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Abstract

A class of symmetry transformations of a type originally introduced in a nonlinear optics
context is used here to isolate an integrable Ermakov-Painlevé II reduction of a resonant NLS
equation which encapsulates a nonlinear system in cold plasma physics descriptive of the uni-
axial propagation of magneto-acoustic waves. A Bäcklund transformation is employed in the
iterative generation of novel classes of solutions to the cold plasma system which involve either
Yablonski-Vorob’ev polynomials or classical Airy functions.

1 Introduction

The extensive connections between plasma physics, magnetohydrodynamics and canonical nonlinear
integrable equations of modern soliton theory are well-documented. These links originated with
pioneering work by Washimi and Taniuti [1] who employed reductive perturbation techniques to
derive the Korteweg-de Vries (KdV) equation in the analysis of the propagation of ion-acoustic
waves in a plasma. In contemporary work, Berezin and Karpman [2, 3] independently derived the
KdV equation in studies, both numerical and analytic, of large amplitude disturbances in plasmas
and other dispersive media. Reviews of the role of the KdV equation in plasma physics and of
the application of the reduction perturbation method to the study of hydrodynamic waves in cold
plasma have been presented in [4] and [5] respectively. The integrable mkdV equation, related to
the KdV equation by a Miura transformation, likewise arises in the analysis of the propagation
of nonlinear Alfvén waves in cold collisionless plasma [6]. In addition, the nonlinear Schrödinger
equation has an extensive literature concerned with its derivation in plasma physics in a variety
of contexts. Thus, in particular, its occurrence in the analysis of the propagation of Langmuir
waves in plasma has been described in [7–9]. The text [10] provides an account of perturbation
methods adduced in the derivation of the NLS equation in plasma physics, notably with regard to
incorporation of Landau damping phenomena.

An integrable Heisenberg spin equation associated with the NLS equation has been derived
in spatial gasdynamics and magneto-hydrostatics in [11, 12] via geometric methods originally ap-
plied in a magnetohydrodynamic context in [13]. This purely geometric formalism as opposed to
a reductive perturbation approach may be shown to lead to a classical integrable da Rios system
reduction in complex-lamellar magnetohydrodynamics [14]. It has also been applied not only to
construct the auto-Bäcklund transformation for the auto-Bäcklund transformation for the NLS
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equation in a purely geometric manner [15, 16] but also to obtain a novel integrable Pohlmeyer-
Lund-Regge reduction in magnetohydrodynamics [17, 18]. The combined action of Bäcklund and
reciprocal-type transformations has been used, via an integrable sinh-Gordon reduction, to con-
struct periodic solutions of breather-type in super-Alfvénic magnetogasdynamics in [19]. Invariance
under multi-parameter reciprocal transformations has been established in two-dimensional orthog-
onal magnetogasdynamics in [20].

In [21, 22] elliptic vortex solutions in magnetogasdynamics have been obtained via symme-
try reduction to an integrable Ermakov-Ray-Reid system with underlying Hamiltonian structure.
Ermakov-Ray-Reid systems have diverse physical applications, in particular, in nonlinear optics
and rotating shallow water theory (see e.g. [23–25]). Moreover, in [26], a 2 + 1-dimensional non-
isothermal magnetogasdynamic version of a gas cloud system with origin in work of Dyson [27]
was shown to admit symmetry reduction to an eight dimensional nonlinear dynamical subsystem
with underlying Hamiltonian-Ermakov structure. A Lax pair representation was constructed for
this integrable subsystem.

Here, a class of wave packet representations of a type originally introduced in a nonlinear optics
context in [28] is used to isolate a Ermakov-Painlevé II symmetry reduction of a resonant NLS
equation which encapsulates a 1 + 1-dimensional cold plasma physics system. The latter describes
the propagation of uniaxial long magnetoacoustic waves in a cold collisionless plasma subject to a
transverse magnetic field. Iterative application of a Bäcklund transformation is used to generate
novel classes of exact solutions of the cold plasma system in terms of either Yablonski-Vorob’ev
polynomials or classical Airy functions.

