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The ability to develop Brain-Computer Interfaces (BCI) to Intelligent Systems would
offer new perspectives in terms of human supervision of complex Artificial Intelligence
(AI) systems, as well as supporting new types of applications. In this article, we
introduce a basic mechanism for the control of heuristic search through fNIRS-based
BCI. The rationale is that heuristic search is not only a basic AI mechanism but
also one still at the heart of many different AI systems. We investigate how users’
mental disposition can be harnessed to influence the performance of heuristic search
algorithm through a mechanism of precision-complexity exchange. From a system
perspective, we use weighted variants of the A∗ algorithm which have an ability to
provide faster, albeit suboptimal solutions. We use recent results in affective BCI
to capture a BCI signal, which is indicative of a compatible mental disposition in
the user. It has been established that Prefrontal Cortex (PFC) asymmetry is strongly
correlated to motivational dispositions and results anticipation, such as approach or
even risk-taking, and that this asymmetry is amenable to Neurofeedback (NF) control.
Since PFC asymmetry is accessible through fNIRS, we designed a BCI paradigm
in which users vary their PFC asymmetry through NF during heuristic search tasks,
resulting in faster solutions. This is achieved through mapping the PFC asymmetry
value onto the dynamic weighting parameter of the weighted A∗ (WA∗) algorithm.
We illustrate this approach through two different experiments, one based on solving
8-puzzle configurations, and the other on path planning. In both experiments, subjects
were able to speed up the computation of a solution through a reduction of search
space in WA∗. Our results establish the ability of subjects to intervene in heuristic search
progression, with effects which are commensurate to their control of PFC asymmetry:
this opens the way to new mechanisms for the implementation of hybrid cognitive
systems.

Keywords: user interfaces, brain-computer interfaces (BCI), neurofeedback (NF), functional near-infrared
spectroscopy (fNIRS), heuristic search

INTRODUCTION

Brain-Computer Interfaces (BCI) have been a major component of human augmentation
research (Schmorrow, 2005), in which intelligent processing was harnessed to extend human
information processing abilities. However, it has recently been suggested that BCI-based human
augmentation could be used to address the problem of human control over autonomous Artificial
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Intelligence (AI) systems (Kennedy, 2014), which several authors
have identified as one of the major societal challenges for the
future (Kurzweil, 2005; Bostrom, 2014).

The research presented in this article explores new techniques
through which the mental attitudes of users could be used to
influence, in a principled way, the computational behavior of
an AI system using a BCI. Such a research program should aim
at endowing humans with high-level control abilities sufficient
to steer the flow of AI computations, irrespective of their
low-level details, while preserving an understanding of the AI
computation’s goal.

One mechanism that emerged as a good candidate to bridge
the gap between cognitive mechanisms and AI systems is
heuristic functions, which have a long history in cognitive
science and AI. Recently, a new vision of heuristics has emerged
within AI, one which emphasizes pruning as the most important
function of heuristics, rather than providing information
guiding towards an optimal solution (Sturtevant et al., 2012).
This suggests that users’ cognitive attitudes could have an input
at the level of heuristic functions calculation, hence influencing
the amount of pruning associated with a heuristic. In turn, such
pruning during search might speed up reaching a solution, at the
risk of selecting a suboptimal one. We can thus hypothesize that
cognitive attitudes related to motivation, reward anticipation,
or risk acceptance, are candidates to control heuristic
search.

There is a rich body of literature which suggests that
these cognitive states are correlated to Prefrontal Cortex (PFC)
asymmetry (Davidson et al., 1990; Sutton and Davidson, 1997;
Santesso et al., 2008; Gorka et al., 2015), which can be quantified
using EEG or fNIRS and used as a neural marker of the
above states. In addition, frontal asymmetry has been shown
to be controllable through Neurofeedback (NF) in clinical
applications (Rosenfeld et al., 1995; Baehr et al., 2001; Zotev
et al., 2014), a property we have used for the development
of affective BCI (Gilroy et al., 2013). There has also been
significant previous research in the use of fNIRS for BCI
(Solovey et al., 2009), including the measurement of task
difficulty in conjunction with computer gameplay (Girouard
et al., 2009), or as an additional input channel to interactive
systems (Solovey et al., 2012). This research has, however,
primarily investigated fNIRS for passive BCI. Finally, Doi et al.
(2013) have shown fNIRS to be well-suited to the study of
emotional responses in the PFC, which is our target area,
while other work (Tuscan et al., 2013; Naseer and Hong,
2015) has confirmed the accessibility of specific prefrontal
areas to fNIRS.

