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Abstract

We study the existence of homoclinic type solutions for second or-
der Lagrangian systems of the type q̈(t) − q(t) + a(t)∇G(q(t)) = f(t),
where t ∈ R, q ∈ Rn, a : R → R is a continuous positive bounded func-
tion, G : Rn → R is a C1-smooth potential satisfying the Ambrosetti-
Rabinowitz superquadratic growth condition and f : R→ Rn is a contin-
uous bounded square integrable forcing term. A homoclinic type solution
is obtained as limit of 2k-periodic solutions of an approximative sequence
of second order di�erential equations.
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1 Introduction

The aim of this paper is to prove the existence of a solution for the second order
Lagrangian system {

q̈(t)− q(t) + a(t)∇G(q(t)) = f(t),

limt→±∞ q(t) = limt→±∞ q̇(t) = 0,
(1)

where a : R→ R is a continuous positive bounded function, G : Rn → R, n ≥ 1,
is a C1-smooth potential satisfying the Ambrosetti-Rabinowitz superquadratic
growth condition and f : R → Rn is a continuous bounded square integrable
forcing term.

Our intention is to generalise the following result by E. Serra, M. Tarallo
and S. Terracini from [16] to the inhomogeneous systems (1).
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Theorem 1.1 Assume that

(C̃1) G ∈ C2(Rn,R),

(C2) there exists µ > 2 such that for all x ∈ Rn \ {0},

0 < µG(x) ≤ (∇G(x), x),

(C̃3) a ∈ C(R,R) is almost periodic in the sense of Bohr and

inf
t∈R

a(t) > 0.

Then the problem {
q̈(t)− q(t) + a(t)∇G(q(t)) = 0,

limt→±∞ q(t) = limt→±∞ q̇(t) = 0
(2)

has at least one nonzero solution.

Here and subsequently, (·, ·) : Rn × Rn → R denotes the standard inner
product in Rn, and | · | : Rn → [0,∞) is the induced norm. Let us recall that
a function a is almost periodic in the sense of Bohr if for every ε > 0 there is
a �nite linear combination of sine and cosine functions that is of distance less
than ε from a with respect to the supremum norm.

The proof of Theorem 1.1 in [16] is of variational nature, i.e. a solution
is found as a critical point of a suitable functional. The lack of a group of
symmetries for which the functional is invariant, which exists in the case of
periodic potentials, is faced by a property of Palais-Smale sequences introduced
by E. Séré (see [15]) and Bochner's criterion of almost periodicity (see [4]).

Let us now consider the inhomogeneous Lagrangian systems (1). Intuitively,
if the forcing term f(t) in (1) is su�ciently small, then a homoclinic type solution
should exist simply because of the existence in the homogenous case.

Our main result a�rms this and it also deals with the question how large
the forcing term f in (1) can be:

Theorem 1.2 Assume that

(C1) G ∈ C1(Rn,R) and |∇G(q)| = o(|q|) as |q| → 0,

(C2) there exists µ > 2 such that for all x ∈ Rn \ {0},

0 < µG(x) ≤ (∇G(x), x),

(C3) a ∈ C(R,R) and inft∈R a(t) > 0,

(C4) M := sup{a(t)G(x) : t ∈ R, |x| = 1} < 1
2 ,

(C5)
(∫

R |f(t)|2dt
) 1

2 < 1
2
√

2
(1− 2M).

Then the inhomogenous Lagrangian system (1) has at least one homoclinic type
solution.
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Let us brie�y discuss our assumptions in Theorem 1.2. Condition (C2) is the
superquadratic growth condition due to A. Ambrosetti and P. Rabinowitz [1].
Since G has a global minimum at 0 by (C2), (C1) is more general than (C̃1).
Moreover, it is readily seen by (C2) that for every q 6= 0 the map

(0,∞) 3 ξ 7→ G(ξ−1q)|ξ|µ ∈ R

is non-increasing, which yields the following inequalities:

G(q) ≤ G
(
q

|q|

)
|q|µ, if 0 < |q| ≤ 1 (3)

and

G(q) ≥ G
(
q

|q|

)
|q|µ, if |q| ≥ 1. (4)

As µ > 2, the inequality (4) implies that G grows faster than | · |2 at in�nity.
Clearly, (C3) is more general than (C̃3). Note that (C3) and (C4) imply

that a is bounded, which, however, is also true for every almost periodic function
in the sense of Bohr.

