
Hodgson, C, Oliver, D.M., Fish, R, Bulmer, N., Heathwaite, A.L., Winter, 
D.M. and Chadwick, David R. (2016) Seasonal persistence of faecal indicator 
organisms in soil following dairy slurry application to land by surface broadcasting 
and shallow injection.  Journal of Environmental Management, 183 (Pt 1). 
pp. 325-332. ISSN 0301-4797. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/59893/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1016/j.jenvman.2016.08.047

This document version
Publisher pdf

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/59893/
https://doi.org/10.1016/j.jenvman.2016.08.047
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


lable at ScienceDirect

Journal of Environmental Management 183 (2016) 325e332
Contents lists avai
Journal of Environmental Management

journal homepage: www.elsevier .com/locate/ jenvman
Research article
Seasonal persistence of faecal indicator organisms in soil following
dairy slurry application to land by surface broadcasting and shallow
injection

Christopher J. Hodgson a, *, David M. Oliver b, Robert D. Fish c, Nicholas M. Bulmer a, 1,
A. Louise Heathwaite d, Michael Winter e, David R. Chadwick f

a Rothamsted Research, North Wyke, Okehampton, Devon, EX20 2SB, UK
b Biological & Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
c School of Anthropology & Conservation, University of Kent, Canterbury, Kent, CT2 7NR, UK
d The Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
e Department of Politics, Amory Building, Rennes Drive, Exeter, Devon EX4 4RJ, UK
f School of Environment, Natural Resources and Geography, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
a r t i c l e i n f o

Article history:
Received 28 June 2016
Received in revised form
9 August 2016
Accepted 16 August 2016
Available online 4 September 2016

Keywords:
Diffuse microbial pollution
E. coli die-off
Manure management
Survival curves
Organic fertiliser
Pathogen risk
* Corresponding author.
E-mail address: chris.hodgson@rothamsted.ac.uk (

1 Current address: Environment Agency, Manley Ho
7LQ, UK.

http://dx.doi.org/10.1016/j.jenvman.2016.08.047
0301-4797/© 2016 The Authors. Published by Elsevie
a b s t r a c t

Dairy farming generates large volumes of liquid manure (slurry), which is ultimately recycled to agri-
cultural land as a valuable source of plant nutrients. Different methods of slurry application to land exist;
some spread the slurry to the sward surface whereas others deliver the slurry under the sward and into
the soil, thus helping to reduce greenhouse gas (GHG) emissions from agriculture. The aim of this study
was to investigate the impact of two slurry application methods (surface broadcast versus shallow in-
jection) on the survival of faecal indicator organisms (FIOs) delivered via dairy slurry to replicated
grassland plots across contrasting seasons. A significant increase in FIO persistence (measured by the
half-life of E. coli and intestinal enterococci) was observed when slurry was applied to grassland via
shallow injection, and FIO decay rates were significantly higher for FIOs applied to grassland in spring
relative to summer and autumn. Significant differences in the behaviour of E. coli and intestinal
enterococci over time were also observed, with E. coli half-lives influenced more strongly by season of
application relative to the intestinal enterococci population. While shallow injection of slurry can reduce
agricultural GHG emissions to air it can also prolong the persistence of FIOs in soil, potentially increasing
the risk of their subsequent transfer to water. Awareness of (and evidence for) the potential for ‘pollu-
tion-swapping’ is critical in order to guard against unintended environmental impacts of agricultural
management decisions.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Water used for recreation, drinking or food production
(including shell fisheries) is routinely screened for faecal indicator
organisms (FIOs) by regulators to track compliance with health
related standards and associated legislation (Pachepsky et al., 2016;
Clements et al., 2015). The detection of FIOs in environmental
matrices is indicative of faecal contamination and their presence in
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high numbers can suggest a risk to human health in addition to
posing wider economic and environmental threats (Oliver et al.,
2016a,b; Quilliam et al., 2015). The Water Framework Directive
(WFD), a significant piece of EU water legislation, was designed to
protect and improve the quality of water bodies throughout
Europe. Microbial pollution of water is integral to the WFD, with
bathing and shellfish harvesting waters designated as ‘Protected
Areas’within Article 6 of theWFD. In the USA, total maximum daily
loads (TMDLs) are calculated under the Clean Water Act, and FIOs
are the leading cause of TMDL exceedance, and thus impairment, of
river and stream water quality (USEPA, 2015). In recent years sig-
nificant international effort has focused on minimising diffuse
pollution from agriculture in recognition of the complexity of
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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challenges in mitigating its impact on the water environment
(Collins et al., 2016; Brown and Froemke, 2012; McGongle et al.,
2012).