In this article, we introduce human control of heuristic
search behavior based on a BCI, and present results from
two fully-implemented early experiments on traditional search
problems. The underlying idea is to use PFC asymmetry,
captured through fNIRS to control the progression of heuristic
search in a principled fashion, using mathematical properties
of heuristic search. User active control of their mental
disposition is implemented through an fNIRS NF paradigm,
in which users receive as feedback visual cues on the heuristic
search strategy.

Some of the most significant research in BCI interfacing
to AI systems has taken place in the field of BCI-enhanced
Information Retrieval. Gerson et al. (2006) have demonstrated
increased human performance in satellite image analysis when
a BCI system was used to detect regions of interest despite very
fast, almost subliminal, visual scanning by users. Kapoor et al.
(2008) have used EEG-based BCI in combination with computer
vision to improve image categorization. Eugster et al. (2014)
have described how BCI could assist to automatically detect term
relevance during Information Retrieval tasks. The novelty of
our work thus consists in investigating BCI control of basic AI
algorithms themselves.

After introducing the various elements of our system,
we report experiments carried out on two traditional search
problems, 8-puzzle and path planning, for which the automatic
search for a solution was influenced through BCI input.
Finally, to assess the usability of the BCI, we analyze subjects’
performance on the NF task and its impact on heuristic search
behavior for each application.

MATERIALS AND METHODS

A Framework for BCI Control of Heuristic
Search
In order to implement BCI interfacing to AI computations,
we need to identify a principled mechanism through which
user cognitive strategies can influence the performance of AI
algorithms. Since heuristic search remains at the heart of many
AI computations, we have designed a specific mechanism to
influence heuristic search parameters.

Heuristic search algorithms, such as A∗, provide optimal
solution to search problems through the use of a heuristic
function (Pearl, 1984). However, it is possible to tune the
behavior of heuristic search towards more efficient computations
using the precision-complexity exchange property (Pohl, 2010),
which allows to produce solutions faster when relaxing strict
solution optimality requirements. One such method, introduced
by Pohl (1970), consists in redefining A∗’s standard heuristic
function as a weighted formula of cost g(n) and heuristic
estimate h(n):

f (n) = (1− w)× g(n)+ w× h(n) (1)

where the weighting coefficient w is dynamically altered during
the search process itself (Pearl, 1984; Hansen and Zhou,
2007). This approach can also be shown to be ∈-admissible,
meaning that any deviation from the optimal solution introduced
by dynamic weighting is bound by an ∈ factor (precision).
The weighting coefficient w will thus serve as the main
implementation mechanism to influence AI computations and
will be the target of the BCI signal. Thereafter, we will refer to
this approach as Weighted A∗ (WA∗) with dynamic weighting
(Ebendt and Drechsler, 2009).

Our WA∗ implementation is based on the comprehensive
A∗ description given in Pearl (1984), which we have modified
to support various options for dynamic weighting; one of these
supports changes in dynamic weighting at various stages of
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search progression, defined in terms of percentage of maximum
node expansion.

We will be using two traditional heuristic search problems
to support our experiments: the 8-puzzle, and grid-based
path planning. The entire solution set of the 8-puzzle has
been studied by Reinefeld (1993), who has generated all
9!/2 solvable tile configurations, computed optimal solutions
for all problem instances, and identified specific configurations
according to their number of solutions. We have selected
as runtime examples for our experiments the two 8-puzzle
configurations with the greatest number of solutions (64).
The rationale for also experimenting with path planning is
that, unlike the 8-puzzle whose search space is abstract, it
supports direct visualization of search space progression, which
is obviously of relevance when investigating a NF paradigm
for BCI.

The main mechanism through which WA∗ affects search
performance is a reduction in the number of nodes expanded
during search (Hansen and Zhou, 2007), which is a convenient
way to present the impact of dynamic weighting. In their
study of various benchmarks, Wilt and Ruml (2012) plotted
the number of expanded nodes as a function of the weighting
coefficient under a histogram format, which we will adopt
to present experimental results (see ‘‘Results and Discussion’’
Section).