2 The Two-Component Cold Plasma System. A Resonant NLS
Encapsulation

The dynamics of two-component cold collisionless plasma in the presence of an external magnetic
field B is governed by the nonlinear system of equations [29,30].

mi[∂/∂t+ vi∇]vi = e[E + (vi ×B)], (2.1a)

me[∂/∂t+ ve∇]ve = −e[E + (ve ×B)], (2.1b)

∂ni
∂t

+∇•(nivi) = 0 (2.1c)

∂ne
∂t

+∇•(neve) = 0, (2.1d)

curl B = eµ0(nivi − neve), (2.1e)

∂B

∂t
= −curl E, (2.1f)

∇•B = 0 (2.1g)

where mi,me,vi,ve, ni, ne denote, in turn, masses, velocities and concentrations of ions and elec-
trons respectively. E is the electric field, B is the magnetic field, e is the electric charge and µ0
is the magnetic permeability. If the oscillation frequency is much smaller than the ion Langmuir
frequency, then plasma quasi-neutrality is implied, that is, ni ≈ ne = n.

On introduction of the mass density ρ and velocity u according to

ρ = (mi +me)n, u =
mivi +meve
mi +me

,

then, on elimination of the electric field E, ifme/mi � 1, in the case of uni-axial plasma propagation
with transverse magnetic field B, so that

u = u(x, t)i, B = B(x, t)k, (2.2)
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the system (2.1) may be reduced to the form [31]

∂ρ

∂t
+

∂

∂x
(ρu) = 0, (2.3a)

ρ

(
∂u

∂t
+ u

∂u

∂x

)
+B

∂B

∂x
= 0, (2.3b)

∂

∂t

[
B − ∂

∂x

(
1

ρ

∂B

∂x

)]
+

∂

∂x

{
u

[
B − ∂

∂x

(
1

ρ

∂B

∂x

)]}
= 0. (2.3c)

Introduction of the Lagrangian variable X(x, t) via the continuity equation (2.3a) according to

dX = ρ dx− ρu dt,

into (2.3c) shows that

B − ∂

∂x

(
1

ρ

∂B

∂x

)
= M(X)ρ. (2.4)

The system consisting of (2.3a), (2.3b) augmented by (2.4) with M(X) = 1 was set down in
a nonlinear dispersive wave context by Whitham [32]. In the present context it describes the
propagation of 1 + 1-dimensional nonlinear magnetoacoustic waves in a cold plasma subject to a
transverse magnetic field.

Here, we consider a shallow water type approximation to the Whitham system consisting of the
continuity and momentum equations (2.3a), (2.3b) together with

B − ∂

∂x

(
1

ρ

∂B

∂x

)
= ρ. (2.5)

Thus, on re-scaling the space and time variables via x→ βx, t→ βt and expansion of the expression
for the magnetic field B in the parameter β2 according to [31]

B = ρ+ β2B(ρ, ρx, ρxx, . . .) +O(β4), (2.6)

insertion into (2.5) yields

B =
∂

∂x

(
1

ρ

∂ρ

∂x

)
. (2.7)

Thus, to O(β2), the following nonlinear system results [31]:

∂ρ

∂t
+

∂

∂x
(ρu) = 0, (2.8a)

∂u

∂t
+ u

∂u

∂x
+ β2

∂

∂x

[
1

ρ

∂2ρ

∂x2
− 1

2

(
1

ρ

∂ρ

∂x

)2

+
ρ

β2

]
. (2.8b)

This describes the uniaxial propagation of long magneto-acoustic waves in a cold plasma with
velocity magnitude u and magnetic field given by (2.2) together with (2.6)−(2.7).

On use of the one-dimensional version of a relation for the de Broglie-Bohm potential, namely

∇2ρ1/2

ρ1/2
=
∇2ρ

ρ
− 1

4

(
∇ρ
ρ

)2

,

it seen that the cold plasma momentum equation in (2.8) becomes

∂u

∂t
+ u

∂u

∂x
+ β2

∂

∂x

[
2

(ρ1/2)xx

ρ1/2
+

ρ

β2

]
= 0. (2.9)
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Introduction of the velocity potential S according to u = −2∂S/∂x into the continuity equation
(2.8)1 and momentum equation (2.9) in turn, gives

∂ρ

∂t
− 2

∂

∂x

(
ρ
∂S

∂x

)
= 0,

together with the Bernoulli integral

−∂S
∂t

+

(
∂S

∂x

)2

+
ρ

2
+

β2

ρ1/2
∂2

∂x2
(ρ1/2) = T (t).