In 2013 there were 9.84 million cattle and calves in the UK of
which 1.78 million were dairy cattle (Defra, 2014). The majority of
these cattle are concentrated in thewest of the UK, where grassland
agriculture dominates. Approximately 65% of the dairy cattle
housing systems are slurry-based systems (Anon, 2006), where the
slurry is a mixture of faeces, urine and water. These systems pro-
duce ca. 50 million tonnes of slurry annually in the UK (Williams
et al., 2000). The livestock industry in the UK is intensifying with
slurry-based systems being favoured over systems producing solid
manures and subsequently the larger animal enterprises are pro-
ducing greater volumes of slurry. Slurry remains liquid during
storage and therefore does not compost, potentially allowing pro-
longed survival of FIOs and pathogens and opportunities for
frequent re-inoculation from recurring inputs to slurry stores
(Blaiotta et al., 2016; Hutchison et al., 2005). Animal slurries contain
significant concentrations of nutrients, are a desirable farm
resource, and are routinely applied to agricultural lands as a crop
fertiliser and soil conditioner. However, manure applications can
pose a risk for the transfer of pathogenic microorganisms to wa-
tercourses via overland flow from fields or from diffuse inputs via
artificial drainage or other subsurface hydrological pathways (Cho
et al., 2016). The FIO concentrations contained within animal ma-
nures are highly variable depending on shedding rates, manure
type (liquid or solid manure) and storage conditions. Their rate of
decline after manure application to land has been shown to be
dependent on environmental factors, such as UV exposure, tem-
perature, soil type and desiccation (Park et al., 2016; Stocker et al.,
2015). Agricultural land that receives manure and demonstrates
hydrological connectivity to surface waters has the potential to
contribute to diffuse microbial pollution of water (Dymond et al.,
2016). However, the risk of microbial loss from land to water will
vary across contrasting seasons and according to different methods
of manure application, and this warrants further investigation.

One hypothesis is that FIOs delivered to injection slots in soil
will survive for longer than FIOs in slurry that has been surface
broadcast, with potential for prolonging the risk of FIO contami-
nation of the wider environment. This is because of increased cell
protection from UV, desiccation and extremes in temperature
afforded by the soil habitat. However, an effective method for
reducing emissions of ammonia (NH3) from the land application of
organic manures is to inject slurries into the soil (H€ani et al., 2016;
Misselbrook et al., 2002). Thus, in many European countries it is the
norm to inject slurries below the sward and into the soil, though in
the UK slurry application to land via broadcast application, often
using a splash plate applicator, remains standard practice. Conse-
quently, there is a need to determine if reducing NH3 emissions
through shallow injection of slurry will simultaneously increase the
potential survival of FIOs, and hence the subsequent risk of
increased subsurface transfers of FIOs to water, i.e. the potential for
so-called ‘pollution swapping’. The management and mitigation of
such risk is becoming a priority for environmental guardians who
seek practical tools to facilitate effective microbial risk assessments
of agricultural systems (Muirhead, 2015; Oliver et al., 2010, 2009).
The ability of emerging risk-based decision support tools to esti-
mate FIO survival (or rather the accumulation of an FIO burden) in
the landscape from a range of on-farm activities, for example the
applications of animal slurries to crops and pasture, is important for
helping to understand the contribution of diffuse agricultural
sources to the impairment of microbial water quality.

Slurry applications to land are influenced by seasons, generally
guided by crop requirement, but also by the farmers' need to relieve
stress in the capacity of slurry stores prior to housing livestock over
the winter. Relatively large volumes of slurries are often applied to
agricultural land through the spring, summer and autumn (Smith
et al., 2001) and in the UK the Nitrate Pollution Prevention Regu-
lations 2008 (Anon, 2008) have resulted in ~68% of agricultural land
in England being designated as Nitrate Vulnerable Zones (NVZs).
NVZs stipulate closed periods during which organic manures with
high available nitrogen contents, such as livestock slurries, cannot
be applied to land. For grasslands, predominantly livestock farms in
the ‘wetter west’ of England, these closed periods extend from 1
September to 31 December on sandy and shallow soils and from 15
October to 15 January on all other soils (Defra, 2013). While much
research has focused on nitrate and ammonia emissions from slurry
applications to grasslands in NVZs, less attention has been given to
microbial pollutants such as FIOs and potential pathogens.