In order to determine the optimal variation range for dynamic
weighting, we have explored the impact of various values of the
weighting coefficient on the number of nodes explored (see Pearl
and Kim, 1982). Our results confirmed that for the 8-puzzle
problem set (using Manhattan distance as the baseline heuristic
function), the most significant performance improvement takes
place for dynamic weighting in the w = [0.5; 0.7] range. Figure 1
depicts the variation of search space as a function of dynamic
weighting, also considering the timing of dynamic weighting
modification.

In a similar fashion, offline simulations of our WA∗

implementation for path planning have shown that the
maximum variation in path planning performance is observed
for the weighting interval [0.5; 0.6]1, using straight line distance
as the baseline heuristic function.

From a user’s cognitive perspective, seeing a solution
appearing faster can be associated to motivational aspects, and
there is indeed abundant research that associates PFC asymmetry
to motivational aspects and reward anticipation (Gorka et al.,
2015) under the high-level dimension of approach (Sutton and
Davidson, 1997). The latter point is further supported by the
identified role of the DLPFC in reward encoding modulation,
considering the correlation between DLPFC asymmetry and
approach. Amodio et al. (2004) have analyzed the correlates of
PFC asymmetry from a regulatory perspective. More specifically,
they found the approach regulation to be most relevant to ‘‘pre-
goal states’’, during which efforts are mobilized towards the goal.
As a result, they associate frontal activity with goal dispositions,
and the behavioral aspects of goal pursuit. This should be

1Note that this differs from the optimal variation range for the weighting
coefficient in our 8-puzzle experiment.

relevant to any search-based problem solving application with
the solution as a goal.

Hence, the overall system can be described as follows: (i) the
level of PFC asymmetry will serve as the BCI signal acquired
through fNIRS; (ii) the user, as a cognitive strategy, will express
their anticipation of search progression, which in turn will affect
PFC asymmetry in a NF setting; and (iii) the real-time variation
of PFC asymmetry will be mapped onto the weighting factor of
WA∗, thereby determining the precision-complexity tradeoff and
speeding up the reach for a solution.

The above BCI approach is based on a mapping function
that determines the optimal variation of dynamic weighting
as a function of variations of PFC asymmetry. Considering
results from offline simulations (Figure 1), the variation in
performance can be roughly approximated by a linear function
over most of the range, which supports the definition of a
linear mapping function from the BCI asymmetry score to the
weighting coefficient.

The second aspect of mapping is to decide at which stage
of search progression dynamic weighting should be triggered.
For our 8-puzzle application, we have decided to modify w
only once, at an early stage of search progression, the exact
timing depending on the temporal variation pattern of PFC
asymmetry. During preliminary tests, we found the impact of
dynamic weighting to be most significant when applied between
0% (onset) and 25% of the search progression (defined as the
number of expanded nodes) as illustrated in Figure 1 for a
dynamic weighting interval of [0.5; 0.7].

The requirements on the timing of dynamic weighting are
less stringent for path planning. This is why we have allowed
modifications to w at regular interval throughout the search
process. The weighting coefficient is updated at regular intervals
(2 Hz) during the search process based on the sampling of
the fNIRS PFC asymmetry value. However, to avoid erratic
behavior that would result from varying w in opposite directions
during a NF epoch, mapping operates by only increasing w,
so that the current value corresponds to the maximum value
over time.

Finally, we ensured that the timescale of WA∗-based solution
computation should be compatible with the duration of NF
epochs in order to enable appropriate user experiments. This
is mostly relevant to path planning, because of the repeated
updating of the weighting coefficient. The computation of a
solution path on our 40 × 60 grid takes on average 45 s on our
hardware configuration, the search process being slowed down
by the I/O exchanges required to display the nodes expanded
during search as well as additional timing loops calibrated to the
target total duration.

In ‘‘Experiment I: BCI Control of 8-Puzzle Solving’’ Section,
we describe the design of our fNIRS-based BCI system, as well
as the NF protocol that has been used in two experiments,
each one using a different search problem (8-puzzle and path
planning).