In the latter, T (t) may be absorbed into the potential S and so may be set zero without loss of
generality.

If the classical Madelung transformation is now introduced according to [33]

Ψ = ρ1/2e−iS

then it is seen that the cold plasma system (2.8) may be encapsulated in the resonant NLS equation
[34,35]

i
∂Ψ

∂t
+
∂2Ψ

∂x2
− 1

2 |Ψ|
2Ψ = (1 + β2)

Ψ

|Ψ|
∂2|Ψ|
∂x2

, (2.10)

which incorporates a de Broglie-Bohm potential term
1

|Ψ|
∂2

∂x2
|Ψ|. It is recalled that, if s < 1 then

the canonical 1 + 1-dimensional resonant NLS equation

i
∂Ψ

∂t
+
∂2Ψ

∂x2
+ ν|Ψ|2Ψ =

s

|Ψ|
∂2|Ψ|
∂x2

,

can be transformed to the standard integrable cubic NLS equation with the de Broglie-Bohm term
removed [34–36]. However, if as in the present cold plasma case s = 1 + β2 > 1 this reduction to
remove the de Broglie Bohm term is not available. Then, as shown in [31] the resonant NLS equation
(2.10) which encapsulates the cold plasma system is equivalent to a canonical two-component system
contained in the AKNS hierarchy of solitonic systems amenable to the inverse scattering transform
[37,38]. Bäcklund-Darboux transformations and concomitant nonlinear superposition principles for
the resonant NLS equation and hence for the cold plasma system which it encapsulates have been
constructed in [31]. This resonant NLS equation importantly, unlike its standard integrable NLS
counterpart can admit solitonic fusion or fission phenomena [35]. Here, wave packet solutions of
the resonant NLS equation (2.10) are generated via a symmetry reduction to a prototype integrable
Ermakov-Painlevé II equation [39,40]. The iterated application of a Bäcklund transformation then
allows the construction of novel classes of exact solutions to the cold plasma system in terms of
either Yablonski-Vorob’ev polynomials or classical Airy functions.

3 Ermakov-Painlevé II Symmetry Reduction

Here, symmetry reduction of the resonant NLS equation (2.10) is sought under the wave packet
ansatz

Ψ = ρ1/2e−iS = [φ(ξ) + iψ(ξ)]eiη, (3.1a)

ξ = αt+ βt2 + γx, (3.1b)

η = γt3 + δt2 + εγtx+ ζt+ λx, (3.1c)
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with α, β, γ, δ, ε, ζ and λ arbitrary constants. Insertion of the latter into (2.10) produces the
coupled nonlinear system

γ2
d2φ

dξ2
− dψ

dξ
[2(β + εγ2)t+ α+ 2λγ]−∆φ = 0, (3.2a)

γ2
d2ψ

dξ2
+
dφ

dξ
[2(β + εγ2)t+ α+ 2λγ]−∆ψ = 0, (3.2b)

where

∆ = 3γt2 + 2δt+ εγx+ ζ + (εγt+ λ)2 + 1
2 |Ψ|

2 +
sγ2

|Ψ|
d2|Ψ|
dξ2

. (3.3)

and s = 1 + β2 > 1.
The relations (3.2) combine to show that

γ2
(
ψ
d2φ

dξ2
− φd

2ψ

dξ2

)
−
(
φ
dφ

dξ
+ ψ

dψ

dξ

)
[2(β + εγ2)t+ α+ 2λγ] = 0, (3.4)

whence, it is required that
β + εγ2 = 0,

in which case, (3.4) admits the integral

γ2
(
ψ
dφ

dξ
− φdψ

dξ

)
− 1

2(α+ 2λγ)|Ψ|2 = I, (3.5)

where I is an arbitrary constant.
It is seen that (3.3) may be written as, if β 6= 0

∆ = γβ−1(ε2γ + 3)(ξ − αt− γx) + 2(δ + εγλ)t+ εγx+ ζ + λ2

+ 1
2 |Ψ|

2 +
sγ2

|Ψ|
d2|Ψ|
dξ2

= εξ + ζ + λ2 + 1
2 |Ψ|

2 +
sγ2

|Ψ|
d2|Ψ|
dξ2

, (3.6)

on setting
αε = 2(δ + εγλ), βε = γ(3 + ε2γ).

