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A visual processing advantage for 

young-adolescent deaf observers: 

Evidence from face and object 

matching tasks
Ahmed M. Megreya

1
 & Markus Bindemann

2

It is unresolved whether the permanent auditory deprivation that deaf people experience leads to the 

enhanced visual processing of faces. The current study explored this question with a matching task in 

which observers searched for a target face among a concurrent lineup of ten faces. This was compared 

with a control task in which the same stimuli were presented upside down, to disrupt typical face 

processing, and an object matching task. A sample of young-adolescent deaf observers performed with 

higher accuracy than hearing controls across all of these tasks. These results clarify previous findings 
and provide evidence for a general visual processing advantage in deaf observers rather than a face-

specific effect.

It has been known for many years that the permanent loss of sight can improve a wide range of fundamental 
auditory processes, such as sound localization1, pitch discrimination2, voice perception3, and auditory memory4. 
In contrast, it remains unresolved whether deaf individuals experience enhanced visual perception in compari-
son to hearing persons (for reviews, see refs 5 and 6). According to the perceptual deficit hypothesis, an impaired 
sense might impair the development of other senses7, which suggests that deaf individuals might also present 
visual processing deficits. In contrast, the sensory compensation hypothesis posits that the impairment of one 
sense can cause compensatory proficiencies in other senses8, which might suggest a visual processing superiority 
in deaf individuals. Studies of visual processing in deaf participants have yielded inconsistent results, demon-
strating either an advantage for deaf individuals9–12, or hearing persons11,13–15, or equivalent performance for both 
groups of observers10,11,16,17. These inconsistencies do not appear to arise from differences between the participant 
samples of these studies or visual stimulus characteristics, but have been linked to target eccentricity and selec-
tive visual attention5,6, whereby processing might be enhanced in deaf observers particularly for tasks requiring 
peripheral visual attention. It has also been suggested that deaf individuals perform better on tasks that require 
a global perceptual strategy, in which stimuli are processed as coherent gestalts, whereas hearing individuals are 
advantaged in analytical perceptual strategies that focus on specific details or features18.

The present study examined the effect of hearing impairment on a visual task that is held to depend strongly 
on global processing - the perception of faces (see, e.g., refs 19–22). Very few studies have examined face process-
ing in deaf individuals, and have produced mixed results. In the Benton Face Recognition Test (BFRT: ref. 23),  
which requires observers to perceptually match a target to a six-person lineup, deaf participants exhibited a per-
formance advantage over hearing participants24. However, this advantage was not found when good-quality fron-
tal or profile faces were shown, for which performance was at or close to ceiling, but only when task difficulty was 
increased substantially by obscuring facial features through the addition of shadows. This specific advantage for 
shadow faces was abolished by presenting these faces upside-down, which is held to disrupt global face process-
ing (see, e.g., refs 20–22). This could indicate that the partial face advantage of deaf observers might arise from 
specific face processing mechanisms rather than a general improvement in visual discrimination. However, an 
alternative explanation also exists, as performance for inverted shadow faces was close to chance. This raises the 
possibility that this condition was not sufficiently sensitive to reveal differences between groups.

Other studies produced similarly mixed results. In a recognition memory task, in which observers had to 
identify previously seen faces, deaf and hearing participants displayed comparable accuracy25. Performance for 
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both groups was also similar during the classification of sex and age from impoverished black-and-white illustra-
tions of (Mooney) faces, which have been used to assess the configural processing of faces, and for the detection 
of changes to the eyes and nose regions of face portraits25. However, a detection advantage was found in deaf 
observers for changes to the mouth region.

A face advantage has also been observed in another memory task, in which observers had to search a 
spread-out deck of upside-down cards for pairs of identical faces and objects. In this task, deaf participants dis-
played a search advantage over hearing participants for images of faces that was not present for verbalizable 
non-face objects (e.g., a bed or cup; see ref. 26). However, this difference might reflect task difficulty, which was 
mismatched across conditions. In line with this reasoning, a comparable advantage to faces was found for objects 
that were taken from a single visual category (shoes) to equate differences in distinctiveness between stimuli27.

Taken together, these findings leave considerable doubt about the nature of a face processing advantage in deaf 
participants. All of these studies reported a face advantage in deaf observers24–27, but this was not always present 
across different face conditions24,25. Moreover, considering this advantage was not present for inverted faces24, 
but was found for highly similar non-face objects24,27–29, it is not clear whether it reflects a face-specific effect or a 
more generalized visual cognition advantage for stimuli that display high within-category similarity. These incon-
sistent results across studies might reflect the different tasks, but could also relate to small sample sizes, low trial 
numbers per condition, and close-to-ceiling performance in some experiments (see, e.g., ref. 24).