The overall aim of this study was to evaluate the persistence
profiles of two key FIOs, E. coli and intestinal enterococci (IE),
following their delivery to grassland soil through contrasting slurry
application methods. The specific objectives were to: (i) determine
decay rates and half-lives of E. coli and IE at the plot scale following
shallow injection and surface broadcast (splash-plate) application
of slurry to grassland; and (ii) evaluate whether the resulting FIO
die-off patterns in soil were influenced by contrasting season of
slurry application in the UK.

2. Materials and methods

2.1. Site description

Experiments were conducted at the North Wyke Research farm,
Devon UK (50�450N, 3�500W), on an experimental grassland field.
The average annual air temperature of the site is 9.6 �C, and the
annual precipitation is 1055 mm (30-year mean, climate record of
North Wyke, 1982e2012). The soil type was a poorly drained silty
clay loam (Halstow Series; Findlay et al., 1984). Slurry was applied
to replicated grassland plots, approximately 2 m � 2 m, using two
simulated spreading techniques; surface broadcast (splash-plate)
and shallow injection. Broadcast spreading was simulated using an
adapted watering can with a spoon attachment to provide a suit-
able splash-plate spread pattern. In order to simulate the shallow
injection, 5e6 cm deep slots were cut into the ground, 20 cm apart,
and a watering can was used to pour the appropriate quantity of
slurry into the slots to match the same application rate of the
surface broadcast slurry. Dairy slurry was obtained from a slurry
lagoon on a nearby dairy farm. One day prior to the date of appli-
cation, slurry was collected from the farm in a 1 m3 intermediate
bulk container (IBC) and transported to the field. On the morning of
application (day 0) the slurry was thoroughly mixed prior to
decanting into clean 10 l galvanised steel watering cans for
spreading. The slurry was stored in the IBC in the field for the
duration of each experiment to enable FIO die-off rates in stored
slurry to be determined in addition to the soil-associated FIO die-off
rates.

Slurry was applied at the equivalent rate of 45 m3 ha�1 for all
treatments. The plot-scale experiment comprised fifteen 4 m2

randomised plots accommodating three treatments (five replicates
of; (i) broadcast applied; (ii) shallow injection; and (iii) control
plots, no amendments applied) which were investigated during
three distinct periods of the year: spring (day 0 ¼ May), summer
(day 0 ¼ July) and autumn (day 0 ¼ October). The plots had no
history of livestock grazing, manure application or fertiliser addi-
tion during the previous 20 years. A different set of fifteen rando-
mised plots was used for each seasonal experiment and a 2m buffer
surrounded each plot to minimise cross contamination of the plots.
Meteorological data was collected in the field using a Skye Minimet
4 meteorological station (Skye Instruments Ltd., UK).
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2.2. Sample collection

The FIO content of the slurry prior to application was deter-
mined on day zero of each slurry application (i.e. the day before
infield sampling commenced) by removing 5� 200ml samples (i.e.
1000 ml) from the IBC. This sample was transported to the labo-
ratory and analysed for FIO concentrations within 2 h.

To determine FIO concentrations in the soil, five cores were
taken from each plot, bulked and the soil homogenized. Samples
were taken on day 1, 2, 3 and 4 after slurry application, and then
weekly with a reduced sampling frequency thereafter until FIO
concentrations were undetected or had reached background levels
for two consecutive samples. For the control and surface broadcast
slurry plots, soil (and overlying slurry) was sampled to a depth of
2 cm using a 2.5 cm diameter auger. However, to facilitate sampling
of the shallow injection slurry slots, a 7.5 cm deep auger was used.
On average, the slots were 5.5 cm deep and so the 7.5 cm corer
effectively retrieved a 2 cm soil sample from the base of the slot.
This sampling methodology ensured consistency for all treatments
with regard to the volume of soil that was sampled alongside the
slurry, thus eliminating any bias from soil dilution on the resulting
FIO counts for the deeper 7.5 cm cores. Soil augers werewashed and
disinfected in a 1% solution of Virkon® and then rinsed three times
with sterile deionised water to eliminate cross plot contamination.
The slurry in the IBC was mixed and then sampled on every occa-
sion that the plots were sampled for soil cores.