Moreover, (3.2) show that

γ2
(
φ
d2φ

dξ2
+ ψ

d2ψ

dξ2

)
+

(
ψ
dφ

dξ
− φdψ

dξ

)
(α+ 2λγ)−∆|Ψ|2 = 0,

whence, on use of the relations[
φ
d2φ

dξ2
+ ψ

d2ψ

dξ2
+

(
dφ

dξ

)2

+

(
dψ

dξ

)2
]

(φ2 + ψ2)−
(
φ
dφ

dξ
+ ψ

dψ

dξ

)2

=
d2|Ψ|
dξ2
|Ψ|3,

and

(φ2 + ψ2)

[(
dφ

dξ

)2

+

(
dψ

dξ

)2
]
−
(
ψ
dφ

dξ
− φdψ

dξ

)2

=

(
φ
dφ

dξ
+ ψ

dψ

dξ

)2

,

it is seen that

γ2

[
d2|Ψ|
dξ2
|Ψ|3 −

(
ψ
dφ

dξ
− φdψ

dξ

)2
]

+ (α+ 2λγ)

(
ψ
dφ

dξ
− φdψ

dξ

)
|Ψ|2 −∆|Ψ|4 = 0.
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The latter, by virtue of the integral of motion (3.5) and the expression (3.6) for ∆ now produces a
hybrid Ermakov-Painlevé equation in the amplitude |Ψ| namely

|Ψ|ξξ + (c1 + c2ξ)|Ψ|+ c3|Ψ|3 =
I2

(1− s)γ4|Ψ|3
, (3.7)

where the constants c1, c2 and c3 are given by

c1 =
1

(1− s)γ4

[(
α− δ

ε

)2

− γ2(ζ + λ2)

]
, c2 =

ε

(s− 1)γ2
, c3 =

1

2(s− 1)γ2
.

The type of nonlinear equation (3.7) has been previously shown to arise in connection with a pair
of three-ion cases in the classical Nernst-Planck electrodiffusion system [40]. Here, |Ψ| = ρ1/2 and
in terms of the density ρ it is seen that (3.7) becomes

d2ρ

dξ2
− 1

2ρ

(
dρ

dξ

)2

+ 2[c1 + c2ξ]ρ+ 2c3ρ
2 +

2I2

(s− 1)γ4ρ
= 0,

which with the admissible specialisations,

c1 = 0, c2 = 1
2 , c3 = 1,

4I2

(s− 1)γ4
= (α+ 1

2)2, (3.8)

becomes the canonical integrable Painlevé XXXIV (P34) equation in ρ > 0, namely

d2ρ

dξ2
=

1

2ρ

(
dρ

dξ

)2

+ 2ρ2 − ξρ−
(α+ 1

2)2

2ρ
, (3.9)

cf. Gromak [41]. It is emphasised that the relation (3.8) involving the Painlevé parameter α,
necessarily requires that s > 1 as indeed is the case for the present cold plasma system incapsulated
in a nonlinear resonant NLS equation. The regions of positivity of classes of solutions of P34 (3.9) as
generated by the iterated action of a Bäcklund transformation have been investigated in the context
of boundary value problems in two-ion electrodiffusion in [42]. Therein, the ion concentrations c±,
which are necessarily positive, are governed by solutions of P34 (3.9).

