6.2. Aggregate provision and Bonacich centrality. Now we further investigate the

impact of income redistribution on the aggregate provision of public goods in the par-

ticular case of Gorman polar form preferences. Recall that, in view of Proposition 3,

the impact of income redistribution on the aggregate provision is determined by a diago-

nally weighted Bonacich centrality, which obviously coincides with the original Bonacich

centrality for Gorman polar form preferences. Hence the next result.

Proposition 5. Assume network normality holds and preferences are of the Gorman

polar form. Given a component of contributors S, for any relatively small S-confined

transfer t it holds that

Qt −Q∗ = (1− a)b(GS,−a) · tS = (1− a)
∑
i∈S

bi(GS,−a) · ti.

Proposition 5 shows that, within each component of contributors, a transfer from a low

Bonacich centrality contributor to a high Bonacich centrality contributor will always raise

the aggregate provision, while a transfer between contributors with identical Bonacich

centrality has no effect on the aggregate provision.

Given that Bonacich centrality is key to the impact of income redistribution on the

aggregate public good provision in the particular case of Gorman polar form preferences,

it may be useful to explore other possible expressions of Bonacich centrality. For this

purpose, we turn to spectral graph theory and introduce the concept of main eigenvalue,

due to Cvetković [16]. An eigenvalue µi of the adjacency matrix G is called a main

eigenvalue if it has a (unit) eigenvector ui not orthogonal to 1, that is, 1 · ui 6= 0.

Since for eigenvalues with multiplicity greater than one we can choose the corresponding

eigenvectors in such a way that, at most, one of them is not orthogonal to 1, without loss

of generality, we may also assume that ui ∈ {v1, . . . ,vn}, the orthonormal basis of Rn

formed by the eigenvectors of G. In addition, it also holds that the main eigenvalues of

G are distinct and may, consequently, be ordered µs < . . . < µ2 < µ1. Recall that by the

Perron–Frobenius Theorem, the principal eigenvector v1 has positive entries and, hence,

µ1 = λmax(G). The set of main eigenvaluesM = {µ1, µ2, . . . , µs} is called the “main part

of the spectrum” and is shown by Harary and Schwenk [29] to be the minimum set of

eigenvalues the span of whose eigenvectors includes 1.
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Proposition 6. Assume a ∈]0,− 1
λmin(G)

[. Then it holds that

b(G,−a) =
s∑
i=1

1 · ui
1 + aµi

ui =
s∑
i=1

1

1 + aµi

s

Π
k=1,k 6=i

(G− µkI
µi − µk

)
1.

As far as we know, Proposition 6 is the first to express Bonacich centrality in terms of

the main part of the spectrum. Note that the non-main eigenvectors, being orthogonal

to 1, do not contribute to Bonacich centrality; hence the reduced expression of Bonacich

centrality. Proposition 6 also further expands on the links between Bonacich centrality

and the main part of the spectrum to express Bonacich centrality as a sum of the number

of walks of length k, rather than unbounded as in (5.1), strictly bounded by s, the

cardinality of M. That is, Bonacich centrality satisfies b(G,−a) =
∑s−1

k=0 φkG
k1, where

φk are constants determined by a and M.

Understandably, as shown below, our alternative expressions of Bonacich centrality

can be useful in computing Bonacich centrality for networks with few main eigenvalues.

For instance:

Proposition 7. Assume a ∈]0,− 1
λmin(G)

[. Then the following are equivalent:

(i) consumers have identical Bonacich centrality,

(ii) the network is regular,

(iii) Bonacich centrality and degree centrality are proportional,

(iv) the network has exactly one main eigenvalue.

Therefore, in view of Proposition 5, for Gorman polar form preferences, the invariance

of aggregate provision to relatively small transfers confined to a component of contributors

is equivalent to the component being regular.

Corollary 4. Assume network normality holds and preferences are of the Gorman polar

form. Given a component of contributors S, aggregate public good provision is invariant

to relatively small S-confined transfers if and only if gS is regular.

