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Abstract

The iris has been one of the most reliable biometric traits for automatic human

authentication due to its highly stable and distinctive patterns. Traditional iris

recognition algorithms have achieved remarkable performance in strictly constrained

environments, with the subject standing still and with the iris captured at a close

distance. This enables the wide deployment of iris recognition systems in appli-

cations such as border control and access control. However, in less constrained

environments with the subject at-a-distance and on-the-move, the iris recognition

performance is significantly deteriorated, since such environments induce noise and

degradations in iris captures. This restricts the applicability and practicality of iris

recognition technology for some real-world applications with more open capturing

conditions, such as surveillance, forensic and mobile device security applications.

Therefore, robust algorithms for less constrained iris recognition are desirable for

the wider deployment of iris recognition systems.

This thesis focuses on improving less constrained iris recognition. Five methods

are proposed to improve the performance of different stages in less constrained iris

recognition. First, a robust iris segmentation algorithm is developed using `1-norm

regression and model selection. This algorithm formulates iris segmentation as ro-

bust `1-norm regression problems. To further enhance the robustness, multiple seg-

mentation results are produced by applying `1-norm regression to different models,

and a model selection technique is used to select the most reliable result. Second, an

iris liveness detection method using regional features is investigated. This method

seeks not only low level features, but also high level feature distributions for more

accurate and robust iris liveness detection. Third, a signal-level information fusion

algorithm is presented to mitigate the noise in less constrained iris captures. With

multiple noisy iris captures, this algorithm proposes a sparse-error low rank matrix

factorization model to separate noiseless iris structures and noise. The noiseless

structures are preserved and emphasised during the fusion process, while the noise

is suppressed, in order to obtain more reliable signals for recognition. Fourth, a

method to generate optimal iris codes is proposed. This method considers iris code

generation from the perspective of optimization. It formulates traditional iris code
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generation method as an optimization problem; an additional objective term mod-

elling the spatial correlations in iris codes is applied to this optimization problem

to produce more effective iris codes. Fifth, an iris weight map method is studied for

robust iris matching. This method considers both intra-class bit stability and inter-

class bit discriminability in iris codes. It emphasises highly stable and discriminative

bits for iris matching, enhancing the robustness of iris matching.

Comprehensive experimental analysis are performed on benchmark datasets for each

of the above methods. The results indicate that the presented methods are effec-

tive for less constrained iris recognition, generally improving state-of-the-art perfor-

mance.
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Chapter 1

Introduction

1.1 Biometric recognition systems

Biometric recognition systems aim to automatically authenticate humans based on

their behavioural and physiological traits, instead of traditional ID cards or pass-

words [1–3]. Behavioural traits are the attributes related to the behavioural pattern

of a person, for example, gait, voice, keystroke, signature, etc. Physiological traits

are the characteristics related to human body, for example, fingerprint, iris, face,

palm print, finger vein, DNA, retina, etc. For a biometric recognition system, the

selection of biometric traits should consider the following characteristics [1–3]:

• Universality. Each individual should have the trait.

• Distinctiveness. The trait should be sufficiently discriminating among dif-

ferent individuals.

• Permanence. The trait should be sufficiently stable, with no or little change

over time.

• Collectability. It should be possible to capture and quantise the trait with

proper devices.

1
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• Performance. The trait should achieve satisfactory accuracy with allowable

cost of resources specified by applications.

• Acceptability. The users should be willing to present the trait to the system.

• Circumvention. The trait should be robust to the fraudulent methods like

fake copies.

A biometric recognition system usually consists of two phases: enrolment and recog-

nition. In enrolment phase, the system captures and stores the biometric trait from

individuals as gallery templates. In recognition phase, the system establishes the

identity of a presented individual by comparing the similarity between the gallery

templates and probe capture.

Depending on the application scenarios, the recognition phase can be operated in two

modes: identification and verification. In the identification mode, the system aims

to determine the identity of a presented subject. This mode performs a one-to-many

comparison. The probe capture is compared with all the gallery templates stored in

the biometric system to generate a set of similarity scores indicating the similarity

between the probe and each gallery template; the identity of the presented subject

is determined as the identity of the gallery that corresponds to the highest similarity

score. An ‘un-enrolled’ decision may be made if the highest similarity score is lower

than a threshold. This mode is usually used in surveillance and forensic applications

like criminal investigation [4].

In the verification mode, the system attempts to validate the identity claimed by a

presented subject. This mode performs a one-to-one matching. The probe capture of

the presented subject is compared with the gallery templates of the claimed identity

to produce similarity scores. A decision of match or non-match is made based on a

threshold applied to the similarity score. This mode is often used in access control

and mobile security applications such as mobile banking [5].
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The performance of a biometric recognition system is usually evaluated by cumula-

tive match characteristic (CMC) and receiver operating characteristic (ROC). CMC

is used to evaluate the performance of identification mode. It calculates the recog-

nition rate in top k ranked similarity scores. CMC is usually plotted as a curve

showing the change of recognition accuracy with respect to rank. An example of

CMC curve is shown in Fig. 1.1(a). Rank 1 recognition accuracy is one of the most

widely used measures to evaluate the performance of CMC curves; it indicates the

recognition accuracy of the best ranked similarity score (i.e. k = 1).

ROC is used to evaluate the performance of verification mode. Given a thresh-

old to make the decision of match/non-match, two measures can be obtained: false

acceptance rate (FAR) and genuine acceptance rate (GAR). FAR calculates the per-

centage of false matching in inter-class comparisons. GAR calculates the percentage

of genuine matching in intra-class comparisons. ROC reflects the trade-off between

GAR and FAR when the threshold is varied. It is usually plotted as a curve of GAR

vs. FAR. An example of ROC curve is shown in Fig. 1.1(b). Some widely used mea-

sures to evaluate the performance of ROC curves are equal error rate (EER), area

under curve (AUC) and GAR when FAR is 0.1% or 0.01% (GAR@FAR= 0.1%,

GAR@FAR= 0.01%). EER is the rate where FAR equals to 1−GAR (false non-

matching rate). AUC measures the area between a ROC curve and x-axis. The

meaning of GAR@FAR= 0.1% and GAR@FAR= 0.01% are straightforward: they

are the GAR when FAR is 0.1% and 0.01%, respectively.

1.2 Iris recognition

Iris has been proven to be one of the most reliable biometric traits [6–12]. This

is due to some desirable characteristics of human iris. First, the iris pattern is

highly unique. For example, it is well known that the left and right iris of a single

individual have different patterns [8, 9, 13], and identical twins also have distinctive
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Figure 1.1: Examples of CMC and ROC curves.

iris patterns [1,13]. Second, the iris pattern is highly stable. It is generally believed

that the iris pattern is formed during fetal development and it is stabilised within

the first two years of life, then, the pattern of healthy iris changes little during the

rest lifespan [1,8,9,13]. Third, iris is an internal organ. This characteristic protects

the iris pattern from the influence of environment, enhancing the stability. Fourth,

iris is visible externally. Therefore, it is possible to capture the iris texture using

proper imaging devices.

The first automatic iris recognition method is proposed by Daugman [6]. Follow-

ing this work, state-of-the-art iris recognition algorithms have achieved remarkable

performance [7–12]. In real applications, current nationwide deployments of iris

recognition systems in UAE and India are considered successful, with millions of

subjects enrolled [14].

Generally, an iris recognition system usually consists of the following components:

image acquisition, liveness detection, iris segmentation, feature extraction and iris

matching. Fig. 1.2(a) shows the flowchart of a general iris recognition system.

The image acquisition stage captures the raw sample of eyes, and it quantises the

raw sample into digital form for further processing. Fig. 1.2(b) shows an example

digital captures of an eye under near-infrared (NIR) wavelength.
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Figure 1.2: Illustrations of a general iris recognition system; (a) the flowchart of
the system; (b) example of a captured iris image; (c) the detected iris region in iris
segmentation stage; green circles mark the detected limbic and pupillary boundaries;
blue curves are the detected eyelids; red regions are the detected reflection and
silhouette; (d) the normalised iris region produced after iris segmentation stage; the
top image shows the normalised iris region; the bottom image is a mask indicating
iris (white) and non-iris (black) pixels in the normalised iris region; (e) the iris code
extracted in feature extraction stage using 1-D log-Gabor filter [15] for iris matching;
the top image is the real part of the iris code; the bottom image is the imaginary
part.

The liveness detection stage protects the iris recognition system from spoofing at-

tacks using synthetically generated iris textures, such as printed photos, textured

contact lenses and artificial eyes. This stage is usually considered as a two-class clas-

sification problem. Features are extracted from iris captures to distinguish between

real and fake iris patterns.

The iris segmentation detects and normalises the iris region for the following feature

extraction. It aims to separate the iris region from the other eye regions. The detec-

tion of iris region is usually performed by identifying a set of boundaries and regions,

including limbic boundary, pupillary boundary, upper and lower eyelids, specular re-

flection and silhouette. Fig. 1.2(c) shows an example result of iris segmentation. In

Fig. 1.2(c), green circles mark the detected limbic and pupillary boundaries; blue

curves are the detected eyelids; red regions are the detected reflection and silhouette.
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After the detection of iris region, the iris region is usually normalised to improve the

invariance of the obtained region to factors like gaze orientation, eye position, eye size

and pupil dilation. This normalisation is usually performed using Daugman’s rubber

sheet model [6, 7]. It maps the segmented iris region from Cartesian coordinates to

nonconcentric polar coordinates. Fig. 1.2(d) shows an example of normalised iris

region.

The feature extraction stage constructs feature representations from normalised iris

region. Currently, binary iris codes [6,7,15] are the most widely used features for iris

recognition. The binary nature of iris codes brings significant advantage in mem-

ory and computational cost, enabling the large scale deployment of iris recognition

systems. Fig. 1.2(e) shows an example of iris code extracted using 1-D log-Gabor

filter [15].

The iris matching stage compares the features extracted from different captures to

produce matching scores for recognition. In identification mode, this stage performs

a one-to-many comparison. The feature extracted from a probe capture is compared

with all the gallery features stored by the system during the enrolment phase. In

verification mode, this stage performs a one-to-one matching. The feature extracted

from a probe capture is only compared with the gallery features from the claimed

identity.

1.3 Motivation and objectives

To achieve satisfactory performance, most of current iris recognition systems need

to apply several constraints to the capturing environment. For example, since iris

is a small organ, a close distance is required to obtain captures with sufficient res-

olution; the subject is expected to stand still to eliminate the noise in the captures

caused by motion; the images are captured in near-infrared (NIR) wavelength to
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mitigate the influence of specular reflection. These constraints usually require full

cooperation of the user. It restricts the usability and practicality of iris recognition

technology for some applications with more open capturing environment, such as

forensic, surveillance and mobile device security applications.

Recently, in order to further improve the usability and practicality of iris recognition

technology for wider applications, significant research efforts have been devoted to

allow the iris images to be captured in less constrained environment, with the subject

at-a-distance and on-the-move [16–31]. However, such less constrained environment

induces noise and degradations in iris captures, and this can significantly deterio-

rate iris recognition performance [32]. Currently, how to overcome the noise and

degradations to improve the performance of iris recognition under less constrained

environment remains an open problem.

Therefore, this thesis focuses on developing robust algorithms to improve less con-

strained iris recognition. The objectives are summarised as follows:

• Investigating a robust iris segmentation algorithm for less constrained iris cap-

tures.

• Designing effective features for iris liveness detection.

• Fusing multiple less constrained iris captures to mitigate the noise in such

captures.

• Studying the method to produce more effective iris codes for iris recognition.

• Exploiting a robust iris matching algorithm for the features extracted from

less constrained iris captures.

1.4 Contributions

This thesis have five main contributions which are summarised as follows.
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First, a robust algorithm is proposed for iris segmentation using less constrained

captures, based on `1-norm regression and model selection technique (Chapter 4).

This algorithm formulates the segmentation of iris boundaries as `1-norm regres-

sion problems. It is shown that the robustness induced by `1-norm is effective to

mitigate the influence of noise and degradations in less constrained iris captures.

Furthermore, the robustness of algorithm is enhanced by a model selection tech-

nique. Specifically, multiple segmentation results of iris boundaries are produced by

applying `1-norm regression to different models, and a model selection method is

proposed to select the most reliable result. The experimental results demonstrate

that the proposed algorithm is highly effective on both NIR and colour datasets

captured in less constrained environments.

Second, regional features are exploited for iris liveness detection (Chapter 5). Re-

gional features are constructed not only using low-level features, but also using

high-level feature distribution information. Two models are employed to seek the

high-level feature distribution information: spatial pyramid and relational measure.

The experimental results on benchmark datasets show that regional features are

able to achieve an improved performance in comparison to low-level features which

do not include the high-level feature distribution information. The experimental

results also demonstrate that, regional feature based method is able to achieve an

improved performance compared to state-of-the-art iris liveness detection methods

on a dataset with heavier noise, while its performance is comparable to state-of-the-

art methods on other datasets.

Third, a signal-level information fusion method is investigated to mitigate the noise

in less constrained iris captures (Chapter 6). A sparse-error low-rank matrix fac-

torisation (SE-LRMF) model is proposed to separate noiseless iris structures and

noise pixels for information fusion. It is demonstrated that not only the noiseless

structure can be straightforwardly fused, but also noise pixels are able to contribute

to the signal-level fusion in a weighted fusion scheme. The experimental results on
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benchmark datasets show that this signal-level fusion method is able to achieve a

generally improved iris recognition performance for less constrained iris captures, in

comparison to existing iris recognition algorithms, especially for the captures with

heavy noise and low quality.

Fourth, the optimal generation of iris codes is studied (Chapter 7). The traditional

method to generate iris codes is formulated as an optimisation problem. Therefore,

more effective iris codes can be generated by designing effective objective terms

to add to this optimisation problem. This thesis designs an additional objective

term modelling the spatial correlation in iris codes, using the prior of iris textural

correlations. Experimental results on benchmark datasets show that the iris codes

generated with this additional objective term achieve a generally improved iris recog-

nition performance in comparison to Masek’s implementation of traditional iris code

generation method [15]. The observation of spatial correlation of iris textures in pre-

vious research is also verified in this experiment.

Fifth, an iris weight map method is exploited for robust iris matching (Chapter 8).

This iris weight map is the combination of a stability map modelling intra-class bit

stability and a discriminability map expressing inter-class bit discriminability in iris

codes. It emphasises the bits with both high stability and high discriminability for

iris matching. Experimental results show that this iris weight map is highly effective

for both single-sensor and cross-sensor iris captures in less constrained environments,

achieving a generally improved performance compared to existing iris weight map

methods.

1.5 Thesis structure

This thesis is organised as follows. Chapter 2 reviews the previous works on iris

recognition. Chapter 3 introduces the datasets used for experimental analysis in this
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thesis. Chapter 4 describes the proposed algorithm for iris segmentation. Chapter 5

presents the proposed method for iris liveness detection. Chapter 6 details the pro-

posed method for signal-level information fusion. Chapter 7 presents the proposed

method to generate optimal iris codes. Chapter 8 describes the proposed iris weight

map for robust iris matching. Chapter 9 summarises the concluding remarks and

discusses the future work.



Chapter 2

Previous works on iris recognition

This chapter revisits the previous works on iris recognition. Since this thesis focuses

on algorithms rather than hardware design, this chapter concentrates on the follow-

ing four stages of iris recognition: iris segmentation, iris liveness detection, feature

extraction and iris matching.

2.1 Iris segmentation

Iris segmentation detects and normalises the iris region. It is one of the fundamental

steps for iris recognition. This section reviews some remarkable methods developed

for iris segmentation in the literature.

2.1.1 Integro-differential operator

The first algorithm for automatic iris segmentation is proposed by Daugman in [6].

This algorithm models the limbic boundary using a circle with three parameters

xc, yc, and r. xc and yc denote the coordinate of circle centre, while r denotes the

radius of circle. Let I (x, y) be an iris capture. The three parameters xc, yc, and r

11
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are sought by maximizing an integro-differential operator:

max
r,xc,yc

∣∣∣∣Gσ (r) ∗ ∂

∂r

∮
r,xc,yc

I (x, y)

2πr
ds

∣∣∣∣ (2.1)

where Gσ (r) is a Gaussian smoothing function with a standard deviation of σ, ds is

an element of circular arc, and ∗ is the convolution operator. Eqn. 2.1 is essentially

a circular edge detector. It seeks the limbic boundary as the circle with the highest

inner-to-outer contrast at the boundary. Within the limbic boundary, the same

method is used to seek the pupillary boundary.

After limbic and pupillary boundaries are found, [6] performs iris normalisation us-

ing a rubber sheet model. The aim is to improve the invariance of obtained iris

region to factors like pupil dilation, gaze direction and eye size. This normalisation

is a mapping from Cartesian coordinate system (x, y) to non-concentric polar coor-

dinates (r, θ) where r ∈ [0, 1] and θ ∈ [0, 2π]. The mapping can be represented as

follows:

I (x (r, θ) , y (r, θ))→ I (r, θ) (2.2)

and 
x (r, θ) = (1− r)xp (θ) + rxs (θ)

y (r, θ) = (1− r) yp (θ) + rys (θ)

(2.3)

where (xp (θ) , yp (θ)) denotes the Cartesian coordinate of the point on pupillary

boundary along the direction θ, and (xs (θ) , ys (θ)) denotes the Cartesian coordi-

nate of the point on limbic boundary along the direction θ. An example of iris

normalisation with rubber sheet model is shown in Fig. 1.2(d).

In the works following [6], the iris normalisation is usually performed using the above

rubber sheet model, and the variation of methodology mainly exists in the detection

of iris region.
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2.1.2 Hough Transform

In [8], Wildes proposes to perform iris segmentation using Hough transform [33].

This method firstly detects edge points in iris captures, then the detected edge

points vote to find the boundary parameters. For example, for the limbic boundary

which is modelled using a circle, the Hough transform is formulated as follows:

H (xc, yc, r) =
n∑
i=1

h (xi, yi, xc, yc, r) (2.4)

where xc, yc and r are circle parameters as in Eqn. 2.1, and (xi, yi) , i = 1, 2, · · · , n

is the set of edge points. h (xi, yi, xc, yc, r) in Eqn. 2.4 is defined as follows:

h (xi, yi, xc, yc, r) =


1, if (xi − xc)2 + (yi − yc)2 − r2 = 0

0, otherwise

(2.5)

The combination of xc, yc and r that maximizes H (xc, yc, r) is determined as the

parameters for the limbic boundary. In other words, this method seeks the limbic

boundary as the circle that passes the largest number of edge points. The pupillary

boundary is sought using a similar method. Also, upper and lower eyelids are fitted

as parabolic arcs in similar ways.

2.1.3 Fourier active contour

In [34], Daugman uses an active contour model based on Fourier series to improve

the previous algorithm in [6]. To determine limbic and pupillary boundaries, this

method samples radial edge points from N uniformly spaced angular directions. It

leads to N edge points denoted by {rθ}N−1
θ=0 . The M Fourier coefficients {Ck}M−1

k=0
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for {rθ}N−1
θ=0 can be calculated by:

Ck =
N−1∑
θ=0

rθe
−2πikθ/N (2.6)

Therefore, the potential boundary can be approximated by inverse discrete Fourier

transform as follows:

Rθ =
1

N

M−1∑
k=0

Cke
2πikθ/N (2.7)

where {Rθ}N−1
θ=0 are the approximated boundary points. This method detects eye-

lashes by testing if the lower tail of the intensity histogram in iris region supports a

hypothesis of multimodal mixing. It calculates a difference histogram between the

histograms of upper and lower iris regions. A threshold to eliminate the eyelashes

is determined such that the hypothesis tests support that the lower tail up to this

threshold is separable and sufficiently different between the difference histogram and

histogram obtained from all the iris pixels.

2.1.4 Geodesic active contour

In [35], the limbic boundary is sought using a geodesic active contour model. This

method gravitates a curvature inside the iris towards possible limbic boundary. Let

γ (t) be the curvature at time t. Let I (x, y) be an iris capture. Let ψ (x, y) be the

signed distance between the pixel at (x, y) and γ (t). ψ (x, y) satisfies that:

ψ (x, y) =


0, if (x, y) is on γ (t)

> 0, if (x, y) is inside γ (t)

< 0, if (x, y) is outside γ (t)

(2.8)

In other words, γ (t) is the zero level set of ψ (x, y). According to the derivation

in [35], ψ (x, y) can be evolved as follows to gravitate its zero level set (i.e. γ (t))
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towards the potential boundary:

ψt = −K (c+ εκ) ‖Oψ‖+ OψOK (2.9)

where c is the velocity of the evolution and ε is the smoothness degree of the level

sets. κ is the curvature of the level sets computed by:

κ = −
ψxxψ

2
y − 2ψxψyψxy + ψyyψ

2
x(

ψ2
x + ψ2

y

) 3
2

(2.10)

where ψx and ψy are first-order gradient of the image along x and y direction respec-

tively, and ψxx, ψyy and ψxy are second-order gradients based on x and y directions.

K is the stopping term which decelerates the evolution near the boundaries:

K (x, y) =

[
1 +

(
‖O (G (x, y) ∗ I (x, y))‖

k

)α]−1

(2.11)

where k and α are constants, and G (x, y) is a smoothing function. After conver-

gence, the zero level set of ψ (x, y) is considered as the limbic boundary.

2.1.5 Pulling and pushing method

In [36], a pulling and pushing method is proposed to find limbic and pupillary

boundaries. This method is based on Hooke’s law on the force of spring [37]. Firstly,

it uses a Adaboost-cascade iris detector to locate an initial iris centre O. Then,

edge detection is performed along N radial directions originated from O, obtaining

N boundary points {Pi}Ni=0. Finally, each segment OPi is viewed as a spring. The

composition force of all the N springs directs O towards the equilibrium position

which is viewed as potential iris centre. The composition force is obtained by:

~F =
1

N

N−1∑
i=0

~fi =
1

N

N−1∑
i=0

−k (R− ri) ~ei (2.12)
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where k is a constant; R is the equilibrium length of all the springs; ri is the current

length of the ith spring; ~ei is the direction of the ith spring initiated from O. R is

estimated as follows:

~R =
1

N

N−1∑
i=0

OP i (2.13)

As a result, O is pulled and pushed towards the equilibrium position. The algo-

rithm iterates between pulling/pushing O and detecting boundary points until con-

vergence. The eyelids are detected by fitting parabola curves to candidate points.

The candidate points are selected by performing vertical edge detection on the im-

age processed by 1-D rank filtering, and noisy candidate points are eliminated by

comparing the similarity between the detected candidate points and three generic

eyelids models learned from training data. A statistically learned prediction model

is use to eliminate silhouette. This model calculates the dissimilarity between the

histogram of candidate silhouette region and iris region, and it uses a cubic polyno-

mial curve to model the relationship between the dissimilarity and the percentage

of silhouette.

2.1.6 Integro-differential constellation method

In [38], Tan et al. propose an integro-differential constellation method to determine

the limbic boundary of iris images captured in visible wavelength which induces

heavier noise in captures. Beginning with an initial point, this algorithm iteratively

seeks the path to maximize the score of integro-differential operator (Eqn. 2.1) along

three rings (constellations). Although it is possible that this method may be trapped

in local optima, the experimental analysis shows excellent convergence.
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2.1.7 Colour and sclera features based classification

In [39], Proença proposes a classification based method to perform iris segmentation

using less constrained iris captures. This method extracts features from position,

colour and sclera information to distinguish between iris and non-iris pixels. In

terms of position, the coordinate of each pixel is directly used as features. Also,

colour features are extracted from hue, blue and red chroma colour components.

The mean and standard deviation of each colour component in rectangular regions

centred at each pixel with different radius are used as features. On the other hand,

sclera features are calculated as the portion of sclera pixels along a given direction

with respect to the reference pixel. Sclera region is detected by training a neural

network classifier using the above described position and colour features. These

features are concatenated to train a neural network to categorize iris and non-iris

pixels

Given the detected iris pixels, the limbic and pupillary boundaries are parameterized

using polynomial fitting in polar coordinate system. Although some features in this

method are extracted from colour channels, this method experimentally shows good

adaptability to less constrained NIR captures.

2.1.8 Localised Zernike moments based classification

In [21], localised Zernike moments [40] are exploited as features to distinguish be-

tween iris and non-iris pixels for less constrained iris captures in both NIR and

visible wavelength. The Zernike moments with order m ∈ N and repetition n ∈ Z

in a local region l can be calculated as follows:

Z l
mn =

m+ 1

π

∑
r∈l

∑
θ∈l

f (r, θ) [Vmn (r, θ)]∗ (2.14)
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where [Vmn (r, θ)]∗ is the complex conjugate of Vmn (r, θ), f (r, θ) is the extracted

local region mapped to a unit circle in polar coordinate system. Vmn (r, θ) is Zernike

polynomial defined as follows in polar coordinate system:

Vmn (r, θ) = Rmn (r) einθ (2.15)

where Rmn (r) is the orthogonal radial polynomial defined as follows:

Rmn (r) =

(m−|n|)/2∑
s=0

(−1)s
(m− s)!

s!
(
m+|n|

2
− s
)

!
(
m−|n|

2
− s
)

!
rm−2s (2.16)

This method constructs features using Zernike moments together with position and

intensity of pixels. Two types of classifier are trained to distinguish iris and non-iris

pixels: neural network and support vector machine.

In this method, eyelids are detected by fitting second-order polynomial curves to

candidate points; the candidate points are determined as vertical edge points located

in low intensity regions. The reflection region is detected by propagating from some

seeds determined as the pixels within the iris region and with high intensity. The

silhouette is detected based on a threshold calculated using the location of peak

of two histograms corresponding to candidate iris region and candidate silhouette

region.

2.1.9 Random walker algorithm and post-processing

In [41], a fast iris segmentation algorithm is proposed for less constraint captures in

both NIR and visible wavelength. Firstly, a random walker algorithm [42] is used to

roughly locate the iris region. Then, based on the rough iris location, rough segmen-

tation is performed using Hough transform based on the Edge map. Next, the rough

segmentation is refined by thresholding to distinguish between sclera and iris region
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at the boundary of rough segmentation. The threshold is derived from the statistical

intensity information (mean and standard deviation of intensity) in regions around

the boundary sought by rough segmentation. After that, eyelids are fitted. Eyelids

candidates are detected using edge detection; noisy candidates are eliminated by

comparing all candidate points to three pre-defined models and removing the candi-

dates deviating too much from the best fitted model; the rest candidate are used to

fit second-order polynomial curves as eyelids. Finally, silhouette is eliminated using

an adaptive threshold derived from the statistical intensity information (mean and

standard deviation of intensity) of the lower half of iris region which is expected to

be more noise-free.

2.2 Iris liveness detection

Iris liveness detection can be considered as a two-class classification problem. The

key of this problem is to construct effective features to distinguish between real and

fake iris captures. This section reviews some promising approaches for iris liveness

detection in the literature.

2.2.1 Brightness variation based thresholding

In [43], brightness variation is used as features for iris liveness detection tested on

attacks using printed fake iris patterns. The variation of brightness in iris region

is induced by weak flashlight generated by two white light-emitting diodes (LEDs).