With a positive solution ρ = |Ψ|2 = φ2 + ψ2 of P34 (3.9) to hand, the ratio ψ/φ is determined
by the integral of motion (3.5). The latter yields

−γ2 d
dξ

[
tan−1

(
ψ

φ

)]
− 1

2(α+ 2λγ) =
I
|Ψ|2

,

so that, on integration,

γ2 tan−1
(
ψ

φ

)
+ 1

2(α+ 2λγ)ξ + I
∫
dξ

ρ
= K,

where K is an arbitrary constant. Thus, with Λ = ψ/φ, it is seen that the φ, ψ in the original wave
packet represenation (3.1) are given by the relations

φ = ± |Ψ|√
1 + Λ2

, ψ = ± Λ|Ψ|√
1 + Λ2

.

The velocity magnitude in the cold plasma system (2.8) is given by u = Φx where Φ is the
potential given by

Φ = 2 tan−1
(
ψ + φ tan η

φ− ψ tan η

)
= 2

[
tan−1

(
ψ

φ

)
+ η

]
,
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on use of the identity

tan−1
(
x+ y

1− xy

)
≡ tan−1 x+ tan−1 y.

Thus,

u = 2

[
γ
∂

∂ξ
+ (εγt+ λ)

∂

∂η

] [
− 1

2γ2
(α+ 2λγ)ξ − I

γ2

∫
dξ

ρ(ξ)
+ η

]
= − 2I

γρ(ξ)
+ 2εγt− α

γ
.

while the term B in the expansion (2.6) for the magnetic field B is given by

B = γ2
d2

dξ2
ln ρ(ξ).

where the density ρ(ξ) is governed by P34 (3.9).
In the sequel, a link between the Ermakov-Painlevé II equation for the density ρ(ξ) and the

Painlevé II (PII) equation
d2q

dξ2
= 2q3 + ξq + α, (3.10)

with α a parameter, via P34 (3.9) is exploited to construct novel classes of wave packet solutions of
the cold plasma system in terms of Yablonski-Vorob’ev polynomials or classical Airy functions via
the iterated application of the well-known Bäcklund transformation for PII [43,44]; see also [45,46].
These solutions may, in turn, be used as seed solutions in the application of the Bäcklund-Darboux
transformations as established for the resonant NLS equation in [31].

4 Iterative Action of a Bäcklund Transformation

Bäcklund transformations have established applications in continuum mechanics and notably in
modern soliton theory [16,47]. These have roots, in turn, in work of Loewner [48,49] on model laws
in gasdynamics and Seeger et al. [50] on crystal dislocations. Thus, Loewner applied novel matrix
Bäcklund transformations to construct multi-parameter gas laws for which the classical hodograph
system may be reduced to appropriate canonical forms in subsonic, transonic and supersonic flow
régimes. Seeger et al. [50], on the other hand, in the context of Frenkel and Kontorova’s dislocation
theory isolated the nonlinear interaction of what they termed ‘eigenmotions’ via Bianchi’s classical
permutability theorem as derived via the auto-Bäcklund transformation for the sine Gordon equa-
tion of pseudo-spherical surface thoery. In particular, the interaction process of what, in soliton
theory came to be called a breather and kink was described analytically by means of this nonlin-
ear superposition principle. Importantly, Lamb [51] later exploited this permutability theorm to
predict experimentally observed decomposition of ultrashort optical pulses in a resonant medium.

The areas of application of Bäcklund transformations in nonlinear continuum mechanics and
modern soliton theory were brought together in [52,53] where it was established that a re-interpretation
and extension of the class of matrix infinitesimal Bäcklund transformations introduced by Loewner
in a gasdynamics setting provide a linear representation for a master 2 + 1-dimensional soliton
system. Basic reductions of this system lead, in particular to novel integrable 2 + 1-dimensional
versions of the principal chiral fields model, Toda lattice system and, notably, of the classical sine
Gordon equation [53–61]. It is remarked that the paper of Loewner [48] contains, ‘mutatis mutan-
dis’ a linear representation for the 1+1-dimensional sine Gordon equation which is gauge equivalent
to that later obtained in the celebrated AKNS system [37].

The preceding attests to the seminal role that Bäcklund transformations have played in modern
soliton theory. Likewise the classical Painlevé equations and the Bäcklund transformations they
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admit arise naturally in the study of integrable solitonic systems (see e.g. [41, 45, 46, 62–64] and
work cited therein). Here, our concern is with the application of a Bäcklund transformation for PII

(3.10) to the present symmetry reduction of the cold plasma system encapsulated in the resonant
NLS equation (2.10).