In light of these mixed findings, the current study sought to reexamine the face advantage in deaf participants. 
In contrast to previous studies, we employed a task that measures face encoding directly, by minimizing the con-
tribution of memory demands (for reviews see refs 30 and 31), and that provides considerably more trials and 
produces average performance that is substantially below ceiling. In this task, observers were required to match 
an image of an unfamiliar target face to a ten-face line-up, in which a different image of the target could be present 
or absent32. This task was administered without time pressure, and all face images were high-quality same-day 
photographs that were presented in the same viewing angle, and under similar lighting and pose (e.g., for different 
examples, see refs 32–34). This task typically yields mean error rates of ~30% for target-present and target-absent 
line-ups (see refs 32–34), and produces a broad range in individual performance (see refs 35–37). This suggests 
that this is an appropriate task to assess the face recognition ability of deaf and hearing participants.

To determine whether any advantage in this task is specific to faces or part of a more generalized visual cog-
nitive advantage, the present study followed differential deficit conceptualization38,39. Accordingly, a differential 
superiority can be conceptualized as a greater performance on one task than on other psychometrically-matched 
control tasks. The control tasks that were employed here comprised an inverted version of the face task, in which 
all stimuli were turned upside-down, to examine performance when typical face processes are disrupted40–42, and 
a 1-in-6 object matching task. Previous studies demonstrate strong positive correlations between the upright and 
inverted face tasks and between the face and object task37. These tasks are therefore appropriate for exploring the 
existence of face identification superiority in deaf individuals.

Method

Participants. Eighty Qatari students volunteered to participate in this experiment. These comprised 40 deaf 
students (24 females, 16 males; mean age =  13.3 years, SD =  3.2, with an age range of 8–22 years), who were pro-
ficient in Arab Sign Language, and 40 hearing students (25 females, 15 males; 13.5 years, SD =  3.2, with an age 
range of 8–20 years), who were all non-signers. Of the deaf sample, 19 students were congenitally deaf (47.5%), 
nine students suffered early hearing loss before the age five (22.5%), and 12 students had profound hard hearing 
that required a hearing aid apparatus (30%). The two groups of participants were matched in gender, χ 2 (1) <  1, 
p >  0.05, and age, t (78) <  1, p >  0.05. All participants reported normal or corrected to normal vision. Written 
informed consent for participation was obtained from the participants’ parents. Ethical approval for the experi-
ment was provided by Qatar University’s institutional review board (QU-IRB) and all methods were performed 
in accordance with the QU-IRB guidelines and regulations.

Stimuli. The face-matching task comprised stimulus arrays for sixty target identities. Each array consisted of 
a video still of a face target and an identity lineup comprising digital photographs of ten faces, which were shown 
underneath the target. For each target face, two accompanying lineups were created, in which the target identity 
was either present or absent, yielding a total of 120 stimulus arrays. Notably, target and array photos were taken 
with two different high-quality cameras to eliminate image matching, but on the same day and under similar 
lighting conditions to eliminate superficial differences in appearance, such as hairstyle. All face images meas-
ured approximately 7 ×  10 cm and were shown in full-face view with a neutral expression (for full details about 
the construction of these stimuli, see ref. 30). A complementary set of 120 inverted face arrays were created for 
the control condition by turning the stimuli upside-down (for example stimuli of the upright arrays, see refs 30  
and 40).

The stimuli for the object-matching task were adapted from the Matching Familiar Figures Test (MFFT). This 
test consists of 20 line drawings of common objects, which act as targets and are presented above six variants of 
the same object, only one of which is exactly identical to the target image (for example stimuli, see ref. 40).

Procedure. Participants were tested individually with a MacPro laptop and SuperLap software. In the 
face-matching task, each participant completed 60 trials, comprising 30 target-present arrays (15 upright, 15 
inverted) and 30 target-absent arrays (15 upright, 15 inverted), which were presented in a random order. Four 
versions of this task were constructed to counter-balance presence (present/absent) and orientation (upright/
inverted) of each target across participants. For each array, participants were asked to decide whether the target 
was present in the lineup below, and if so, to indicate which of the faces they believed it to be by pressing num-
bered keys on the computer keyboard. Each stimulus array was presented onscreen until a response was made.
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In the object-matching task, participants were asked to find the object in the six-item array that matched the 
target. Each participant completed 20 randomized trials, which were presented until a response was made on the 
computer keyboard. The order of the face and object tasks was counterbalanced across participants. Both tasks 
were self-paced and participants were encouraged to perform as accurately as possible.