After the flashlight illumination, the variation rate of average brightness (denoted

by V ) in two regions at both sides of iris is used as the feature:

V =
|P (t0)−min (P (t))|

P (t0)
(2.17)
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where P (t0) is the average brightness in the two regions immediately after the flash

light illumination; P (t) is the average brightness in the two regions at time t; 10

frames are considered after the the flash light illumination. A threshold is applied

to V to distinguish between real and fake printed iris patterns.

2.2.2 Gray level co-occurrence matrix (GLCM) based clas-

sification

In [44], GLCM [45] is exploited for iris liveness detection tested against fake patterns

induced by colour contact lenses. GLCM calculates the distribution of co-occurring

intensity values at a given offset in an image. Let p (i, j) be an element of a GLCM.

p (i, j) calculates the frequency that two pixels separated by a distance occur, with

one pixel having a gray level of i and the other pixel having a gray level of j. [44]

uses the contrast (denoted by con) and angular second moment (denoted by asm)

of GLCM extracted from the lower half of normalised iris images as GLCM based

features:

con =
N∑
i=1

N∑
j=1

(i− j)2p (i, j) (2.18)

asm =
N∑
i=1

N∑
j=1

p (i, j)2 (2.19)

whereN is the number of elements in a GLCM. These GLCM based features together

with the mean and standard deviation of the lower half of normalised iris images are

used to trained a support vector machine (SVM) with radial basis function (RBF)

kernel to classify real and fake iris patterns.

2.2.3 Textural features based classification

In [46], three features are investigated for iris liveness detection: iris edge sharp-

ness, iris-texton histogram and Gray level co-occurrence matrix (GLCM). Iris edge
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sharpness (denoted by IES) computes the contrast at the iris edge (transition from

sclera to iris region):

IES =
2π∑
θ=0

(I (ri+ξ, θ)− I (ri−ξ, θ)) (2.20)

where I (r, θ) denotes an iris image in polar coordinate system, ri is the radius of

iris and θ is the angle of a point in the limbic boundary. Therefore, I (ri+ξ, θ) and

I (ri−ξ, θ) are pixels in sclera and iris regions, respectively. A threshold is applied to

IES to classify real and fake iris patterns.

As for iris-texton histogram, iris-texton vocabularies are firstly produced by per-

forming K-means clustering on features obtained by passing some training images

through Gabor filter banks [6]. Then, given the iris-texton vocabularies and a new

image, histogram representations are obtained by assigning the Gabor features of

the new image to the nearest texton vocabulary and counting the occurrence of each

vocabulary. For this feature, a SVM is trained as the classifier.

As for GLCM, three features are extracted from GLCM: inverse difference moment

(fidm), sum average (fsa) and sum entropy (fse). The definitions of the features are

as follows:

fidm =
∑
i

∑
j

1

1 + (i− j)2p (i, j) (2.21)

fsa =

2Ng∑
i=2

ipx+y(i) (2.22)

fse = −
2Ng∑
i=2

px+y (i) log (px+y (i)) (2.23)

where p (i, j) is the GLCM of an image; Ng is the number of gray levels; px+y (k) =∑Ng

i=1

∑Ng

j=1 p (i, j) , k = i+ j = 2, 3, ..., 2Ng. For these features, a SVM is trained as

the classifier.

Experimentally, the performance of this method is tested against fake iris patterns
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induced by contact lenses.

2.2.4 Wavelet packets transform (WPT) based classification

In [47], WPT [48] is used to construct features for iris liveness detection. WPT

decomposes an image into 4 output subimages, including approximation, horizontal

detail, vertical detail and diagonal detail coefficients respectively. These subimages

can be further decomposed into the same 4 components, constructing a multilevel

representation. [47] uses the standard deviation of multilevel horizontal detail, ver-

tical detail and diagonal detail coefficients as features. A SVM with RBF kernel is

used as the classifier. This method is tested against fake iris printouts.

2.2.5 Quality measures based classification

In [49], iris quality measures are exploited as features for iris liveness detection.

The investigated quality measures include blur [7, 50, 51], motion [9, 50, 52, 53], oc-

clusion [10, 50, 53, 54], global and local contrast [49], pupil dilation [55]. Sequential

floating feature selection (SFFS) [56] is used to select the best combination of these

quality measures. The classification is performed using a standard quadratic clas-

sifier fitting the training data using multivariate normal densities with diagonal co-

variance estimates stratified by group. This method is tested on the data simulating

the spoofing attack using high quality iris printouts.

2.2.6 Multi-resolution local binary pattern (LBP) and Ad-

aboost based classification

In [57], multi-resolution LBP [58] and Adaboost are used to produce effective fea-

tures for iris liveness detection [59]. This method produces a feature pool including
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multi-resolution LBP features. Then, Adaboost learning is adopted to select the

most discriminative subset from the feature pool and to classify the selected fea-

tures. The Adaboost learning is performed by three components: the weak learner,

the component classifiers and the re-weighting function. The weak learner selects

the best features from the feature pool; the component classifier is learned from

the current selected features to distinguish real and fake samples; the re-weighting

function weights the training samples to emphasize hard negative samples for the

subsequent classifier training. This work focuses on the detection of spoofing attacks

using colour contact lenses, although it includes some iris printouts and glass eyes

in the test data.

2.2.7 Gaze features based classification

In [60], features are extracted from the gaze information in the process of eye tracking

for iris liveness detection. This method decomposes the eye movement signal into

a set of elementary units reflecting eye micro-movements. For each elementary

unit, the centroid of its horizontal and vertical components is used to represent the

corresponding local position characteristics. The final features are formed using the

mean and standard deviation of the centroid of horizontal and vertical components

calculated from all the elementary units. A SVM is used as the classifier. The

performance of this work is examined using fake iris printouts.

2.2.8 Quality and texture based features for colour captures

In [61], several features are exploited for iris liveness detection on mobile devices

with colour captures. Several traditional features used in iris liveness detection are

implemented and their effectiveness on mobile iris captures is tested. The imple-

mented features include high frequency power in [7], local and global contrast in [49],

frequency distribution rates in [10], and GLCM based features in [44]. The optimal
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subset of these features are selected using SFFS [56]. Three classifiers are tested:

discriminant analysis (DA), k-nearest neighbour (KNN) and SVM. This method is

tested on data simulating two types of spoofing attack: iris printouts and contact

lenses.

2.2.9 Local descriptors based classification

In [62], a variety of local descriptors are investigated as features for iris liveness

detection. Based on the feature coding step, the investigated local descriptors are

categorized into independently quantized features and jointly quantized features.

The independently quantized features studied in this work include LBP [58], co-

occurrence of adjacent LBP (CoA-LBP) [63], ratation invariant co-occurrence of

adjacent LBP (Ric-LBP) [64], local phase quantization (LPQ) [65], Weber local de-

scriptor (WLD) [66], local contrast-phase descriptor (LCPD) [67] and binarized sta-

tistical image features (BSIF) [68]. The investigated jointly quantized features con-

sist of scale-invariant feature transform (SIFT) [69], DAISY [70] and shift-invariant

descriptor (SID) [71,72]. The classification is performed using a linear SVM. In this

work, experiments are conducted for spoofing attacks on three modalities: finger-

print, iris and face. For the case of iris, this method is tested on several datasets

using fake iris printouts and cosmetic contact lenses for spoofing attack.

2.2.10 Pupil Dynamic features based classification

In [73], dynamics of the pupil under visible light stimuli is exploited for iris liveness

detection. The model in [74] is adopted to describe the pupil constriction and

dilation during the stimuli. The parameters of the model are determined by least-

squares curve fitting. The fitted parameters are used as features. Linear and non-

linear SVMs are used as classifiers. This work views odd pupil dynamics as unlive

cases with possible spoofing attack. To construct dataset for test, it use videos of
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spontaneous oscillations of pupil as the case of odd pupil dynamics with possible

spoofing attack, and it uses videos of pupil reaction under the stimulate of a visible

light as the case of normal pupil reaction which means there is no spoofing attack.

2.2.11 Deep learning based method

In [75], iris liveness detection is performed based on deep learning technique [76].

Two deep learning approaches are investigated: architecture optimization (AO) and

filter optimization (FO). AO focuses on seeking a suitable architecture for the con-

volutional neural network, while FO aims to learn optimized weights for filters in the

convolutional neural network. In [75], AO and FO are not only evaluated separately,

but also combined to build the liveness detection systems. This work is tested on

fake iris capture produced by printing. This method is tested for spoofing attacks

on 3 modalities: fingerprint, iris and face. For the case of iris, this method is tested

on several datasets using fake iris printouts for spoofing attack.

2.3 Feature extraction

The features used for iris recognition can be categorized into binary and non-binary

features. This section reviews some representative binary and non-binary features

in the literature.

2.3.1 Binary features

Gabor feature. In [6, 7], Daugman proposes to use iris codes produced based on

2-dimensional (2-D) Gabor filters [77, 78] for iris recognition. A 2-D Gabor filter
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over the image domain (x, y) is formulated as follows:

G (x, y) = exp

{
−π

[
(x− x0)2

α2
+

(y − y0)2

β2

]}
·exp {−2πi [µ0 (x− x0) + ν0 (y − y0)]}

(2.24)

where (x0, y0) is the centre of Gabor filter; α and β specify the effective width and

height of the filter, respectively; µ0 and ν0 determine the modulation with the spatial

frequency ω0 =
√
µ0

2 + ν0
2 and direction θ0 = arctan (ν0/µ0). Given a normalised

iris image, Gabor filters are applied to this image, and binary iris codes are produced

based on the phase of filtering results. Specifically, a phase is encoded into 11 if this

phase falls in the first quadrant, and the code is 01, 00, 10 if the phase falls into the

second, third and fourth quadrants, respectively. In other words, the iris codes are

generated based on the sign of real and imaginary parts of Gabor filtering results.

Logarithm Gabor (log-Gabor) features. In [15], the log-Gabor filter is used as

an alternative of Gabor filters to produce iris codes. The frequency response of a

log-Gabor filter is a Gaussian on a logarithm frequency axis; the formulation is as

follows:

G (f) = exp

{
−[log (f/f0)]2

2[log (σ/f0)]2

}
(2.25)

where f0 gives the centre frequency, and σ is the bandwidth of the filter. Log-Gabor

filters have some desirable characteristics. For example, as studied in [79], natural

images can be better coded by filters that have Gaussian transfer functions when

viewed on the logarithmic frequency scale; log-Gabor filters have no direct current

(DC) components etc. The procedure of iris code generation with log-Gabor filters

is similar to that with Gabor filters. The log-Gabor filter is applied to normalised

iris images, and the phase of filtering results is quantized based on the quadrant

they fall in.

Ordinal features. In [20], Sun and Tan propose to use ordinal features to generate

iris codes. Multilobe differential filters (MLDFs) are used to extract ordinal features.
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MLDF is defined as follows:

MLDF = Cp

Np∑
i=1

1√
2πδpi

exp

[
−(X − µpi)2

2δ2
pi

]
−Cn

Nn∑
j=1

1√
2πδnj

exp

[
−(X − µnj)2

2δ2
nj

]
(2.26)

where µ and σ are the mean and standard deviation of 2-D Gaussian filters; Np

denotes the number of positive filters; Nn denotes the number of negative filters; Cp

and Cn are constants which ensure the zeros sum of MLDF by satisfying CpNp =

CnNn. To produce iris codes, MLDF is applied to normalised iris images, and the

filtering results are quantized based on their signs.

Geometric key (geoKey) based features. In [80], iris images are encoded using

geoKey for less constrained iris recognition. The geoKey K = {K1,K2, ...,Kd} is

a set of random coordinate pairs generated as follows:

Ki =

{
(x1,x2) ∼ i.i.d. G

(
0,

1

5
B

)}
(2.27)

where x1 and x2 are a pair of coordinates; B is the size of image patch; i.i.d.G
(
0, 1

5
B
)

is independent and identical Gaussian distribution with a mean of 0 and a standard

deviation of 1
5
B. Given the geoKey, binary codes are produced by:

f (w;x1,x2 ∈K) =


1 if L (w,x1) < L (w,x2)

0 otherwise

(2.28)

where w is a local window; L (w,xi) is the average value of the log-Gabor filter

response within the window w at position xi. The geoKey is personalised, i.e. it

is generated specifically for each enrolled subject. To perform iris recognition, the

geoKey based binary features are combined with 1-dimensional (1-D) log-Gabor

based iris codes [15] at the score level.
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2.3.2 Non-binary features

Ma et al. features. In [10], iris features are extracted using spatial filters defined

as follows:

G (x, y, f) =
1

2πδxδy
exp

[
−1

2

(
x2

δx
2

)
+

(
y2

δy
2

)]
cos
[
2πf

(√
x2 + y2

)]
(2.29)

where f is the frequency of modulation function; δx and δy specify the effective width

and height of the filter, respectively. Differently from the 2-D Gabor filters defined

in Eqn. 2.24 which has a fixed direction, the spatial filter in Eqn. 2.29 considers

the information in all the directions. To extract features, this filter is applied to

normalised iris image; the filtering result is partitioned into small blocks; the mean

and standard deviation of the magnitude in each block are concatenated to construct

features.

Tan et al. features. In [81], multiple non-binary features are extracted from

iris and eye regions, and these non-binary features are fused with binary ordinal

codes [20] (Eqn. 2.26) and semantic information for colour iris recognition. The used

non-binary features include colour histogram from iris regions and texton histogram

from eye regions. Colour histogram is the concatenation of histograms obtained

from RGB, HSI and lαβ [82] colour spaces. The texton histogram is obtained based

on densely extracted SIFT descriptors [69], using similar method as described in

section 2.2.3. The semantic information is extracted based on two difference filters

applied to the regions around upper eyelid at both sides of iris.

Weighted co-occurrence phase histogram (WCPH). In [83], WCPH is pro-

posed as features for colour iris recognition. Let gz and θz be the gradient magnitude

and phase angle at position z in a normalised iris image. Let pd (µ, ν) be the bin

(µ, ν) of a WCPH which considers the positions with a distance of d. pd (µ, ν) is
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defined as follows:

pd (µ, ν) =
1

Cd

∑
‖z−z′‖=d

q (µ, θz) q (ν, θz′ ) (2.30)

where q (µ, θz) is calculated by:

q (µ, θz) =


gz cosn (θz − αµ) if |θz − αµ| < π/2

0 otherwise

(2.31)

where n > 1 is a parameter and αµ is the centre of bin µ. Essentially, in a WCPH,

the gradient phase angle at a pixel contributes to multiple neighbouring bins, and

the quantity of contribution is determined using the gradient magnitude and the

angular difference between the gradient phase angle and each bin.

Zernike moments phase features. In [23], the phase of localised Zernike mo-

ments [40] are extracted as features for iris recognition under less constrained envi-

ronment. The method to calculate Zernike moments is the same as that described in

section 2.1.8. The extracted features are fused at the score level with the matching

score of 1-D log-Gabor based iris codes [15] with an iris weight map [22].

Deep representation. In [84], deep convolutional neural network is used to learn

features instead of extracting features based on manually designed filters. The iris

recognition is performed based on a deep convolutional neural network using iris

image pairs as input. This network begins with a pairwise filter layer, followed by

several pooling layers, normalisation layers and local layers. It ends up with two

fully connected layers served as the classifier. The parameters of this network are

trained using back-propagation [85]. This method shows excellent performance in

the task of heterogeneous iris recognition.
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2.4 Iris matching

Given two features from two iris captures, iris matching compares the two features

to produce an iris matching score indicating their distance or similarity. This section

reviews several representative methods for iris matching in the literature.

2.4.1 General distance metrics based methods

Depending on the type of feature, various distance metrics have been employed to

perform iris matching. Some representative methods are as follows.

Hamming distance. For binary features like [6,7,15,20,80], Hamming distance is

widely used for iris matching [6, 7]. Given two binary features with n bits denoted

by Ci ∈ {0, 1}n and Cj ∈ {0, 1}n (note that, in here and the rest of this thesis,

it is assumed the bits or features corresponding to the noise like reflections have

been eliminated from iris codes for iris matching), Hamming distance is defined as

follows:

HD =
1

n

n∑
k=1

Ci
k ⊕C

j
k (2.32)

where ⊕ is element-wise exclusive-or operator; Ci
k and Cj

k are the kth bits in the

two iris codes.

`2 distance. `2 distance is one of the most widely used measures to represent the

distance between two non-binary feature vectors. It is adopted for iris matching in

methods such as [10,23]. Given two feature vectors fi ∈ Rn and fj ∈ Rn, `2 distance

calculates the `2-norm of the difference between the two feature vectors:

D`2 = ‖fi − fj‖2 (2.33)
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`1 distance. Some research have shown that `1-norm is able to achieve better

robustness [86–90]. Therefore, `1 distance is employed for iris matching in literatures

like [10]. The `1 distance between two feature vectors fi ∈ Rn and fj ∈ Rn is defined

as follows:

D`1 = ‖fi − fj‖1 (2.34)

where ‖•‖1 is the `1-norm.

Cosine distance. Cosine distance is an angular similarity measure. It is used

for iris matching in research such as [10]. The cosine distance between two feature

vectors fi and fj is calculated as follows:

Dcos = 1− fT
i fj

‖fi‖2‖fj‖2

(2.35)

Diffusion distance. In [81], diffusion distance [91] is used to measure the similarity

of two colour histogram features h1 and h2. The diffusion distance is defined as

follows:

Ddiffusion =
L∑
i=0

k (|dl (h1,h2)|) (2.36)

where l = 1, 2, ..., L is the number of pyramid layers; d0 (x) = h1 − h2; dl (x) =

[dl−1 (x) ∗ φ (x, δ)] ↓2; δ is the standard deviation of Gaussian filter φ; ↓2 denotes

half-size downsampling; k (•) is a distance metric which is selected to be `1-norm

in [81].

χ2 distance. In [81], χ2 distance is employed to match texton histogram features.

Let h1 and h2 be two histogram features, χ2 distance is formulated as follows:

Dχ2 =
∑
i

[h1 (i)− h2 (i)]2

h1 (i) + h2 (i)
(2.37)

where h1 (i) and h2 (i) are the ith bin of the two histograms.
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Bhattacharyya distance. In [83], Bhattacharyya distance is employed to match

co-occurrence histogram features due to its desirable characteristics in Bayes error,

symmetry and stability [92]. The Bhattacharyya distance between two co-occurrence

histogram features p (µ, ν) and q (µ, ν) is formulated as follows:

Db =

(
1−

∑
µ

∑
ν

√
p (µ, ν) q (µ, ν)

) 1
2

(2.38)

2.4.2 Sparse representation based method

In [17], a robust iris matching method is proposed based on sparse representation.

Firstly, this method constructs a dictionary including all the gallery features. Sup-

pose that there are L classes and n gallery captures for each class. The sub-dictionary

for the ith class, denoted by Di ∈ RN×n, is constructed by:

Di = [xi1,xi2, ...,xin] (2.39)

where xij ∈ RN is the Gabor feature extracted from the jth gallery captures of the

ith class. Given the sub-dictionaries for all the classes, the final dictionary D is

constructed by D = [D1,D2, ...,DL] ∈ RN×(n×L).

Then, given the Gabor feature y ∈ RN extracted from a probe capture, this method

seeks the sparse representation of y on D using basis pursuit [93–95]:

arg min
α

‖α‖1 s.t. y = Dα (2.40)

where α ∈ R(n×L) is the vector of coefficients of sparse representation. With the

coefficients in α, the class label d of the gallery capture is determined by:

arg min
k
‖y −DkΠk (α)‖2 (2.41)
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where Πk (α) extracts the coefficients inα corresponding toDk. Essentially, Eqn. 2.41

determines the class label as the class whose sub-dictionary has the minimum rep-

resentation residue for y in sparse representation.

Also, SCI [96] is used to measure the recognition confidence:

SCI =
L (max ‖Πk (α)‖1/‖α‖1)− 1

L− 1
(2.42)

The value of SCI is between 0 and 1. SCI= 1 means that the features from the

probe capture can be represented by only 1 image in the dictionary (i.e. the repre-

sentation coefficients concentrate on one gallery feature), hence it corresponds to a

high confidence. In contrast, SCI=0 means that the representation coefficients are

spread evenly across all the gallery features in all classes, so it corresponds to a low

confidence.

Finally, [17] divides the iris region into multiple sectors. Each sector is individually

classified using sparse representation based on Eqn. 2.39, Eqn. 2.40, Eqn. 2.41 and

Eqn. 2.42 to produce a SCI. The SCIs of all the sectors are fused by a Bayesian

fusion scheme to produce a cumulative SCI (CSCI) as the final matching score. Let

d1, d2, ..., dM be the class labels of all M sectors determined by sparse representation

(Eqn. 2.41). Let {c1, c2, ..., cL} be the set of all class labels. CSCI derived from the

Bayesian fusion scheme is as follows [17]:

CSCI (cl) =

∑M
j=1 SCI (dj) δ (dj = cl)∑M

j=1 SCI (dj)
(2.43)

where δ (•) is Kronecker delta function; CSCI (cl) is the confidence score that the

probe capture belongs to class cl; SCI (dj) is the SCI of the classification result for

the jth sector. The class with the highest CSCI is selected as classification result

and the corresponding CSCI is used as the final matching score.
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2.4.3 Iris weight map based methods

Iris weight map is a method for the robust matching of binary features (iris codes).

Differently from the Hamming distance (Eqn. 2.32) which views each bit equally,

the iris weight map method assigns different weights to each bit to emphasize more

valuable bits in the iris code. Let Cj
gallery be a gallery feature of the jth class. Let

Cprobe be a probe feature. The iris matching using iris weight map is based on

weighted Hamming distance as follows (recall that it is assumed that the bits from

noise pixels like reflections have been eliminated from iris codes for iris matching):

WHD =

∥∥(Cprobe ⊕Cj
gallery

)
⊗wj

∥∥
‖wj‖

(2.44)

where ⊗ is element-wise multiplication operator; wj is the iris weight map that

assigns weights to each bit.

The key of iris weight map methods is the calculation of weight map wj. Some

representative methods to calculate wj are reviewed as follows.

Fragile bits. In [97], Hollingsworth et al. illustrate the existence of fragile bits.

Given an iris capture of a specific eye, after Gabor filtering, some feature values are

closer to the axis of complex plane than the others; therefore, the bits corresponding

to those feature values closer to the axis are more fragile: they are more likely to

flip between 0 and 1 in different captures of the same eye. [97] shows that the iris

recognition performance can be improved by eliminating too fragile bits1.

The bit fragility studied in [97] can be used to calculate weight maps for iris match-

ing [98]. Suppose the ith bit is 1 for m1 times and 0 for m0 times in the gallery

iris codes of the jth class. The stability of the ith bit, si, can be calculated as

1Before the work in [97], similar technique has been used in the implementation of Daugman’s
algorithm [6,7].
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follows [97,98]:

si =
|m1 −m0|
m1 +m0

(2.45)

si is higher when the ith bit is more stable in all the gallery iris codes. The weight

assigned to the ith bit is determined as follows:

wi =


1, si ≥ 0.3

0, si < 0.3

(2.46)

Essentially, this method uses 0.3 as the threshold to eliminate too fragile bits for

iris matching.

Personalised weight map. In [98], a personalised weight map is proposed based

on the concept of bit fragility for iris matching. Suppose the ith bit is 1 for m1 times

and 0 for m0 times in the gallery iris codes of the jth class. This method calculates

the weight for the ith bit as follows:

wi = 2× m2
1 +m2

0

(m1 +m0)2 − 1 (2.47)

Actually, P =
m2

1+m2
0

(m1+m0)2
is the percentage of successful match of the ith bit in the

exhaustive matching of the iris codes of the jth class. A bit is more fragile if P is

lower. Since P ∈ [0.5, 1], Eqn. 2.47 normalises P to between 0 and 1 as the weight

in the weight map.

Power law based weight map. In [22], the weight is calculated by applying power

law to the stability si obtained by Eqn. 2.45:

wi = sci (2.48)

where c is adaptive crest factor (peak-to-average ratio) measuring the quality of the
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weight map. c is calculated as follows:

c =


1
µ
, if µ 6= 0

1, if µ = 0

(2.49)

where µ = 1
N

∑N
i=1 si; N is the number of bits in an iris code.

Bit discriminability based map. In [99], Proença extends the concept of bit

stability to bit discriminability. Three feature selection algorithms are used to select

bits with high discriminability: Fisher-score [100], minimum redundancy - maximum

relevance (mRMR) [101] and SFFS [56]. These methods are equivalent to binary iris

weight maps which assign the weight of 1 to the selected bits by feature selection,

and the weights of the other bits are set to 0.



Chapter 3

Datasets

This chapter introduces the datasets used for the experimental analysis in this

thesis. There are totally 11 datasets used in this thesis: CASIA.v4 thousand

(CASIAT) [102], ND-iris-0405 (ND0405) [103], CASIA.v4 distance (CASIAD) [102],

UBIRIS.v2 (UBIRIS2) [19], Face Recognition Grand Challenge (FRGC) [104], Clark-

son iris liveness detection 2013 (LivDet-Clarkson) [105], Warsaw iris liveness detec-

tion 2013 (LivDet-Warsaw) [105], Notre Dame iris liveness detection 2013 (LivDet-

ND) [105], MobBIOfake [61], MICHE [5], CSIR [106]. These datasets have been

widely used in the research related to iris recognition like [5,16–18,21–23,38,39,61,

62, 75, 80, 81, 83, 97, 99, 103, 105–112]. Fig. 3.1 shows some example images in each

dataset. Tab. 3.1 summarises the information of each dataset.

3.1 CASIA.v4 thousand (CASIAT)

CASIAT [102] is a large scale dataset consisting of 2000 eyes from 1000 subjects,

captured in NIR wavelength and at a close distance. The dataset includes 20, 000

images captured by a commercial IKEMB-100 camera. The images in this dataset

have very high overall quality, despite of the influence of glasses and specular reflec-

tions in some images.

37
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(a) CASIAT (b) ND0405 (c) CASIAD (d) UBIRIS2

(e) FRGC (f) LivDet-Clarkson (g) LivDet-Warsaw

(h) LivDet-ND (i) MobBIOfake (j) MICHE (k) CSIR

Figure 3.1: Examples of datasets used in this thesis.

3.2 ND-iris-0405 (ND0405)

ND0405 [103] is a large-scale dataset captured in NIR wavelength and at a close

distance. The current version of this dataset includes 64, 982 iris images from 712

eyes. The images in this dataset have relatively higher overall quality. They are

captured at a wavelength inducing less noise (NIR) and a close distance, hence with
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Table 3.1: Information of all the datasets used in this thesis.

Dataset Eyes Images Wavelength Sensor type Capture environment

CASIAT 1000 20000 NIR Single Constrained

ND0405 712 64982 NIR Single Less constrained

CASIAD 284 5134 NIR Single Less constrained

UBIRIS2 522 11102 Visible∗ Single Less constrained

FRGC 150 500 Visible∗ Single Less constrained

LivDet-Clarkson 64 1356 NIR Single Less constrained

LivDet-Warsaw 284 1667 NIR Single Constrained

LivDet-ND 287 4200 NIR Single Constrained

MobBIOfake 200 1600 Visible∗ Single Less constrained

MICHE 75 2559 Visible∗ Cross Less constrained

CSIR 200 8000 NIR Cross Less constrained
∗In this thesis, the captures in visible wavelength are also referred to as colour captures.

good resolution and clear iris texture. However, some images suffer from noise and

degradations due to real-world conditions, including blurring, specular reflection,

off-angle, etc. Also, some subjects wear soft contact lenses which cause distortion

on iris textures.