Apparatus
We used a Biopac Systems fNIR400 optical brain imaging
device with a 16-channel sensor (fixed 2.5 cm source
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FIGURE 1 | Impact of dynamic weighting on the size of the 8-puzzle search space.

detector separation) to operationalize real-time BCI input
and record brain-activity data for post hoc analysis (see
Ruocco et al., 2014 for channel locations). Raw data and
oxygenated-hemoglobin (HbO) values2 were collected
with 2 Hz sampling rate (using COBI Studio) and was
sent to bespoke client experimental software over TCP/IP
(using FnirSoft v3.5 DAQ Tools). We followed the
recommendations of Solovey et al. (2012) for using fNIRS
in Human-Computer Interaction settings to inform the
experimental set-up. Subjects were seated approximately
47′′ (1.2 m) away from a 24′′ flat monitor, in a comfortable
chair to help minimize movements. The room was quiet
(but not soundproof) and dimly lit, and the sensor band
positioned on the subjects’ forehead was also covered with
non-transparent fabric to block out ambient light. Subjects
were instructed to refrain from moving (particularly their
limbs and head), talking and frowning while carrying out
experimental tasks.

Experimental Paradigm
For both experiments, we applied the same generic set-
up, with differences in the design of the experimental tasks
and methods. Details of these will be presented in the
subsequent sections. Subjects were right-handed, reported no
treatment history for psychiatric conditions and provided written
consent prior to participation. The experiment was approved
by a research ethics committee at the authors’ institution.
Subjects were compensated with an online retailer voucher
equivalent to $30.

2Although we used changes in oxygenated hemoglobin (HbO) values for BCI
input as it is commonly more associated with neural activity (Ruocco et al.,
2014), deoxygenated (HbR) and total (HbT) hemoglobin measurements were
also collected.

HbO for each sensor channel was calculated with respect
to a baseline measured at the beginning of each block (Ayaz
et al., 2010). We derived a real-time metric of left-asymmetry
by averaging HbO values over the four leftmost and four
rightmost channels (located over the left and right dorsolateral
PFC, respectively), and subtracting Right from Left (Cavazza
et al., 2015; also see Doi et al., 2013). The resulting asymmetry
metric reflects inter-hemispheric difference in HbO change, in
micromolar units (µM/L; see Aranyi et al., 2015 for a detailed
description of brain-signal selection and integration for the
current experimental tasks). In both experiments, data was
collected in a set of identical blocks consisting of a set of epochs
(short time periods with a specific task).

EXPERIMENT I: BCI CONTROL OF
8-PUZZLE SOLVING

Neurofeedback Protocol
In Experiment I, blocks were structured as the following
sequence of epochs: Rest, NF and Count (see Figure 2).
Each epoch lasted 40 s. The last 10 s of each Rest epoch

FIGURE 2 | Experiment I: Rest, Neurofeedback (NF) and Count epochs.
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was used to calculate the baseline for the block. Rest epochs
contained no specified cognitive tasks and no feedback on
prefrontal asymmetry, and they were used to calculate the
baseline for successive blocks; therefore, Rest epochs were
not analyzed. During the NF epoch, subjects were instructed
to use their thoughts to narrow a red cone presented on
the screen (Figure 3), which corresponds metaphorically to
the focus of the (automatic) search process. They were not
instructed to think about a solution or to try to solve the
puzzle themselves (most of them were actually not familiar
with the 8-puzzle problem). They discussed their strategies with
the experimenter after each practice block (three in total), and
reported their cognitive strategy after each experimental block
(six in total). Because the hemodynamic response measured
by fNIRS occurs in approximately 7 s (see Bunce et al., 2006),
the first 7 s of data in each NF and Count epoch were
not analyzed (see Figure 6A). Success in each NF epoch

was determined by performing a one-sample t-test on the
asymmetry scores collected during the epoch against the test
value of 0, upon the completion of the epoch. This tested
whether there was a statistically significant increase in asymmetry
against asymmetry recorded during the baseline (measured
during Rest), since the mean of prefrontal asymmetry during
baseline was defined as the zero point (regardless of the
actual level of asymmetry during baseline measurement). If this
increase was statistically significant, the effect-size measure3

r was calculated to characterize the magnitude of difference
from the baseline. We included a Count epoch lasting for
40 s following NF, during which subjects were instructed
to mentally count backwards from 100 by subtracting a

3The effect-size r is constrained between 0 and 1 (see Figure 3 for calculation).
According to Cohen (1988) conventions, r = 0.10 corresponds to small,
0.30 to medium, and 0.50 to large effect-size.