2.3. Determination of FIO concentrations

A sub-sample of the slurry (from the IBC), or soil and slurry
composite (from the cores), was dried at 105 �C for 24 h to deter-
mine the gravimetric water content. A further five grams of target
material (either slurry from the IBC or cores of mixed soil and slurry
from each plot (n¼ 5)) was added to sample tubes containing 45ml
of sterile Ringers solution (Oxoid, Basingstoke, UK). Sample tubes
were then vortex mixed followed by shaking for 60 min at 150 rpm
(Lukham R100 rotatest shaker, LUKHAM ltd., UK) at ambient tem-
perature. After standing for 5min,1ml of the eluent was aseptically
transferred to 9 ml of sterile Ringers solution and appropriate serial
tenfold dilutions were made. Standard UK Environment Agency
methods of membrane filtration were used to determine bacterial
concentrations (EA, 2009). Samples were washed through the
filtration unit with 20 ml of sterile Ringers solution to aid the
dispersion of the bacteria over the entire surface of the membrane
filter during the filtering process. Membrane filters of 0.45 mm pore
size (Pall Gellman Sciences) were aseptically transferred either to
Membrane Lactose Glucuronide Agar (MLGA) (Oxoid) and incu-
bated inverted at 44.5 �C (±0.2 �C) for 18e24 h for E. coli or to
Slanetz and Bartley agar (Oxoid) and incubated at 37.0 �C (±0.2 �C)
for 44e48 h for IE. All FIO concentrations were analysed in the
laboratory within 4 h of sample collection. After the total incuba-
tion period all plates were examined and all colonies were counted.
Initially the counts were reported as presumptive and were sub-
sequently confirmed once further diagnostic studies were under-
taken. API® 20E (E. coli) and API® 20 Strep (I. E.) biochemical kits
(bioM�erieux) were used as a confirmatory procedure on ca. 25% of
the samples. The API biochemical kits rely on the biochemical
profiles exhibited by the bacterial isolates for confirmation of their
identity through database comparison.

2.4. Statistical analyses

All FIO counts were converted to dry weight equivalents and
underwent log10 transformation prior to statistical analysis using
GenStat (Edition 10.1, Rothamsted Research). Data were analysed
either using simple linear regression or using nonlinear regression
analysis. For the July and October data the decay rate (k1/d) and
half-life were determined from the fitted equation A þ B*(R**X),
where k1 ¼ -log (R) and half-life ¼ loge (2)/k1. For the May data the
slope of the regression line is ek, where k is the first order decay
rate on the original scale and half-life ¼ log e (2)/k. Multifactorial
analysis of variance (ANOVA) and Tukey multiple comparison tests
were used to test for differences in decay rates and half-lives be-
tween FIO types, application methods and seasons of application.
Statistical significance was evaluated at the 0.05 probability level.