3.3 CASIA.v4 distance (CASIAD)

CASIAD [102] is a dataset captured at a distance under NIR wavelength. The stand-

off distance is around 3 meters. It consists of 142 subjects. The images include

most of facial features and patterns. In this thesis, the left and right eye regions

are detected using classical Viola-Jones object detector [113] from the images in this

dataset. The false detections are manually corrected. It results 5134 iris images from

284 eyes used for experiments. These images have relatively lower overall quality.

They are captured at NIR wavelength inducing less noise but at a distance. As a

result, the iris region has a low resolution; the iris texture is visually less clear; the

noise in this dataset is relatively heavier. The eye region of most images suffers from

low resolution, blinking, eyelids occlusion, specular reflection and motion blur.
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3.4 UBIRIS.v2 (UBIRIS2)

UBIRIS2 [19] is a dataset captured under visible (colour) wavelength with dynamic

lighting conditions. The stand-off distance is between 3 and 8 meters. This dataset

consists of 11, 102 images from 522 eyes of 261 subjects. The images have very

low overall quality. They suffer from both heavy noise and information loss due to

the combination of distant capture and colour (visible) wavelength. Typical noise

and degradations in this dataset include specular reflection across the eye region,

off-angle and blurring.

3.5 Face Recognition Grand Challenge (FRGC)

FRGC [104] is a face recognition dataset. It consists of three types of captures:

high-resolution still images, 3-dimensional (3-D) images, and multi-images of a per-

son. In [21], Tan and Kumar construct a subset of this dataset to examine the

performance of iris segmentation algorithms. The subset includes 500 images from

150 eyes. The images in the subset are selected from the sessions 2002-269 to

2002-269 of “Fall 2002” academic year. As described in [21], the eye regions are

detected from the selected images using Viola-Jones object detector [113], and the

ground truth segmentations are manually produced. This thesis employs this subset

for the experiments on iris segmentation. The captures in this subset have very low

quality, due to the heavy noise induced by visible wavelength.
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3.6 Clarkson iris liveness detection 2013 (LivDet-

Clarkson)

LivDet-Clarkson [105] is an iris liveness detection dataset captured in NIR wave-

length. It contains two illumination types. One is a stimulated night environment

and the other one is with normal lights in the room. This dataset includes 516 live

images and 840 fake images. The spoofing type of this dataset is patterned con-

tact lenses. The fake images are from 6 subjects each wearing 19 patterned contact

lenses. The live images are from 64 eyes (including all the eyes in the fake collection)

with up to 5 images per eye at each illumination type. The images in this dataset

are captured as video sequences with the subjects moving through all focus ranges.

Thus, this dataset includes images with varying focus (i.e. heavier noise).

3.7 Warsaw iris liveness detection 2013 (LivDet-

Warsaw)

LivDet-Warsaw [105] is an iris liveness detection dataset captured in NIR wave-

length. It consists of 284 eyes with 852 live images and 815 fake images. This

dataset uses printouts for spoofing. The fake images are created by laser printing

on matt papers. Two printers are used to produce the fake images. One is a black

and white laser printer, representing the printed images of a low cost device with a

low resolution. The other one is a semi-professional laser printer which is used to

produce high resolution fake images. A commercial iris recognition system is further

used to select among the fake images. Only the fake images successfully spoofing

the system are preserved.
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3.8 Notre Dame iris liveness detection 2013 (LivDet-

ND)

LivDet-ND [105] is an iris liveness detection dataset captured in NIR wavelength.

It has 287 eyes with 2800 live images and 1400 fake images. The spoofing type is

textured contact lenses. The textured contact lenses in this dataset are from three

different suppliers and with varying colours. Furthermore, the live images in Notre

Dame dataset have two types. One is “clear” image with no contact lenses, while

the other one is from the eyes wearing soft contact lenses without texture.

3.9 MobBIOfake

MobBIOfake [61] is an iris liveness detection dataset captured in visible (colour)

wavelength. It includes 800 real and 800 fake iris images from 200 eyes. The fake

samples are printed images of real samples. All the images are captured by an Asus

Transformer Pad TF 300T, and the capturing distance is within 50cm.

3.10 MICHE

MICHE [5] is a cross-sensor iris dataset captured in visible wavelength by mobile

devices. The images are mainly captured by a iPhone5 and a Samsung Galaxy S4,

in both indoor and outdoor environments. It consists of more than 2500 colour

images from 75 eyes. The images in this dataset mainly suffer from heavy specular

reflection, especially for the outdoor captures. Additionally, the images are also

influenced by eyelids occlusion and blurring.
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3.11 CSIR

CSIR [106] is a cross-sensor iris dataset captured in NIR wavelength released for a

competition on cross-sensor iris recognition [106]. The images are captured using two

iris cameras: AD100 produced by irisGuard and IKEMB-220 produced by irisKing.

Besides cross-sensor capturing, some images in this dataset are influenced by eyelids

occlusion, illumination variation, specular reflection and blurring. CSIR consists of

a training set and a test set. In this thesis, the CSIR training set is employed. It

consists of 8000 images from 200 eyes.



Chapter 4

A robust iris segmentation algorithm

using `1-norm regression and model

selection technique

Part of this chapter has been adapted from the journal paper [J6] (published) and

the conference paper [C4] (published) as in the List of Publications.

4.1 Introduction

In this chapter, a robust iris segmentation algorithm is proposed for the task of less

constrained iris recognition. This algorithm overcomes the noise and degradations

in less constrained iris captures by the combination of (1) robust `1-norm regression

based segmentation and (2) a model selection technique. Specifically, this chapter

demonstrates that limbic and pupillary boundaries, together with eyelids, can be

fitted robustly via `1-norm regression [114,115] on a set of estimated boundary points

(boundary candidates), even if part of these boundary candidates are inaccurate

due to noise and degradations. Furthermore, multiple segmentation results of iris

boundaries are produced by applying `1-norm regression to different models, and a

44
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 Iris Image Coarse Iris 
Localization

Eyelids Fitting Silhouette and 
Reflection Removal

Estimating Limbic 
Boundary Candidates Limbic Boundary Fitting

Limbic Boundary Segmentation

Estimating Pupillary 
Boundary Candidates Pupillary Boundary Fitting

Pupillary Boundary Segmentation

(a)

(b) (c) (d) (e) (f)

Figure 4.1: Flowchart and illustrations of the proposed `1-norm regression based
iris segmentation. (a) The flowchart of the proposed algorithm; (b)-(f) illustrations
of results using the proposed algorithm; (b) less constrained iris captures in vis-
ible wavelength suffered from specular reflection, glass occlusion and slight blur;
(c) result of coarse iris localisation; iris region is highlighted; (d) limbic boundary
segmentation; note that although part of the estimated limbic boundary candidates
(green points) are inaccurate due to reflection, pupil and eyelids, the fitted limbic
boundary (red curve) is accurate; (e) results after limbic and pupillary boundary
segmentation, eyelids fitting; (f) final iris mask after silhouette and reflection re-
moval.

model selection method is proposed to select the most reliable result.

Fig. 4.1 shows the flowchart and illustrations of the proposed `1-norm regression

based iris segmentation. Firstly, coarse iris localisation is performed. Coarse iris

region is located via super-pixel [116] based correlation histograms. Then, within

coarse iris region, limbic boundary segmentation is performed. Limbic boundary is

fitted by `1-norm regression on limbic boundary candidates, which are obtained by

seeking the local maxima of directional derivatives. After that, pupillary boundary

segmentation is performed via a similar procedure to limbic boundary segmentation.

Finally, eyelids are fitted, followed by reflection and silhouette removal.

Fig. 4.2 shows the flowchart and illustrations of the proposed model selection pro-

cedure. Firstly, for the input iris image, multiple segmentations are obtained by

performing `1-norm regression with different models. Then, a ring-shaped region is
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 Iris Image
Segmentations by 

multiple models

Extracting the target 

ring-shaped region 

and normalizing

Hog feature

Training data

The selected 

segmentation
Classifier

(a)

(b) (c) (d)

Figure 4.2: Flowchart and illustrations of the proposed model selection method.
(a) The flowchart of the proposed model selection method; (b)-(d) some example
illustrations of the proposed model selection method; (b) examples of multiple seg-
mentations for the same capture; (c) examples of the target ring-shaped region
(the region between the two green curves) extracted around the outer segmentation
boundary (the red curve); (d) examples of normalised ring-shaped region and the
corresponding HOG features.

defined around the outer segmentation boundary and it is used to evaluate the qual-

ity of segmentations produced by each model. This ring-shaped region is normalised

using Daugman’s rubber sheet model [6], and histogram of oriented gradients (HOG)

features [117] are extracted to distinguish good and poor segmentations. Finally,

the classification decision of a pre-trained classifier using data from good and bad

segmentations is used to select the model with optimal segmentation result.

The experiments are performed on four less constrained iris datasets introduced

in Chapter 3: MICHE, UBIRIS2, FRGC and CASIAD. The results show that the

proposed method achieves top performance compared to state-of-the-art iris seg-

mentation algorithms.

The rest of this chapter is organised as follows. Section 4.2 describes and analyses

the proposed iris segmentation algorithm based on `1-norm regression with multiple



4.2. Iris segmentation using `1-norm regression 47

models. Section 4.3 presents the proposed method for model selection. Section 4.4

reports the experimental results on less constrained iris datasets. Section 4.5 sum-

marises this chapter.

4.2 Iris segmentation using `1-norm regression

This section presents the iris segmentation algorithm using `1-norm regression. The

algorithm may be divided into the following steps: coarse iris localisation, limbic

boundary segmentation, pupillary boundary segmentation, eyelids fitting, silhouette

and reflection removal. The algorithm consists of three models: one circle model and

two ellipse models. Furthermore, synthetic data is used to study the characteristics

of the three models and the result demonstrates that a model selection is able to

achieve an improved performance over each individual model.

4.2.1 Coarse iris localisation

The iris region is located by a coarse iris map based on the correlation histogram

of super-pixels [116]. For colour datasets (MICHE, UBIRIS2 and FRGC), the al-

gorithm operates on red channel, since the observation in [118] suggests that red

channel is the most informative channel for colour iris images. As a pre-processing

step, contrast adjustment is performed to make iris region more distinguishable.

The intensity values between a low threshold and a high threshold are mapped to

[0, 1], and the remaining intensity values are clipped. Let mr be the mean intensity

value in a iris capture. The low threshold is set to mr − σ, and the high threshold

is set to mr + σ, where σ is a parameter experimentally set to 0.2 for all datasets

(all the parameters in this chapter are set based on two sets of training data, one

for colour captures and the other one for NIR captures; please see Section 4.4.1 for

details; please also note that, in the rest of this chapter, the parameter setting is
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(a)

(b)

(c)

Figure 4.3: Examples of super-pixels and coarse iris map. The images in the same
column are from the same capture. (a) Super-pixels on contrast-adjusted captures;
(b) the coarse iris maps computed using contrast-adjusted captures; (c) the coarse
iris maps computed using the captures without contrast adjustment.

the same for all the datasets if not specified).

To illustrate the effect of contract adjustment, some example results of coarse iris

localisation with and without contrast adjustment are presented in Fig. 4.3(b) and

Fig. 4.3(c), respectively. It can be seen that with contrast adjustment, the iris region

in coarse iris maps is more distinguishable and consistent.

Super-pixels are computed after contrast adjustment. Super-pixels are essentially

over-segmentation of an image. It is perceptually meaningful because it preserves

local structure of an image. Examples of super-pixel are shown in Fig. 4.3(a).

Simple linear iterative clustering (SLIC) algorithm [116] is employed to compute
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(b) Non-iris super-pixel

Figure 4.4: Examples of correlation histogram corresponding to an iris super-pixel
and a non-iris super-pixel.

super-pixels.

Correlation histogram (CH) is used as a feature to distinguish between iris and non-

iris super-pixels. Denote the total number of super-pixels in the contrast-adjusted

capture by n, the CH of each super-pixel consists of n − 1 bins. For the ith super-

pixel, a n-bin histogram Ci is firstly calculated, with the jth bin, denoted by Ci
j,

calculated by:

Ci
j =

〈hi,hj〉∑j=n
j=1,j 6=i 〈hi,hj〉

(4.1)

where hi and hj denote respectively the normalised histogram of the ith and jth

super-pixel, and 〈•, •〉 calculates the inner product of two vectors. The CH is ob-

tained by removing the ith bin of Ci. The reason of the removal is that the ith bin

of Ci reveals the self-similarity of the ith super-pixel and it is less informative for

the aim to roughly locate the iris region.

The intuition behind CH is that the iris region is visually more unique in an iris

image. As a result, the CH of iris super-pixels has few peaks, since few super-

pixels are similar with iris super-pixels. In contrast, the CH of non-iris super-pixels

tends to distribute across most of the bins due to a broad similarity. Fig. 4.4 shows

examples of CH corresponding to an iris super-pixel and a non-iris super-pixel.
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Therefore, based on the above characteristic of CHs of iris and non-iris super-pixels,

entropy is used to distinguish between iris and non-iris super-pixels. Let Ei be the

entropy of the CH of the ith super-pixel, Ei is calculated by:

Ei = −
n−1∑
j=1

Ci
jlog2C

i
j (4.2)

An iris super-pixel tends to have a lower entropy value, because its CH concentrates

on few bins. In contrast, a non-iris super-pixel is likely to correspond to a higher

entropy value due to the broad distribution of its CH. To highlight iris region and

build the coarse iris map, each super-pixel is filled with an intensity based on the

entropy of CH. Let Si be the intensity of the ith super-pixel, Si is calculated by:

Si = e−E
i

(4.3)

The examples of coarse iris maps are shown in Fig. 4.3(b). This map is called a

‘coarse’ map because it is not very accurate – it can be seen that some other parts

of the image such as the eyelids and eyebrows are also highlighted. The reason is

that these parts also show some uniqueness in iris images. However, the coarse iris

map is able to roughly locate iris region in images. It gives important information

for the following iris segmentation steps.

4.2.2 Limbic boundary segmentation

To segment limbic boundary, an initial iris centre is firstly located based on the

coarse iris map. Points around the initial iris centre are selected as iris centre

candidates. Then, a limbic boundary is fitted for each iris centre candidate. Among

the limbic boundaries corresponding to different iris centre candidates, the one with

the highest score of Daugman’s integro-differential operator [6, 7] is selected. The

limbic boundary fitting is performed as robust `1-norm regression on a set of limbic
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(a) (b) (c)

(d) (e) (f)

Figure 4.5: An illustration of the proposed limbic boundary segmentation algorithm.
(a) The initial iris centre (red star) and region of iris centre candidates (red square);
(b) the sought limbic boundary candidates (LBCs, green circles) corresponding to
one centre candidate (red star); note only LBCs in a few directions (red dashed line)
are drawn for clarity; (c)-(e): limbic boundary fitting results with different iris centre
candidate (red star) and the corresponding LBCs (green points); (f) the selected
optimal limbic boundary with the highest score of Daugman’s integro-differential
operator.

boundary points (limbic boundary candidates, LBCs), which are sought individually

for each iris centre candidate. Fig. 4.5 illustrates the procedure of limbic boundary

segmentation.

To locate the initial iris centre, the coarse iris map is binarized via Otsu thresh-

old [119]. Then, the centre of the largest connected component is selected as the

initial iris centre. The reason of selecting the largest connected component is to

eliminate the influence of the eyebrow – it is observed experimentally that, although

parts of the eyebrow may remain after binarisation, the area of the remaining eye-

brow region is usually smaller than the iris region. The exceptional case where the

eyebrow region is larger than the iris region is very rare. One such exceptional case

is shown in Fig. 4.6(a), Fig. 4.6(b) and Fig. 4.6(c). It can be seen from the three

figures that this exceptional case is due to the combination of glass frame, eyebrow,
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(a) (b) (c)

(d) (e)

Figure 4.6: An illustration of the effect of the size of iris centre candidate region.
(a) An iris image from MICHE dataset; (b) the result of coarse iris localisation;
(c) the largest connected component after binarisation; note that this is a special
case where the eyebrow region is larger than the iris region after binarisation; (d)
the example of a small region of iris centre candidate (red rectangle, left) and the
corresponding iris segmentation result (right); (e) the example of a large region of
iris centre candidate (red rectangle, left) and the corresponding iris segmentation
result (right). Note that the initial iris centre (the red star in the left image of (d)
and (e)) is still near to the true iris centre, since the bias of iris centre is mainly
caused by the eyebrow and glass frame. Therefore, a large iris centre candidate
region (the red rectangle in the left image in (e)) is able to mitigate the influence of
the biased initial iris centre and give an accurate segmentation (shown in the right
image in (e)).

and inaccurate intensity of iris region in the coarse iris map. It will be show later

that the influence of such failure in rough localisation can be overcome by a large

iris centre candidate region.

The iris centre candidates are selected as the points in a square region centred at

the initial iris centre. The width of the square region is set to 120 pixels for all the

datasets. A relatively large width is selected to mitigate the influence of inaccurate

coarse iris map. An illustration is shown in Fig. 4.6(d) and Fig. 4.6(e). It can be
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seen from Fig. 4.6(d) and Fig. 4.6(e) that the inaccurate coarse iris map (Fig. 4.6(b)

and Fig. 4.6(c)) leads to a biased initial iris centre (red star in the left image of

Fig. 4.6(d) and Fig. 4.6(e)). However, this biased initial iris centre is still near to

the true iris centre, since the error is mainly caused by eyebrow and glass frame.

Therefore, a relatively larger iris centre candidate region is still able to reach the

true iris centre and give accurate segmentation (the right image in Fig. 4.6(e)).

For each iris centre candidate, the corresponding LBCs are estimated by seeking

the local maxima of directional derivatives along multiple rays initiated from the

iris centre candidate. Denote the coordinate of an arbitrary iris centre candidate by

(xi, yi), denote the ray initiated from (xi, yi) with incline angle θ by lθi , and denote

the LBC along lθi by
(
xθi , y

θ
i

)
,
(
xθi , y

θ
i

)
is estimated by:

(
xθi , y

θ
i

)
= arg max

x,y
{I(x+ ∆r cos θ, y + ∆r sin θ)

−I(x, y)}

s.t. (x, y) ∈ lθi

rmin ≤
√

(x− xi)2 − (y − yi)2 ≤ rmax

(4.4)

where ∆r is the step length for derivative estimation, rmin and rmax restrict the search

region, I is the processed image – the potential reflection regions are filled by the

mean intensity of pixels around it; the potential reflection regions are found by high-

pass filtering (since reflection leads to sudden intensity change and it induces high

frequency components) and then binarizing via Otsu threshold. The regularisation

terms in Eqn. 4.4 restrict the search on lθi with a range of [rmin, rmax]. For each

iris centre candidate, θ is varied to seek LBCs at multiple directions. The range

of θ depends on the limbic boundary model and will be given later. For the other

parameters, for colour datasets (MICHE, UBIRIS2 and FRGC), ∆r is set to 7,

rmin = (width + hight)/20 and rmax = (width + hight)/7 (width and height are size

of image); for CASIAD dataset. ∆r is set to 3, rmin = (width + hight)/20 and
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rmax = (width + hight)/10. An example of an iris centre candidate and LBCs is

shown in Fig. 4.5(b), respectively. Note that only a few directions are drawn for

clarity in Fig. 4.5(b).

From Fig. 4.5(b), it can be seen that there are false LBCs due to eyelids. In such

cases, if the limbic boundary is fitted based on traditional least square fitting, the

fitting error of the false LBCs will bias the fitting result. Therefore, in this section,

a limbic boundary fitting algorithm is proposed using robust `1-norm regression [88,

89,114,115,120].

Given an arbitrary iris centre candidate (xi, yi), denote the LBCs corresponding

to (xi, yi) along directions θ1, θ2, ..., θt by
(
xθ1i , y

θ1
i

)
,
(
xθ2i , y

θ2
i

)
, ...,

(
xθti , y

θt
i

)
, respec-

tively, three individual models are proposed for limbic boundary fitting based on

`1-norm regression: a circle model, a parametric ellipse model and an ellipse model.

`1-norm circle (`1-C) model. This circle model fits limbic boundary as a circle.

Given the iris centre candidate and the corresponding LBCs, the only parameter of

the circle model is the radius r. Let dj be the distance between iris centre candidate

(xi, yi) and LBC
(
x
θj
i , y

θj
i

)
, dj is calculated by dj =

√
(xi − x

θj
i )

2
+ (yi − y

θj
i )

2
.

Define d = [d1, d2, ..., dt]
T ∈ Rt×1, the optimal radius is sought robustly by

arg min
r
‖d− 1r‖1 (4.5)

where 1 ∈ Rt×1 is a column vector of ones. The solution of Eqn. 4.5 is the median

value of d. Note that in Eqn. 4.5, if the `1-norm is replaced by `2-norm, this equation

becomes traditional least square fitting. In the circle model, for LBCs seeking, θ is

varied in the range [−π/6,π/3] and [2π/3,7π/6]. The range of θ is designed to seek

LBCs at both sides. The reason is two-fold. Firstly, circle is a less flexible model to

eyelids occlusion. The range is designed to avoid false candidates caused by eyelids.

Secondly, points at both sides are sufficient to compute the radius of circle.
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`1-norm parametric ellipse (`1-PE) model. Circle is a less flexible model, es-

pecially in cases with eyelids occlusion. Alternatively, a more flexible parametric

ellipse model is proposed. Given an iris centre candidate and the corresponding

LBCs, the aim is to fit the x-axis (a) and y-axis (b) of an ellipse. Let d2
j =(

xi − x
θj
i

)2

+
(
yi − y

θj
i

)2

. Let dpe = [d2
1, d

2
2, ..., d

2
t ]

T ∈ Rt×1. According to the

parametric equation of ellipse:

 x
θj
i = xi + a cosϕj

y
θj
i = yi + b sinϕj

(4.6)

it can be derived that d2
j = a2cos2ϕj+b2sin2ϕj. Define si =

[
cos2ϕi, sin

2ϕi
]T ∈ R2×1

and s = [s1, s2, ..., st]
T ∈ Rt×2. a and b can be computed by:

arg min
a,b

∥∥∥dpe − s [a2, b2
]T∥∥∥

1
(4.7)

To calculate s, ϕ1, ϕ2, ..., ϕt need to be estimated. To obtain ϕ1, ϕ2, ..., ϕt, an as-

sumption is made: despite of an ellipse, the limbic boundary is near to a circle. With

this assumption, the following approximation is used: cosϕj =
(
x
θj
i − xi

)/
dj and

sinϕj =
(
y
θj
i − yi

)/
dj. Eqn. 4.7 is also a `1-norm regression problem. It can be

solved employing the primal-dual method implemented in `1-magic toolbox [121].

In `1-PE model, the range of θ is set differently from `1-C model. θ is varied from 0

to 2π to seek LBCs for each iris centre candidate. The LBCs are sought around 360

degrees for `1-PE model, since the points at both sides are insufficient to accurately

estimate the radius along y axis.

`1-norm ellipse (`1-E) model. The limbic boundary can be also fitted by perform-

ing `1-norm regression based on an ellipse model directly using the ellipse equation.

Let dej =

[(
x
θj
i − xi

)2

,
(
y
θj
i − yi

)2
]T

∈ R2×1. Let de = [de1,d
e
2, ...,d

e
t ]

T ∈ Rt×2. In
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`1-E model, a and b are estimated by:

arg min
a,b

∥∥1− de[1/a2, 1
/
b2]T

∥∥
1

(4.8)

where 1 is a column vector of ones. In `1-E model, the range of θ is the same as

that in `1-PE model.

4.2.3 Pupillary boundary segmentation

The procedure of pupillary boundary segmentation is similar to limbic boundary

segmentation. The initial pupil centre is determined as the centre of the region

within the limbic boundary. Pupil centre candidates are defined as a square region

around the initial pupil centre. The width of the square region is set to 1
2
r for `1-C

model and 1
4
(a+ b) for `1-PE model and `1-E model (note that here and after some

parameters are related to the limbic boundary model).

For each pupil centre candidate, Eqn. 4.4 is used to seek pupillary boundary candi-

dates. The pupillary boundary is fitted using `1-C model described in Section 4.2.2

(Eqn. 4.5). The circle with the highest score of Daugman’s integro-differential oper-

ator is selected amongst all fitting results. At this stage, the I in Eqn. 4.4 is different

from LBC seeking. More processing effort is required because the pupil region is

less distinguishable and more noisy in less constrained captures, especially in some

colour captures. For each pupil centre candidate, a square patch centred at that

point is extracted. For colour datasets (MICHE, UBIRIS2 and FRGC), the width

of the square patch is set to 4
3
r for `1-C model and 2

3
(a+b) for `1-PE model and `1-E

model; for CASIAD dataset, the width of the square patch is set to 8
3
r for `1-C model

and 4
3
(a + b) for `1-PE model and `1-E model. Contrast adjustment is performed

on the square patch using the method in Section 4.2.1. Finally, the square patch is

up-scaled 3 times and binarized. The aim of up-scaling is to reduce the noise effect

marginally. The binarisation threshold is set to the lower quartile pixel value of the
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contrast-adjusted square patch. The other parameters in Eqn. 4.4 are set as follows:

for colour datasets (MICHE, UBIRIS2 and FRGC), ∆r is set to 4, θ is varied in the

range [−π/6,π/3] and [2π/3,7π/6]; rmin = 3× 1
6
r and rmax = 3× 1

2
r for `1-C model

(3 is the factor of up-scaling), rmin = 3 × 1
12

(a+ b) and rmax = 3 × 1
4

(a+ b) for

`1-PE and `1-E models; for CASIAD dataset, ∆r, θ and rmin are the same as that

on colour datasets, while rmax = 3× 3
4
r for `1-C model, and rmax = 3× 3

8
(a+ b) for

`1-PE and `1-E models.

4.2.4 Upper eyelid fitting

Similar with limbic boundary fitting, an upper eyelid model is fitted based on some

upper eyelid candidatess (UECs). Inspired by [107], UECs are sought based on the

local maxima of vertical derivatives. Denote the UECs along vertical line x = v by

(v, yv), yv is estimated by:

yv = arg max
y

{I (v, y + ∆y)− I (v, y)}

s.t. ∆1 ≤ y ≤ ∆2

(4.9)

where ∆y is the step length, and ∆1, ∆2 restrict the search region. Let (xc, yc) be

the iris centre. ∆1 is set to yc − r and ∆2 is set to yc + 0.5r for `1-C model; ∆1 is

set to yc − b and ∆2 is set to yc + 0.5b for `1-PE model and `1-E model. To seek a

set of UECs, v is varied in the range [xc − 1.5r, xc − 1.2r]∪ [xc + 1.2r, xc − 1.5r] for

`1-C model, and [xc − 1.5a, xc − 1.2a] ∪ [xc + 1.2a, xc + 1.5a] for `1-PE model and

`1-E model. ∆y is set to 4.