FIGURE 3 | Experiment I—Subjects equipped with an fNIRS sensor engage in a NF task whose visual display is a metaphor for the search space they
are trying to reduce. Mapping between fNIRS signal and the WA∗ weighting coefficient is implemented via real-time statistical testing of prefrontal asymmetry. The
weighting coefficient is only modified once, with several attempts in the early stages of the search process. Note that since each epoch (without the first 7 s, shown
in gray) contained at least 66 observations (33 s with 2 Hz sampling frequency), we applied as threshold criterion the t critical value for p = 0.05 (two-tailed) with 65◦

of freedom, tcrit(65) = 2.00.
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given integer (3, 4, 6 or 7). This mental counting task is
theoretically unrelated to left-asymmetry and it is one of
the most commonly used prefrontal activities in fNIRS based
BCI research (Naseer and Hong, 2015). The Count epoch
was included to distract subjects’ attention from the cognitive
strategies they used during NF (see Zotev et al., 2011),
and to promote prefrontal activation converging to baseline
after NF.

EXPERIMENT II: BCI CONTROL OF
GRID-BASED PATH PLANNING

Although grid-based path planning is another traditional testbed
for heuristic search algorithms (Pearl, 1984), it differs from the
8-puzzle in that it allows a direct visualization of search space
and search progression, because of its inherent spatial nature.
We have thus designed a second experiment to explore how
visualizing the early progression of the search process would
affect NF.

We have opted for a relatively simple and symmetrical
obstacle configuration made of tiled obstacles perpendicular
to the main axis from the start cell to the goal cell. In
this configuration, WA∗ dynamic weighting will tend to focus
the search space, thereby speeding up the computation of a
solution path.

For consistency, we have preserved the dynamic cone used in
the 8-puzzle version as a visual feedback channel: although in this
case the cone is more directly related to search space progression,
it provides a geometrically simpler feedback in case the actual
search space displayed grows into irregular patterns; the cone
is simply overlaid on the actual grid, aligned on the progression
axis, with the large section of the cone towards the goal cell.

The mapping function is designed from the offline calibration
of path planning using WA∗ and the observed PFC asymmetry
scores. Preliminary offline simulations with WA∗ alone
have shown that the maximum variation in path planning
performance is observed for the weighting interval [0.5; 0.6]4,
while the asymmetry score (after baseline) varies in the [0; 1.1]
interval. We have opted for a linear mapping approach, which
gives the linear mapping formula:

w =
1
11
× Asym+ 0.5 (2)

Neurofeedback Protocol
Because we used our results from Experiment I to design
Experiment II, block design, data pre-processing and analysis
differ in a number of respects between the two experiments.
These differences are described below, and summarized in
Table 1.

In Experiment II, each block started with an epoch lasting
for 27 s, during which subjects were instructed to carry out a
simple mental counting task (counting backwards from 500 by a
given integer) while looking at the computer screen. Baseline for
the block was measured during the final 10 s of this epoch (see

4Note that this differs from the optimal variation range for the weighting
coefficient in our 8-puzzle experiment.

TABLE 1 | Summary of differences in block design between the
experiments.

Experiment I Experiment II

Practice 3 blocks 1 block
NF blocks 6 8
Baseline task Rest Count
Success test Parametric Bootstrapping
Test timing Real-time Post hoc
Filtering None SMAR, FIR