3. Results

3.1. May application

Concentrations of FIOs in the fresh dairy slurry for the May
application, reported as colony forming units (CFU), were 6.10
(±0.04) log10 and 6.64 (±0.04) log10 CFU g�1 dry weight for E. coli
and IE, respectively. A steady decline in concentration of both E. coli
and IE was evident from the shallow injection plots (Fig. 1a & b).
Background concentrations of E. coli remained largely below the
level of detection (<10 cfu g�1) for the 53 days of sampling
following the spring application. On the 16th day after application
there was a spike in E. coli numbers, detected on four out of the five
control plots, that coincided with the silage cut of the experimental
plots. However, perhaps of greater interest were the concentrations
of IE (often at values exceeding 1000 CFU g�1) detected in the soil
from the control plots. Relative to plots accommodating the shallow
injection treatment, the control plots recorded considerable vari-
ation in IE counts. While E. coli remained above numbers recorded
in the control plots beyond day 50, the concentrations of IE
declined to within the control plot numbers by day 37. Initial
concentrations of E. coli detected in the soil from the broadcast
applied slurry plots (Fig. 1c & d) were relatively low, although a
one-log increase in concentration was detected over the first three
days. Numbers of E. coli declined to background concentrations in
the broadcast treatment by day 23. A similar one-log increase over
the first three days with a decline to control concentrations by day
23was observedwith IE. However, background concentrations of IE
from the control plots showed no significant difference from the
broadcast slurry applied plots. Decay rates (k) and half-life for both
FIOs were determined (Table 1) for each of the experimental plots
(i.e. the five shallow injection and five broadcast slurry applied
plots) by fitting a simple linear regression line. The goodness of fit
of the regression line was significant (p¼ 0.01) for both FIOs for the
shallow injection plots and for IE from the broadcast applied slurry
plots. In contrast there was a poor fit to the observed E. coli data
from the broadcast applied slurry plots, and p values ranged from
0.11 to 0.57 (n ¼ 5). For comparison, a two-log decline in viable
E. coli concentration (from 6.1 to 4.1 log10 CFU g�1 dryweight) in the
slurry taken from the IBC was observed for the 51 days for May.
Viable IE concentrations reduced by 0.7 log from 6.5 to 5.8
log10 CFU g�1 within the slurry store over the 51 days for May.

3.2. July application

The slurry applied to plots in July had an initial E. coli concen-
tration of 5.86 (±0.14) log10 CFU g�1 dry weight and recorded 6.80
(±0.03) log10 CFU g�1 dry weight for IE. Fig. 2a & b show the mean
FIO concentrations in the soil taken from the injection slots along
with the corresponding FIO concentrations enumerated from the
soil in the control plots. Both FIOs showed a decline over time,
which when fitted to an exponential curve, gave a significant fit to
the observed data (p < 0.001).

E. coli concentrations declined rapidly in the soil to which slurry
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Fig. 1. The effect of slurry application method on FIO counts over time in spring (Day 0 ¼ May); Shallow injection, a E. coli, b Int. Ent; Surface broadcast, c E. coli, d Int. Ent. Data
points are the mean of five replicates ± the standard error.

Table 1
Mean decay rates (k) and half-life (t1/2) for E.coli and intestinal enterococci for data
for the experimental plots; mean of five shallow injection (S/I) and five broadcast (B/
C) slurry applied plots for the May, July and October applications.

E. coli Intestinal enterococci

k (day�1) t1/2 (days) k (day�1) t1/2 (days)

May
S/I n ¼ 5 0.11 9.68 0.021 36.93
B/C n ¼ 5 0.23 6.40 0.057 19.61
July
S/I n ¼ 5 0.023 31.29 0.018 48.33
B/C n ¼ 5 0.097 9.38 0.042 17.27
October
S/I n ¼ 5 0.029 34.14 0.025 27.79
B/C n ¼ 5 0.036 24.14 0.033 27.11
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was broadcast applied, falling to values associated with the control
plots on day 17 (Fig. 2c& d). The spike in E. coli concentration at day
53, seen in both the broadcast slurry and control plots, coincided
with the first rain since day 10. The IE concentrations in the soil to
which slurry was broadcast applied declined rapidly to day 24,
when their rate of decline slowed, mirroring the concentrations
seen in the soil from the control plots. The decline of FIOs from the
control plots are best represented by a linear regression (p ¼ 0.01)
for both FIOs (up to day 17 for E. coli and day 24 for IE). A 3
log10 CFU g�1 reduction of viable E. coli concentration (from 5.8 to
2.8 log10 CFUg�1 dry weight) of the slurry in the IBC was observed
up to day 82 and no viable E. coli was detected at the end of the
sampling period on day 111 for the July application. In contrast,
viable IE concentrations fell by 1.25 log10 CFU g�1 (from 6.55 to 5.25
log10 g�1) within the slurry store over the 111 sampling days for the
July application.
3.3. October application