Results

Accuracy. Consistent with previous studies33,34,37,43, five measures were calculated to assess performance on 
the face matching task. For target-present arrays, we calculated correct identifications (selection of the correct 
face from a lineup), misses (the decision that a target is absent from a lineup despite its presence), and misidentifi-
cations (selection of a wrong lineup face as a target). For target-absent trials, we calculated correct rejections (the 
correct decision that the target is not present). In addition, overall accuracy was calculated by taking the mean 
of correct identifications and correct rejections, to illustrate accuracy when this is combined for target-present 
and target-absent trials. A series of one-way between-subject ANOVAs revealed no differences between partici-
pants with congenital deafness, early-year deafness, and profound hard hearing using all of these five face match-
ing measures, all Fs(2,39) ≤  1. Consequently, the data from these participants were collapsed for all subsequent 
analyses.

Figure 1 shows the cross-subject mean percentages for the five face-matching measures. These were subjected 
to separate 2 (hearing vs. deaf participants) ×  2 (upright vs. inverted face orientation) mixed-factor ANOVAs. For 
overall accuracy, ANOVA revealed an interaction between hearing and face orientation, F(1,78) =  5.15, p <  0.05, 
ηp

2 =  0.06. Analysis of simple main effects showed that deaf and hearing participants matched upright faces more 
accurately than inverted faces, F(1,78) =  143.56, p <  0.001, ηp

2 =  0.65 and F(1,78) =  76.97, p <  0.001, ηp
2 =  0.50, 

respectively. However, deaf participants outperformed hearing participants in the upright, F(1,156) =  25.02, 
p <  0.001, ηp

2 =  0.14, and inverted conditions, F(1,156) =  12.30, p <  0.001, ηp
2 =  0.07.

For correct identifications and correct rejections, main effects of hearing were found, F(1,78) =  25.55, 
p <  0.001, ηp

2 =  0.55, and F(1,78) =  5.30, p <  0.05, ηp
2 =  0.43, due to higher accuracy for deaf participants. A main 

effect of face orientation was also present for both measures, F(1,78) =  157.63, p <  0.001, ηp
2 =  0.67, and 

F(1,78) =  46.06, p <  0.001, ηp
2 =  0.37, as accuracy was best for upright face stimuli. The interactions were not sig-

nificant, F(1,78) =  2.12, p =  0.15, ηp
2 =  0.03, and F(1,78) =  2.83, p =  0.10, ηp

2 =  0.03, respectively.
For the error measures for face-present trials, a main effect of hearing was not found for misidentifications, 

F(1,78) =  3.34, p =  0.07, ηp
2 =  0.18, but was present for misses, F(1,78) =  9.85, p <  0.01, ηp

2 =  0.35, due to lower 
miss rates in deaf participants. A main effect of face orientation was also present for both measures, 
F(1,78) =  57.74, p <  0.001, ηp

2 =  0.42, and F(1,78) =  38.99, p <  0.001, ηp
2 =  0.33, as misses and misidentifications 

were lowest for upright faces. In addition, there was an interaction of hearing and face orientation for misses, 
F(1,78) =  5.44, p <  0.05, ηp

2 =  0.06, but not for misidentifications, F(1,78) =  0.70, p =  0.40, ηp
2 =  0.01. Analysis of 

simple main effects showed that deaf and hearing participants recorded more misses when faces were presented 
upside-down, F(1,78) =  49.32, p <  0.001, ηp

2 =  0.39, and F(1,78) =  13.86, p <  0.001, ηp
2 =  0.15, respectively. In addi-

tion, deaf participants recorded fewer misses than hearing observers in the inverted face condition, 
F(1,156) =  14.74, p <  0.001, ηp

2 =  0.09, but not in the upright face condition, F(1,156) =  3.30, p =  0.07, ηp
2 =  0.02.

Figure 1 also illustrates performance in the object-matching task. As for upright and inverted faces, deaf 
participants were more accurate in this task than hearing participants, t(78) =  3.38, p <  0.001, Cohen’s d =  0.74.

d prime and criterion. For the face identification task, correct identifications and false positives (i.e., mis-
taken identifications on target-absent trials, and which are the inverse of correct rejections) were also converted 
into the signal detection measures of d′  and criterion. Similar to accuracy, d′  revealed an interaction between 
hearing and face orientation, F(1,78) =  6.40, p <  0.05, ηp

2 =  0.07. Simple main effects showed that deaf participants 
outperformed controls in the upright face condition, F(1,78) =  26.05, p <  0.001, ηp

2 =  0.14 (mean d′  for deaf =  1.14 
vs. controls =  0.33), and the inverted face condition, F(1,78) =  11.69, p <  0.001, ηp

2 =  0.07 (mean d′  for deaf =  0.25 
vs. controls =  −0.28). In addition, d′  was enhanced for upright over inverted faces in the deaf sample, 

Figure 1. Performance for deaf and hearing observers on the face and object matching tasks. Error bars 
show standard error of the means.
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F(1,78) =  141.58, p <  0.001, ηp
2 =  0.64, and the control group, F(1,78) =  69.22, p <  0.001, ηp

2 =  0.47. For criterion, a 
main effect of face orientation was found, F(1,78) =  34.75, p <  0.001, ηp

2 =  0.31, as participants were more likely to 
commit to an identification in the upright compared to the inverted face condition. No main effect of hearing, 
F(1,78) =  1.93, p =  0.17, ηp

2 =  0.10, and no interaction between face orientation and hearing were found, 
F(1,78) <  1, p =  0.54, ηp

2 =  0.01.