It turns out that, remarkably, all known exact solutions of PII (3.10) and hence also of P34 (3.9)
may be generated via iteration of a Bäcklund transformation of (3.10) due to Gambier [43] and
later Lukashevich [44].

The well-known relationship between solutions of PII (3.10) and solutions of P34 (3.9) is derived
via the Hamiltonian system

dq

dξ
=
∂HII

∂ρ
,

dρ

dξ
= −∂HII

∂q
,

where the Hamiltonian HII(ρ, q, ξ;α) is given by

HII(ρ, q, ξ;α) = 1
2ρ

2 −
(
q2 + 1

2ξ
)
ρ−

(
α+ 1

2

)
q,

which yield the nonlinear system

dq

dξ
= ρ− q2 − 1

2ξ,
dρ

dξ
= 2qρ+ α+ 1

2 , (4.1)

see [65,66]. Elimination of ρ and q successively in (4.1) yields PII (3.10) and P34 (3.9).
If qα(ξ) = q(ξ;α) is a solution of PII (3.10) with parameter α, then

qα+1(ξ) = −qα(ξ)− 2α+ 1

2q′α(ξ) + 2q2α(ξ) + ξ
, (4.2a)

qα−1(ξ) = −qα(ξ)− 2α− 1

2q′α(ξ)− 2q2α(ξ) + ξ
, (4.2b)

with ′ ≡ d/dξ, which are the Bäcklund transformations of PII (3.10) [43,44]. If ρα(ξ) = ρ(ξ;α) is a
solution of P34 (3.9) with parameter α, then from (4.1) we have

ρα =
dqα
dξ

+ q2α + 1
2ξ, qα =

1

2ρα

(
dρα
dξ
− α− 1

2

)
. (4.3)

Consequently, from (4.2) and (4.3) we obtain the Bäcklund transformations of P34 (3.9) given by

ρα+1 = z − ρα +
1

2ρ2α

(
dρα
dξ

+ α+ 1
2

)2

, (4.4a)

ρα−1 = z − ρα +
1

2ρ2α

(
dρα
dξ
− α− 1

2

)2

, (4.4b)

see also [66,67]
In the present plasma physics context, in particular, this produces an extensive class of exact

rational solutions for the density ρ governed by P34 (3.9) given by

ρ = ρ+(ξ;n) =
Qn+1(ξ)Qn−1(ξ)

2Q2
n(ξ)

, n ∈ N, (4.5)

with ρ+(ξ; 0) = 1
2ξ, corresponding to the parameters α = n, where the Qn(ξ) are the Yablonskii-

Vorob’ev polynomials determined by the quadratic recurrence relations [68,69]

Qn+1Qn−1 = ξQ2
n + 4

[(
dQn
dξ

)2

−Qn
d2Qn
dξ2

]
,
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with Q−1(ξ) = Q0(ξ) = 1. The rational solutions of P34 (3.9) can also be expressed in terms of
determinants. Let pk(ξ) be the polynomial defined by

∞∑
k=0

pk(ξ)λ
k = exp

(
ξλ− 4

3λ
3
)
, (4.6)

and τn(ξ) be the Wronskian

τn(ξ) =W (p1(ξ), p3(ξ), . . . , p2n−1(ξ)) ≡

∣∣∣∣∣∣∣∣∣
p1(ξ) p3(ξ) · · · p2n−1(ξ)
p′1(ξ) p′3(ξ) · · · p′2n−1(ξ)

...
...