The upper eyelid is modeled by parabola y = α(x− β)2 + γ. To overcome false

UECs, upper eyelid fitting is formulated as a `1-norm regression problem. Assume

there are T UECs (v1, y
v1
1 ) , (v2, y

v2
2 ) , ..., (vT , y

vT
T ). Let yu = [yv11 , y

v2
2 , ..., y

vT
T ]T ∈

RT×1, ψu
i = [v2

i ,−2vi, 1]
T ∈ R3×1 and ψu = [ψu

1 ,ψ
u
2 , ...,ψ

u
T ]T ∈ RT×3, (α, β, γ) are
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computed using:

arg min
α,β,γ

∥∥∥yu −ψu
[
α, αβ, β2 + γ

]T∥∥∥
1

(4.10)

Borrowing an idea from [107], α, β and γ are further restricted as follows: α ∈[
0, 1

2r

]
, β ∈ [xc − 0.5r, xc + 0.5r] and γ ∈ [yc − 1.5r, yc + 1.5r] for `1-C model;

α ∈
[
0, 1

2×min(a,b)

]
, β ∈ [xc − 0.5a, xc + 0.5a] and γ ∈ [yc − 1.5b, yc + 1.5b] for `1-

PE model and `1-E model.

4.2.5 Lower eyelid fitting

The procedure of lower eyelid fitting is the same as upper eyelid fitting: some lower

eyelid candidates are sought and used to fit a parabola. The only difference is the

parameter setting in Eqn. 4.9 and Eqn. 4.10. In Eqn. 4.9, ∆1 is set to yc and ∆2 is set

to yc + 1.5r for `1-C model; ∆1 is set to yc and ∆2 is set to yc + 1.5b for `1-PE model

and `1-E model. ∆y is still set to 4. v is varied in [xc − 0.5r, xc + 0.5r] for `1-C model,

and [xc − 0.5a, xc + 0.5a] for `1-PE model and `1-E model. In Eqn. 4.10, the range

of α, β and γ is restricted as follows: α ∈
[
− 1

2r
, 0
]
, β ∈ [xc − 0.5r, xc + 0.5r] and γ ∈

[yc − 1.5r, yc + 1.5r] for `1-C model; α ∈
[
− 1

2×min(a,b)
, 0
]
, β ∈ [xc − 0.5a, xc + 0.5a]

and γ ∈ [yc − 1.5b, yc + 1.5b] for `1-PE model and `1-E model. Some example results

of upper and lower eyelid fitting are shown in Fig. 4.7.

4.2.6 Reflection removal

Generally, reflection regions have very high intensity value. To further distinguish

a reflection region from the iris region, contrast adjustment is performed using the

method in Section 4.2.1. At this stage, only iris region is considered. The mean

intensity mr is calculated using pixels in the iris region only. After contrast ad-

justment, the pixel value of red channel is normalised to [0, 255]; pixels with an

intensity value higher than 215 are marked as reflection. Please note that, although
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Figure 4.7: Example results of eyelids fitting. Top row: example results of upper
eyelid fitting. Bottom row: lower eyelid fitting. The green points in the images are
eyelids candidates, and the red curves are the fitted eyelids.

this method uses a simple fixed threshold, it is experimentally effective, since the

previous step of contrast adjustment generally maps reflection regions to very high

intensities.

4.2.7 Silhouette removal

There are two experimental observations on silhouette: (1) silhouette is one of the

darkest regions in an iris and (2) silhouette locates near to eyelids and pupillary

boundary. Therefore, the darkest pixels near to the eyelids and pupillary bound-

ary are marked as silhouette. Firstly, contrast adjustment is performed using the

method in Section 4.2.6. Then, the darkest 1/8 pixels within iris region is selected as

silhouette candidates. Otsu threshold is applied to select the darkest pixels among

silhouette candidates. The selected darkest pixels are grouped into connected com-

ponents; the connected components intersected with eyelids or pupillary boundary

are marked as silhouette.
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4.2.8 Analysis of the three models

This subsection analyses the `1-C, `1-PE and `1-E models based on synthetic data.

The analysis focuses on the accuracy of limbic boundary segmentation only. The

reason is two fold. First, the performance of the three iris segmentation models

largely depends on the accuracy of limbic boundary segmentation, as the limbic

boundary is the basis for the following segmentation steps. Second, since the other

components of the algorithm depend on the result of limbic boundary segmentation,

it is not easy to synthesize appropriate data for them.

In the three models, the limbic boundary segmentation is performed as circle (or

ellipse) fitting on a set of LBCs. The accuracy of limbic boundary segmentation is

directly related to the accuracy of LBCs. Although the iris image may suffer from

multiple noise factors such as motion blur and illumination variance, the influence

of all these noise factors on the limbic boundary segmentation can be concluded

as inducing false LBCs. Therefore, the performance of the three iris segmentation

models can be analysed using corrupted circle (or ellipse) data. Firstly, some points

are sampled from a circle (or ellipse) to stimulate the correct LBCs. Then, some of

the sample points are corrupted by random noise to stimulate the influence of real

noise on the LBCs. Finally, circle (or ellipse) is fitted using the corrupted sample

points to estimate the influence of noise on the three limbic segmentation models.

Since the proposed algorithm has one circle model and two ellipse models, two sets

of synthetic data are used: circle data and near-to-circle ellipse data (recall that

the iris shape is assumed to be near to a circle in the description of `1-PE model in

Section 4.2.2). The experiment is designed as follows. For circle data, as the first

step, a circle is randomly generated. Some points are sampled on this circle. For

each of the three models, the position of sampling is consistent with the setting of θ

in Section 4.2.2. Then, part of the sample points (randomly selected) are corrupted

by zero mean noise (two kinds of noise are tested: Gaussian noise and uniform noise).
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Finally, the radius is estimated using the `1-C, `1-PE and `1-E model individually

and the estimation error is calculated. The standard deviation (sigma) of noise

is varied from 1 to 50. For each standard deviation level, the above procedure is

repeated 100 times. The mean estimation error of the three models is drawn as the

function of standard deviation level of the noise in Fig. 4.8(a) and Fig. 4.8(c).

For near-to-circle ellipse data, the whole procedure is the same as circle data. The

only difference is that in the first step an ellipse is randomly generated. The ratio of

short radius to long radius is randomly selected between 0.8 and 1. The mean esti-

mation error of the three models is drawn as the function of the standard deviation

level of noise in Fig. 4.8(b) and Fig. 4.8(d).

It can be seen that the result is similar for both Gaussian noise and uniform noise.

From Fig. 4.8(a) and Fig. 4.8(c), it is observed that the circle model generally

achieves the best performance on circle data even with large noise. It means that

if the shape of the iris is exactly or very near to a circle, the `1-C model will fit

it with very high accuracy. From Fig. 4.8(b) and Fig. 4.8(d), it is shown that for

near-to-circle ellipse data, the fitting error depends on the noise level. When the

noise level is very low, the `1-E model has the lowest fitting error. When the noise

level is high, the `1-PE model gives the best fitting. In conclusion, the performance

of `1-C, `1-PE and `1-E model depend on the iris shape and noise level. Therefore,

a model selection is possible to improve the accuracy of iris segmentation over each

individual model.

4.3 Model selection

The model selection is performed using a ring-shaped region around the outer seg-

mentation boundary defined by limbic boundary and eyelids boundaries. Let f (θ, r)

define the outer segmentation boundary in the polar coordinate. Let ∆rw be the
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(a) circle data, Gaussian noise (b) ellipse data, Gaussian noise

(c) circle data, uniform noise (d) ellipse data, uniform noise

Figure 4.8: The mean estimation error as a function of noise level on the synthetic
data.

width of the ring-shaped region along the radius direction. The inner boundary and

the outer boundary of the ring-shaped region can be represented by f (θ, r + ∆rw)

and f (θ, r −∆rw), respectively. The ring-shaped region between the inner and outer

boundary is normalised by the rubber sheet model in [6]. In this chapter, ∆rw is set

to 30.

Fig. 4.2(b) shows the example of the ring-shaped regions of a good segmentation and

a poor segmentation (note that the segmentation boundary is marked red and the

boundaries of the ring-shaped region are marked green). The normalised ring-shaped

region of the good segmentation is apparently divided into two halves. The top half

is iris region, because the inner side of a good segmentation boundary should be all

iris region. The bottom half of the good segmentation consists of sclera, skin and
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silhouette. These parts correspond to the regions outside the segmentation boundary

at the two sides, lower and upper eyelids. In contrast, in the poor segmentation,

the skin and silhouette present in the top half due to the inaccurate segmentation

boundary. In some other cases of poor segmentation, the segmentation boundary

may be within the true limbic boundary. Correspondingly, the iris region may

present in the bottom half of the normalised ring-shaped region.

HOG [117] is used as the feature to distinguish between the normalised ring-shaped

region of good and poor segmentations. HOG feature calculates the histogram of

gradient orientations in local cells, and all cells are normalised with a block-wise

manner. HOG is a representation of local shape and appearance information. It

has excellent invariance to local geometric and photometric transformations, as well

as illumination variance. Therefore, it is chosen to describe the local shape and

appearance of the unwrapped ring-shaped region while overcoming the noise and

degradations in less constrained iris captures.

Some good and poor segmentations are selected as the training samples (please refer

to Section 4.4.1 for details). A SVM with quadric hinge loss function as used in [122]

is trained using the training samples, due to its reported effectiveness for image

classification as in [122]. For the test iris images, the three ring-shaped regions

corresponding to the segmentation of `1-C, `1-PE and `1-E models are extracted

and normalised. HOG features are extracted on the three normalised ring-shaped

regions and are fed to the trained SVM. The segmentation result of the model with

the highest classifier response is selected.

4.4 Experiments

This section performs experimental analysis for the proposed iris segmentation al-

gorithm. Firstly, the experimental setting is introduced, including datasets, the
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setting to analyse each individual iris segmentation model, the setting to analyse

model selection, and the method for performance evaluation. Then, analysis is per-

formed for each individual iris segmentation model described in Section 4.2. This

includes: (1) the effect of components in each individual iris segmentation model;

(2) the performance comparison of each individual model; (3) a comparison between

`1-norm regression and traditional least square (`2-norm) regression to demonstrate

the advantage of using `1-norm regression in proposed method for iris segmentation.

Next, analysis is performed for the model selection method described in Section 4.3.

It consists of three analysis: (1) the effect of model selection; (2) the effect of train-

ing data on the performance of model selection on colour captures; (3) the impact

of capturing device on the performance of model selection on mobile data. Finally,

the overall performance of proposed iris segmentation algorithm is compared with

state-of-the-art algorithms.

4.4.1 Experimental setting

Datasets. The experimental analysis are performed on four datasets described

in Chapter 3: MICHE, UBIRIS2, FRGC and CASIAD. For MICHE dataset, 300

images from ’iPhone5’ folder and 300 images from ’SamsungGalaxyS4’ folder are

randomly selected. Classical Viola-Jones detector [113] is used to extract the eye

region in the selected images. The false positives are manually eliminated since

they do not include eye region, and the remaining 569 eye regions are used for the

experiment. The ground truth is segmented manually for the 569 images. Also,

since the images in MICHE dataset have generally high resoltuions, to reduce the

computational cost, the segmentation is performed on downsampled eye regions

for this dataset, and the segmented boundaries are mapped back to the original

resolution. The size of downsampled eye region is chosen to be 300 × 400. The

size is designed to be the same as the images in UBIRIS2 [19], which has been a

bench-mark for colour iris segmentation.
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For UBIRIS2 dataset, two subsets released for NICE contest [18] are adopted. The

first subset is the combination of training and test sets released for NICE I contest.

It includes 945 images with ground truth. 500 images in this subset are from NICE I

training set, and the rest images are from NICE I test set. The second subset is the

released training set for NICE II contest. This subsets consist of 1000 images with

ground truth.

For FRGC dataset, the subset constructed in [21] is adopted. This subset includes

500 images with manually segmented ground truth.

For CASIAD dataset, the subset used in [41] is adopted. This subset includes 581

images with manually segmented ground truth. These images are partitioned into

a training set with 79 images and a test set with 502 images as in [41].

The setting to analyse individual iris segmentation models. For colour

captures in colour datasets (MICHE, UBIRIS2 and FRGC), the parameters in the

proposed method are determined based on the NICE I training set with 500 images

in the first subset of UBIRIS2 as described above. The following data is used

to test the performance: the MICHE subset with 569 images, the FRGC subset

with 500 images, the second UBIRIS2 subset with 1000 images (the training set of

NICE II contest).

For NIR captures in the NIR dataset (CASIAD), the training and test partition

in [41] are adopted for parameter tuning and test, respectively.

The setting to analyse model selection. To perform model selection, a SVM

needs to be trained using example good and poor segmentations. Different train-

ing data are used for mobile captures (MICHE), static camera captures (FRGC,

UBIRIS2) and NIR captures (CASIAD). Note that although mobile captures and

static camera captures are obtained in the same wavelength (colour), it is experimen-

tally found that they require more specific training data to achieve good performance

(please see Section 4.4.3 for details).
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For MICHE subset, 100 good segmentations and 100 bad segmentations of 140

images are selected for training. The remaining 429 images are used for the test of

performance.

For static camera captures (FRGC, UBIRIS2), the SVM is trained using 950 good

segmentations and 950 poor segmentations selected from the first subset of UBIRIS2

(the combination of training and test sets for NICE I contest). The test is performed

using the images in FRGC dataset and the second UBIRIS2 subset (the training set

of NICE II contest).

For CASIAD dataset with NIR captures, the model selection is analysed using leave-

one-out test on the test partition of the subset in [41] with 502 images. On CASIAD

dataset, leave-one-out test is adopted instead of fixed training/test sets, because it

is experimentally found that the data in this dataset is insufficient for both SVM

training and performance test. For each training partition of leave-one-out test, 230

good segmentations and 230 bad segmentations are selected to train the SVM.

Performance evaluation. The performance of iris segmentation is evaluated by

E1-score which is widely used in a number of research to evaluate the accuracy of

iris segmentation such as [18,21,38,41]. E1-score is calculated as follows:

E1 =
1

width× height

∑
c

∑
r

O (c, r)⊕ C (c, r) (4.11)

where width and height are the size of an iris image; O and C denote the ground

truth and the iris mask generated by an iris segmentation algorithm, respectively; ⊕

is the exclusive-or operator. A lower E1-score means a more accurate segmentation.

4.4.2 Analysis for each individual iris segmentation model

This subsection includes three analysis: (1) the effect of components in each indi-

vidual iris segmentation model; (2) the performance comparison of three individual
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Table 4.1: Significance analysis of each component in individual iris segmentation
models.

Database Evaluation LPS EF RR SR

MICHE

E1(`1-C) 5.29% 3.89% 3.42% 3.36%
p(`1-C) N/A 6.9567e-74 1.0226e-36 2.8819e-10

E1(`1-PE) 2.85% 2.27% 2.17% 2.15%
p(`1-PE) N/A 5.8372e-55 9.5779e-09 0.0186
E1(`1-E) 4.29% 2.94% 2.60% 2.60%
p(`1-E) N/A 1.2501e-73 2.1517e-19 0.5553

FRGC

E1(`1-C) 2.88% 2.19% 2.01% 1.99%
p(`1-C) N/A 1.8089e-69 1.1248e-17 8.6030e-10

E1(`1-PE) 2.06% 1.59% 1.48% 1.46%
p(`1-PE) N/A 9.7993e-45 8.1117e-19 5.4211e-11
E1(`1-E) 3.47% 2.44% 2.11% 2.08%
p(`1-E) N/A 1.4905e-48 1.9633e-32 2.2447e-06

UBIRIS2

E1(`1-C) 2.69% 1.85% 1.69% 1.63%
p(`1-C) N/A 1.1128e-96 1.9087e-73 2.6788e-32

E1(`1-PE) 2.17% 1.71% 1.57% 1.50%
p(`1-PE) N/A 1.3684e-62 6.4429e-84 1.6122e-32
E1(`1-E) 2.75% 1.98% 1.76% 1.69%
p(`1-E) N/A 4.3336e-102 5.7369e-84 1.8251e-29

CASIAD

E1(`1-C) 2.72% 1.11% 1.01% 0.91%
p(`1-C) N/A 6.0363e-172 1.5317e-15 5.3839e-45

E1(`1-PE) 2.20% 1.31% 1.19% 1.09%
p(`1-PE) N/A 2.0403e-100 2.4634e-19 4.4462-68
E1(`1-E) 2.72% 1.38% 1.24% 1.12%
p(`1-E) N/A 4.8596e-120 6.4164e-16 3.6213-63

models; (3) a comparison between `1-norm regression and traditional least square

(`2-norm) regression to demonstrate the advantage of using `1-norm regression in

the proposed method. Note that the results in this subsection are based on the

setting to analyse individual iris segmentation models described in Section 4.4.1.

The effect of components in the three individual models. The main compo-

nents of the three models in Section 4.2 are: limbic and pupillary boundary segmen-

tation (LPS), eyelids fitting (EF), reflection removal (RR) and silhouette removal

(SR). To study the effect of each component, Tab. 4.1 reports the mean E1-score of

the output after each component. Also, to analyse the statistical significance, paired

student-t test is performed between each component and its previous component,
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and the p value is reported in Tab. 4.1. The results in Tab. 4.1 show that each

component in the proposed method leads to an improvement with generally good

statistical significance (the p value is lower than 0.05 level).

The performance comparison of three individual models. From Tab. 4.1, it

can be seen that, for colour datasets (MICHE, FRGC, UBIRIS2), `1-PE model is

the best individual model. For NIR dataset (CASIAD), `1-C is the best individual

model. An explanation of this observation is that the colour datasets are more noisy,

so the shape of iris in these datasets is more variant and such shape can be better

modelled by `1-PE model; as for NIR dataset (CASIAD), since this dataset includes

relatively lower noise compared to colour datasets, the shape of iris in this dataset

is closer to a circle and such shape can be better described by the circle model. It

is similar to the analysis in Section 4.2.8.

`1-norm regression vs. `2-norm regression. To validate the advantage of using

`1-norm regression in iris segmentation, a comparison is performed to study the

performance between `1-norm regression and traditional least square regression (`2-

norm regression). Specifically, the following methods are compared: (1) the three

models proposed in Section 4.2.1; (2) the three models proposed in Section 4.2.1 with

the `1-norm in Eqn. 4.5, Eqn. 4.7, Eqn. 4.8 and Eqn. 4.10 replaced by `2-norm (i.e.

`2-norm regression). To eliminate the influence of reflection and silhouette removal,

the comparisons are made on the E1-scores after limbic and pupillary boundary

segmentation (referred to as `1-C*, `2-C*, `1-PE*, `2-PE*, `1-E* and `2-E*), and

the E1-scores after eyelids fitting (referred to as `1-C**, `2-C**, `1-PE**, `2-PE**,

`1-E** and `2-E**).

The E1-scores of circle, parametric ellipse and ellipse models are shown in Tab. 4.2,

Tab. 4.3 and Tab. 4.4, respectively. It is also reported in the three tables that

the p value of paired student-t test between the E1-score of `1-norm and `2-norm

regression of the same model. It can be seen that the E1-score of `1-norm regression

is consistently lower than `2-norm regression on all the test data. With parametric
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Table 4.2: Comparison between `1-norm and `2-norm regression on the proposed
circle model.

Database Evaluation `1-C* `2-C* `1-C** `2-C**

MICHE
E1 5.29% 6.43% 3.89% 4.09%
p 6.9815e-40 N/A 0.0180 N/A

FRGC
E1 2.88% 3.44% 2.19% 2.27%
p 0.0036 N/A 0.6674 N/A

UBIRIS2
E1 2.69% 2.88% 1.85% 1.98%
p 8.3212e-13 N/A 8.2319e-07 N/A

CASIAD
E1 2.72% 2.99% 1.11% 1.44%
p 7.5981e-12 N/A 2.0818e-16 N/A

Table 4.3: Comparison between `1-norm and `2-norm regression on the proposed
parametric ellipse model.

Database Evaluation `1-PE* `2-PE* `1-PE** `2-PE**

MICHE
E1 2.85% 3.72% 2.27% 2.74%
p 9.7956e-28 N/A 5.1516-13 N/A

FRGC
E1 2.06% 2.72% 1.59% 1.97%
p 5.2249e-17 N/A 2.7401e-09 N/A

UBIRIS2
E1 2.17% 3.04% 1.71% 2.33%
p 2.9606e-60 N/A 1.0080e-44 N/A

CASIAD
E1 2.20% 2.68% 1.31% 1.73%
p 1.5809e-15 N/A 4.8459e-17 N/A

Table 4.4: Comparison between `1-norm and `2-norm regression on the proposed
ellipse model.

Database Evaluation `1-E* `2-E* `1-E** `2-E**

MICHE
E1 4.29% 5.47% 2.94% 3.69%
p 4.0023e-27 N/A 3.1258e-15 N/A

FRGC
E1 3.47% 5.62% 2.44% 3.83%
p 2.7166e-09 N/A 4.6631e-05 N/A

UBIRIS2
E1 2.75% 4.63% 1.98% 4.57%
p 2.1183e-52 N/A 9.4885e-81 N/A

CASIAD
E1 2.72% 3.49% 1.38% 1.92%
p 1.0275e-16 N/A 2.1702e-09 N/A

ellipse and ellipse models, `1-norm regression shows excellent statistical significance

over `2-norm regression. However, the student-t test between `1-C** and `2-C**

fails on FRGC, although the p value of circle model is good on the other datasets.
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Table 4.5: Results of the proposed model selection method.

Dataset Evaluation `1-C `1-PE `1-E MS∗ r-score

MICHE
E1 3.14% 2.01% 2.25% 1.93% 1.75%
p 3.9348e-63 0.0051 4.9048e-12 N/A N/A

FRGC
E1 1.99% 1.46% 2.08% 1.37% 1.26%
p 6.0200e-04 9.1162e-05 2.1817e-11 N/A N/A

UBIRIS2
E1 1.63% 1.50% 1.69% 1.43% 1.30%
p 6.7869e-17 5.1991e-06 1.4276e-17 N/A N/A

CASIAD
E1 0.91% 1.09% 1.12% 0.86% 0.74%
p 0.0165 3.0947e-09 9.4443e-05 N/A N/A

∗MS–model selection

For this observation, a possible reason other than lack of data is that the eyelids

fitting is influenced by inaccurate limbic boundary fitting. Many images in FRGC

suffer from heavy eyelids occlusion, but the proposed circle model is less flexible to

the heavy eyelids occlusion. The circle model seeks limbic boundary candidates at

both sides, and heavy eyelids occlusion results that there are little limbic boundary

even at both sides. In such case, circle model finds too many false limbic boundary

candidates and hence the fitted limbic boundary is inaccurate. The following eyelids

fitting is influenced, because it depends on the result of limbic boundary fitting. The

error of limbic boundary fitting is too large, so `1-norm and `2-norm regression make

little difference for eyelids fitting on FRGC dataset.

4.4.3 Analysis for model selection

This subsection consists of three analysis: (1) the effect of model selection; (2) the

effect of training data on the performance of model selection on colour captures;

(3) the impact of capturing device on the performance of model selection on mobile

data. Note that the results in this subsection are based on the setting to analyse

model selection described in Section 4.4.1.

Effect of model selection. This experiment investigates the effect of model selec-

tion. Tab. 4.5 reports the E1-score of each individual model and model selection on
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(a)

(b)

Figure 4.9: An illustration of the effect of the model selection. (a) Some examples
where the best individual iris segmentation model as reported in Tab. 4.5 fails; (b)
the iris segmentation result given by the model selection. It can be seen that the
model selection is able to give a more reliable segmentation when the best individual
model fails.

all the datasets. It is also reported in Tab. 4.5 that the p value of paired student-t

test between the E1-scores of each individual model and model selection. Finally, a

reference score (r-score) is reported in Tab. 4.5. The r-score is the mean of the min-

imum E1-score of each image’s three segmentations obtained by the three models.

It gives the highest performance that can be achieved by model selection.

It can be seen that the proposed model selection leads to a generally improved

performance compared to each individual model with good significance (the p value

is lower than 0.05 level). On the other hand, on MICHE dataset, the model selection

leads to an improvement of (2.01−1.93)
(2.01−1.75)

= 30.77% from the best individual model

(`1-PE for this dataset) towards the r-score. This percentage of improvement on

UBIRIS2, FRGC and CASIAD are 35%, 45% and 29.41%, respectively.

Examples are shown in Fig. 4.9 to further illustrate the effect of proposed model

selection. Fig. 4.9(a) shows some images where the best individual model as reported

in Tab. 4.5 fails. Fig. 4.9(b) shows the result of selected model by the proposed model
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Table 4.6: Mean E1-score of proposed model selection method using different train-
ing data for colour datasets.

Dataset MICHE (M∗) FRGC (SC#) UBIRIS2 (SC#)
training set 1 (M∗) 1.93% 1.58% 1.57%

training set 2 (SC#) 2.23% 1.37% 1.43%
∗M–mobile data # SC–static camera data

selection for the same images in Fig. 4.9(a). It can be seen that model selection is

able to seek a more reliable segmentation.

Effect of training data for model selection on colour captures. In Sec-

tion 4.4.1, it is mentioned that, although the images in MICHE, FRGC and UBIRIS2

datasets are captured in the same wavelength (colour), different training data are

required for mobile captures (MICHE) and static camera captures (FRGC and

UBIRIS2). This part of experiment performs detailed analysis on the effect of dif-

ferent training data for colour iris captures. The training set used for the MICHE

dataset is referred to as ’training set 1’, and the training set for FRGC and UBIRIS2

datasets is referred to as ’training set 2’. Tab. 4.6 reports the mean E1-score of the

proposed model selection method with different training sets on MICHE, FRGC and

UBIRIS2 datasets.

It can be seen from Tab. 4.6 that the performance drops if static camera data is used

for training and mobile data is used for test, and vice versa. A possible reason is

that there exists inherent characteristic differences between the static camera data

and mobile data.

Impact of capturing device for model selection on mobile data. In real

applications, the mobile data can be captured by varying devices with different

sensors and settings. Therefore, this part of experiment investigates the impact

of capturing device on the overall performance of model selection on mobile data.

This investigation is performed by studying the performance of model selection

on MICHE dataset using device-specific training and test data. The training set

of MICHE for model selection is split based on the capturing device. It results
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Table 4.7: Mean E1-score on MICHE dataset with device-specific training and test
data.

PPPPPPPPPtraining
test

iPhone5 Samsung Galaxy S4 Both devices

iPhone5 1.95% 1.94% 1.94%
Samsung Galaxy S4 1.93% 1.95% 1.94%

Both devices 1.93% 1.92% 1.93%

a iPhone5 training set with 59 good segmentations and 52 poor segmentations,

and a Samsung Galaxy S4 training set with 41 good segmentations and 48 poor

segmentations. The similar splitting is performed on the test set of MICHE for

model selection. It leads to a iPhone5 test set with 266 images, and a Samsung

Galaxy S4 test set with 163 images. Tab. 4.7 reports the mean E1-score of the

model selection results with different combinations of these device-specific training

and test sets. It can be seen from Tab. 4.7 that the mean E1-score changes little

with varying data from different devices. This observation suggests that for the

images captured by iPhone5 and Samsung Galaxy S4, the device variance has little

influence on the overall performance of model selection.