The last two conditions (C4) and (C5) are closely related. Namely, the
forcing term f needs to be su�ciently small in L2(R,Rn), but the upper bound
on the norm of f depends on the restriction of the space variable of the potential
a(t)G(x) to the unit sphere in Rn.

The study of homoclinic solutions for Lagrangian systems has received much
attention in recent years, especially when the potential is periodic in time. The
existence problem of homoclinics has been widely investigated by variational
methods, see for example in [2, 3, 5, 11�13, 15]. Existence results for perturbed
systems were given in [6�10,14].

Our proof of Theorem 1.2 is also of variational nature. Let us point out,
however, that it is quite di�erent from Serra, Tarallo and Terracini's proof of
Theorem 1.1 in [16]. Here, we �nd a solution of (1) as a limit in C2

loc(R,Rn) of

a sequence {qk}k∈N, qk ∈ W 1,2
2k (R,Rn), obtained by an approximation scheme

introduced by Krawczyk in [10], where every qk is a critical point of a suitable
functional Ik that we introduce below.

We now prove Theorem 1.2 in the following section and we nicely round o�
the paper by two numerical examples in a �nal section.

2 Proof of Theorem 1.2

In what follows, we let E be the Sobolev space W 1,2(R,Rn) of W 1,2-functions
on R with values in Rn equipped with the norm

‖q‖E =

(∫ ∞
−∞

(
|q(t)|2 + |q̇(t)|2

)
dt

) 1
2

.

For each k ∈ N, we denote by Ek = W 1,2
2k (R,Rn) the Sobolev space of 2k-periodic

W 1,2-functions with the norm

‖q‖Ek =

(∫ k

−k

(
|q(t)|2 + |q̇(t)|2

)
dt

) 1
2

.
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Then let L∞2k(R,Rn) be the space of 2k-periodic, essentialy bounded and mea-
sureable functions from R into Rn with the norm

‖q‖L∞2k = ess sup{|q(t)| : t ∈ [−k, k]}.

We note for later reference that

‖q‖L∞2k ≤
√

2‖q‖Ek (5)

for all k ∈ N and q ∈ Ek (cf. [6, Fact 2.8]). Finally, let C2
loc(R,Rn) denote

the space of C2-functions with the topology of almost uniform convergence of
functions and all their derivatives up to second order.

The following result can be found in [10, Thm. 1.3].

Theorem 2.1 Let f : R→ Rn be a non-trivial, bounded, continuous and square
integrable map and V : R×Rn → R a C1-smooth potential such that ∇qV : R×
Rn → Rn is bounded in the time variable. Assume that for each k ∈ N the
boundary value problem{

q̈(t) +∇qVk(t, q(t)) = fk(t),
q(−k)− q(k) = q̇(−k)− q̇(k) = 0,

(6)

where fk : R → R is a 2k-periodic extension of f |[−k,k) and Vk : R × Rn → R
is a 2k-periodic extension of V |[−k,k)×Rn , has a periodic solution qk ∈ Ek
and {‖qk‖Ek}k∈N is a bounded sequence in R. Then there exists a subsequence
{qkj}j∈N converging in the topology of C2

loc(R,Rn) to a function q ∈ E which is
a homoclinic type solution of the Newtonian system

q̈(t) +∇qV (t, q(t)) = f(t), t ∈ R. (7)

Our aim is to obtain a homoclinic type solution of (1) by Theorem 2.1 as a
limit in C2

loc(R,Rn) of a sequence {qk}k∈N such that for each k ∈ N, qk ∈ Ek is
a 2k-periodic solution of the boundary value problem{

q̈(t)− q(t) + ak(t)∇G(q(t)) = fk(t),
q(−k)− q(k) = q̇(−k)− q̇(k) = 0,

(8)

where fk is as above and ak : R→ R is a 2k-periodic extension of a |[−k,k).
To this purpose, we now de�ne for k ∈ N a functional Ik : Ek → R by

Ik(q) =
1

2
‖q‖2Ek −

∫ k

−k
ak(t)G(q(t))dt+

∫ k

−k
(fk(t), q(t))dt. (9)

Then Ik ∈ C1(Ek,R) and, moreover,

I ′k(q)v =

∫ k

−k
(q̇(t), v̇(t))dt+

∫ k

−k
(q(t), v(t))dt

−
∫ k

−k
(ak(t)∇G(q(t)), v(t))dt+

∫ k

−k
(fk(t), v(t))dt.