FIO concentrations in the fresh dairy slurry for the autumn
application were 6.15 (±0.06) log10 and 7.12 (±0.07) log10 CFU g�1

dry weight for E. coli and IE, respectively. Fig. 3ae d show the mean
FIO concentrations in the soil taken from the injection and broad-
cast applied slurry plots along with the corresponding FIO con-
centrations quantified in the soil of the control plots. Again the
decline for E. coli and IE in the soil from the shallow injected and the
broadcast applied slurry plots is best described by an exponential
curve, with a significant fit to the observed data (p < 0.001). Con-
centrations of E. coli were detected in the soil from the injection
slots up to day 131 but no viable E. coliwas detected in the soil from
the control plots. A relatively rapid die-off was observed for E. coli
numbers in the soil from the broadcast applied slurry plots over the
first 30 days post application, after which this rate of decline
slowed. E. coli was readily cultured in the soil from the broadcast
applied plots for up to 102 days post slurry application. A 2.6
log10 CFU g�1 decline in viable E. coli concentration (from 6.15 to
3.55 log10 g�1 dry weight) in the slurry contained in the IBC was
observed over the 131 sampling days for the October application. In
contrast, a 1.2 log10 CFU g�1 reduction in viable IE concentrations
was recorded over the same period (reducing from 7.0 to 5.8
log10 CFU g�1).
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Fig. 2. The effect of slurry application method on FIO counts over time in summer (Day 0 ¼ July); Shallow injection, a E. coli, b Int. Ent; Surface broadcast, c E. coli, d Int. Ent. Data
points are the mean of five replicates ± the standard error.
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3.4. Comparison of FIO decay rates and half lives

FIOs in dairy cattle slurry survived significantly longer when
applied to land via shallow injection than by broadcast application
(p < 0.05). Decay rates of FIOs were up to 4 times quicker when
delivered to soil via broadcast application rather than by shallow
injection.

Half-lives: Multifactorial ANOVA identified that there were sig-
nificant differences in half-lives between FIO types, between
different seasons and between slurry application methods
(p < 0.05). The half-life of E. coli once applied to grassland was
significantly shorter than that of IE (p < 0.01). In general, FIOs were
shown to accommodate a significantly shorter half-life when
applied to soil via a broadcast application (p < 0.05) and if applied
during the spring (p < 0.05). A significant interaction was observed
between FIO type and season of application (p < 0.05), with E. coli
half-lives influenced by season more strongly than IE.

Decay rates: Significant differences in decay rates between FIO
types and between seasons were also recorded (p < 0.05) but not
between application methods (p ¼ 0.053), which fell just outside
the defined 5% significance level. The significantly slower decay
rate was associated with IE (complementing the half-life data) and
the highest rate of decaywas associatedwith FIOs applied to land in
spring, with summer and autumn both accommodating signifi-
cantly lower decay rates (p < 0.05).

The mean decay rates (k) day�1 and half-life (t1/2) days for E. coli
and IE for the five shallow injection and five broadcast slurry
applied plots for the May, July and October applications are sum-
marised in Table 1. Mean and maximum measured levels of UV, air
temperature and total rainfall and the percentage dry matter for
each slurry application are recorded in Table 2.
4. Discussion

Plot studies are essential to help consolidate understanding and
scale up findings from laboratory-based investigations to field and
catchment scales (Winter et al., 2011). It is therefore critically
important that plot scale studies of FIO persistence are undertaken
to complement observations made at smaller scales and to provide
evidence of impacts of complex interacting environmental factors
on FIO survival (Oliver et al., 2016a). However, the current
evidence-base of FIO persistence patterns delivered to soils through
manure applications is currently limited (Stocker et al., 2015). The
research reported here contributes important data to help support
our understanding of FIO persistence under field-relevant condi-
tions. Our results have highlighted significant impacts associated
with both method and timing of slurry applications on the persis-
tence of FIOs in grassland soil across different seasonal conditions
in the UK.

Differences were observed in the survival characteristics of the
two FIOs under investigation. The population of IE within the slurry
was found to be more robust and accommodated a longer half-life
and slower decay rate relative to the E. coli population. Interest-
ingly, the persistence patterns of E. coli and enterococci in soils
following manure application (and simulated rainfall) in a US study
were also shown to differ but, in contrast to out study, E. coli sur-
vived better than enterococci (Stocker et al., 2015). Others have also
found E. coli to out survive enterococci when bovine manure was
incorporated into soil (Lau and Ingham, 2001). The latter study held
mixed soil and manure treatments under a controlled temperature
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Fig. 3. The effect of slurry application on FIO counts over time in autumn (Day 0 ¼ October); Shallow injection, a E. coli, b Int. Ent; Surface broadcast, c E. coli, d Int. Ent. Data points
are the mean of five replicates ± the standard error.