Given that regular components of contributors are characterized by having exactly one

main eigenvalue, it may be informative to learn about the patterns of change in aggregate

provision in components of contributors with exactly two main eigenvalues, which are the

first instance in which the invariance of aggregate provision fails to hold in the case of
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Gorman polar form preferences.16 Although, in view of Proposition 7, Bonacich centrality

and degree centrality are not proportional for components of contributors with exactly

two main eigenvalues, as shown in the following result, their impacts on transfers are

(negatively) proportional.

Proposition 8. Assume network normality holds and preferences are of the Gorman

polar form. Given a component of contributors S with exactly two main eigenvalues, for

any relatively small S-confined transfer t it holds that

Qt −Q∗ =
−a(1− a)

(1 + aµ1)(1 + aµ2)
dS · tS,

where dS denotes degree centrality in gS.

Hence, for components of contributors with, at most, two main eigenvalues (s = 1, 2),

our results generate precise and clear predictions about the impact of income redistri-

bution on the aggregate public good provision. Indeed, it turns out that the change

in aggregate public good provision is determined by degree centrality rather than the

more sophisticated Bonacich centrality. In this case, our results are in line with similar

observations in the literature on the economics of networks. Galeotti, Goyal, Jackson,

Vega-Redondo, and Yariv [25] emphasize the importance of degree centrality as a mea-

sure of immediate influence and local knowledge of the network and König, Tessone, and

Zenou [33] present a model of dynamic network formation where the degree and Bonacich

centrality rankings coincide.

7. Conclusion

In this paper, we have established that beyond a special network architecture in the

neighborhood of the set of contributors, consumers are no longer able to undo the impact

of income redistribution by changes in their public good provision. Our result restores, to

some extent, the role of income redistribution as a main channel for policy intervention

in the private provision of public goods.

In the literature, various lines of research have been proposed to counter the neutral-

ity of income redistribution in the private provision of public goods given that, among

16The simplest examples of networks with exactly two main eigenvalues are the complete bipartite
networks with two unequal sides such as star networks and fully connected core-periphery networks. See
Hagos [28] and subsequent literature for a treatment of networks with exactly two main eigenvalues.
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other things, its closely related prediction of complete crowding-out of public provision

is sharply contradicted by empirical and experimental evidence. Often, the reason neu-

trality breaks down appears to hinge on the imperfect substitution among the various

consumers’ private provisions. For instance, consumers may have access to different tech-

nologies to produce the public good or may care differently in their preferences about

their own and other consumers’ public good provisions (see Andreoni [3]). Our result

suggests that neutrality fails for similar reasons in the private provision of public goods

on networks. However, unlike the various technological and behavioral explanations in

the literature, in the absence of a neighborhood homogeneous set of contributors, the

lack of perfect substitution seems to be brought about by a heterogeneity in the network

structure. Therefore, in view of the large body of empirical and experimental research

on the impact of income redistribution, including the rate of crowding-out of public pro-

vision, this paper may help identify some testable predictions, whenever local interaction

patterns are accounted for.

Finally, it is worth noting that since most of our findings regarding the private pro-

vision of public goods on networks, including existence, uniqueness, and stability of a

Nash equilibrium, are based on properties of nonlinear best-reply functions, they may

be accommodated within the general class of games of strategic substitutes on networks,

which is a cornerstone of the study of many areas of economics (see, for example, Bulow,

Geanakoplos, and Klemperer [12] and Bramoullé, Kranton, and D’Amours [11]).
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Appendices

In Appendix A we provide all our proofs. In Appendix B we provide a further discussion

of the result on the uniqueness of a Nash equilibrium.

Appendix A

Proof of Theorem 1. The existence of a Nash equilibrium is guaranteed by Brouwer’s

fixed point theorem. Suppose there are two Nash equilibria

q1 = (q1
1, . . . , q

1
n)T 6= (q2

1, . . . , q
2
n)T = q2;

then for each consumer i = 1, . . . , n, it holds that

q1
i = max{γi(wi +Q1

−i)−Q1
−i, 0} and q2

i = max{γi(wi +Q2
−i)−Q2

−i, 0}.