Response times. Although accuracy was emphasized, response times for correct responses were analyzed 
for completeness (see Fig. 2). In the face matching task, these data were subjected to two 2 ×  2 mixed-factor 
ANOVAs for correct identifications and correct rejections, which showed no main effects of hearing, Fs <  1, 
ηp

2 ≤  0.02. A main effect of face orientation was found for correct identifications, F(1,78) =  51.07, p <  0.001, 
ηp

2 =  0.40, and correct rejections, F(1,78) =  47.15, p <  0.001, ηp
2 =  0.37. There was no interaction between hearing 

and face orientation using both correct identifications and correct rejections, both Fs <  1, ηp
2 ≤  0.04.

In the object-matching task, response times were comparable for deaf and hearing participants, t(78) <  1, 
p =  0.40, Cohen’s d =  0.19.

Correlations between tasks. Pearson’s coefficient correlations were conducted to explore associations 
between the face and object-matching task in deaf and hearing participants. These data showed that all accuracy 
and RT measures for the face and objects tasks correlated in deaf participants, all rs ≥  0.46, all ps <  0.001, and 
controls, all rs ≥  0.31, all ps <  0.001.

Discussion

This study examined whether a sample of young-adolescent deaf observers exhibit an advantage in face match-
ing over hearing controls. Such an advantage was found in overall accuracy as well as in correct identifications 
and correct rejections of lineups, indicating a consistent effect. However, a similar advantage was also obtained 
for inverted faces, which provide identical visual content but for which typical face processes are held to be dis-
rupted20–22, and in the object matching task.

These findings help to clarify the results of previous studies. Whereas these studies emphasize the existence 
of a face advantage in deaf observers, such an advantage was, in fact, more likely to be absent than present across 
different face tasks25 and different face conditions24,25. Moreover, the absence of a face advantage in previous stud-
ies could reflect ceiling performance24, whereas its presence could be attributed to differences in task demands 
between face and non-face objects26. However, a general visual processing advantage, for both face and non-face 
objects, was found when task demands were comparable for these different types of stimuli27. The current results 
converge with these findings by demonstrating an advantage for deaf observers in the processing of upright 
faces and their inverted counterparts, as well as for non-face objects in a matching task. All of these tasks were 
psychometrically-matched, and also correlated strongly, to provide clear evidence against differential superiority38,39  
for face processing in deaf observers. Instead, these findings indicate a general visual processing advantage in deaf 
over hearing participants.

A simple explanation for these findings could be that deaf participants were more motivated and invested 
more effort in this task. The response times, which were matched for deaf and hearing participants, indicate this 
as unlikely. By comparison, other participant samples, such as passport officers, appear to invest particular effort 
in face identification, as indexed by longer response times, but still do not perform better than control partici-
pants44. We therefore suggest that motivation and effort are unlikely to account for the current results. However, 
these results might have implications for professions that rely on face identification, such as passport control44, or 
comparable tasks with non-face stimuli45,46, by indicating that deaf participants might be particularly suited for 
these by virtue of their enhanced visual skills. Future studies need to examine this suggestion.

We note that the deaf participants in the current study were all experienced in sign language, whereas only 
non-signing hearing controls were tested. The contrast of these groups produced the clearest differences in pre-
vious attempts to investigate enhanced face processing in deaf participants. Consequently, however, the question 

Figure 2. Response times for correct responses of deaf and hearing observers on the face and object 
matching tasks. Error bars show standard error of the means.
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arises of whether a visual processing advantage for deaf observers reflects auditory deprivation or the experience 
of sign language. Some of the previous research reports an advantage for deaf over both signing and non-signing 
hearing observers, which performed at the same level25. However, this advantage was only present in one of three 
reported experiments (the facial feature recognition task), and only in one of three conditions in this task (the 
mouth detection condition). In other studies, hearing signers performed either more similarly to26,27 or identical 
to deaf signers than hearing non-signers24. Thus, it remains unclear whether the visual processing advantage 
might reflect additive effects of deafness and the long use of sign language, or a visual advantage that is driven 
primarily by the latter.
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