Table 2
Mean meteorological data; UV, air temperature and total rainfall for each of three slurry application periods.

Month of application Sampling period days Mean, 24 h/Max h UV (wm2) Mean, 24 h/Max h air temp (�C) Total rainfall (mm) Slurry dry matter at application (%)

May 51 236.1/836 15.1/26.4 39.0 7.4
July 111 129.6/808 14.9/29.7 25.4 5.9
October 131 60.9/503.5 10.7/17.9 68.4 5.3
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regime using a laboratory set-up and so the FIOs were not exposed
to the same number of interacting and variable environmental
factors that challenge FIO survival in the field, which might explain
the contradictory findings between their study and ours. Differ-
ences in FIO survival between field-based studies are likely to
reflect the different environmental conditions specific to each
experiment. Our study used a poorly drained silty clay loam soil
whereas Stocker et al. (2015) investigated FIO survival in soil of a
sandy loam texture. Others have reported E. coli and enterococci
survival in pig slurry applied to different soil types and found both
FIOs to accommodate different survival profiles depending on soil
type (Cools et al., 2001). Beyond soil type, factors such as soil
moisture, manure type, manure characteristics such as percentage
of dry matter and solids, rainfall re-wetting events and soil nutrient
status are known to impact on FIO survival profiles (Park et al.,
2016; Yao et al., 2015; Bech et al., 2014) and may help explain the
differences in reported FIO characteristics between studies.

The timing of manure application to land is clearly important. It
is known that manure and slurry applications that coincide with
wet weather can help to promote elevated FIO concentrations being
transferred from land to water (Blaustein et al., 2016). However, our
results also demonstrate that the season within which slurry is
applied to land can impact on the survival dynamics of FIOs
delivered via both broadcast spreading and surface injection. E. coli
survived in the soil at the base of the injection slots, albeit at
relatively low concentrations, for more than 100 days for both the
July and October applications. This contrasts with the May appli-
cation where E. coli was not detected beyond 50 days in the in-
jection slots. Similarly, the E. coli population in the dairy cattle
slurry applied via broadcast application in the spring declined
relatively quickly and was no longer a substantial source of E. coli
after only 10 days. Therefore, FIO survival was shortest in the
warmer spring period of study relative to summer and autumn
monitoring, complementing findings that have shown temperature
to be an important driver of FIO decline in land-applied manures
and slurries (Plach�a et al., 2001). It is important to note that mean
UV and temperature values for spring were higher than those
observed during the summer and so a degree of caution is needed
in assuming that we can apply specific decay rates to particular
seasons given the potential for variable meteorological conditions
(i.e. atypical seasons). Certainly, temperature and soil moisture
status have been shown to be significant factors affecting the
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dynamics of FIOs once introduced into the soil environment
(Hutchison et al., 2004) though the exact nature of temperature
influences on E. coli die-off in agricultural environments have yet to
be fully characterised (Martinez et al., 2013). In NVZs of Europe, the
closed period for slurry applications extends through autumn to
late winter. Given that FIOs introduced to grassland via slurry
application in autumn persist significantly longer relative to spring,
it is clear that the autumnal ‘closed period’ for slurry applications in
the UK delivers multiple benefits; it not only limits nitrate leaching
from land to water but also restricts slurry applications when FIOs
would persist longest.

The half-lives of both E. coli and enterococci were found to be
significantly shorter when slurry was applied to grassland plots via
broadcast applications to the field surface rather than applied by
shallow injection into the soil. Surface appliedmanures and slurries
will be exposed to UV and will likely experience accelerated
desiccation due to more rapid warming and drying from wind.
Further, unlike cells delivered to soil by surface injection methods,
surface applied FIOs will ultimately suffer from lack of a protective
niche afforded by the soil matrix and so be more prone to detri-
mental effects of temperature fluctuations (Avery et al., 2004;
Hutchison et al., 2004). A recent meta-analysis of 151 FIO survival
datasets revealed significantly faster decay and significantly larger
sensitivities in the decline of FIO populations associated with cells
delivered to the soil surface compared to those that were mixed or
ploughed into the soil matrix (Park et al., 2016). The results from
our study are therefore consistent with observations from other
areas of the world where similar research has been undertaken.