Since q1 6= q2, it follows that the set D = {i ∈ N | Q1
−i 6= Q2

−i} 6= ∅. Moreover, from the

mean value theorem, for each i ∈ D there exists a real number βi such that

γi(wi +Q1
−i)− γi(wi +Q2

−i) = γ′i(βi)(Q
1
−i −Q2

−i). (A.1)

Note that if one sets βi = Q1
−i = Q2

−i for each i /∈ D, then (A.1) holds for each i ∈ N . Let

a = maxi∈N{1−γ′i(βi)}; then from the network normality assumption, for each consumer

i = 1, . . . , n, it holds that

0 < 1− γ′i(βi) ≤ a < − 1

λmin(G)
. (A.2)

For each consumer i = 1, . . . , n, define si as follows:

si =

{
1 if Q1

−i ≤ Q2
−i,

−1 otherwise.

Hence for each consumer i = 1, . . . , n, it holds17

0 ≤ si(q
1
i − q2

i ) = |q1
i − q2

i |

= |max{γi(wi +Q1
−i)−Q1

−i, 0} −max{γi(wi +Q2
−i)−Q2

−i, 0}|

≤ |(γi(wi +Q1
−i)−Q1

−i)− (γi(wi +Q2
−i)−Q2

−i)|

= |(1− γ′i(βi))(Q2
−i −Q1

−i)| ≤ a|Q2
−i −Q1

−i| = sia(Q2
−i −Q1

−i).

17Note that for z ∈ R it holds that max{z, 0} = |z|+z
2 . Hence, it holds that |max{z1, 0} −max{z2, 0}| =

| |z
1|+z1

2 − |z2|+z2

2 | ≤ 1
2 (||z1| − |z2||+ |z1 − z2|) ≤ |z1 − z2|.
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Let S = diag(s1, . . . , sn) be the diagonal matrix whose diagonal entries are si; then it

follows from the above inequalities that18

0 ≤ S(q1 − q2) = (s1(q1
1 − q2

1), . . . , sn(q1
n − q2

n))T

≤ a(s1(Q2
−1 −Q1

−1), . . . , sn(Q2
−n −Q1

−n))T

= aS(
∑
j∈N1

(q2
j − q1

j ), . . . ,
∑
j∈Nn

(q2
j − q1

j ))
T = aSG(q2 − q1).

Rearranging terms, it follows that 0 ≤ S(q1 − q2) and S(I + aG)(q1 − q2) ≤ 0, which

together imply

(q1 − q2)T (I + aG)(q1 − q2) = (S(q1 − q2))TS(I + aG)(q1 − q2) ≤ 0.

Given that q1 − q2 6= 0 it follows that (I + aG) is not positive definite, which is a

contradiction since (A.2). Therefore, there exists a unique Nash equilibrium.�

Proof of Theorem 2. We investigate stability by linearizing around the Nash equilib-

rium and then examining the location of the eigenvalues of the Jacobian matrix

JC = U(
∂{fi(Q−i)− qi}

∂qj
| q∗C)i,j∈C = −U(I + BGC),

where B = diag(1−γ′i(wi+Q∗−i))i∈C and U = diag(σi)i∈C . The unique Nash equilibrium

q∗ is locally asymptotically stable if all eigenvalues of the Jacobian matrix JC have

negative real parts, which we obtain from the lemma below.

Lemma 1. Assume network normality. Then the eigenvalues of U(I+BGC) are positive

real numbers.

Proof of Lemma 1. From the sharp bounds provided by Ostrowski [36], it holds that

the eigenvalues of the symmetric matrix B
1
2GCB

1
2 are given by θiλi, where λi is an

eigenvalue of GC and θi lies between the smallest and the largest eigenvalues of B. From

the network normality assumption, it follows that for each i ∈ C

0 < mini∈C{1− γ′i(wi +Q∗−i)} ≤ θi ≤ maxi∈C{1− γ′i(wi +Q∗−i)} < −
1

λmin(G)
.