Figure 4). This counting task was used to control for unwanted
mental processes (see Sarkheil et al., 2015) while measuring
baseline, because it is unrelated to asymmetry, and Experiment I
indicated that it is comparable in subjective difficulty to the NF
task. Following baseline, subjects received a visual prompt (3 s)
to abandon the counting task and regulate their brain activity
to influence the path-planning algorithm, during which they
would receive real-time NF of their brain activity. This NF epoch
lasted for 47 s. During the NF epoch, subjects were instructed
to mentally express their eagerness to reach a solution, and they
were instructed that their brain activity was controlling the width
of the cone, which corresponds to the focus of the automatic
search process (Figure 5). Once again they were not instructed
to think about a solution themselves. Because these instructions
were more suggestive of potentially successful thinking strategies
(i.e., expressing eagerness), and subjects also received feedback
on search progression and the target state, this protocol only
included a single practice block (after which they discussed their
thinking strategy with the experimenter), and 8 experimental
blocks (after each block they reported their thinking strategies).
To compensate for the approximate 7 s delay in hemodynamic
response, the algorithm was left on stand-by for the first 7 s of the
NF epoch and the feedback channel remained unchanged while
subjects were already applying their cognitive strategies. These
7 s were not considered in post hoc analyses. We characterized
NF success as a statistically significant increase in left-asymmetry
compared to baseline (defined as the zero point) during the NF
epoch within a block. We determined block success post hoc,
using one-sample t-tests with bootstrapping (1000 samples, 95%
confidence intervals) on asymmetry values collected during the
NF epoch against the test value 0. Furthermore, we calculated the
effect-size measure r to characterize the magnitude of increase in
asymmetry in successful blocks (see Cavazza et al., 2015). Since
we calculated block success post hoc in Experiment II, we could
include a filtering process which allowed for identifying channels
as problematic using sliding-window motion artifact rejection
(Ayaz et al., 2010). To attenuate noise, data was also low-pass
filtered using a finite impulse response (FIR) filter with order
20 and 0.1 Hz cut-off frequency (Ayaz et al., 2010).

RESULTS AND DISCUSSION

Experiment I
Eleven adult subjects participated in Experiment I (Age:
M = 37.18 years, SD = 11.21, range = 20–52; 3 female).
Out of all 66 blocks completed by the 11 subjects, 38 (58%)
contained an NF epoch with statistically significant left-side
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FIGURE 4 | Experiment II: Count and NF epochs. Left-asymmetric increase in DL-Prefrontal Cortex (PFC) activity during NF was mapped to the width of the red
cone, which was used as a visual metaphor (i.e., narrowing the beam of a searchlight) for supporting the search process.

FIGURE 5 | Experiment II—Subjects equipped with an fNIRS sensor engage in a NF task whose visual display is this time the progression of the
search process in path planning on a grid. The real-time mapping shown on the graph illustrates how increasing w values depends on positive up-regulation of
asymmetry score. Unlike Experiment I, the weighting coefficient can be subject to successive dynamic increases during search. Examples: (1) shows a standard
un-influenced solution path; (2) shows details of the cone visual feedback to the user’s positive input, matching to the acceleration of the search process, thus to a
reduction of the search space (nodes unexplored on the right-hand side); and (3) shows the alternative solution produced by WA∗ under the subject’s influence.

asymmetry; these blocks were considered successful5. Each
subject had at least one successful block, and eight subjects
(73%) had at least three successful blocks (i.e., half of
blocks successful). No subject achieved NF success on all
six blocks.

Since fNIRS signals are relative values, it can be difficult
to compare them across subjects (Sakatani et al., 2013);
moreover, the magnitude of oxygenation changes can also differ

5Note that in Experiment I, NF success was determined real-time by the
experimental software by running t-tests on asymmetry scores after the
completion of each epoch. The assumption of normality was not tested by
the experimental software; however, post hoc analyses using bootstrapping
resampling method on a subset of epochs resulted in accepting the same
epochs as successful. Additionally, post hoc correction for family-wise error
yielded the same result, with the exception of one single epoch.

substantially across blocks within the same subject. Our mapping
strategy was designed to mitigate the issue of comparability. We
demonstrate this through two examples of a successful block
from two different subjects (see Figure 6).

Figure 6A shows a larger mean asymmetry during the NF
epoch than Figure 6B (∆Oxy-Hb = 0.33 and 0.17, respectively);
however, the dispersion of asymmetry scores during the epoch
was also larger compared to the mean (SD = 0.36 and 0.09,
respectively). In other words, left-side oxygenation was more
consistently above right-side throughout the NF epoch in
Figure 6B; consequently, the t value was larger (t is calculated
using the mean, standard deviation and number of data points),
leading to a larger r value (r is based on t and the degrees
of freedom), mapped to a larger w value, leading to greater
reduction in search space (see Equation (2) for formulae).
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FIGURE 6 | Examples of average left and right oxygenated-hemoglobin (HbO) changes over time, as well as asymmetry, during two successful
blocks (a, b) in Experiment I. Areas in gray represent the first 7 s of each epoch (i.e., the approximate delay of the hemodynamic response). Note that during the
NF epoch, HbO increases bilaterally, with asymmetry to the left; during the Count epoch following NF, HbO decreases on both sides; during Rest, HbO further
decreases towards baseline.