4.4.4 Comparison with other methods

In this subsection, the proposed method is compared with 5 recently proposed meth-

ods [21, 38, 39, 41, 108]. These methods have achieved excellent iris segmentation

performance for less constrained iris captures. [38] has achieved the best perfor-

mance in NICE I contest [18]. The other four methods have reported a further

improvement over [38]. Note that the results in this subsection are based on the

test data for model selection described in Section 4.4.1, since the performance of

model selection represents the final performance of the proposed algorithm. The

five methods are not reimplemented for this comparison. Instead, for FRGC and

UBIRIS2 datasets, the performance reported in [21, 41, 108] is cited. For CASIAD

dataset, the performance reported in [41] is cited.
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Table 4.8: Comparison of the performance with other methods.

Method MICHE FRGC UBIRIS2 CASIAD
Tan et al. 2010 [38] - 3.30% - -
Proença 2010 [39] - 2.42% - -

Tan and Kumar 2012a [21] - 1.84% 1.90% -
Tan and Kumar 2012b [108] - 1.63% 1.81% 1.09%
Tan and Kumar 2013 [41] - 1.76% 1.72% 0.81%

Proposed 1.93% 1.37% 1.43% 0.86%

The mean E1-scores are reported in Tab. 4.8. For MICHE and FRGC, the mean

E1-score on all the test data is reported. For UBIRIS2, to be consistent with the

results in [21,41,108], the mean E1-score on the last 904 images in the test data is

reported. For CASIAD, since it does not have enough data to train SVM for model

selection, a leave-one-out test is performed to estimated the final performance of the

proposed algorithm on the test data.

It can be seen that the proposed model selection method achieves top perfor-

mance. It performs better than all the comparison methods on FRGC and UBIRIS2

datasets, while its performance is close to the top method on CASIAD dataset. It

is also observed that the mean E1-score of the proposed method drops on MICHE

dataset compared with the other three datasets. The reason is that the iris images

captured by mobile device are more challenging, especially for the images captured

outdoor. These images generally suffer from heavy reflection, resulting in drop of

performance.

In terms of speed, the proposed method needs more than 20 seconds to segment

1 image on a desktop with Intel i5-3470 quad-core 3.20GHz CPU, 16GB RAM,

Windows 7 64bit system and Matlab 2013a 64bit. This speed is more than 600

times slower than current commercial implementations of Daugmans iris recognition

algorithm [6,7] which are able to perform tasks from iris segmentation to generating

the IrisCode within 30 milliseconds. However, the proposed algorithm is designed

to achieve robust iris segmentation for noisy iris captures, and its speed is not

optimised. Several methods can be explored in the future research to improve the
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speed. For example, for captures with less noise, the search region for iris centre

candidate may be reduced; parallel implementations can be considered to improve

the speed; the code can be optimised and run with a faster implementation language.

4.5 Summary

In this chapter, a robust algorithm is proposed for less constrained iris segmentation.

This algorithm consists of a `1-norm regression based iris segmentation algorithm

with three models, and a model selection method to select the best model as the

final segmentation result. Comprehensive experimental analysis is made for each

individual model as well as the model selection method. The influence of training

data and capturing device on the proposed algorithm are also investigated. The

comparison with state-of-the-art algorithms demonstrates the top performance of the

proposed algorithm. Future work may explore methods like parallel implementation

to improve the speed.



Chapter 5

Iris liveness detection using regional

features

Part of this chapter has been adapted from the journal paper [J7] (published) as in

the List of Publications.

5.1 Introduction

Iris liveness detection aims to protect iris recognition systems from spoofing attacks

using fake iris patterns, such as iris printouts, textured contact lenses and artificial

eyes. Iris liveness detection is usually considered as a two-class classification prob-

lem. The key of this problem is to seek effective features to distinguish between real

and fake iris patterns. Research on iris liveness detection have proposed numerous

local and global features [43, 44, 46, 47, 49, 57, 60–62, 73, 75]. However, most of these

research focus on the low-level features directly extracted from image pixels. Lit-

tle recent research investigate to build features based on the high-level relationship

among the features extracted from different regions. Compared with low-level fea-

tures, the features based on the high level feature relationship not only include the

information extracted from pixels, but also provide a deeper insight into the feature

76
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Iris Image Iris Segmentation Score Level Fusion Decision

Regional Feature 1

Regional Feature 2

Regional Feature N

...

Classifier 1

Classifier 2

Classifier N

...

Figure 5.1: Flowchart of the proposed method for iris liveness detection.

distribution in different regions. Thus, it is reasonable to expect that the features

based on the high-level feature relationship are able to achieve a better performance

in comparison to using low-level features only.

In this chapter, iris liveness detection is performed using regional features which

model the high-level distribution information of low-level features extracted from

neighbouring regions. Two models are investigated to construct regional features:

spatial pyramid and relational measure which seek the feature distributions in re-

gions with varying size and shape respectively. The spatial pyramid model extracts

features from coarse to fine grid regions. It models a local to global feature dis-

tribution. The local distribution captures the local feature variations, while the

global distribution includes the information that is more robust to translational

transform. The relational measure is based on a feature-level convolution operation

defined in this chapter. By varying the shape of the convolution kernel, the feature

distribution in regions with different shapes is obtained. To combine the feature

distribution information in regions with varying size and shape, the results based

on the two models are fused at the score level.

Based on regional features, a method is proposed for iris liveness detection. The

flowchart of this method is shown in Fig. 5.1. Firstly, for an input iris image, iris

segmentation is performed to find the iris region in the image. Then, different re-

gional features are extracted from the iris region. These regional features are fed

to suitably trained classifiers to produce a set of responses. Next, the classifier re-

sponses are fused at the score level. Finally, the fused response is used to distinguish

between real and fake iris patterns.
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Experiments are performed on four datasets. The results show that: (1) regional

features are able to achieve an improved performance compared to low-level fea-

tures; (2) on three of the four datasets, regional feature based iris liveness detection

method is able to achieve comparable performance to state-of-the-art methods; on

a dataset with heavier noise, regional feature based method is able to achieve better

performance than state-of-the-art methods.

The remainder of this chapter is organised as follows. Section 5.2 presents the

proposed method for iris liveness detection based on regional features. Section 5.3

reports the experimental results. Section 5.4 summarises this chapter.

5.2 Methodology

5.2.1 Iris segmentation

Given an iris image, iris segmentation is performed to find the iris region. The

algorithm in Chapter 4 is employed to seek the limbic boundary, lower and upper

eyelids. Then, a bounding rectangle is determined around these boundaries. The

region within this rectangle is extracted as the iris region. All the features in the

proposed method are extracted from the iris region.

5.2.2 Spatial pyramid model

Spatial pyramid is used as the first model to construct the regional features. Spatial

pyramid model extracts low-level features from increasingly finer regions [123], and

it concatenates the features at each region to form the feature vector. Since the

features are calculated from regions with different size, spatial pyramid structure is

able to capture both local and global information of an image. Also, a pooling oper-

ation [122] can be performed based on the spatial pyramid model (referred as spatial
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pyramid pooling in this chapter). This operation builds the feature relationship in

regions with different size by calculating the local maxima of the features.

An illustration of spatial pyramid based regional features is shown in Fig. 5.2, where

Fig. 5.2(a) illustrates the procedure of spatial pyramid model based feature ex-

traction and Fig. 5.2(b) describes the spatial pyramid pooling operation. From

Fig. 5.2(a), it can be seen that low-level features are extracted from 3 levels. Each

level gives a specific partition of the iris image. In level 0, the feature is computed

globally on the whole image. In level 1 and level 2, features are extracted from 4

sub-regions (red rectangles) and 16 sub-regions, respectively. It is clear that level 0

corresponds to the coarsest partition and level 2 the finest partition. For each level,

spatial pyramid pooling is performed to construct a feature vector, and the 3 feature

vectors from the 3 levels are concatenated to form the final feature vector.

In Fig. 5.2(b), the level 2 in Fig. 5.2(a) is used as an example to explain the procedure

of spatial pyramid pooling. For the 16 sub-regions in level 2, there are three pooling

levels. Each pooling level defines a specific partition of the 16 sub-regions and

produces a number of feature vectors. The feature vectors in all pooling levels are

concatenated to form the final feature. In pooling level 2 as shown in Fig. 5.2(b), the

partition is the original 16 sub-regions (red rectangles), and the produced features

are those extracted from the 16 red rectangles. Meanwhile, it can be seen that a

coarser partition with 4 larger sub-regions (marked as blue, green, yellow and purple

rectangles) is also defined in pooling level 2. The 4 larger sub-regions correspond to

the partition in pooling level 1. However, in pooling level 1, the produced features

are not directly extracted from the 4 larger sub-regions. Taking the green rectangle

for an example, the feature in the green rectangle is formed by pooling (see later for

details) the features in the red rectangles (i.e. the partition of the previous pooling

level) within the green rectangle. Similarly, in pooling level 1, a coarser partition

(the black rectangle) corresponding to pooling level 0 is defined, and the produced

feature for the black rectangle is formed by pooling the features of the 4 sub-regions
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(a)

(b)

Figure 5.2: An illustration of the spatial pyramid-based regional feature. (a) Illustra-
tion of the whole procedure of spatial pyramid structure-based feature extraction;
(b) illustration of spatial pyramid pooling step using pooling level 2 in (a) as an
example.

in pooling level 1 within the black rectangle.

The procedure of spatial pyramid pooling is similar for level 1 and level 0 in

Fig. 5.2(a). The only difference is the number of pooling levels considered each

time. For level 1, there are two pooling levels with 4 and 1 sub-regions, respectively.

For level 0, there is only one pooling level. In other words, the image is regarded as

a whole at this level.

There are mainly two kinds of pooling: the average pooling and the max pooling [122,

124]. Given multiple feature vectors, the average pooling forms a new feature vector

by calculating the mean of all the feature vectors; the max pooling uses the maximum
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value at each dimension to form the new feature vector. In this chapter, the max

pooling is adopted following [122]. At each pooling level shown in Fig. 5.2(b), the

local maxima of the features are computed within regions defined by each specific

partition. Therefore, the max pooling gives the information on the local to global

feature distribution. Moreover, max pooling enhances the translational invariance

of the resulting features. In the coarsest pooling level (an example is the pooling

level 0 in Fig. 5.2(b)), the output feature is essentially the maxima of all the feature

vectors in the whole image, and this changes only little with translational transform.

By extracting features from multiple levels with coarse to fine partitions (as shown

in Fig. 5.2(a)), the final feature vector includes both global and local information.

By performing spatial pyramid pooling in each level (as illustrated in Fig. 5.2(b)),

the final feature vector also reveals the local to global feature distributions and the

translational invariance is enhanced, since the maxima of all the feature vectors

changes only little with translational transform.

5.2.3 Relational measure model

Recent research have shown the effectiveness of order relationship of neighbouring

pixels for iris recognition [20, 125]. Inspired by these research, in this chapter, a

relational measure model is proposed at the feature-level for iris liveness detection.

This model aims to seek the feature distribution information in neighbouring regions

with varying shapes.

A feature-level convolution operation is defined for the relational measure model.

Let F = [f1,f2, ...,fn] be the features extracted from n neighbouring regions. Let

k = [k1, k2, ..., kn] be a convolution kernel. The convolution between F and k is

defined as follows:

F ∗ k =
∑
i

kifi (5.1)
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(a)

(b) (c) (d) (e) (f) (g)

Figure 5.3: An illustration of the relational measure model on an iris region with soft
contact lens. (a) A flowchart of relational measure-based regional feature extrac-
tion; firstly, an input iris region is divided into regular grid regions; then, low-level
features are extracted from each region; a kernel slides across all the positions and
feature-level convolution operation is performed at each position; example positions
of the kernel are shown as solid colour rectangles in the flowchart; note that, in this
flowchart, it is assumed the size of kernel is 2× 3; finally, the final feature is formed
by concatenating the results of feature-level convolution at each position; (b)-(g)
examples of the kernels used in this chapter.

Based on the feature-level convolution operation, the relational measure is illustrated

as follows. An input image is partitioned into multiple regions using regular grids,

and low-level features are extracted from each grid. Then, a convolution kernel

slides across all the grids and feature-level convolution operation is performed at

each position. This procedure is similar to image filtering with a fixed kernel. The

convolution results at all the positions are concatenated to form the regional feature.

An illustration of this procedure is shown in Fig. 5.3(a).

The feature distribution information in regions with different shapes can be ob-

tained by varying the shape of convolution kernel. In this chapter, the iris image

is partitioned into 10 × 10 grids, and 24 convolution kernels are designed. Some

examples of the convolution kernels are shown in Fig. 5.3(b) to Fig. 5.3(g). Note

that these kernels are normalised in the experiment. That is, the positive weights

are normalised to have a sum of 1, and the negative weights are normalised to have
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a sum of −1.

These kernels are chosen by experimentally testing the performance of a set of

different kernels designed based on different intuitions or randomly generated. For

example, the kernel in Fig. 5.3(b) calculates the difference between the features in

neighbouring regions; it can be considered as a horizontal gradient operator and

it extracts the ‘texture’ of local features; the kernel in Fig. 5.3(c) calculates the

centroid of local features in a ‘fat’ window; it is able to mitigate the noise in each

individual regions, while it captures the feature distribution with more weight on the

horizontal direction; the kernels in Fig. 5.3(d) and Fig. 5.3(e) estimate the centroid

of local features in diagonal and diagonal-like regions, respectively; these two kernels

and their rotated variations are able to capture the information in some particular

structures, like the light textures around the the soft contact lens in the eye image

in Fig. 5.3(a). On the other hand, the kernels in Fig. 5.3(f) and Fig. 5.3(g) are not

manually designed for a specific reason. They are selected from a set of randomly

generated kernels by cross-validation on the training data in the experiment (see

Section 5.3 for details of training data). It can be seen that, although they are

randomly generated, both of the kernels have regular shape. Similar to the kernels

in Fig. 5.3(d) and Fig. 5.3(e), such regular shape is able to capture the information

in some particular structures. Taking the iris region in Fig. 5.3(a) as an example,

it can be found that the kernel in Fig. 5.3(f) and its rotated variations can roughly

cover some regions with the boundary of the soft contact lens, while the kernel in

Fig. 5.3(g) can be viewed as a kind of diagonal-like kernels similar to the one in

Fig. 5.3(e). Please note that, current selection method is based on experimental

test; the principal and high level knowledge about the choice of kernels need to be

studied in the future research.
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5.2.4 Low-level features

To build regional features, some low-level features need to be extracted for the

previously described spatial pyramid and relational measure models (i.e. low-level

features need to be extracted from the red rectangles in Fig. 5.2 and the dashed red

rectangles in Fig. 5.3(a)). The regional feature extraction is very flexible. Any low-

level features with a fixed dimension can be utilised to construct regional features

using the method described in Section 5.2.2 and Section 5.2.3. Such flexibility makes

it possible to incorporate some state-of-the-art low-level features for iris liveness

detection into the proposed method to build powerful regional features, such as

the local descriptors studied in [62, 109]. In this chapter, 6 low-level features are

extracted. It leads to 6 spatial pyramid-based regional features and 6 × 24 = 144

relational measure-based regional features.

F1: LBP histogram. LBP1 [58,126] is a texture feature. It encodes each pixel by

a binary code. The binary code is calculated by comparing the intensity between

a pixel and its neighbouring pixels. An example of LBP coding scheme is shown

in Fig. 5.4. It can be seen that, for the centre pixel, its neighbouring pixels with

intensity values higher than the centre pixel are assigned the binary value 1. The

remaining neighbouring pixels are assigned the binary value 0. All the binary values

of the neighbouring pixels are concatenated to obtain a binary code, and the decimal

value of this binary code is assigned to the centre pixel as its feature value. LBP

histogram computes the histogram of LBP feature values to enhance the robustness.

The LBP histograms extracted from each partitioned region of spatial pyramid and

relational measure models are normalised to have a sum of 1. To mitigate the influ-

ence of pupil, bin 256 is eliminated before normalisation, since this bin corresponds

to a region with uniform feature value and it is very likely to be pupil.

1code: http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab
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Figure 5.4: An example of LBP feature.

F2: LBP correlogram. The correlogram represents the frequency distribution

of two feature values at a fixed distance [127]. It provides the pairwise distribu-

tion of feature values. Let I (x) be the LBP feature value at the position x. Let

cord (m,n) be the bin (m,n) of the LBP correlogram with a fixed distance parameter

d. cord (m,n) is calculated by:

cord (m,n) = P (I (x1) = m, I (x2) = n| ‖x1 − x2‖ = d) (5.2)

where P (•) calculates the probability of •; ‖•‖ calculates the distance between

two positions. In this chapter, the distance at horizontal and vertical directions

are considered. d is set to 2 (the parameters in this chapter are determined by

cross-validation on the training data; see Section 5.3 for details of training data).

Theoretically, the range of LBP feature value is between 0 and 255. It leads to

a correlogram with 2562 = 65536 bins which is computationally expensive. To

reduce the computational cost, the LBP feature values are quantized to k levels,

and k � 256. The value of k is different for NIR and colour iris images and it is

determined by cross-validation. Similar to LBP histogram, the influence of pupil

is mitigated by eliminating cord (k, k), and the LBP correlogram in each region is

normalised to have a sum of 1.

F3: intensity histogram. The intensity histogram reflects the distribution of

pixels amongst the 256 intensity levels. It consists of 256 bins and each bin counts

the occurrence of a specific intensity level. The normalisation is the same as that of

LBP histogram.
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F4: intensity correlogram. Intensity correlogram calculates the correlogram of

intensity. It is calculated using Eqn. 5.2 considering the intensity as the feature

values. Similar to LBP correlogram, only the distance at horizontal and vertical

directions is considered, and d in Eqn. 5.2 is set to 2. Also, the computational cost

is reduced by quantizing the intensity values to fewer levels than 256. To mitigate

the influence of pupil, cord (0, 0) is eliminated in the intensity correlogram.

F5: LPQ histogram. LPQ2 [65] is a texture descriptor. It extracts directional

information in frequency domain. For a pixel, firstly, a short-time Fourier transform

is performed on a local patch centred at this pixel. Then, in the frequency domain

obtained by short-time Fourier transform, 4 coefficients corresponding to 4 directions

are considered (see [65] for details). The real and imaginary parts of the 4 coefficients

are quantized to 0 and 1 based on their signs. Finally, the quantized real and

imaginary parts are concatenated to form a binary code, and the decimal value of

this binary code is used as the feature value of this pixel. LPQ histogram calculates

the histogram of LPQ feature values. It is normalised to have a sum of 1.

F6: SID histogram. SID3 [71,72] is a scale and rotational invariant descriptor. It

achieves such invariance by re-sampling the image in a log-polar grid and computing

the discrete-time fourier transform (DTFT) of the re-sampled image. Since scaling

and rotating the image only change the phase of DTFT of the re-sampled image,

the magnitude of the DTFT is a scale and rotational invariant representation. Fur-

thermore, directional derivative is used to enhance illumination invariance. In this

chapter, the parameter setting in [72] is adopted. The log-polar grid includes 32

rays and 28 rings, and 4 orientations are considered for the computation of direc-

tional derivative. Also, only the low frequency Fourier coefficients are considered

to construct the descriptor for each pixel. To obtain a histogram representation, a

codebook is learned from SID descriptors extracted from training images, and the

histogram representation is constructed using vector quantisation [123].

2code: http://www.cse.oulu.fi/CMV/Downloads/LPQMatlab
3code: http://vision.mas.ecp.fr/Personnel/iasonas/descriptors.html
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5.2.5 Classifier

Support vector machine (SVM) is used for classification. Given a set of training

features {fi}ni=1 and labels {yi}ni=1, a hyperplane ω is learned by:

arg min
ω

‖ω‖2
2 + λ

∑
i

l (ω,fi, yi) (5.3)

where λ is a penalty parameter and l (ω,fi, yi) is the loss function. In this paper,

the quadratic hinge loss function as used in [122] is adopted due to its reported

effectiveness for image classification:

l (ω,fi, yi) =
[
max

(
0,ωTfiyi − 1

)]2
(5.4)

where yi = 1 for real samples and yi = −1 for fake samples. After ω is learned,

given a test feature f test, the classification is based on the sign of ωTf test. λ is set

to 0.1 in this paper following [122].

5.2.6 Score-level fusion

Let r1, r2..., rt be the responses of t classifiers. Score-level fusion aims to find a set

of weights α1, α2, ..., αt satisfying α1 + α2 + ... + αt = 1, such that the fused score,

denoted by rs, is calculated by:

rs = α1r1 + α2r2 + ...+ αtrt (5.5)

In this chapter, instead of fusing the classifier response of all the regional features, the

top 3 features are used for score-level fusion. The top 3 features are chosen by cross

validation on the training set. The optimal weights are computed by exhausting

search on the training partition of the experiments.
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Table 5.1: Information of the datasets used in this experiment

Dataset Wavelength Spoofing type Image number
LivDet-Clarkson NIR Contact lenses 1356
LivDet-Warsaw NIR Printouts 1667

LivDet-ND NIR Contact lenses 4200
MobBIOfake Visible Printouts 1600

5.3 Experiments

5.3.1 Datasets and evaluation

The experiments are performed using four datasets for iris liveness detection intro-

duced in Chapter 3: LivDet-Clarkson, LivDet-Warsaw, LivDet-ND and MobBIO-

fake. Tab. 5.1 revisits the information of each dataset. In this section, the partition

of training and test sets varies for different experiments and will be introduced in

each individual subsection.

The performance is evaluated using classification error rate. Classification error rate

is defined as the ratio of the number of misclassified test images to the total number

of test images. The lower the classification error rate, the better the performance.

5.3.2 Performance of single regional features

This subsection studies the performance of single regional features. For the three

NIR datasets, the training and test partitions in LivDet-Iris 2013 competition [105]

are adopted. For the colour dataset, the training and test partitions in MobILive

2014 competition [110] are used. For better visualisation, error rates of regional

features are sorted in ascending order for each dataset. The sorted error rates on

the four datasets are reported in Fig. 5.5 and Fig. 5.6, where Fig. 5.5 corresponds

to spatial pyramid-based regional features, and Fig. 5.6 corresponds to relational

measure-based regional features. In these figures, six colours are used to represent
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(a) LivDet-Clarkson (b) LivDet-Warsaw

(c) LivDet-ND (d) MobBIOfake

Figure 5.5: Performance of single regional features using spatial pyramid model.

the regional features based on six low-level features (F1 to F6), respectively.

Several conclusions can be drawn from the results in Fig. 5.5 and Fig. 5.6. First,

generally speaking, local descriptor based regional features (F1, F2, F5, F6) perform

better than intensity based regional features (F3, F4) on LivDet-Clarkson, LivDet-

Warsaw and MobBIOfake datasets. On LivDet-ND dataset, intensity histogram

(F3) based regional features have the best performance, but local descriptor based

regional features still achieve low error rates. This observation suggests that lo-

cal descriptors generally include more distinctive information than intensity values.

Therefore, future feature design may rely more on local descriptors. It is consistent

with the results in recent researches [62, 109].

Second, it is very interesting that, on LivDet-ND dataset, the order of performance
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(a) LivDet-Clarkson (b) LivDet-Warsaw

(c) LivDet-ND (d) MobBIOfake

Figure 5.6: Performance of single regional features using relational measure model.

is significantly different from the other three datasets. It can be seen that intensity

histogram (F3) based regional features achieve the best performance on LivDet-ND,

while the performance of this feature is low on the other datasets. A possible reason

is that intensity histograms are able to capture more valuable information at the spe-

cific resolution of LivDet-ND dataset given the sensor setting of this dataset, while

on the other three datasets, it is possible that this feature requires a higher resolu-

tion to obtain more usable information under the sensor setting of these datasets. To

examine the validity of this explanation, an additional experiment is performed on

LivDet-ND dataset with all the iris regions down-sampled by a factor of 0.75. The

error rates of all the individual features on this down-sampled LivDet-ND dataset are

shown in Fig. 5.7. It can be seen that the error rates of intensity histogram based
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(a) Spatial pyramid model (b) Relational measure model

Figure 5.7: Performance of single regional features on LivDet-ND dataset down-
sampled by a factor of 0.75.

regional features increase significantly compared to that on the original LivDet-

ND dataset, and the order of the error rates becomes similar with the other three

datasets. Therefore, it can be concluded that intensity histogram based regional

features may be more effective if the iris region has a higher resolution.

Third, comparing the error rates among all the datasets, it can be found that LivDet-

ND dataset has the lowest error rate. The reason of this is the number of training

images. Compared to the other three datasets, LivDet-ND dataset has the highest

number of training images. Due to the high dimensionality of the proposed regional

features, a sufficient number of training images will lead to better trained classifiers

and hence better performance.

Finally, it can be seen that the error rates on LivDet-Clarkson dataset are higher

than the others. A possible reason is that the images in LivDet-Clarkson dataset are

more noisy. The images in this dataset have varying focus levels, and it introduces

more variation into extracted features. For LivDet-Clarkson dataset, more training

samples may be needed to train suitable classifiers to improve the performance.



5.3. Experiments 92

5.3.3 Comparison between regional features and low-level

features

The proposed regional features are constructed based on low-level features. Addi-

tional to the information in low-level features, regional features seek the high-level

feature distribution information. Therefore, it is necessary to investigate the effect

of such high-level feature distribution information in iris liveness detection. In this

subsection, this investigation is made by comparing between the performance of

regional features and low-level features.

Specifically, given a low-level feature, comparisons are made among the following 4

features: (1) the original low-level feature (referred to as Original feature) extracted

from the whole iris region without using the method described in Section 5.2; (2) spa-

tial pyramid-based regional feature (referred to as Spatial pyramid) constructed us-

ing this low-level feature, using the spatial pyramid model described in Section 5.2.2;

(3) relational measure-based regional feature with top 1 lowest classification error

rate in 10-fold cross-validation on training data (referred to as Relational measure

top 1); the proposed relational measure model has 24 designed kernels as described

in Section 5.2.3; it leads to 24 relational measure-based regional features given a

particular low-level feature; cross-validation is performed on the training data, and

the feature with the lowest error rate among the 24 regional features is selected and

its classification error rate on the test data is used for comparison; it represents

the performance of the best relational measure-based regional feature that can be

selected using training data only; (4) relational measure-based regional feature with

minimum error rate on the test set (referred to as Relational measure min); due to

the difference between training and test data, the feature selected in (3) may not be

optimal on the test set; therefore, Relational measure min is used as a reference for

the performance of the best relational measure-based regional feature.

The error rates of the above described features on all the datasets are reported in
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Figure 5.8: Comparison of the performance between low-level features and regional
features constructed based on each low-level feature on all the datasets.

Fig. 5.8. In each subfigure, the six low-level features are referred to as F1 to F6,

and the error rates are grouped based on the low-level feature type. For the three

NIR datasets, the training and test partitions in LivDet-Iris 2013 competition are

used. For the colour dataset, the training and test partitions in MobILive 2014

competition are used.

It can be seen from Fig. 5.8 that the spatial pyramid-based regional features have

better performance compared to the original low-level features on all the datasets.