18Consider x = (x1, x2, . . . , xn)T ∈ Rn; then x ≥ 0 if xi ≥ 0 for each i = 1, . . . , n and x > 0 if x ≥ 0 and
xi > 0 for some i.
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From the interlacing eigenvalue theorem,19 it follows that λmin(G) ≤ λmin(GC). Hence,

the eigenvalues of I + B
1
2GCB

1
2 , given by 1 + θiλi, are positive since for each i ∈ C, it

holds that 0 = 1− 1 < 1 + θiλmin(G) ≤ 1 + θiλmin(GC) ≤ 1 + θiλi. From Ostrowski [36]

again, it follows that the eigenvalues of the symmetric matrix U
1
2 (I + B

1
2GCB

1
2 )U

1
2 are

positive. Hence, the matrix U(I + BGC) also has positive eigenvalues, being similar to

U
1
2 (I + B

1
2GCB

1
2 )U

1
2 since

U(I + BGC) = (UB)
1
2 [U

1
2 (I + B

1
2GCB

1
2 )U

1
2 ](UB)−

1
2 .�

Proof of Proposition 1. From (2.2), it follows that for each consumer i ∈ C

qti − q∗i = (γi(wi + ti +Qt
−i)−Qt

−i)− (γi(wi +Q∗−i)−Q∗−i).

From the mean value theorem, it follows that for each i ∈ C such that ti + Qt
−i 6= Q∗−i,

there exists a real number βi such that qti − q∗i = γ′i(βi)(ti + Qt
−i − Q∗−i) − (Qt

−i − Q∗−i).
Let βi = Q∗−i if ti +Qt

−i = Q∗−i; then for each consumer i ∈ C it holds that

qti − q∗i + (1− γ′i(βi))
∑

j∈Ni∩C

(qtj − q∗j ) = γ′i(βi)ti.

Consequently, it holds that

(I + ACGC)(qt
C − q∗C) = (I−AC)tC ,

where AC = diag(1 − γ′i(βi))i∈C . Applying Lemma 1 for B = AC and U = I, it follows

that I + ACGC is invertible since it has positive eigenvalues. Hence,

qt
C − q∗C = (I + ACGC)−1(I−AC)tC .�

Proof of Proposition 2. First, note that subtracting the budget constraints before and

after a relatively small transfer t, for a consumer i ∈ N , it holds that

qti − q∗i = (wi + ti − xti )− (wi − x∗i ) = ti − (xti − x∗i ). (A.3)

Moreover, if qti − q∗i = ti, for each consumer i ∈ N , then it holds that

Qt
i −Q∗i = qti +

∑
j∈Ni

qtj − q∗i −
∑
j∈Ni

q∗j = ti +
∑
j∈Ni

tj. (A.4)

19See, for example, Horn and Johnson ([30], p.185).
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Now, suppose that a relatively small transfer t is neutral, that is, for each consumer

i ∈ N , it holds that (xti , Q
t
i ) = (x∗i , Q

∗
i ). Then, in view of (A.3), for each consumer i ∈ N ,

since xti = x∗i it follows that qti − q∗i = ti. In particular, for each consumer i /∈ C, since

qti = q∗i = 0 it holds that ti = 0. Thus the transfer t is C-confined. Moreover, since

qti − q∗i = ti and Qt
i = Q∗i , for each consumer i ∈ N , in view of (A.4), it follows that

ti+
∑

j∈Ni
tj = 0 for each consumer i ∈ N . Hence the transfer t is neighborhood balanced.

Conversely, if a relatively small transfer t is C-confined and neighborhood balanced,

then for each consumer i ∈ N it holds that

ti +
∑
j∈Ni

tj = ti +
∑

j∈Ni∩C

tj = 0. (A.5)

From Proposition 1,

qt
C − q∗C = (I + ACGC)−1(I−AC)tC = (I + ACGC)−1(I + ACGC −AC −ACGC)tC

= (I + ACGC)−1(I + ACGC)tC − (I + ACGC)−1AC(I + GC)tC = tC ,

which, together with qti − q∗i = 0 = ti for each consumer i /∈ C, implies that qti − q∗i = ti

for each consumer i ∈ N. Therefore, for each consumer i ∈ N, it holds that xti = x∗i since