Interestingly, despite the rapid decay of FIOs observed for
spring, an initial short-lived increase in E. coli population growth of
one-order of magnitude was observed in slurry delivered via the
surface broadcast method during the first four days post-
application. Admittedly, the starting concentration of the E. coli
population was very low, and perhaps an influx of cells had trans-
ferred into the underlying soil following mobilisation from the
overlying slurry during rainfall (Blaustein et al., 2015) rather than
this increase representing replication of cells, though it is difficult
to say with certainty which is the most likely cause. However, a
number of studies of FIO persistence in various faecal matrices have
reported on the potential for FIO growth. For example, Escherichia
coli in bovine manure incorporated into the soil under controlled
laboratory-based conditions exhibited a growth phase of ~1e2
log10 CFU g�1 over a period of approximately one week, and
enterococci numbers were observed to increase too, though to a
lesser extent (Lau and Ingham, 2001). Investigations of FIO persis-
tence in cowpats held under field-relevant conditions have also
reported on the potential for E. coli growth in the immediate period
post defecation with increases in population size of ~1.5 order of
magnitude increase over a similar period (e.g. van Kessel et al.,
2007; Sinton et al., 2007; Martinez et al., 2013). It may be that in
conditions where a significant decline in bacterial population
would normally be expected (e.g. elevated temperatures and UV
levels) the warming of slurry beneath the immediate crust is suf-
ficient to promote some cell growth, and perhaps to levels that
counteract the proportion of cells lost through the process of
desiccation in the overlying crust. Conversely, the spikes in FIO
populations observed at later stages of the experiment were likely a
result of rehydration of the soil matrix following rainfall rewetting
of soil and subsequent redistribution of nutrients to the cells
(Jamieson et al., 2002).

The abatement of NH3 emissions from the livestock sector across
Europe has been a focus of research for some time. Emissions of
NH3 from agriculture can be reduced by an average of 73% when
slurry is applied to land by shallow injection in comparison to
conventional splash-plate application (Misselbrook et al., 2002).
Thus an abatement strategy to reduce NH3 emissions from slurry is
to shallow inject it into the soil. However, as this current study
shows, injecting dairy slurry significantly increases the survival of
FIOs in grassland environments compared to broadcast application,
potentially sustaining a longer-lasting threat to surrounding water
quality if these faecal sources are mobilised and transferred by
subsequent rainfall run-off into artificial subsurface drainage sys-
tems, known to be efficient conduits of FIO transfer (Oliver et al.,
2005). Indeed, some research has highlighted vulnerability of FIO
transfers following slurry injection (Amin et al., 2014) and others
have suggested that injection actually increases the leaching po-
tential of nitrate, phosphorus and pathogens (Fangueiro et al.,
2014). Nevertheless, slurry injection of FIOs into the soil is likely
to reduce the risk of ‘incidental’ rapid overland flow losses from
land to water following heavy rainfall because the slurry is better
protected from detachment mechanisms such as raindrop impact
on the soil surface.

5. Conclusion

FIOs that are recycled to grassland soils via slurry survive better
when applied by shallow injection rather than surface broadcast
methods, and decay rates of both E. coli and IE vary depending on
time of application, likely due to environmental drivers such as
temperature and UV, and rainfall effects on soil moisture status.
While slurry injection is promoted as a technique to reduce agri-
cultural NH3 emissions to the atmosphere it is important to
recognise the potential for multi-pollutant impacts from on-farm
management decisions. The opportunity for inadvertent FIO
transfer from land to receiving waters following shallow injection
of slurry is likely to depend on site specific factors such as the
presence and depth of tile drains and the soil type and presence of,
for example, preferential pathways such as soil macropores. The
nuances of potential environmental impacts that might arise
following different manure application methods to grassland sys-
tems therefore create a complex conundrum for farmers, land-
owners and environmental managers who are tasked with deliv-
ering on multiple environmental objectives such as balancing
reduced odour and atmospheric NH3 pollution against potential
risks to soil and water quality. The implications of extended FIO
survival in soil following slurry application by shallow injection
must be addressed in the wider context of ‘pollution swapping’
when designing mitigation strategies for multiple pollutants at the
farm scale. In response, larger and longer-term field trials offer
scope for improving our understanding of complex multi-pollutant
interactions associated with manure and livestock management in
agricultural systems.
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