We only calculated r values for epochs where left-side
asymmetry was statistically significantly above 0 (i.e., the NF
signal was used to influence the algorithm only when there
was statistical evidence for left asymmetry). The lowest r
value (0.28) shows that we could reliably detect medium (and
large) effect sizes (r ≥ 0.30) during 40 s-long NF epochs
with 2 Hz sampling frequency. Although several NF epochs
approached the maximum r value of 1, which determined the
maximum of the dynamic weighting of the search algorithm, the
distribution of scores demonstrates that differential weighting
was successfully applied based on the r effect-size measure.
Successful NF epochs result in a commensurate modification
of the weighting coefficient w via the mapping process,
which in turn accelerates search by reducing the search space
explored. In this experiment, the weighting coefficient was
modified as soon as an r value was obtained. However, testing
was performed at several early stages of search, meaning
that not just r magnitude but also the speed at which
asymmetry was reached, had an influence on the search
process.

The reduction in search space for successful NF blocks is
presented in Figure 7. Average reduction in nodes visited across
the 38 successful NF epochs was 39.5% (SD = 5.65) from the
baseline, which has a significant effect for an algorithm of
exponential complexity such as WA∗. Overall, these findings
support the validity of our approach to defining NF success
and mapping it to the behavior of the search algorithm.
In addition, variations of the BCI signal, within and across
subjects, result in different levels of performance improvement
for heuristic search.While this is an essential property to envision
actual control of heuristic search from users’ cognitive attitude,
variation across successful epochs is still moderate in this first
experiment.

Experiment II
Sixteen subjects participated in Experiment II (5 female; Mean
age = 34.31 years, SD = 11.31, Range = [21; 62]). They signed
the same consent form and received the same compensation as
subjects for the first experiment. Data from two subjects had
to be discarded (due to technical problems or deviating from
instructions), leaving data from 14 subjects to be interpreted,
corresponding to 112 blocks. Of these, 53 blocks (47%) were
successful (had average asymmetry significantly larger than

FIGURE 7 | Experiment I: decrease of the number of the nodes
expanded during the state-space search across successful NF epochs
(total number of nodes explored without intervention is 34,400 for the
8-puzzle configuration used in the experiments).
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FIGURE 8 | Experiment II: number of nodes expanded during
state-space search across successful NF epochs.

0 during NF), using similar criteria as those defined for the first
experiment, which are valid for both applications as theymeasure
NF success6. At subject level, using the same success criterion
as above (50% successful blocks), 8 subjects out of 14 were
successful (57%).

The distribution of search time reduction across blocks
shows a range of effects (see Figure 8), commensurate to the
distribution of asymmetry values across blocks and subjects. The
overall time reduction is less marked than with the 8-puzzle
application: this is due to lower NF scores, but only in part,
as the scope for search space reduction was more significant
in the 8-puzzle example configuration than in the specific path
planning one.

The distribution of w across samples is suggesting that the
chosen mapping allows a progressive effect in speeding up search
based on the level of PFC asymmetry, rather than a binary
effect (Figure 9). This finding, already observed for the 8-puzzle
application, is again an important validation for BCI design, as
it supports the use of the BCI signal to progressively control AI
search behavior (within and across subjects) rather than behaving
as an all-or-nothing switch.

Search space reduction is particularly marked for values of
w > 0.55 in the specific layout tested. We have isolated the most
successful blocks and studied them specifically. Overall, a typical
successful block will see a rapid onset of PFC asymmetry and
will result in a runtime reduction of 50% or more, through a
reduction of the search space (Figure 8), runtime reduction being
the most visible effect for the subject across trials. In this second
experiment, the spread of search space reduction (number of
nodes) is much greater across successful blocks and would make

6Block success in Experiment II was determined post hoc using one-sample
t-tests on asymmetry values collected during the NF epoch (40 s sampled
at 2 Hz frequency) against the test value 0, with bootstrapping resampling
method (1000 samples, 95% confidence intervals).