(A.3) and Qt
i = Q∗i since (A.4) and (A.5).�

Proof of Theorem 3. First, suppose that all relatively small S-confined transfers are

neutral and S is not neighborhood homogeneous. Hence there exists i, j in S such that

for a consumer k ∈ N it holds that k ∈ i ∪ Ni but k /∈ j ∪ Nj. Let ti,j 6= 0 denote a

relatively small bilateral transfer, that is, ti,jl = 0 for all l /∈ {i, j}. Obviously, the transfer

ti,j is S-confined but not neighborhood balanced since in the neighborhood of consumer

k it holds that ti,jk +
∑

l∈Nk
ti,jl = ti,ji 6= 0. From Proposition 2, it follows that ti,j is not

neutral, which is a contradiction.

Conversely, suppose that S is neighborhood homogeneous and that there exists a rel-

atively small S-confined transfer t that is not neutral. From Proposition 2, the trans-

fer t is not neighborhood balanced and therefore for a consumer k ∈ N it holds that

tk +
∑

l∈Nk
tl 6= 0. Since t is S-confined it follows that {k ∪Nk} ∩S 6= S or ∅ (otherwise,

tk +
∑

l∈Nk
tl = 0). Hence there exists i, j in S such that i ∈ k ∪ Nk but j /∈ k ∪ Nk.

Therefore, it holds that k ∈ i ∪Ni but k /∈ j ∪Nj, which is a contradiction.�
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Proof of Theorem 4. From Proposition 3, it holds that

Qt −Q∗ = 1T (I + ACGC)−1(I−AC)tC .

Hence, the aggregate public good provision is invariant to income redistribution if and

only if the vectors 1T (I−AC)−1(I+ACGC) and 1T are proportional, that is, if and only

if there exists a nonnull real number λ such that

1T = λ1T (I−AC)−1(I + ACGC) = λ1T (I−AC)−1(I−AC + AC + ACGC)

= λ1T + λ1T (I−AC)−1AC(I + GC),

which is equivalent to

1T (I−AC)−1AC(I + GC) =
1− λ
λ

1T .

Recall that AC = diag(1− γ′i(βi))i∈C ; hence 1T (I−AC)−1AC = (
1−γ′i(βi)
γ′i(βi)

)T
i∈C . Therefore,

the aggregate public good provision is invariant to income redistribution if and only if,

for each i, j ∈ C,

1− γ′i(βi)
γ′i(βi)

+
∑

l∈Ni∩C

1− γ′l(βl)
γ′l(βl)

=
1− γ′j(βj)
γ′j(βj)

+
∑

k∈Nj∩C

1− γ′k(βk)
γ′k(βk)

. (A.6)

Observe that, if C is a clique of the network, then (A.6) holds. Conversely, suppose that

(A.6) holds and for some i, j ∈ C it holds that j /∈ Ni. Then, given that (A.6) holds

for any arbitrary marginal propensities provided that network normality holds, keeping

constant the marginal propensity of consumer i while choosing the marginal propensities

of all other consumers in C very close to 1 will result in the left-hand side of (A.6) getting

close to
1−γ′i(βi)
γ′i(βi)

while the right-hand side of (A.6) gets close to 0, which is a contradiction.

Hence C is a clique of the network.�

Proof of Proposition 4. See Bramoullé, Kranton, and D’Amours [11].�

Proof of Proposition 6. Recall that G = VDVT , where D = diag(λ1, . . . , λn) is a

diagonal matrix whose diagonal entries are the eigenvalues of G and V is a matrix whose

columns, v1, . . . ,vn, are the corresponding eigenvectors of G that form an orthonormal

basis of Rn. Since {u1, . . . ,us} ⊂ {v1, . . . ,vn}, it follows that

b(G,−a) = (I + aG)−11 = V(I + aD)−1VT1 =
n∑
i=1

1 · vi
1 + aλi

vi =
s∑
i=1

1 · ui
1 + aµi

ui. (A.7)
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Moreover, since 1 =
∑s