Also, relational measure-based regional features generally lead to an improved per-

formance in comparison to the original low-level features. The exceptions are F4

(intensity correlogram) on LivDet-Warsaw and MobBIOfake datasets. Possible rea-
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son are: (1) some images in LivDet-Warsaw dataset have a low contrast in iris

region and (2) the iris region in MobBIOfake dataset has a low resolution. Because

of these factors, the intensity correlograms in local regions include little informa-

tion: for the region with low contrast, the corresponding intensity correlogram will

concentrate on only few bins; for the region with a low resolution, there are too few

pixels with a fixed distance. Little information in low-level features further leads to

degraded information of high-level feature distribution in the constructed regional

features based on relation measure model, thus the performance of the corresponding

regional features suffers.

Also, it is found that on all the datasets, Relational measure top 1 generally has a

higher error rate than Relational measure min. It means that the regional feature

selected by cross-validation on the training data are often not the optimal choice

for the test data. The possible reason is insufficient training data. Since regional

features usually have a high dimension, more training data are required for a more

accurate feature selection.

Finally, the performance of some original low-level features (like F1, F5 and F6) in

this experiment is lower than that reported in [62,109]. Possible reasons are analysed

as follows.

First, the method proposed in this chapter does not concentrate on optimizing the

parameters. For example, SVM has a lot of types, and the proposed method uses

the one in [122] due to its reported effectiveness for image classification, rather than

test all the SVMs and select the best one; LBP has a lot of variations as studied

in [58,126], but the proposed method simply uses the most general 8-neighbour form.

The method in this chapter does not target optimal parameter setting, because

it focuses on investigating the effect of regional features exploiting the high-level

feature distribution information of low-level features for iris liveness detection, rather

than finding the best performance of low-level features which has been well studied

in [62,109], or seeking the best classifier.
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Second, the method proposed in this chapter does not preprocess the image. Ac-

cording to [109], preprocessing is able to improve the performance on MobBIOfake

dataset. In the experiment of this chapter, the preprocessing method described

in [109] is tested. It is found that this preprocessing is effective for MobBIOfake

dataset but not for the other three NIR datasets. Although some other preprocess-

ing methods are possible to be able to improve the performance on NIR datasets, the

proposed method directly operate on the original images considering the generality

of the method.

Third, iris segmentation error will lead to a higher error rate. It can be seen in

Fig. 5.1 that, in this chapter, feature extraction is based on the output of iris seg-

mentation stage. A less accurate iris segmentation results that the features are

extracted from inaccurate regions. It induces outliers in the feature space, hence

leading to a drop of accuracy. Although the method in [62] performs no segmen-

tation and the result is promising, it is found that, on LivDet-Clarkson dataset,

iris segmentation contributes significantly to the performance of regional features.

A possible reason is that [62] assumes that the background is generally static and

it has little influence on the relevant statistics in extracted features, but this as-

sumption does not hold for LivDet-Clarkson dataset, due to the varying focus of the

images in this dataset.

To validate the influence of the preprocessing and segmentation error, experiments

are conducted on LivDet-Warsaw, LivDet-ND and MobBIOfake datasets using some

meta-information included in these datasets. For LivDet-Warsaw and LivDet-ND,

to eliminate iris segmentation error, features are extracted from the iris region in-

dicated in the meta-information provided in the two datasets, instead of using the

iris segmentation step in Fig. 5.1. For MobBIOfake, since the fake images are pro-

duced by printing which influences the whole image, features are extracted from the

whole iris image to eliminate segmentation error. Also, the preprocessing in [109]

is adopted for MobBIOfake, since this preprocessing is reported to lead to an im-
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proved performance on this dataset. The results of these experiments are reported

in Fig. 5.8, and the features extracted with meta-information are referred to as F1*

to F6*. Similar experiment is not conducted on LivDet-Clarkson dataset, since this

dataset does not include relevant meta-information.

In Fig. 5.8, by comparing the error rates between the methods with and without

using meta-information, it can be seen that using meta-information generally leads

to an improved performance for most regional features. It means that the above

mentioned factors are able to influence the performance. Also, regional features still

have a generally better performance in comparison to the original low-level features.

In summary, it is shown that, (1) when all other factors like iris segmentation,

preprocessing and classifier type fixed, regional features lead to a generally better

performance in comparison to the corresponding low-level features; (2) by using

meta-information, the performance can be significantly improved, and the regional

features still lead to an generally improved performance in comparison to the original

low-level features.

5.3.4 Effect of score-level fusion

This subsection investigates the effect of score-level fusion. Due to the high di-

mensionality of proposed regional features, different partitions of training and test

samples are used for this analysis. More samples are assigned for training to better

train the classifiers to produce more reliable classification responses. Specifically, the

following partitions are used: 1150 training and 206 test for LivDet-Clarkson; 1172

training and 495 test for LivDet-Warsaw; 3000 training and 1200 test for LivDet-ND;

1000 training and 600 test for MobBIOfake. Each dataset is randomly partitioned

for 100 times using the above number of training and test samples. For each specific

partition, the top 3 features are found by 10-fold cross validation on the training

samples. Then, the classifier responses of the top 3 features on the test samples are
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Table 5.2: Results of score-level fusion (error rate)

Dataset top 1 top 2 top 3 fusion
LivDet-Clarkson 2.71% 2.62% 2.85% 2.43%
LivDet-Warsaw 1.08% 1.04% 1.07% 1.05%

LivDet-ND 0.41% 0.81% 0.80% 0.41%
MobBIOfake 4.48% 4.90% 4.78% 2.40%

fused using Eqn. 5.5. The first 50 random partitions are used to learn the weights

in Eqn. 5.5, and the last 50 random partitions are used to test the performance of

score-level fusion. Tab. 5.2 reports the mean classification error rates of the top 3

features and score-level fusion on the last 50 random partitions of each dataset.

It can be seen from Tab. 5.2 that the effect of score-level fusion varies on different

datasets. Compared to the top 1 feature found by cross-validation, the score-level

fusion achieves the largest improvement on MobBIOfake dataset especially. This ob-

servation demonstrates that score-level fusion is effective for colour printouts. Also,

an improvement is achieved on LivDet-Clarkson dataset. On the other hand, for

LivDet-Warsaw dataset, the classification error rate is similar between top 1 feature

and the fusion result, and no improvement is observed for LivDet-ND dataset. Based

on the above observations, it can be concluded that score-level fusion is effective as

a general method to improve the performance, since it leads to a performance either

better than or near to the top 1 selected feature on all the datasets.

5.3.5 Comparison with existing methods

The analysis in previous sections are based on the experimental setting in this chap-

ter, i.e. the features are extracted from the segmented iris region and the classifier in

Section 5.2.5 is used for classification. In this subsection, the proposed iris liveness

detection method based on regional features is compared to existing methods with

their own setting on feature extraction and classifier.

This comparison adopts the partition of training and test samples in LivDet-Iris
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2013 [105] and MobILive2014 [110] competitions. For the proposed method, the

top 3 features and the corresponding weights for score-level fusion are obtained by

cross-validation on the training samples.

The first comparison is made with the results reported in the above competitions. It

includes the performance of all the methods (ATVS, Federico, Porto) in LivDet-Iris

2013 competition on LivDet-Clarkson, LivDet-Warsaw and LivDet-ND datasets, and

the performance of the winning method (IIT-Indore) in MobILive2014 competition

on MobBIOfake dataset.

Note that the comparison to the competition results is not fully fair, since, in these

competitions, the test data is inaccessible. However, it is reasonable to make the

comparison, because, in this comparison, the experimental configuration is very close

to the competitions. The algorithms take an input image and produce a decision

with pre-learned parameters using the same training data to the competitions.

The proposed method is also compared with state-of-the-art local descriptor (LD)

in [62]. Two local descriptors are selected, LPQ and SID. The reason of choosing

LPQ and SID is that, as reported in [62], they are top features with independent

quantisation and joint quantisation, respectively. On each dataset, the lowest error

rate between LPQ and SID is reported to represent the best performance of local

descriptors. For MobBIOfake dataset, the preprocessing in [62] is applied before

feature extraction.

Finally, two error rates are reported for the proposed regional features. The first

error rate (referred to as RF) is the result of the proposed method based on regional

features as shown in Fig. 5.1. RF does not use the preprocessing, and it extracts

features within the segmented iris region. Therefore, this error rate represents the

error of the whole system in Fig. 5.1 for iris liveness detection. The second error

rate (referred to as RF*) is the lowest error rate achieved by regional features.

It reflects the error of the proposed regional features only, with the other errors
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Table 5.3: Results of comparisons with other methods (error rate)

Method LivDet-Clarkson LivDet-Warsaw LivDet-ND MobBIOfake
ATVS 43.74% 17.07% − −

Federico 24.49% 11.00% 19.08% −
Porto 15.30% 8.55% − −

IIT Indore − − − 0.25%
LD 10.79% 0.00% 0.00% 0.00%
RF 7.87% 6.15% 0.08% 1.50%
RF* 8.02% 0.00% 0.08% 0.00%

induced by other components like iris segmentation and feature selection minimized.

Specifically, to eliminate iris segmentation error, for LivDet-Warsaw and LivDet-ND

datasets, regional features are extracted within the iris region indicated in the meta-

information; for MobBIOfake dataset, regional features are extracted from the whole

image (it is reasonable since the spoofing type of printout will influence the whole

image). In terms of preprocessing, the method in [109] is applied to MobBIOfake.

To minimize the error of feature selection, among the error rates achieved by all

the regional features, the lowest one is used as the second error rate. Note that,

for LivDet-Clarkson dataset, since it does not have relevant meta-information, the

second error rate of this dataset is simply the minimum error rate of regional features

extracted from the iris region segmented by the method in 5.2.1.

Tab. 5.3 shows the classification error rates of all the methods on all the datasets.

Investigating the performance of RF*, it can be seen that RF* performs better

than the methods in LivDet-Iris 2013 (ATVS, Federico, Porto) and MobILive2014

(IIT Indore) competitions. Also, the performance of RF* is better than LD on

LivDet-Clarkson dataset, and it is comparable to LD on the other datasets. This

result shows that, on three of the four datasets used in the experiment (LivDet-

Warsaw, LivDet-ND, MobBIOfake), the proposed regional feature based iris liveness

detection method is able to achieve a comparable performance to state-of-the-art

methods, if the error induced by iris localisation, preprocessing and feature selection

is minimized; on a more noisy dataset (LivDet-Clarkson), the proposed method is
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able to achieve a better performance compared to state-of-the-art methods, even

with some error induced by the above three components (note that LivDet-Clarkson

is a more noisy dataset where the images have varying focus, and this dataset does

not include meta-information on iris position).

However, it is observed that RF has generally higher error rates than RF*. This is

because of the combination of three factors: iris segmentation error, preprocessing,

and feature selection error. As shown in Section 5.3.3, iris segmentation error and

preprocessing influence the performance of regional features. Furthermore, in the

proposed method, the top 3 features selected for fusion based on the training data

may not include the best regional feature for the test data. Therefore, although the

fusion leads to a lower error rate than each selected feature, the performance may

be still lower than the best feature on the test data.

Finally, it is found that, compared to LD which achieves the best performance

among the comparison methods other than the proposed one, the proposed regional

feature based method achieves the largest improvement on LivDet-Clarkson dataset,

although this dataset does not include the meta-information about the iris position.

A possible reason is that LivDet-Clarkson dataset includes images with multiple

focus levels and hence it is more noisy; in this dataset, the proposed regional features

are able to capture more distinguishing information than the other methods, even

with segmentation error in a few images, thus achieving better performance. In

other words, the experimental results show that the proposed method is preferable

for the dataset with heavier noise.

In summary, the following conclusions can be drawn based on all the experimental

observations in Section 5.3. First, local descriptor based regional features perform

generally better than intensity based regional features. Second, regional features

are able to achieve a generally better performance in comparison to low-level fea-

tures. Third, the score-level fusion of regional features achieves a generally improved

performance compared to the best regional feature sought by the feature selection.
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Four, in comparison to state-of-the-art methods, regional feature based method is

able to achieve a comparable performance on three of the four datasets used in

the experiment (LivDet-Warsaw, LivDet-ND and MobBIOfake), with accurate iris

localisation, proper pre-processing and reliable feature selection; in a dataset with

heavier noise (LivDet-Clarkson), regional feature based method is able to achieve

better performance than state-of-the-art methods, even with some error induced by

the above three components.

5.4 Summary

In this chapter, regional features are proposed for iris liveness detection. Regional

features exploit the information not only from low-level features, but also from

high-level feature distribution. Two models are exploited to express the high-level

feature distributions: a spatial pyramid model capturing the feature distribution in

regions with varying size, and a relational measure model calculating the feature

distribution in regions with varying shape. The constructed regional features based

on the two models are fused at the score-level to make the final decision. Exper-

iments are conducted on four benchmark datasets for iris liveness detection. The

results show that regional features are able to achieve a generally improved perfor-

mance compared to low-level features. Also, it is demonstrated that, in three of the

four datasets used in the experiment, regional feature based iris liveness detection

method is able to achieve a comparable performance to state-of-the-art methods

with accurate iris localisation, proper preprocessing and reliable feature selection;

in a dataset with heavier noise, regional feature based method is able to achieve

better performance than state-of-the-art methods, even with some error induced by

the above three components. Future work may consider to develop more accurate

iris localisation and feature selection methods, to enable regional features to achieve

the best performance.
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Also, another limitation of the proposed method is that the trained classifier remains

a “black box”: it is difficult to study what feature the classifier has learned. This is

a common problem in research for image classification, and it can be addressed in

future research effort.



Chapter 6

Signal-level information fusion us-

ing sparse-error low rank matrix fac-

torisation

Part of this chapter has been adapted from the journal paper [J8] (published) as in

the List of Publications.

6.1 Introduction

The main challenge for less constrained iris recognition is the noise and degradations

in iris captures. In less constrained environment with the subject at-a-distance and

on-the-move, the captures usually suffer from a low resolution, together with some

noise like motion blur, specular reflection, off-angle, etc (in the rest of this chapter,

the term ‘noise’ is used to refer to all these noise and degradations, following most

literature on less constrained iris recognition, like [18, 19, 21–23, 51, 98]). These

noise significantly deteriorate iris recognition performance [32]. Therefore, a critical

problem of less constrained iris recognition is how to overcome the influence of noise

in the iris captures.

103
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Figure 6.1: Flowchart of the proposed method for iris liveness detection.

In this chapter, a novel signal-level information fusion method is proposed for less

constrained iris recognition to mitigate the noise in less constrained iris captures.

This method is based on low rank approximation (LRA). Given multiple noisy cap-

tures of the same eye, the method assumes that: (1) the potential noiseless images

lie in a low rank subspace; (2) the noise is spatially sparse. Based on these assump-

tions, a LRA of noisy captures is sought to separate the noiseless images and noise

for information fusion.

This chapter proposes a novel sparse-error low rank matrix factorisation (SE-LRMF)

model to perform LRA. The flowchart of the proposed method based on SE-LRMF

is shown in Fig. 6.1. Firstly, given multiple iris captures of the same eye, a low

rank component and a sparse error component are computed using SE-LRMF. The

low rank component estimates the clear iris pixels, and the sparse error component

is viewed as noise pixels. Then, the low rank component (clear iris pixels) and

sparse error component (noise pixels) are considered individually for signal-level

fusion. The low rank component is fused straightforwardly, while the sparse error

component is utilised to perform a weighted fusion of the original iris captures. Such

a scheme leads to two fused images: one using the low rank component, the other

one using the sparse error component and original iris captures. Finally, two iris

codes are extracted from the two fused images, and the two iris codes are combined

to produce a single iris code as the final fusion result.

Experiments are conducted on three benchmark datasets. The results demonstrate

that the proposed signal-level fusion method is able to achieve a generally improved
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iris recognition performance in less constrained environments, in comparison to ex-

isting iris recognition algorithms, especially for the iris captures with heavy noise

and low quality.

The remainder of this chapter is organised as follows. Section 6.2 revisits the re-

lated works to information fusion in iris recognition, and low rank approximation.

Section 6.3 presents the proposed signal-level fusion method. Section 6.4 reports

the results of experimental analysis and comparisons. Section 6.5 summarises this

chapter.

6.2 Related work

6.2.1 Information fusion in iris recognition

Existing information fusion methods for iris recognition can be categorized into

score-level fusion, signal-level fusion and feature-level fusion. Given a set of gallery

iris codes and a set of probe iris codes, score-level fusion produces one matching

score by fusing the matching scores between all the combinations of gallery and

probe iris codes. [26] reports the performance of minimum fusion and mean fusion

of matching scores on NIR iris videos.

Signal-level fusion combines multiple iris captures to be one image, and iris codes

are extracted from the fused image for matching. In [26], Hollingsworth et al. fuse

iris images in video captures by mean and median fusion. As reported in [26], signal-

level fusion leads to better performance than no fusion, and mean fusion performs

better than median fusion. The mean fusion method in [26] essentially assigns equal

importance to all the pixels in all the iris captures. Different from this, weighted

mean fusion methods are proposed in [27, 28]. The weights are calculated based on

image quality measures. The iris captures with higher quality are assigned higher
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weights. In [27], Nguyen et al. use focus score as quality measure. In [28], a better

performance is achieved by combining multiple quality scores to produce a quality

measure. The considered quality scores include focus, off-angle, illumination vari-

ance and motion. Compared to score-level fusion, signal-level fusion has significant

advantage in speed and memory cost. However, existing signal-level fusion methods

directly use the original iris captures for fusion. In less constrained environment, the

fusion results are likely to be influenced by the noise in original captures, although

the noise level can be mitigated by fusion.

Feature-level fusion aims to estimate the iris code of a clear and high-resolution

iris image using the iris codes extracted from multiple noisy and low-resolution iris

captures. The key step of feature-level fusion is to learn the relationship between

the iris codes of noiseless high-resolution iris images and noisy low-resolution iris

images. Nguyen et al. [29] formulate feature-level fusion in a Bayesian framework

using eigen-iris extracted by principal component analysis (PCA) as features, and it

can be solved by maximum a posteriori estimation approach. In [30,128], Nguyen et

al. demonstrate that the similar Bayesian framework can be adapted to Gabor

feature domain which is the most widely used feature in iris recognition. Liu et

al. [31] propose to use a Markov network model for feature-level fusion. This model

considers the high resolution iris code as the hidden node of a Markov network, and

it is computed using multiple low resolution iris codes served as the observations.

Feature-level fusion performs generally better than score-level and signal-level fusion,

since the features (iris codes) are more directly related to the performance of iris

recognition. However, most feature-level fusion methods require a learning stage to

build the relationship between high resolution and low resolution features, and such

relationship can be data dependent. It influences the generality of the algorithm in

real applications. Also, similarly to the existing signal-level fusion methods, most

of current feature-level fusion methods use the iris codes extracted from the original

noisy iris captures for fusion. As a result, the fusion result is still influenced by the



6.2. Related work 107

noise embedded in the feature space.

Note that the algorithms in [27, 28, 30, 128] are called super-resolution in these pa-

pers. However, differently from other iris super-resolution methods like [129, 130],

the key step in [27, 28, 30, 128] is the fusion of information in multiple iris images,

rather than the estimation of high-resolution texture from low-resolution observa-

tions. Therefore, this chapter considers them as information fusion methods.

6.2.2 Low rank approximation (LRA)

LRA is a powerful method to seek the potential noiseless structures of highly-

correlated data from noisy observations. Given multiple noisy observations, a basic

assumption of LRA is that the potential noiseless data lie in a low rank subspace.

Based on this assumption, the LRA of noisy observations is sought as the estima-

tion of noiseless data. Existing LRA algorithms can be categorized into low rank

decomposition [131–136] and low rank matrix factorisation [87,137–143]. Low rank

decomposition represents the original noisy observations as the sum of a low rank

component and an error component. The low rank component estimates the po-

tential noiseless data, while the error component models the noise which is usually

assumed to be spatially sparse. The representative algorithm of low rank decompo-

sition is robust principal component analysis (RPCA) [136]. Let Y ∈ Rm×n be a

data matrix with n observations (each column is an observation). RPCA seeks the

low rank approximation of Y as follows:

arg min
A,E

‖A‖∗ + λ‖E‖1 s.t. Y = A+E (6.1)

where A ∈ Rm×n is the low rank component and E ∈ Rm×n is the error component.

‖•‖∗ is the nuclear norm which calculates the sum of the singular values of •. Mini-

mizing ‖A‖∗ leads to a minimisation on the rank ofA. ‖•‖1 calculates the sum of the

absolute value of all the elements in •. Minimizing ‖E‖1 induces sparsity in E. The
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main advantage of RPCA is its convexity. The convexity enables to solve Eqn. 6.1 by

tractable convex optimisation techniques like interior point method [134], proximal

gradient method [131, 133], augmented Lagrange multiplier [132, 136] and random

projection [135]. However, most of the algorithms to solve Eqn. 6.1 require to com-

pute a singular value decomposition (SVD) in each iteration. It is computationally

expensive.

Differently from low rank decomposition minimizing the nuclear norm to seek a low

rank solution, low rank matrix factorisation approximates the observation matrix

Y by the product of two low rank matrixes. It is formulated as follows:

arg min
U ,V

∥∥W ⊗
(
Y −UV T

)∥∥ (6.2)

where U ∈ Rm×r and V ∈ Rn×r are two low rank matrix (r � m,n), ⊗ is element-

wise multiplication operator, and W ∈ {0, 1}m×n is a binary weight matrix indi-

cating missing entries in Y . An element in W is assigned 0 if the corresponding

entry in Y is missing, otherwise it is assigned 1. Since both U and V T are low rank

matrix, their product is still a low rank matrix and it forms the LRA of Y .

Although the solution of Eqn. 6.2 is not unique and it is also dependent on the struc-

ture of W , many research have shown that effective solutions can be computed with

the norm in Eqn. 6.2 being Frobenious norm [138–141], `1-norm [137,142], rotational

invariant R1-norm [143], or maximizing the `1 dispersion of Y (i.e. seeking U that

maximizes
∥∥UTY

∥∥
1
) [87]. Especially, in recent research, Meng et al. [137] demon-

strate that with `1-norm, Eqn. 6.2 can be efficiently solved by a cyclic weighted

median filtering algorithm. As reported in [137], this method achieves a more ro-

bust reconstruction of noiseless signals in comparison to RPCA and some other

representative algorithms of low rank matrix factorisation.

However, compared to low rank decomposition, low rank matrix factorisation does

not explicitly formulate the noise component (i.e. E in Eqn. 6.1). The noise ele-
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ments can be indicated in W , but such weighting scheme heavily relies on the prior

of noise positions which are sometimes unavailable in real applications. As a result,

the noise in the observations always influences the estimation of U and V in the

procedure of solving Eqn. 6.2, although such influence can be mitigated by using

some more robust norms, like the above mentioned `1-norm, rotational invariant

R1-norm, and `1 dispersion of Y .

6.3 Methodology

This section presents the proposed signal-level fusion method for less constrained iris

recognition. Firstly, the proposed SE-LRMF model to seek a low rank approximation

is described. Given multiple iris captures, SE-LRMF decomposes them into a low

rank component expressing the potential noiseless images and an error component

estimating the noise. Then, the signal-level fusion method based on the result of

SE-LRMF is detailed. It consists of a low rank mean (LRM) fusion method using the

low rank component and an error weighted mean (EWM) fusion method employing

the error component. Finally, the code level combination method of the results of

LRM and EWM is presented.

6.3.1 Sparse-error low rank matrix factorisation (SE-LRMF)

Given multiple noisy captures of the same eye, the proposed SE-LRMF assumes

that the potential noiseless images lie in a low rank subspace, due to the inherent

stability of iris patterns. Similar to the notations in Section 6.2.2, Y ∈ Rm×n is

used to denote a data matrix with each of its column being an unwrapped iris

image. U ∈ Rm×r and V ∈ Rn×r are used to denote the two matrix forming the

factorisation of Y , and E ∈ Rm×n is used to denote the error component which
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models the noise in the iris images. The SE-LRMF model is formulated as follows:

arg min
U ,V ,E

1

2

∥∥Y −UV T −E
∥∥2

F
+ λ‖E‖1 (6.3)

where λ is a penalty parameter. Eqn. 6.3 includes two terms. The first term is

a reconstruction fidelity term. It represents the noisy iris captures by the sum of

the noiseless images (low rank component UV T) and noise (error component E).

The second term is a sparsity regularisation on the error component. Following

RPCA [136], SE-LRMF assumes that the noise is spatially sparse, and `1-norm

is used to induce sparsity. The model has two parameters: r � m,n is one of

the dimensions of U and V , controlling the rank of approximation; λ is a scalar

balancing between the reconstruction error and the sparsity.

Differently from traditional low rank matrix factorisation models in Eqn. 6.2, SE-

LRMF explicitly formulates the noise to suppress its influence. Also, compared to

Eqn. 6.2, Eqn. 6.3 does not include W which is the weight matrix indicating missing

entries. The reason is three-fold. First, althoughW can be constructed based on the

results of iris segmentation, the segmentation errors will lead to inaccurate entries.

Even with an accurate localisation of iris, pupil and eyelids, false detections on

reflection and silhouette still induce inaccuracy. Second, including W increases the

complexity of the objective function, and it is possible to induce more computational

load. Third, experimentally, it is found that the error component E and the sparsity

regularisation on it are powerful enough to model the noise and mitigate its influence

on the estimation of U and V .

Eqn. 6.3 is not convex in U , V and E, but it is convex in one of them with the other

two fixed. Therefore, a local minimum can be sought via an alternating scheme. It

leads to a U , V -subproblem and an E-subproblem.

U , V -subproblem. Let Ỹ = Y −E. With error component E fixed, minimizing
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Eqn. 6.3 leads to the following problem:

arg min
U ,V

∥∥∥Ỹ −UV T
∥∥∥2

F
(6.4)

The solution of Eqn. 6.4 is not unique. By fixing one of U and V and setting the

partial derivative of the objective function with respect to the other one to zero, the

objective function can be descended by updating U and V as follows:

V = Ỹ TU
(
UTU

)−1
(6.5)

U = Ỹ V
(
V TV

)−1
(6.6)

E-subproblem. Let Ŷ = Y −UV T. With U and V fixed, minimizing Eqn. 6.3

leads to the following problem:

arg min
E

1

2

∥∥∥Ŷ −E∥∥∥2

F
+ λ‖E‖1 (6.7)

According to [144], the solution of Eqn. 6.7 can be obtained by performing soft-

thresholding operation on Ŷ :

E = sign
(
Ŷ
)

max
(∣∣∣Ŷ ∣∣∣− λ, 0) (6.8)

where sign (•) is the sign function. All the operations in Eqn. 6.8 are element-wise.

It can be seen that, in such an alternating scheme, U and V forming the low rank

component are computed based on noise-eliminated signals Ỹ = Y − E. In other

words, with the explicitly formulated error component E, the proposed SE-LRMF

is able to suppress the influence of noise on low rank matrix factorisation without

relying on any specific robust norms or weight matrix based on the priors of noise.

In the implementation, the order of alternation is Eqn. 6.5, Eqn. 6.6, Eqn. 6.8.
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Algorithm 1: Solving SE-LRMF

Input : matrix of unwrapped iris images Y ; parameter λ
1 Initialisation: random U0, E0 = 0, i = 0;
2 while not converge do
3 compute V i+1 using Y , Ei, U i based on Eqn. 6.5;
4 compute U i+1 using Y , Ei, V i+1 based on Eqn. 6.6;
5 compute Ei+1 using Y , U i+1, V i+1 based on Eqn. 6.8;
6 i← i+ 1;

7 end
Output: U ,V ,E

Accordingly, U and E need to be initialised in the first iteration. Experimentally,

it is found that although Eqn. 6.3 has multiple local minimum and the solution

depends on the starting point, a simple random initialisation of U as used in [137]

is able to achieve a generally good performance. E is initialised to be a matrix of

zeros. The whole algorithm to solve Eqn. 6.3 is summarised in Algorithm 1.