FIGURE 9 | Distribution of w values across successful NF blocks
(r = 0.895, p < 0.001).

possible a finermapping between asymmetry values and speeding
up of the search process.

We collected post-experiment user feedback on the actual
cognitive strategies they used for NF: it highlighted a mix
of through contents related to both approach and positive
valence, apparently influenced by the visual nature of the
application. Users reported various sorts of mental ‘‘cheering’’ as
if encouraging runners during a race, or imagining taking part in
the race themselves, as well as the use of more abstract thinking
strategies to generate a feeling of eagerness, such as reminiscence
of appetitive stimuli or pleasant memories.

FIGURE 10 | Mean and standard error of fNIRS signal across all
successful blocks in Experiment II for left (Red) and right (Blue) sides
separately (left rises above right during NF epoch).
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The overall NF success scores for both experiments differed
slightly (58%, in Experiment I, vs. 47%, in Experiment II, on
a block basis), suggesting that the visibility of actual search
data in path planning did not improve subjects’ performance
over the use of an abstract representation as a visual feedback
channel (Figure 10). Potential explanations include the fact that
such real-time data can actually appear distracting because of
their perceived spatial complexity or, in the specific case of
path planning the real-time visualization of back-tracking steps,
which would appear uncanny as visual feedback, distracting
the users from the main visual feedback target which is the
overlaid cone. It is important to consider overall performance
strictly in the context of previous NF work, in particular
taking into account the absence of any significant training in
our experiments. Previous NF experiments reported in clinical
research have included extensive training spread over multiple
sessions: for instance, Rosenfeld et al. (1995) reported training
subjects over 3 days prior to NF experiments, and Kotchoubey
et al. (2002) up to eight weeks. We have conspicuously refrained
from training subjects over repeated sessions, due to the possible
mood alterations induced by prefrontal asymmetry NF: the above
studies (Rosenfeld et al., 1995; Kotchoubey et al., 2002) took
place in a clinical setting while for our experiments, ethical
approval did not cover potential long-term effects, leading us to
exert caution (even if mood alteration following left-asymmetry
training was assumed to be positive, according to the established
literature).

In terms of acceleration of the search process, the average
reduction in computation time was actually larger with the
8-puzzle experiment, but this can be considered a property of
the search space itself, and the fact that weighting coefficient
modification tends to have maximum impact if performed early
in the search process. The 8-puzzle search process was in that
respect easier to control while path planning is highly dependent
on obstacle density and layout.

CONCLUSION

We have presented a novel use of BCI, aiming at interfacing
directly at the algorithmic level of AI computations, supported
by a proof of concept experiment on two traditional heuristic
search benchmarks. To the best of our knowledge, this
work still constitutes the first fully implemented ‘‘BCI
to autonomous AI’’ interface of the type advocated by
Kennedy (2014).

These early results establish the possibility for high-level
cognitive disposition to influence, in a principled fashion, the

behavior of basic AI algorithms, which despite their elementary
nature stand at the heart of many complex AI systems. For
instance, the same basic heuristic search mechanisms that we
have studied here are central to heuristic search planning
(Bonet and Geffner, 2001) which can be applied to the
resolution of complex, real-world problems. This suggests that
the fundamental mechanisms we have introduced here could be
transposed to more complex AI systems more representative of
those that would require human supervision in the long term.

However, our results have also revealed several limitations
in the design of our experimental protocol. More attention
should be dedicated to facilitating users’ cognitive strategies,
especially since most subjects were unfamiliar with the type of
problem solving they were meant to control. In particular, one
difficulty faced by subjects was to control approach in a rather
emotionally neutral context, which contained no appetitive
stimuli traditionally associated with the approach, possibly due
to the rather abstract nature of the task and the absence of
real-world reward. This may contribute to lower success scores
than in our previous experiments using fNIRSNF, where subjects
expressed affective disposition towards virtual characters (Aranyi
et al., 2016). In terms of experiments interpretation, a more
specific design should include additional validation of cognitive
dispositions, e.g., through selective questionnaires: this will help
ensuring the specific nature of DLPFC activation.

Finally, although the observed NF success scores are
compatible with the state-of-the-art in the absence of extensive
subject training, further validation should instead aim at
maximizing success scores in the presence of NF training, also
addressing the issue of cognitive strategies.
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