. . .
...

p
(n−1)
1 (ξ) p

(n−1)
3 (ξ) · · · p

(n−1)
2n−1 (ξ)

∣∣∣∣∣∣∣∣∣ , (4.7)

for n ≥ 1. Then the rational solution

ρ+(ξ;n) = 1
2ξ − 2

d2

dξ2
ln τn(ξ),

satisfies P34 (3.9) with α = n.
Iterated action of the Bäcklund transformations (4.4) for P34 (3.9) on the seed Airy-type solution

with parameter α = 1
2 generates a class of exact solutions of P34 (3.9) given by

ρ
(
ξ;n− 1

2

)
=
un−1(ξ)un+1(ξ)

2u2n(ξ)
, n ∈ N, (4.8)

for the parameter α = n− 1
2 and where the sequence {unξ)}, for n ≥ 0, is determined by the Toda

recurrence relation

un+1un−1 = 4

[(
dun
dξ

)2

− un
d2un
dξ2

]
(4.9)

with initial values u0(ξ) = 1 and u1(ξ) = ϕ(ξ), where ϕ(ξ) is governed by the classical Airy equation

d2ϕ

dξ2
+ 1

2ξϕ = 0, (4.10)

i.e.
ϕ(ξ) = aAi(z) + bBi(z), z = −2−1/3ξ, (4.11)

with Ai(z) and Bi(z) the Airy functions and a, b arbitrary parameters. The Airy-type solutions of
P34 (3.9) can also be expressed in terms of determinants. Suppose that Φn(ξ) is the Hankel n× n
determinant

Φn(ξ) =

[
dj+k

dξj+k
ϕ(ξ)

]n−1
j,k=0

, n ≥ 1, (4.12)

with ϕ(ξ) given by (4.11) and Φ0(ξ) = 1, then for n ≥ 1,

p(ξ;n− 1
2) = −2

d2

dξ2
ln Φn(ξ),

satisfies P34 (3.9) with α = n− 1
2 , cf. [70].

In previous work in [42], solutions in terms of P34 in a two-ion electro-diffusion context have
been used to investigate certain boundary value problems. There the positivity requirement on the
solutions arises via such a constraint on the ion concentrations. Here, it arises due to the positivity
contraint on the density. The rational solutions of P34 are not positive for all ξ. However, positivity
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may be established in certain regions ξ > c, a constant. Thus, the rational solutions of P34 are
given by

p[k] = 1
2ξ − 2

d2

dξ2
lnPk−1(ξ), p[−1] = 1

2ξ

where the Pk are the Yablonski-Vorob’ev polynomials, cf. [71, 72]. If ξk−1 denotes the largest real
zero of the polynomial Pk−1 for each k ∈ N then the constraint ξk−1 < c ensures positivity in the
region ξ > c. The positivity property is illustrated graphically for k = 0, 1, 2 in [42].

The Airy-type solutions of PII admit the representation [42,70]

Y [k − 1
2 ] =

d

dξ
ln
ψk−2
ψk−1

− Φ,

wherein the sequence {ψk}k≥−1 is given by the recurrence relation

ψk+1ψk−1 = 4

[(
dψk
dξ

)2

− ψk
d2ψk

dξ2
+ 1

2(k + 1)(2Φ2 + ξ)ψ2
k

]

together with the initial values ψ−1 = 1, ψ0 = 1. In the above Φ = (lnφ)′ where φ is, in general,
given by (4.11). The corresponding Airy-type solutions of P34 are determined by [42,70]

p[k − 1
2 ] = k(2Φ2 + ξ)− 2

d2

dξ2
lnψk−1.

If one proceeds with the case b = 0 in (4.11), i.e.

φ(ξ) = Ai(−2−1/3ξ)

where we have set a = 1, without loss of generality, then it was established in [42, 70] that, for
any k, there exists a ξk such that p[k − 1

2 ] is non-singular and positive on ξ < ξk. This positivity
property is depicted graphically for k = 1, 2, . . . , 6 in [70].

5 Conclusion

The aim of the present work has been to exploit an integrable Ermakov-Painlevé II reduction of a
resonant NLS encapsulation of a nonlinear cold plasma system to generate classes of similarity solu-
tions in terms of either Yablonskii-Vorob’ev polynomials or classical Airy functions. It is remarked
that classes of similarity solutions to the related PII equation have recently been shown to pro-
vide exact solutions to nonlinear moving boundary problems for certain solitonic equations [73–75]
while similarity solutions in magneto-gasdynamics descriptive of plasma columns confined by mov-
ing boundaries have been isolated in [22].
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