Convergence analysis. The algorithm in Algorithm 1 is guaranteed to converge to

a local minimum. This is demonstrated as follows. Let f (U ,V ,E) be the objective

function in Eqn. 6.3. Let V i be the V obtained in the ith iteration. Let U i be the

U obtained in the ith iteration. Let Ei be the E obtained in the ith iteration. It

can be obtained that:

(1) alternating between U , V -subproblem and E-subproblem leads to a sequence

of monotonically decreasing objective function values. As a proof, f (U i,V i,Ei) ≤

f (U i,V i,Ei−1) ≤ f (U i−1,V i,Ei−1) ≤ f (U i−1,V i−1,Ei−1) can be obtained as

follows:

f
(
U i−1,V i,Ei−1

)
= arg min

V
f
(
U i−1,V ,Ei−1

)
≤ f

(
U i−1,V i−1,Ei−1

)
(6.9)

f
(
U i,V i,Ei−1

)
= arg min

U
f
(
U ,V i,Ei−1

)
≤ f

(
U i−1,V i,Ei−1

)
(6.10)

f
(
U i,V i,Ei

)
= arg min

E
f
(
U i,V i,E

)
≤ f

(
U i,V i,Ei−1

)
(6.11)
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(2) f (U ,V ,E) is lower bounded (f (U ,V ,E) ≥ 0).

Therefore, according to above (1) and (2), the convergence of Algorithm 1 is guar-

anteed. Furthermore, since f (U ,V ,E) is not convex in U , V and E, it can be

obtained that the Algorithm 1 converges to a local minimum.

After obtaining U , V and E, a matrix A = UV T can be constructed as the low

rank component considered as noiseless iris images, and the error component E is

directly used as the estimated noise. Some example results of SE-LRMF are shown

in Fig. 6.2(a) to Fig. 6.2(c). It can be seen that given the noisy iris captures in

Fig. 6.2(a), the low rank components in Fig. 6.2(b) mainly include the potential

stable structure of the iris, while the error component in Fig. 6.2(c) accurately mod-

els noise like reflections. Note that part of eyelids and silhouette are still contained

in the low rank component. This is because the pixels in some regions are always

occupied by eyelids and silhouette, and there lacks clear iris information for these

regions. Also, it can be found that some clear iris texture is possible to be detected

as noise. An example is the second image from the top. It can be seen that, in

this image, some clear iris textures in the middle part at the horizontal direction

are included in the error component. The reason is that these local textures in this

image are visually different from the textures in other images at the same position.

It leads to information loss. This problem of information loss will be handled at the

signal-level fusion stage.

6.3.2 Signal-level fusion

Given multiple noisy iris captures of the same eye, the SE-LRMF model proposed

in Section 6.3.1 can be used to seek a low rank component A as the noiseless images

and an error component E as the noise. In this subsection, A and E are utilised

individually for signal-level fusion. It leads to a low rank mean (LRM) fusion and

an error weighted mean (EWM) fusion.
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(a) (b)

(c)

LRM

EWM
(d)

Figure 6.2: Examples of the results of SE-LRMF based signal-level fusion. (a) The
original unwrapped iris captures from the same eye; (b) the low rank component
(noiseless iris images) of the images in (a) sought by SE-LRMF; (c) the error com-
ponent (noise) of the images in (a) sought by SE-LRMF; (d) the fusion result using
low rank mean (LRM) fusion and error weighted mean (EWM) fusion.
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Low rank mean (LRM) fusion. Since A is viewed as a matrix of noiseless iris

images, the images inA can be fused directly by mean fusion. That is, a fused image

is produced by calculating the mean of the images corresponding to each column of

A. This fusion method is named low rank mean, since it is the mean fusion on the

low rank component sought by SE-LRMF.

However, simple mean fusion on noiseless component is not enough. It is found that

although the influence of noise is mitigated in the low rank component A, some

images in A suffer from texture loss. The reason is that, in some cases, some local

textures in one image are visually different from the textures in the other images at

the same position. Consequently, these textures are possible to be excluded from

the low rank componentA and considered as noise (see the example discussed at the

end of Section 6.3.1). It results in information loss and influences the performance

of iris recognition using LRM fusion. Therefore, an error weighted mean (EWM)

fusion method is proposed to mitigate this problem. EWM fusion utilises all the

information in the original images. It mitigates the influence of noise by a weighting

scheme based on the error component E sought by SE-LRMF.

Error weighted mean (EWM) fusion. Recall that the matrix of original iris

captures is denoted by Y ∈ Rm×n with each of its column being an observation.

Let yi ∈ Rm be the ith column of Y . The proposed EWM fusion is formulated as

follows:

yf = ω1 ⊗ y1 + ω2 ⊗ y2 + · · ·+ ωn ⊗ yn (6.12)

where yf ∈ Rm denotes the fused image, ⊗ is element-wise multiplication operator,

ωi = [ωi1, ω
i
2, ..., ω

i
m]T ∈ Rm is a vector of weights corresponding to yi. The weights

in ω1,ω2, ...,ωn satisfy that, for any arbitrary j ∈ [1,m],
∑n

i=1 ω
i
j = 1. It means

that the weights on the same position of all the images have a sum of 1.

Differently from the global weighting scheme in the existing weighted mean fusion

methods [27,28], EWM uses a pixel-wise weighting scheme. The weights are assigned
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based on the individual reliability of each pixel; the weights of different pixels in the

same image can be different. Compared to the existing global weighting method,

EWM has a more flexible and finer assignment of the weights. Therefore, it is

expected that EWM is able to better preserve usable information while suppressing

noise.

Given Eqn. 6.12, the key problem is how to compute the weights in ω1,ω2, ...,ωn.

In this chapter, these weights are calculated based on the error component E ob-

tained by SE-LRMF model. The idea is straightforward: E is considered as the

estimation of noise; for a pixel, the higher the noise level, the lower the reliability

of the information in this pixel; hence, the weights should be inversely proportional

to |E| ∈ Rm×n. Based on this idea, the weights are calculated as follows.

Firstly, the elements in |E| are normalised to between 0 and 1 by:

E
′
=

|E| − fmin (|E|)
fmax (|E|)− fmin (|E|)

(6.13)

where E
′

denote the normalised matrix of |E|, fmin (•) and fmax (•) find the mini-

mum and maximum value in a matrix, respectively.

Then, a weight matrix W
′ ∈ Rm×n is calculated by:

W
′
= 1−E′ (6.14)

Thus, the elements in W
′

are inversely proportional to |E|.

Finally, each row of W
′

is normalised to have a sum of 1. The columns of the

normalised W
′

are used as ω1,ω2, ...,ωn. The reason is that each column of E cor-

responds to the estimated noise in an iris capture, so each column of the normalised

W
′

can be considered as the weights corresponding to each image.

Iris mask production. The final problem in signal-level fusion is how to produce
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an iris mask for the fused image. This iris mask indicates the detected noise like

specular reflection. In this paper, a simple AND rule is adopted: given a set of iris

captures, a pixel is masked as noise if it is detected as noise in the iris segmentation

phase of any individual iris captures. Note that such a scheme is possible to lead to

information loss, since it is possible to eliminate the pixels successfully reconstructed

in the low rank component. A better solution is to seek a threshold based on

the times a position is detected as noise in all the iris captures. However, it is

experimentally found that this AND rule is sufficient to obtain a well performance.

Also, it avoids the selection of a threshold which might be data dependent.

Example results of LRM and EWM are shown in Fig. 6.2(d). Note that, despite of a

similar visual appearance, the results of these two methods contain the information

sought from different aspects: LRM eliminates all the estimated noise at a cost of

information loss; EWM utilises all the information in the original iris captures while

suppressing the estimated noise.

6.3.3 Code level combination

The result of either LRM or EWM fusion is not fully noise-free. For LRM, it is

possible to fail to estimate the noiseless information when a position is consistently

occupied by noise in most of the images. As for EWM, it utilises the original iris

captures for fusion. The weighting scheme of EWM is able to mitigate the noise,

but not fully eliminate it. Therefore, a code level combination method is proposed

to further suppress the noise in the results of LRM and EWM.

This code level combination method is based on the inherent stability of iris patterns:

assuming that there are some fully noise-free iris captures of the same eye, the iris

codes extracted from these captures should be highly consistent. Based on this, more

reliable bits in iris codes can be sought via the bit consistency between the iris codes

extracted from the LRM and EWM results. In other words, a bit is considered more
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reliable if it is consistent between the iris codes extracted from LRM and EWM

results. By only preserving these more reliable bits for iris matching stage, it is

expected that an improved performance can be achieved. Essentially, the idea is

similar to the iris weight map methods [22,97,98].

Specifically, given multiple noisy iris captures of the same eye, two images are ob-

tained via the proposed signal-level fusion method, one using LRM and the other

one using EWM. Two iris codes are extracted from the two images. The two iris

codes are fused by only preserving the bits that are consistent between them. This

can be simply implemented by using either one of the two iris codes as the final

iris code, and eliminating the inconsistent bits between the two iris codes in the

corresponding iris mask.

6.4 Experiment

This section presents the results of experimental analysis for the proposed signal-

level fusion method. First, the experiment setting is introduced, including datasets,

fusion setting, parameter setting and performance evaluation (Section 6.4.1). Then,

with the low rank approximation method fixed, the effect of each individual signal-

level fusion step is analysed, including low rank mean (LRM) fusion, error weighted

mean (EWM) fusion and code level combination (Section 6.4.2). Next, with the

signal-level fusion steps fixed, the performance of the propose SE-LRMF model for

low rank approximation is studied (Section 6.4.3). The performance of SE-LRMF is

compared with representative low rank approximation algorithms. After that, the

proposed SE-LRMF based signal-level fusion is compared with existing methods,

including no-fusion (Section 6.4.4), signal-level fusion (Section 6.4.5), score-level

fusion (Section 6.4.6) and other recent iris recognition algorithms (Section 6.4.7).

Finally, the influence of noise level on the performance of SE-LRMF is analysed

(Section 6.4.9).
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6.4.1 Experimental setting

Datasets. The experiments are conducted on three benchmark datasets as intro-

duced in Chapter 3: ND0405 [103], CASIAD [102] and UBIRIS2 [19]. The three

datasets cover the data captured in varying less constrained environments. ND0405

represents the iris data with a relatively lower noise level. The iris images in this

subset are captured at a wavelength inducing less noise (NIR) and a close distance,

hence with good resolution and clear iris texture, but suffering from the noise due to

real-world conditions. In this experiment, a subset with the first 15 images of each

eye is used. For the eyes with less than 15 images, all the iris images are used. Fur-

thermore, 82 images are eliminated from the subset due to too poor quality (these

images have too small iris region due to factors like heavy eyelids occlusion and large

off-angle). It leads to a ND-iris-0405 subset consisting of 9811 images from 712 eyes

to use in the experiment.

CASIAD represents the iris data with a medium noise level. The images are captured

at NIR wavelength but at a distance. As a result, the iris region has a low resolution;

the iris texture is visually less clear; the noise in this dataset is heavier than that in

ND0405. In this experiment, all captures in CASIAD are adopted, and 97 captures

are eliminated from CASIAD because of too poor quality (most of the eye regions

in these images are completely covered by specular reflection). It results a subset

with 5037 iris images from 284 eyes to use in the experiment.

UBIRIS2 represents the iris data with a relatively higher noise level. The images

are captured not only at a distance, but also in a wavelength inducing heavy noise

(visible). In the experiment, a subset with 1000 images from 171 eyes is used. This

subset was released for NICE II contest [18]. It is reasonable to use this subset

as a representative set for the data in the whole UBIRIS2 dataset, because of its

good generality. This subset was released for a public contest, and it is widely used

in many following research like [21–23, 80]. Also, due to its good generality, using
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this subset enables to roughly compare the performance of algorithms in relevant

literature. This experiment operates on the red channel of RGB colour space.

For all the datasets, the iris region is segmented using the algorithm in Chapter 4.

The failed segmentations are manually corrected. The segmented iris regions are

unwrapped using Daugman’s rubber sheet model [6, 7]. The size of unwrapped iris

image is set to 100 × 360. The unwrapped iris image is divided by a factor of 255

to normalise the intensity to [0, 1]. 1-D log-Gabor filter [15] is used to extract iris

codes.

Fusion setting. Given the above datasets, gallery and probe sets need to be con-

structed for experimental analysis of information fusion methods. This chapter

simulates the scenario where both gallery and probe images are captured in less

constrained environment, so both of them suffer from the influence of noise. Ac-

cordingly, both gallery and probe sets are constructed by fusing the information in

multiple noisy captures. Note that some research like [27,28] directly use high qual-

ity still iris images as gallery without fusion. This scenario is not adopted in this

chapter, because it is difficult to obtain high quality still iris images to construct

the gallery in some applications like surveillance or mobile device-based applica-

tions. This experiment simulates a scenario which has less requirements on the iris

image quality in both registration and iris matching phases. Under such scenario,

most existing feature-level fusion methods [30,31,128] are less applicable, since these

methods need high quality iris images to learn the relationship between low reso-

lution and high resolution features. Thus, signal-level fusion and score-level fusion

are considered in the experiment.

Based on the above simulated scenario, for signal-level fusion, the gallery and probe

sets are constructed as follows. For a specific eye, the first 5 images are fused

to produce a single gallery iris code. Then, from the remaining images of this

eye, 5 images are randomly selected and fused to produce a probe iris code. To

produce multiple probe iris codes, the above random selection and fusion based on
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the remaining images are performed multiple times. It simulates the case that, in the

iris matching phase, the captured images can be different at each time of matching.

If an eye has less than 5 images, all the images are fused to produce the gallery iris

code, and there are no probe iris codes. If an eye has less than 10 images, the first

5 images are fused to produce the gallery iris code, and all the remaining images

are fused to produce a probe iris code without random selection. The number of

images for fusion (5) is chosen so that the information included in images is enough

for fusion, while a sufficient number of probe iris codes can be produced as well.

For score-level fusion, the fusion setting is similar. The difference is that, given a

set of iris captures, instead of fusing them and producing one iris code, iris codes

are extracted from each individual iris capture to produce an iris code set. In the

matching phase, given a gallery iris code set and a probe iris code set, the final

matching score is calculated by fusing the matching scores between the iris codes in

the probe and gallery iris code sets.

Parameter setting and performance evaluation. Exclusive data are used for

parameter setting and performance evaluation. For ND0405 dataset, the first 20 eyes

are used to tune the parameters, and the remaining 692 eyes are used to evaluate the

performance. For CASIAD dataset, the first 20 eyes are used to tune the parameters,

and the remaining 264 eyes are used to evaluate the performance. For UBIRIS2

dataset, the first 19 eyes are used to tune the parameters, and the remaining 152

eyes are used to evaluate the performance.

Considering parameter setting, there are 4 parameters to be determined: r is the

rank of low rank approximation in SE-LRMF model; λ in Eqn. 6.3 is a parameter

controlling the trade-off between the reconstruction error and the sparsity of noise;

1/f0 and σ/f0 are 1-D log-Gabor parameters (see Eqn. 2.25). Based on the above

described data for parameter tuning, the setting of these parameters are reported in

Tab. 6.1. Note that the 1-D log-Gabor parameters are learned based on the noiseless

estimate of iris images obtained by the proposed SE-LRMF model.
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Table 6.1: Parameter setting on each dataset.

Dataset r λ 1/f0 σ/f0

ND0405 1 0.01 35 0.49
CASIA4 1 0.01 19 0.48
UBIRIS2 1 0.01 40 0.38

For performance evaluation of signal-level fusion, the above settings of fusion and

performance evaluation data lead to the following gallery and probe sets: 692 gallery

iris codes and 6200 probe iris codes for ND0405; 264 gallery iris codes and 5114 probe

iris codes for CASIAD; 152 gallery iris codes and 606 probe iris codes for UBIRIS2.

As for score-level fusion, the number of fused intra-class and inter-class matching

scores is exactly the same as signal-level fusion.

The performance of algorithms is examined in two tasks: identification and verifica-

tion. The identification performance is evaluated by cumulative match characteristic

(CMC), while the verification performance is evaluated by receiver operating char-

acteristic (ROC).

6.4.2 Analysis of each signal-level fusion step

As described in Section 6.3, given the low rank and error components produced by

SE-LRMF, the proposed method includes three fusion steps: low rank mean (LRM)

fusion, error weighted mean (EWM) fusion and code level combination (CLC). In

this subsection, the effect of each individual fusion step is analysed. Mean fusion

(MF) is used as the baseline, because EWM is essentially an improved mean fusion.

Fig. 6.3 shows the CMC and ROC curves of MF, LRM, EWM, CLC.

There are two main observations from Fig. 6.3. First, EWM achieves a generally bet-

ter performance than MF. This result illustrates that the proposed EWM can better

mitigate the noise in the iris captures compared to MF. Second, it can be seen that,

although the performance of LRM and EWM vary on different datasets, CLC consis-

tently leads to improved CMC and ROC curves compared to either LRM or EWM



6.4. Experiment 123

Rank

A
cc

u
ra

cy

(a) CMC, ND0405

False acceptance rate

G
en

u
in

e
 a

cc
ep

ta
n
c
e 

ra
te

(b) ROC, ND0405

Rank

A
cc

u
ra

cy

(c) CMC, CASIAD

False acceptance rate

G
en

u
in

e
 a

cc
ep

ta
n
c
e 

ra
te

(d) ROC, CASIAD

Rank

A
cc

u
ra

cy

(e) CMC, UBIRIS2

False acceptance rate

G
en

u
in

e
 a

cc
ep

ta
n

c
e 

ra
te

(f) ROC, UBIRIS2

Figure 6.3: The CMC and ROC curves to analyse each signal-level fusion step.
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on all the datasets. This observation suggests that with SE-LRMF for low rank

approximation, CLC is able to achieve an improved and more stable performance in

comparison to LRM and EWM. It validates the effectiveness of the proposed code

level combination.

6.4.3 Comparison between SE-LRMF and existing low rank

approximation algorithms

This subsection makes comparisons between the proposed SE-LRMF model and

existing low rank approximation (LRA) algorithms to study the effectiveness of SE-

LRMF in the proposed framework of signal-level fusion. The comparisons are made

by: (1) fixing the fusion steps (LRM, EWM, CLC); (2) varying the algorithm of

LRA to produce the low rank and error components used by the fusion steps.

As described in Section 6.2.2, existing LRA algorithms can be categorized into low

rank decomposition and low rank matrix factorisation. Accordingly, the comparisons

are made with a representative low rank decomposition algorithm and a representa-

tive low rank matrix factorisation algorithm. In terms of low rank decomposition, the

comparisons are made with robust principal component analysis (RPCA) in [131],

since RPCA is currently one of the most widely used algorithms for low rank de-

composition. As for low rank matrix factorisation, the comparisons are made with

the cyclic weight median algorithm with `1 error term proposed in [137] (referred

as L1-LRMF). As reported in [137], this algorithm outperforms most existing LRA

algorithms in the task of reconstructing noiseless images from multiple corrupted

observations. To eliminate the influence of CLC and have an insight on the effect

of the low rank and error components produced by different LRA algorithms, the

performance of LRM, EWM and CLC with different LRA algorithms are reported

in Fig. 6.4.

There are several observations from the results in Fig. 6.4. First, considering the
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results of LRM, it is found that the proposed SE-LRMF achieves a generally bet-

ter performance in comparison to RPCA and L1-LRMF. Specifically, on ND0405

dataset, LRM with SE-LRMF achieves comparable identification and verification

performance to LRM with L1-LRMF, and the the performance is better than RPCA.

On CASIAD and UBIRIS2 datasets, LRM with SE-LRMF outperforms LRM with

RPCA and L1-LRMF in both identification and verification. Moreover, the perfor-

mance of LRM with SE-LRMF is more stable. It can be seen that LRM with L1-

LRMF performs better than LRM with RPCA on ND0405 and UBIRIS2 datasets,

while LRM with RPCA is better than LRM with L1-LRMF on CASIAD dataset.

In contrast, LRM with SE-LRMF achieves a more stable performance at a top level

on all the datasets. This observation suggests that, for iris recognition using LRM

fusion, the low rank components sought by SE-LRMF are able to achieve a more

stable and top-level performance, compared to the low rank components sought by

RPCA and L1-LRMF.

Second, generally, it can be found that EWM with different LRA algorithms have

similar performance. It means that varying the LRA algorithm has little influence on

the result of EWM. The possible reason is that, although different LRA algorithms

lead to varying estimations on low rank components, these LRA algorithms have

similar results on error components. Therefore, EWM with different LRA algorithms

has similar performance. The only exception is ND0405 where EWM with SE-

LRMF and L1-LRMF perform better than EWM with RPCA. Since that ND0405

is captured at a close distance, this observation may suggest that EWM with SE-

LRMF and L1-LRMF are preferable for this type of iris data. When the capturing

distance grows, EWM with different LRA algorithms have little difference.

Third, given the similar performance of EWM, the performance variation of CLC

with different LRA algorithms is not as large as that of LRM with different LRA

algorithms. This observation validates the effectiveness of CLC: it further eliminates

the unreliable bits in LRM results, hence different LRA algorithms have similar
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performance after CLC. However, it can be found that CLC with SE-LRMF still

has a top performance in comparison to CLC with RPCA and L1-LRMF. In terms

of identification, on ND0405 dataset, CLC with SE-LRMF achieves a comparable

rank 1 recognition accuracy to CLC with L1-LRMF, and this performance is better

than CLC with RPCA. On CASIAD and UBIRIS2 datasets, the rank 1 recognition

accuracy of CLC with SE-LRMF is higher than that of CLC with RPCA and L1-

LRMF. As for verification, on ND0405 dataset, CLC with SE-LRMF achieves a

comparable ROC curve to CLC with L1-LRMF, and this performance is better than

CLC with RPCA. On CASIAD dataset, the ROC curve of CLC with SE-LRMF is

slightly better than that of CLC with RPCA and L1-LRMF. On UBIRIS2 dataset,

CLC with SE-LRMF also leads a better ROC curve. Considering the noise level of

all the datasets (ND0405 (close + NIR) < CASIAD (distant + NIR) < UBIRIS2

(distant + visible)), it can be concluded that CLC with SE-LRMF performs better

for the data with relatively heavier noise, while it is still able to achieve a top

performance on the data with less noise.

Four, it can be observed that CLC does not always lead to an improved performance

over LRM and EWM. On ND0405 dataset, CLC with RPCA has a lower rank

1 recognition accuracy than EWM with RPCA. Also, on ND0405 and UBIRIS2

datasets, the ROC curves of CLC with RPCA and EWM with RPCA are very

similar. A possible reason is that, on these two datasets, the result of LRM with

RPCA contains a high level of noise. The noise level is so high that it influences the

result of CLC: too many noiseless bits in EWM results are excluded due to their

inconsistency with the noisy bits in LRM results. In other words, the result of CLC

is biased due to noise.

An experiment is conducted to gain a deeper insight into the above bias effect. In this

experiment, the noise level in LRM and EWM results are measured by the percentage

of inconsistent bits between the iris codes extracted from LRM and EWM results. A

higher percentage of inconsistent bits means that at least one of the LRM and EWM
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Table 6.2: Percentage of inconsistent bits between LRM and EWM fusion results

Dataset RPCA L1-LRMF SE-LRMF
ND0405 9.74% 8.88% 8.29%
CASIAD 18.02% 17.36% 14.04%
UBIRIS2 23.47% 20.71% 17.61%

results has a high noise level, since the iris codes extracted from LRM and EWM

results should be highly consistent if both LRM and EWM results are low-noise or

noise-free, due to the inherent stability of iris pattern. The detailed experiment is

as follows. Given the fusion setting in Section 6.4.1, there are multiple image sets

for fusion to produce gallery and probe iris codes. Given a specific image set and

a LRA algorithm, a LRM fused image and an EWM fused image are produced,

and the percentage of inconsistent bits between the iris codes extracted from the

two LRM and EWM fused images are measured. For a specific LRA algorithm, the

mean percentage of inconsistent bits calculated using all the image sets is used as

the estimation of the noise level in the fusion results of this LRA algorithm (note

that this experiment does no distinguish gallery and probe). Tab. 6.2 reports the

percentage of inconsistent bits measured using RPCA, L1-LRMF and SE-LRMF on

the three datasets.

By investigating the results in Tab. 6.2, it can be found that the percentage of

inconsistent bits increases with the noise level of datasets (ND0405 < CASIAD

< UBIRIS2). It is consistent with the above analysis to use the percentage of

inconsistent bits to measure the noise level. Also, it is very clear that RPCA has the

highest percentage of inconsistent bits among the three LRA algorithms. It means

that the fusion results with RPCA contain relatively heavier noise. Consequently,

the result of CLC with RPCA is more likely to be biased due to the noise in the LRM

and EWM fused images. This explains the above experimental observation four.

Moreover, it can be found that SE-LRMF has the lowest percentage of inconsistent

bits among the three LRA algorithms on all the three datasets. This observation

demonstrates that the LRM and EWM fused images with SE-LRMF have the lowest
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noise level. Thus, CLC with SE-LRMF is more likely to avoid the bias due to noise.

In other words, compared to RPCA and L1-LRMF, SE-LRMF has the potential

to achieve a more robust performance in the proposed framework for signal-level

fusion.

Moreover, another similar analysis is performed. In this analysis, the noise level in

LRM and EWM results is measured using the `1 distance between the raw feature

values (feature values before quantisation) extracted from these two results. The

smaller the `1 distance, the lower the noise level. The reason is similar to the one

stated in the above analysis via bit inconsistency. Fig. 6.5 shows the distribution of

`1 distances calculated from all the image sets for fusion on the three datasets, with

RPCA, L1-LRMF and SE-LRMF for LRA.

It can be seen that the result is similar to the analysis based on bit inconsistency.

The distribution is consistent with the noise level in each dataset: for the dataset

with a lower noise level, there are more raw feature values with a smaller `1 distance

between LRM and EWM results. Also, among the three LRA algorithms, RPCA

has the smallest number of small `1 distances on all the datasets. It means the

fusion result of RPCA has heavier noise, and this explains the observation four

above. Finally, compared to RPCA and L1-LRMF, the proposed SE-LRMF leads

to more small `l distances and fewer large `1 distances on the three datasets. This

means that, compared to RPCA and L1-LRMF, SE-LRMF leads to less noise in

fusion results, so it is more likely to avoid the bias due to noise, achieving a more

robust performance.

6.4.4 Comparison with no fusion methods

The iris recognition results without fusion are used as the baseline. The comparisons

are made between the proposed SE-LRMF based signal-level fusion (referred to as

SE-LRMF) and no fusion baseline methods. Two no fusion methods are designed.
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Figure 6.5: The distribution of `1 distances between the raw feature values extracted
from LRM and EWM results.
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No fusion method 1 (referred to as NF1) is a single gallery single probe method.