(10)

Hence
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I ′k(q)q = ‖q‖2Ek −
∫ k

−k
(ak(t)∇G(q(t)), q(t))dt+

∫ k

−k
(fk(t), q(t))dt. (11)

Let us note for later reference that by [6, Fact 2.2], if

m := inf{a(t)G(x) : t ∈ R, |x| = 1}

and µ > 2 is de�ned as in Theorem 1.2, then for all ζ ∈ R\{0} and q ∈ Ek \{0}∫ k

−k
ak(t)G(ζq(t))dt ≥ m|ζ|µ

∫ k

−k
|q(t)|µdt− 2km. (12)

Clearly, critical points of the functional Ik are classical 2k-periodic solutions
of (8). We will now obtain a critical point of Ik by using the Mountain Pass
Theorem from [1]. This theorem provides the minimax characterisation for a
critical value which is important for our argument. Let us recall its statement
for the convenience of the reader.

Theorem 2.2 Let E be a real Banach space and I : E → R a C1-smooth func-
tional. If I satis�es the following conditions:

(i) I(0) = 0,

(ii) every sequence {uj}j∈N ⊂ E such that {I(uj)}j∈N is bounded in R and
I ′(uj) → 0 in E∗ as j → ∞ contains a convergent subsequence (Palais-
Smale condition),

(iii) there exist constants ρ, α > 0 such that I|∂Bρ(0) ≥ α,

(iv) there is some e ∈ E \Bρ(0) such that I(e) ≤ 0,

where Bρ(0) denotes the open ball in E of radius ρ about 0, then I has a critical
value c ≥ α given by

c = inf
g∈Γ

max
s∈[0,1]

I(g(s)),

where
Γ := {g ∈ C([0, 1], E) : g(0) = 0, g(1) = e} .

The following lemma, in combination with Theorem 2.1, is the keystone of
our proof of Theorem 1.2.

Lemma 2.3 For each k ∈ N, the functional Ik given by (9) has the mountain
pass geometry, i.e. it satis�es all assumptions of Theorem 2.2.

Proof. We �x k ∈ N and we now show the assumptions (i)-(iv) in Theorem 2.2
for Ik. It is clear that Ik(0) = 0, which is (i). In order to show the Palais-Smale
condition (ii), we consider a sequence {uj}j∈N ⊂ Ek such that {Ik(uj)}j∈N ⊂ R
is bounded and I ′k(uj) → 0 in E∗k as j → +∞. Consequently, there exists a
constant Ck > 0 such that for all j ∈ N we have

|Ik(uj)| ≤ Ck, ‖I ′k(uj)‖E∗k ≤ Ck. (13)

By (9) and (C2) we get
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‖uj‖2Ek ≤2Ik(uj)− 2

∫ k

−k
(fk(t), uj(t))dt

+
2

µ

∫ k

−k
(ak(t)∇G(uj(t)), uj(t))dt.

(14)

As

∫ k

−k
(ak(t)∇G(uj(t)), uj(t))dt = ‖uj‖2Ek − I

′
k(uj)uj +

∫ k

−k
(fk(t), uj(t))dt

by (11), we obtain

(
1− 2

µ

)
‖uj‖2Ek ≤ 2Ik(uj)−

2

µ
I ′k(uj)(uj)− 2

∫ k

−k
(fk(t), uj(t))dt

+
2

µ

∫ k

−k
(fk(t), uj(t))dt

and so

(
1− 2

µ

)
‖uj‖2Ek ≤2Ik(uj)