l=1(1 · ul)ul, it follows that

s

Π
k=1,k 6=i

(G− µkI
µi − µk

)
1 =

s

Π
k=1,k 6=i

(G− µkI
µi − µk

) s∑
l=1

(1 · ul)ul =
s∑
l=1

(1 · ul)
s

Π
k=1,k 6=i

(G− µkI
µi − µk

)
ul

=
s∑

l=1,l 6=i

(1 · ul)
s

Π
k=1,k /∈{i,l}

(G− µkI
µi − µk

)(G− µlI
µi − µl

)
ul

+ (1 · ui)
s

Π
k=1,k 6=i

(G− µkI
µi − µk

)
ui

= (1 · ui)
s

Π
k=1,k 6=i

(µi − µk
µi − µk

)
ui = (1 · ui)ui.

Hence it follows from (A.7) that

b(G,−a) =
s∑
i=1

1

1 + aµi
(1 · ui)ui =

s∑
i=1

1

1 + aµi

s

Π
k=1,k 6=i

(G− µkI
µi − µk

)
1.�

Proof of Proposition 7.

(i) ⇒ (ii) If b(G,−a) and 1T are proportional, then there exists a (nonnull) real

number λ such that (I + aG)−11 = λ1, or equivalently, 1 = λ(I + aG)1. This implies

that d = G1 = 1−λ
aλ

1. Hence g is a regular network.

(ii) ⇒ (iii) If g is a regular network of degree r, then it holds that d = G1 = r1.

Hence b(G,−a) = (I + aG)−11 = 1
1+ar

1 = 1
r(1+ar)

d.

(iii) ⇒ (iv) If b(G,−a) and d are proportional, then there exists a (nonnull) real

number κ such that (I + aG)−11 = κd = κG1. Since 1 =
∑s

i=1(1 · ui)ui, it holds that

s∑
i=1

1 · ui
1 + aµi

ui = κ
s∑
i=1

µi(1 · ui)ui.

Recall that the main eigenvectors u1, . . . ,us are linearly independent and thus it holds

κ =
1

µ1(1 + aµ1)
=

1

µ2(1 + aµ2)
= . . . =

1

µs(1 + aµs)
. (A.8)

Moreover, since a ∈]0,− 1
λmin(G)

[, it follows that 1 + aµ1 > 1 + aµ2 > . . . > 1 + aµs > 0.

Now, suppose that s > 1; then since µ1 > 0 and µ1 > µs, which in view of a ∈]0,− 1
λmin(G)

[

implies that 1 + aµ1 > 1 + aµs > 0, it holds that

µ1(1 + aµ1) > µ1(1 + aµs) > µs(1 + aµs),

which is a contradiction to (A.8).
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(iv)⇒ (i) It follows from Proposition 6 that b(G,−a) = 1
1+aµ1

1.�

Proof of Proposition 8. It follows from Propositions 5 and 6 that

Qt −Q∗ = (1− a)[
(GS − µ2I)1

(1 + aµ1)(µ1 − µ2)
+

(GS − µ1I)1

(1 + aµ2)(µ2 − µ1)
] · tS

= (1− a)
GS1 · tS

(1 + aµ1)(µ1 − µ2)
+

GS1 · tS
(1 + aµ2)(µ2 − µ1)

= (1− a)
[(1 + aµ2)− (1 + aµ1)]

(1 + aµ1)(1 + aµ2)(µ1 − µ2)
dS · tS

=
−a(1− a)

(1 + aµ1)(1 + aµ2)
dS · tS.�

Appendix B

Now we will discuss the well-known uniqueness result of Rosen [37]. First, it is worth

noting that the uniqueness result of Rosen [37] does not apply to the private provision

of public goods on networks. Indeed, key to the equilibrium analysis of Rosen [37] is

the assumption that the each player’s payoff function is concave in his own strategy,

which is obviously more restrictive than the assumption made in the private provision

model that each consumer has a quasi-concave utility function. However, we can get

around this difficulty by constructing an auxiliary game with concave-in-own-strategy

payoff functions that yield best-reply functions identical to the private provision game.