+

(
2

µ
‖I ′k(uj)‖E∗k +

(
2− 2

µ

)
‖fk‖L2

2k

)
‖uj‖Ek ,

(15)

where we denote by

‖q‖L2
2k

=

(∫ k

−k
|q(t)|2dt

) 1
2

the norm of the space L2
2k(R,Rn) of all 2k-periodic L2-functions. Combining

(15) with (C5) and (13) we get

(
1− 2

µ

)
‖uj‖2Ek −

(
2Ck
µ

+
1√
2

(
1− 1

µ

)
(1− 2M)

)
‖uj‖Ek − 2Ck ≤ 0,

which yields the boundedness of {uj}j∈N in Ek as µ > 2 by (C2). Going to
a subsequence if necessary, we can assume that there exists a function u ∈ Ek
such that uj ⇀ u weakly in Ek as j → +∞, and hence {uj}j∈N also converges
to u uniformly, as Ek is compactly embedded in C([−k, k],Rn). This shows in
particular that ‖uj − u‖L2

2k
→ 0 as j →∞.

Applying (10) we have

I ′k(uj)(uj − u) =

∫ k

−k
(u̇j(t), u̇j(t)− u̇(t))dt+

∫ k

−k
(uj(t), uj(t)− u(t))dt

−
∫ k

−k
(ak(t)∇G(uj(t)), uj(t)− u(t))dt+

∫ k

−k
(fk(t), uj(t)− u(t))dt
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and

I ′k(u)(uj − u) =

∫ k

−k
(u̇(t), u̇j(t)− u̇(t))dt+

∫ k

−k
(u(t), uj(t)− u(t))dt

−
∫ k

−k
(ak(t)∇G(u(t)), uj(t)− u(t))dt+

∫ k

−k
(fk(t), uj(t)− u(t))dt,

which yields

‖u̇j − u̇‖2L2
2k

= (I ′k(uj)− I ′k(u))(uj − u)− ‖uj − u‖2L2
2k

+

∫ k

−k
ak(t)(∇G(uj(t))−∇G(u(t)), uj(t)− u(t))dt.

As I ′k(uj) is bounded by (13), ∇G is continuous and uj → u uniformly, we see
that ‖u̇j − u̇‖2L2

2k
→ 0. Hence ‖u̇j − u̇‖Ek → 0 and the Palais-Smale condition

is shown.
In the next step we will prove that there exist constants ρ > 0 and α > 0

independent of k ∈ N such that Ik|∂Bρ(0) ≥ α, which is (iii). Assume that
0 < ‖q‖L∞2k ≤ 1. By (3) and (C4) we obtain

∫ k

−k
ak(t)G(q(t))dt ≤

∫ k

−k
ak(t)G

(
q(t)

|q(t)|

)
|q(t)|µdt ≤M

∫ k

−k
|q(t)|2dt ≤M‖q‖2Ek .

Combining this with (9) we get

Ik(q) ≥ 1

2
(1− 2M)‖q‖2Ek − ‖f‖L2‖q‖Ek .

Let ρ = 1√
2
and α = 1√

2

(
1

2
√

2
(1− 2M)− ‖f‖L2

)
. From (C5) it follows that

α > 0. Using (5), if ‖q‖Ek = ρ, then 0 < ‖q‖L∞2k ≤ 1, which implies Ik(q) ≥ α.
It remains to prove (iv), i.e. that for all k ∈ N there is ek ∈ Ek such that

‖ek‖Ek > ρ and Ik(ek) ≤ 0. Applying (9) and (12), we have

Ik(ζq) ≤ ζ2

2
‖q‖2Ek −m|ζ|

µ

∫ k

−k
|q(t)|µdt+ |ζ|‖fk‖L2

2k
‖q‖Ek + 2km

for all ζ ∈ R \ {0} and q ∈ Ek \ {0}. Let us choose 0 6= Q ∈ E1 such that
Q(±1) = 0. As µ > 2 and m > 0, there exists ζ ∈ R\{0} such that ‖ζQ‖E1

> ρ
and I1(ζQ) < 0.

We set e1(t) = ζQ(t) and de�ne for each positive integer k > 0,

ek(t) =

{
e1(t) if |t| ≤ 1

0 if 1 < |t| ≤ k.

Then ek ∈ Ek, ‖ek‖Ek = ‖e1‖E1
> ρ and Ik(ek) = I1(e1) < 0 for all k ∈ N.