Yet, in the following, we provide an example where the network normality assumption

may not imply Rosen’s condition of “diagonal strict concavity” in the auxiliary game.

Let us consider the game G = (N, (Si)i∈N , (Φi)i∈N), where player i’s strategy space is

Si = [0, wi] and payoff function is

Φi(q) = Φi(qi, Q−i) = −1

2
(qi +Q−i − γi(wi +Q−i))

2.

Note that the payoff function of each player is concave in his own strategy. Moreover,

player i’s best-reply function in the game G is identical to the one in the private provision

game, that is,

qi = fi(Qi) = max{γi(wi +Q−i)−Q−i, 0}.

Rosen [37]’s uniqueness of a Nash equilibrium result requires that the game G is “diago-

nally strictly concave”, that is, for a fixed r = (r1, . . . , rn)T ∈ Rn
++ it holds that for any
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q1 6= q2

h(q1, r)(q2 − q1) + h(q2, r)(q1 − q2) > 0,

where h(q, r)T = (r1
∂Φ1(q)
∂q1

, . . . , rn
∂Φn(q)
∂qn

). Intuitively, diagonal strict concavity guarantees

that a player has more control over his payoff than the other players. A sufficient condition

for the game to be diagonally strictly concave is that the symmetric matrix(
H(q, r) + H(q, r)T

)
is negative definite for all q ∈ Πi∈NSi, where H(q, r) is the Jacobian of h(q, r) with

respect to q.

Now, let us consider a symmetric private provision game of a pure public good with

six identical consumers (in preferences and incomes). Recall that for a pure public good,

the network normality stipulates that 0 < γ′i(·) < 1. Thus, for some q̄ it can hold that

(γ′1(w1 + Q̄−1)− 1, . . . , γ′6(w6 + Q̄−6)− 1) = −(0.99, 0.01, 0.01, 0.01, 0.01, 0.01).

Since G is the complete network, it follows that

H(q̄,1) = −



1 0.99 0.99 0.99 0.99 0.99

0.01 1 0.01 0.01 0.01 0.01

0.01 0.01 1 0.01 0.01 0.01

0.01 0.01 0.01 1 0.01 0.01

0.01 0.01 0.01 0.01 1 0.01

0.01 0.01 0.01 0.01 0.01 1


.

The matrix H(q̄,1) was introduced in Al-Nowaihi and Levine [2] to investigate the sta-

bility of the Cournot oligopoly model and was shown there not to be negative definite

since for ζ = (2,−1,−1,−1,−1,−1)T it holds that

ζT (
H(q̄,1) + H(q̄,1)T

2
)ζ = ζTH(q̄,1)ζ = 0.8. (B.1)

Hence diagonal strict concavity does not hold for the vector of weights r = 1, in spite of

the symmetry of the private provision game.

Note that from Lemma 1, the matrix H(q̄,1) = −(I + B̄G), where B̄ = diag(1 −
γ′i(wi + Q̄−i))

6
i=1, has negative eigenvalues, which together with (B.1) implies that

0 < −λmin(B̄G) < 1 < −λmin

(B̄G + (B̄G)T

2

)
.



33

Finally, we conclude by observing that if we assume that 4
5

= 1− 1
λmax(G)

< γ′i(·) < 1,

for each consumer i = 1, . . . , n, rather than network normality, then for q ∈ Πi∈NSi it

holds that maxi∈N{1 − γ′i(Q−i)} = Ωq <
1

λmax(G)
. By the monotonicity of λmax(·), with

respect to the entries of a nonnegative matrix, and the Perron–Frobenius Theorem, it

holds that

0 < −λmin

(BG + (BG)T

2

)
≤ λmax

(BG + (BG)T

2

)
≤ Ωq λmax(G) < 1,

where B = diag(1− γ′i(wi +Q−i))i∈N . Thus

H(q,1) + H(q,1)T = −(I +
BG + (BG)T

2
)

is negative definite for all q ∈ Πi∈NSi and, as a consequence, Rosen [37] diagonal strict

concavity holds for the vector of weights r = 1.�
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