Consequently, by Theorem 2.2, the action Ik has a critical value ck ≥ α
given by
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ck = inf
g∈Γk

max
s∈[0,1]

Ik(g(s)), (16)

where Γk = {g ∈ C([0, 1], Ek) : g(0) = 0, g(1) = ek}.
2

From Lemma 2.3 we conclude that for all k ∈ N there exists qk ∈ Ek such
that

Ik(qk) = ck, I ′k(qk) = 0,

where the values ck are given by (16). By Theorem 2.1, in order to �nish the
proof of Theorem 1.2, it su�ces to show that the sequence of real numbers
{‖qk‖Ek}k∈N is bounded. For this purpose, set

M0 = max
s∈[0,1]

I1(se1).

As Ik(sek) = I1(se1) for all s ∈ [0, 1], k ∈ N, and sek ∈ Γk, we have by (16)

ck = inf
g∈Γk

max
s∈[0,1]

Ik(g(s)) ≤M0. (17)

Using (9) and (11) we obtain

ck = Ik(qk)− 1

2
I ′k(qk)qk =

1

2

∫ k

−k
(ak(t)∇G(qk(t)), qk(t)) dt

−
∫ k

−k
ak(t)G(qk(t))dt+

1

2

∫ k

−k
(fk(t), qk(t))dt

for all k ∈ N, and by (C2),

ck ≥
(µ

2
− 1
)∫ k

−k
ak(t)G(qk(t))dt− 1

2
‖fk‖L2

2k
‖qk‖Ek .

Hence ∫ k

−k
ak(t)G(qk(t))dt ≤ 1

µ− 2

(
2ck + ‖fk‖L2

2k
‖qk‖Ek

)
.

Combining this with (9), (17) and (C5), for each k ∈ N, we have

ck = Ik(qk) =
1

2
‖qk‖2Ek −

∫ k

−k
a(t)G(qk(t))dt+

∫ k

−k
(fk(t), qk(t))dt

≥ 1

2
‖qk‖2Ek −

1

µ− 2

(
2ck + ‖fk‖L2

2k
‖qk‖Ek

)
− ‖fk‖L2

2k
‖qk‖Ek ,

and so

‖qk‖2Ek −
1√
2

µ− 1

µ− 2
(1− 2M) ‖qk‖Ek −

2µM0

µ− 2
≤ 0,

which completes the proof of Theorem 1.2.
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Figure 1: Example 3.1, an approximative solution of (8) for k = 10

3 One-dimensional Examples

In this section we present two simple one-dimensional examples, i.e. we consider
the case n = 1.

Example 3.1 Let a function a : R → R, a forcing term f : R → R and a
potential G : R→ R be given as follows:

a(t) =
1

5
e−t

2

+
1

10
, t ∈ R,

f(t) =
2

5
e−

t2

2 , t ∈ R,

G(q) = q4, q ∈ R.

It is easy to check that a, f and G satisfy the assumptions (C1)− (C5).
The �gures 1-5 show the graphs of approximative solutions qk of (8) for

k = 10, 16, 90, 140, 200.

Example 3.2 Let us de�ne functions a, f,G : R→ R as follows:

a(t) =
1

π
arctan(t) +

1

2
, t ∈ R,

f(t) =
1

2
e−

t2

2 , t ∈ R,

G(q) = q4, q ∈ R.

Again, it is readily seen that the assumptions (C1)− (C5) are satis�ed.
The �gures 6-9 show the graphs of approximative solutions qk of (8) for

k = 10, 16, 90, 140.

9



Figure 2: Example 3.1, an approximative solution of (8) for k = 16

Figure 3: Example 3.1, an approximative solution of (8) for k = 90
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Figure 4: Example 3.1, an approximative solution of (8) for k = 140

Figure 5: Example 3.1, an approximative solution of (8) for k = 200
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Figure 6: Example 3.2, an approximative solution of (8) for k = 10

Figure 7: Example 3.2, an approximative solution of (8) for k = 16
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Figure 8: Example 3.2, an approximative solution of (8) for k = 90

Figure 9: Example 3.2, an approximative solution of (8) for k = 140
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