It simulates the case that one image per eye is used as the gallery in registration

phase, and a single probe image is used for matching in iris matching stage. The

comparison between NF1 and SE-LRMF explores the performance between: (1)

only using the information in single capture as gallery and probe and (2) fusing

the information in multiple captures to produce gallery and probe. The gallery and

probe sets for NF1 are constructed as follows. Recall that, in the fusion setting in

Section 6.4.1, there are some image sets for fusion to construct gallery and probe

sets for information fusion methods. To construct the gallery of NF1, all the image

sets used to construct the gallery in the fusion setting are retrieved. From each

retrieved image set, 1 image is randomly selected, and the iris code is extracted

from the selected image as one NF1 gallery iris code. In other words, given a set of

images from the same eye, SE-LRMF fuses them to produce one gallery iris code,

while NF1 randomly selects one of them to produce one gallery iris code. It leads

to a NF1 gallery set with the same iris code number and label to the SE-LRMF

gallery set. The same method is used to produce the probe set of NF1. Given a pair

of gallery and probe sets of NF1, CMC and ROC curves are calculated to evaluate

the performance. The above random selection of gallery and probe sets of NF1 is

repeated for 50 times. The mean of the CMC and ROC curves obtained from the

50 runs are used as the performance of NF1 for comparison. Note that the above

procedure may lead to repeated probe iris codes in the NF1 probe set, since in the

fusion setting, the image sets used to produce the probe set can overlap. However,

the random selection and multiple runs make NF1 a reasonable estimator of the

performance of a single probe single gallery no fusion setting.

No fusion method 2 (referred to as NF2) is a multiple gallery single probe method

without fusion. It simulates the case that the information in gallery is enriched by

capturing multiple iris images per eye but without fusing them. In matching phase,

a single probe is captured and compared with the gallery. The probe set of NF2
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is constructed using exactly the same method as NF1. As for the gallery set, all

the image sets used to produce the gallery in the fusion setting are retrieved, and

the iris codes extracted from all the retrieved images are used as gallery. Similar to

NF1, the above procedure is repeated 50 times, and mean CMC and ROC curves

are used as the estimation of the performance of NF2 for comparison. Note that

for NF2, the gallery set is exactly the same in each run, and only the probe set is

different due to random selection.

Fig. 6.6 reports the CMC and ROC curves of NF1, NF2 and SE-LRMF on all the

datasets. It can be seen that: (1) NF2 has a better performance compared to NF1;

(2) SE-LRMF leads to a significantly improved performance compared to the two

no fusion methods. The results demonstrate that: (1) an improved performance can

be achieved by using more gallery images; (2) signal-level fusion of the information

in multiple captures performs better than using the information in single captures

without fusion.

6.4.5 Comparison with existing signal-level fusion methods

This subsection compares the proposed SE-LRMF based signal-level fusion method

with existing signal-level fusion methods. The comparisons are made with mean

fusion (MF) proposed in [26] and quality weighted mean fusion (QWM) fusion pro-

posed in [28]. Fig. 6.7 reports CMC and ROC curves of MF, QWM and SE-LRMF.

It can be seen that SE-LRMF based signal-level fusion outperforms existing signal-

level fusion methods.

6.4.6 Comparison with existing score-level fusion methods

This subsection makes comparisons between the proposed SE-LRMF based signal-

level fusion method and existing score-level fusion methods. The comparisons are
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Figure 6.6: The CMC and ROC curves for the comparison between SE-LRMF and
no fusion methods.
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Figure 6.7: The CMC and ROC curves for the comparison between SE-LRMF and
existing signal-level fusion methods.
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made with three score-level fusion methods: fusion using the mean of scores (referred

to as score-mean) [26,31], fusion using the minimum of scores (referred to as score-

min) [26, 31], fusion using quality weighted mean of scores (referred to as score-

QWM) [28, 128]. Fig. 6.8 reports the CMC and ROC curves of score-mean, score-

min, score-QWM and SE-LRMF.

Considering the identification performance (CMC) shown in Fig. 6.8, it can be found

that the performance of different algorithms differs according to the datasets. On

ND0405, mean score based fusion methods (score-mean, score-QWM) achieve higher

rank 1 recognition accuracies than SE-LRMF, while SE-LRMF performs better than

score-min. On CASIAD, the performance of SE-LRMF is comparable to score-

min, and it is better than mean score based methods. On UBIRIS2, SE-LRMF

outperforms all the other methods.

However, despite of the varying performance, it can be seen that the performance

of SE-LRMF is close to the top score-level method on less noisy NIR datasets, and

it achieves a significantly improved performance on more noisy colour dataset. The

rank 1 recognition accuracy of SE-LRMF is 1.25% lower than the best method on

ND0405, and it is 0.12% to the best method on CASIAD distance. On UBIRIS2,

the rank 1 recognition accuracy of SE-LRMF is 10.40% higher than the second best

method.

Also, considering the stability of identification performance, it can be found that SE-

LRMF is more stable compared to each individual score-level fusion method. It can

be seen from the CMC curves that the performance of score-level fusion methods is

less stable. score-mean and score-QWM perform better than score-min on ND0405,

but score-min performs better than the two methods on CASIAD and better than

score-mean on UBIRIS2. In contrast, SE-LRMF achieves mid-level performance on

the NIR datasets, and it performs best on the colour dataset.

The above identification performance is closely-related to the noise level in the iris
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Figure 6.8: The CMC and ROC curves for the comparison between SE-LRMF and
existing score-level fusion methods.



6.4. Experiment 137

images in each dataset. Score-level fusion is sensitive to the noise level in iris cap-

tures. Lower noise level leads to higher reliability in the matching scores between

individual gallery and probe iris codes, hence it results more reliable fused scores.

On the contrary, if the noise level is too high, the matching scores between individ-

ual gallery and probe iris codes become highly unreliable. As a result, fusing these

matching scores brings less advantage. Compared to score-level fusion, signal-level

fusion is less sensitive to the noise level of iris captures. The reason is that the

iris codes of signal-level fusion are extracted from the fused images, and the fusion

process is able to suppress noise and enhance the stable structure in iris images.

The above analysis is consistent to the CMC curves in Fig. 6.8. ND0405 dataset

has a relatively lower noise level. Therefore, on this dataset, the best score-level

fusion method (score-QWM) performs better than the signal-level SE-LRMF. The

noise level of the images in CASIAD dataset is higher than that in ND0405 dataset.

Correspondingly, on this dataset, signal-level SE-LRMF performs similar to the best

score-level fusion method (score-min). The images in UBIRIS2 dataset contain rela-

tively heavier noise due to a combination of visible wavelength and distant capturing.

Consequently, signal-level SE-LRMF still performs well, while the performance of

score-level fusion methods heavily degrades.

In terms of verification performance, SE-LRMF achieves better ROC curves com-

pared to score-level fusion methods on all the datasets. It is interesting that score-

level fusion performs good in CMC curves but not in ROC curves. Such observation

can be explained as follows. Score-level fusion is more accurate in intra-class match-

ing. It leads to more accurate lowest matching scores and hence good CMC curves.

However, score-level fusion is less effective in inter-class comparisons. It results in

less accurate inter-class matching scores which influence ROC curves. In contrast,

SE-LRMF performs well in both intra-class and inter-class matching, and it leads

to good performance in both CMC and ROC curves.

In conclusion, compared to score-level fusion, (1) SE-LRMF based signal-level fusion
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is able to achieve a better identification performance on the colour data with rela-

tively heavier noise, while it also performs well on the NIR captures with relatively

lower noise; (2) SE-LRMF based signal-level fusion is more stable in identification;

(3) SE-LRMF based signal-level fusion achieves better verification performance on

the iris data with varying noise levels.

6.4.7 Comparison with other recent iris recognition algo-

rithms

This subsection makes comparisons with other recently proposed iris recognition

algorithms. These algorithms generally focus on improving the feature extraction

and iris matching stages, instead of performing information fusion using multiple

captures. This comparison studies the effectiveness of information fusion in less

constrained iris recognition.

The compares are made with two recent algorithms: (1) geometric key-based iris

encoding [80] (referred to as GeoKey) and (2) stabilised iris encoding and Zernike

moments phase features [23] (referred to as SZM). These two algorithms are chosen

for comparison, since they are recently proposed algorithms achieving top perfor-

mance compared to other state-of-the-art algorithms in less constrained iris recog-

nition, as reported in [80] and [23]. Also, comparisons are made with the result of

the fusion of the two algorithms by combining their matching scores (referred to as

GeoKey+SZM).

Since the above algorithms are not information fusion algorithms, in order to make

a reasonable comparison, the performance of these algorithms are evaluated using

the same experimental setting to the no fusion method 2 (NF2) in Section 6.4.4.

Also, NF2 is used as a reference of baseline performance.

Fig. 6.9 shows the CMC and ROC curves for all the comparison algorithms on
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all the datasets. It can be seen that GeoKey, SZM and GeoKey+SZM perform

significantly better than NF2, while SE-LRMF achieves top performance among

all the comparison methods. Actually, nearly all the information fusion algorithms

used in the comparisons in previous subsections achieve better performance than

GeoKey, SZM and GeoKey+SZM. This result shows that information fusion is able

to significantly improve the performance of less constrained iris recognition, even

with less robust features (note that the results of SE-LRMF and the information

fusion methods used in the comparisons in previous subsections are based on the

same feature as NL2). A possible reason is that the robustness of the algorithm is

significantly enhanced in the fusion process of signals (scores) from multiple captures.

6.4.8 Summary on the performance of SE-LRMF and exist-

ing algorithms

This subsection summarises the performance of SE-LRMF and existing algorithms.

Specifically, rank 1 recognition accuracy (R1RA) is calculated to represent the iden-

tification performance; equal error rate (EER) and genuine acceptance rate (GAR)

when false acceptance rate (FAR) is 0.01% (GAR@FAR= 0.01%) are calculated to

represent the verification performance; decidability index (DI) [6] is calculated to

represent the intra-class and inter-class separability of matching scores. Further-

more, a significance analysis is performed based on the above measures using paired

student-t test. For each dataset, 100 subsets are randomly selected from the perfor-

mance evaluation set; the subjects included in each subset are randomly selected;

R1RA, EER, GAR@FAR= 0.01% and DI are calculated for each subset, and paired

student-t test is performed between each method and the best method in terms of

R1RA, EER, GAR@FAR= 0.01% and DI. The mean and standard deviations of

R1RA, EER, GAR@FAR= 0.01% and DI calculated using all the subsets, and the

results of corresponding paired student-t test, are reported in Tab. 6.3, Tab. 6.4,
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Figure 6.9: The CMC and ROC curves for the comparison between SE-LRMF and
other recent iris recognition algorithms.
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Tab. 6.5 and Tab. 6.6, respectively. It can be seen that (1) SE-LRMF achieves the

highest overall ranking in all the measures, considering the performance on all the

datasets; (2) SE-LRMF performs especially good for the datasets with heavier noise

(i.e. CASIAD and UBIRIS2), in comparison to the existing methods.

6.4.9 The influence of noise on the performance of SE-LRMF

As shown in the comparison in Section 6.4.6 as well as Tab. 6.3, Tab. 6.4, Tab. 6.5,

Tab. 6.6, the performance of SE-LRMF based fusion depends on the noise level of

captures. Therefore, this subsection conducts experiments to gain a deeper insight

into the influence of noise types and noise levels on the performance of SE-LRMF.

This experiment groups the images sets for fusion in the fusion setting into several

groups based on the noise type and noise level, and it investigates the performance of

the fusion result corresponding to each group of image sets. Some quality measures

(see below) are used to compute the level of different types of noise in the data (e.g.

blur, off-angle, etc.). Given an image set for fusion and given a quality measure,

the quality of this image set is computed as the mean quality of each image in it.

Given the image sets in the fusion setting evaluated by a specific quality measure,

these image sets are grouped into 5 quality levels for each dataset. The first level

includes the image sets with top 20% best quality; the second level includes the

image sets with 21% to 40% quality; similarly for the other levels. Therefore, the

group with a larger index for quality level has a higher noise level. In this chapter,

the grouping is performed for the image sets used to produce the probe set in the

fusion setting. To evaluate the performance of each group of image sets, the probes

produced by each group are matched to the full gallery set produced by the fusion

setting. It simulates the scenario that, in real applications, the gallery set usually

remains unchanged after registration phase, and the variation of noise types and

noise levels mainly exist in the probes.
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Table 6.3: The R1RA of SE-LRMF and existing iris recognition algorithms (in
percentage, format: mean ± standard deviation (rank), best performance bolded).

Method ND0405 CASIAD UBIRIS2 MR∗

NF2 92.49± 1.20 (10)# 87.70± 0.90 (10)# 52.15± 4.97 (10)# 10.0

GeoKey 94.57± 0.85 (9)# 89.10± 0.82 (8)# 59.96± 5.23 (9)# 8.7

SZM 95.27± 0.81 (8)# 89.10± 0.82 (8)# 67.32± 4.43 (8)# 8.0

GeoKey+SZM 95.75± 0.76 (7)# 90.10± 0.77 (7)# 70.40± 4.53 (7)# 7.0

socre-min 98.22± 0.70 (4)# 98.99± 0.39 (1) 86.69± 5.04 (5)# 3.3

socre-mean 99.05± 0.34 (2)# 98.45± 0.53 (4)# 85.61± 4.98 (6)# 4.0

socre-QWM 99.06± 0.35 (1) 98.49± 0.50 (3)# 87.00± 4.80 (4)# 2.7

MF 97.57± 0.88 (6)# 98.36± 0.41 (6)# 88.23± 4.64 (3)# 5.0

QWM 97.69± 0.85 (5)# 98.39± 0.40 (5)# 88.30± 4.74 (2)# 4.0

SE-LRMF 98.40± 0.63 (3)# 98.88± 0.32 (2)# 94.68± 2.26 (1) 2.0
#The p value of paired student-t test to the best method is lower than 0.05 level.
∗MR–mean rank (best rank bolded)

Table 6.4: The EER of SE-LRMF and existing iris recognition algorithms (in per-
centage, format: mean ± standard deviation (rank), best performance bolded).

Method ND0405 CASIAD UBIRIS2 MR∗

NF2 4.45± 0.35 (10)# 10.58± 0.47 (10)# 19.35± 1.24 (10)# 10.0

GeoKey 4.02± 0.32 (9)# 10.02± 0.48 (9)# 18.62± 1.27 (9)# 9.0

SZM 2.00± 0.24 (8)# 5.88± 0.45 (7)# 11.11± 1.05 (8)# 7.7

GeoKey+SZM 1.85± 0.23 (7)# 5.89± 0.43 (8)# 11.09± 1.12 (7)# 7.3

socre-min 0.52± 0.14 (1) 0.88± 0.23 (2)# 3.58± 0.58 (3)# 2.0

socre-mean 0.64± 0.23 (3)# 1.89± 0.40 (6)# 3.62± 0.59 (4)# 4.3

socre-QWM 0.64± 0.23 (3)# 1.80± 0.37 (5)# 3.70± 0.60 (5)# 4.3

MF 0.85± 0.23 (6)# 1.04± 0.19 (4)# 3.71± 0.59 (6)# 5.3

QWM 0.83± 0.23 (5)# 0.99± 0.19 (3)# 3.45± 0.51 (2)# 3.3

SE-LRMF 0.60± 0.19 (2)# 0.77± 0.16 (1) 2.71± 0.52 (1) 1.3
#The p value of paired student-t test to the best method is lower than 0.05 level.
∗MR–mean rank (best rank bolded)

Table 6.5: The GAR@FAR= 0.01% of SE-LRMF and existing iris recognition algo-
rithms (in percentage, format: mean ± standard deviation (rank), best performance
bolded).

Method ND0405 CASIAD UBIRIS2 MR∗

NF2 55.28± 4.77 (10)# 41.58± 2.24 (10)# 6.62± 1.73 (10)# 10.0

GeoKey 68.79± 3.17 (9)# 50.70± 1.58 (9)# 10.86± 2.65 (9)# 9.0

SZM 83.59± 2.78 (8)# 64.33± 2.22 (8)# 26.34± 5.27 (8)# 8.0

GeoKey+SZM 84.18± 2.51 (7)# 65.65± 1.85 (7)# 27.38± 5.05 (7)# 7.0

socre-min 87.16± 6.54 (6)# 88.28± 3.49 (4)# 32.73± 9.69 (5)# 5.0

socre-mean 94.11± 1.88 (3)# 81.56± 3.11 (6)# 34.90± 9.19 (4)# 4.3

socre-QWM 94.15± 1.86 (2)# 82.00± 3.10 (5)# 32.45± 9.85 (6)# 4.3

MF 92.31± 3.26 (5)# 94.79± 1.00 (3)# 56.10± 10.00 (3)# 3.7

QWM 92.55± 3.21 (4)# 94.93± 0.96 (2)# 57.71± 9.59 (2)# 2.7

SE-LRMF 95.24± 1.77 (1) 95.60± 0.88 (1) 71.22± 7.44 (1) 1.0
#The p value of paired student-t test to the best method is lower than 0.05 level.
∗MR–mean rank (best rank bolded)
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Table 6.6: The DI of SE-LRMF and existing iris recognition algorithms (format:
mean ± standard deviation (rank), best performance bolded).

Method ND0405 CASIAD UBIRIS2 MR∗

NF2 3.221± 0.070 (9)# 2.276± 0.044 (10)# 1.647± 0.079 (10)# 9.7

GeoKey 3.198± 0.067 (10)# 2.328± 0.043 (9)# 1.695± 0.081 (9)# 9.3

SZM 4.267± 0.116 (7)# 3.046± 0.068 (7)# 2.389± 0.103 (7)# 7.0

GeoKey+SZM 4.154± 0.107 (8)# 2.990± 0.063 (8)# 2.328± 0.098 (8)# 8.0

socre-min 5.833± 0.129 (2)# 4.322± 0.116 (4)# 3.098± 0.151 (5)# 3.7

socre-mean 5.001± 0.163 (6)# 3.763± 0.108 (6)# 3.127± 0.170 (4)# 4.7

socre-QWM 5.005± 0.163 (5)# 3.778± 0.108 (5)# 3.081± 0.152 (6)# 5.3

MF 5.481± 0.218 (4)# 4.701± 0.131 (3)# 3.729± 0.222 (3)# 3.3

QWM 5.498± 0.225 (3)# 4.712± 0.129 (2)# 3.739± 0.219 (2)# 2.3

SE-LRMF 6.108± 0.278 (1) 5.158± 0.143 (1) 4.087± 0.205 (1) 1.0
#The p value of paired student-t test to the best method is lower than 0.05 level.
∗MR–mean rank (best rank bolded)

This subsection investigates four representative noise types: blur, off-angle, occlusion

and motion. The corresponding quality measures are calculated using the method

in [28, 111]. The comparison is focused between the identification performance of

SE-LRMF and score-level fusion methods. For the other cases (comparison with

signal-level fusion and other recent iris recognition algorithms in identification and

verification; comparison with score-level fusion in verification), it is found that SE-

LRMF performs generally better than the compared methods across all the levels

of different noise types, on the three datasets. It is consistent with the results in

previous subsections where only score-level fusion performs better than SE-LRMF

on some datasets in identification.

Rank 1 accuracy is used to represent the identification performance. Fig. 6.10 shows

the rank 1 accuracy of all the comparison methods on different levels of each quality

measure. It can be seen that, on ND0405 which has the lowest noise level, SE-LRMF

performs generally worse than the best score-level fusion method on all the levels

of each quality measure; on CASIAD with a higher noise level, SE-LRMF performs

worse than the best score-level fusion method on the first few quality levels, but it

performs generally better on the last few quality levels; on UBIRIS2 with the highest

noise level, SE-LRMF performs generally better than the other methods across all
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the quality levels. The result shows that SE-LRMF performs better for the data

with a higher noise level.

However, it can be found that, in Fig. 6.10, the trend of performance change is not

fully consistent with the noise level. In some cases, the performance has obvious

perturbation or increasing when the noise level increases (for example, the focus

measure on ND0405 and UBIRIS2). The possible reason is the mixture of noise

types. In the three datasets, a capture usually suffers from multiple types of noise.

Consequently, the final performance is influenced by the combination of all these

noise types, rather than a specific one. Therefore, given that the image sets are

grouped based on one quality measure (i.e. the level of one noise type), the final

performance is possible to be influenced by the variation in the level of other noise

types which may also affect each group. Also, more complexity exists since noise

types may not be independent with each other. This problem of mixture of noise

types can be addressed in future research, either by performing data capturing with

the target noise type varied and the others restricted at low levels, or by combining

multiple individual quality measures to obtain a quality measure that is better

related to the final performance.

Furthermore, it is observed that the performance change is more consistent with the

change of motion level. This observation means that the influence of motion on the

final performance is more dominant than the other noise types. The possible reason

is that motion is also source of other noise types, like blur and off-angle. Therefore,

the corresponding quality measure summarises more relevant noise types.

In all, SE-LRMF performs better than the other methods on the data with a higher

level in any of the four noise types, despite of the problem of mixture of noise types.
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(l) UBIRIS2, motion

Figure 6.10: The performance of SE-LRMF and score-level fusion methods on vary-
ing levels of different quality measures.
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6.5 Summary

This chapter proposes a signal-level information fusion method based on low rank

approximation for less constrained iris recognition, in order to mitigate the noise

in captures induced by less constrained environments. Firstly, a sparse-error low

rank matrix factorisation (SE-LRMF) model is proposed to separate noiseless iris

pixels and noise pixels in multiple iris captures. Then, the iris pixels and noise pixels

are utilised to perform signal-level fusion individually, leading to a low rank mean

(LRM) fusion method and an error weighted mean (EWM) fusion method. Finally,

the results of LRM and EWM are combined at the code level to produce a final

iris code. Experiments are conducted on benchmark iris datasets captured under

different wavelengths and distances, with varying noise types and noise levels. The

main conclusions are summarised as follows:

• Using SE-LRMF for low rank approximation, the code level combination of

LRM and EWM results leads to an improved performance over individual

LRM and EWM results.

• In comparison to representative low rank approximation algorithms, SE-LRMF

leads to a better and more stable performance in the proposed framework of

signal-level fusion. Also, SE-LRMF has the potential to achieve a more robust

performance.

• The SE-LRMF based signal-level fusion leads to a significantly improved per-

formance compared to the baseline algorithms without fusion. It also performs

better than recently proposed iris recognition algorithms that do not fuse the

information from multiple captures.

• The SE-LRMF based signal-level fusion outperforms existing signal-level fu-

sion methods.
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• Compared to existing score-level fusion methods, the SE-LRMF based signal-

level fusion has a competitive and more stable identification performance, and

a better verification performance.

• The SE-LRMF based signal-level fusion performs better for the captures with

relatively heavier noise.



Chapter 7

Optimal generation of iris codes

Part of this chapter has been adapted from the journal paper [J10] (published) as in

the List of Publications.

7.1 Introduction

Iris recognition is usually performed based on binary features known as iris codes [6,

7,15,20,80]. The binary nature of iris codes brings significant advantage in memory

and computational cost, enabling the large scale deployment of iris recognition sys-

tems. Therefore, the calculation of binary iris codes from feature values (e.g. the

result of Gabor transform) is a key step in iris recognition systems.

Most state-of-the-art methods generate iris codes using simple binarisation based on

the sign of feature values [6, 7, 15, 20, 80]. Experimentally, this binarisation method

achieves a generally promising performance, but, currently, there lacks a deeper

insight into this method. An important question one may ask is this: “Is it optimal to

produce the iris code by binarisation based on the sign of feature values?”. A similar

question is: “How could we find more effective iris codes given feature values?”.

Currently, although a large number of feature selection algorithms are investigated

to obtain more effective iris codes [145–150], these methods focus on selecting more

148
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valuable bits from iris codes, rather than directly calculating optimal iris codes from

feature values. Therefore, the above questions remain open.

This chapter investigates the issue of iris code production from the perspective

of optimisation. It is illustrated that the traditional iris code based on the sign

of feature values is the solution of an optimisation problem. This optimisation

problem seeks iris codes by minimizing the distance between the feature values and

iris codes. Based on this illustration, additional objective terms can be applied to

this optimisation problem, in order to obtain more effective iris codes. This chapter

designs an additional objective term based on the spatial correlation in iris codes.

The idea is that iris pixels have inherent spatial correlations [6, 31, 151]; therefore,

as a feature representation of iris textures, the bits at different positions of an iris

code should also be spatially correlated. Accordingly, this additional objective term

explicitly formulates the spatial correlation in iris codes, and it leads to a Markov

Random Field (MRF) model to compute iris codes.

Experimental analysis are performed on benchmark datasets captured with varying

environments. The experimental results demonstrate that the iris code produced

by solving the proposed optimisation problem with the additional objective term

achieves a generally improved performance in comparison to an implementation of

traditional iris code generation method [15] binarizing feature values based on their

signs. The direction of spatial correlation in iris textures as observed in [6,31,151]

is also experimentally verified in the experiment of this chapter.

The remainder of this chapter is organised as follows. Section 7.2 presents the

proposed method to produce iris codes based on optimisation. Section 7.3 reports

the result of experimental analysis. Section 7.4 summarises the paper.
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7.2 Producing iris codes by optimisation

7.2.1 Illustration of the traditional iris code production from

a perspective of optimisation

Let f = [f1, f2, ..., fn]T ∈ Rn be a vector consisting of all feature values extracted

from an unwrapped iris image. For example, for the most widely used Gabor fea-

ture [6, 7], f is constructed by concatenating the real and imaginary parts in all

positions into a vector after applying Gabor transform to the unwrapped iris region;

each element in f is either the real or imaginary part of the Gabor transform result.

Let b = [b1, b2, ..., bn]T be a binary vector of the iris code corresponding to f with n

bits. For the ith bit bi, traditional binarisation method to calculate it is as follows:

bi =


1 if fi ≥ 0

0 if fi < 0

(7.1)

In other words, traditional iris codes are produced based on the sign of feature

values.

This subsection demonstrates that the traditional binarisation method can be illus-

trated as the solution of the following optimisation problem:

arg min
b∈{−1,1}n

‖b− f‖2
2 (7.2)

Although b ∈ {−1, 1}n in Eqn. 7.2 is different from the traditional iris code where

b ∈ {0, 1}n, it will be shown that the solution of Eqn. 7.2 is equivalent to the

traditional iris code in binary feature domain, and it makes no difference in the

Hamming distance given two iris codes.
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The objective function in Eqn. 7.2 can be expanded as follows:

‖b− f‖2
2 = ‖b‖2

2 + ‖f‖2
2 − 2fTb (7.3)

Note that ‖f‖2
2 is a constant, and ‖b‖2

2 = n due to b ∈ {−1, 1}n. Therefore, Eqn. 7.2

is equivalent to:

arg min
b∈{−1,1}n

−fTb (7.4)

Since fTb =
∑
i

fibi, the optimisation problem with respect to bi reduces to:

arg min
bi∈{−1,1}

−fibi (7.5)

To minimize Eqn. 7.5, the sign of bi should be consistent with the sign of fi, thus

the solution is as follows:

bi =


1 if fi ≥ 0

−1 if fi < 0

(7.6)

It can be seen that the solution is equivalent to the traditional iris code (Eqn. 7.1)

if replacing all the −1 by 0 in the obtained iris code b, and it does not change the

Hamming distance given two iris codes. On the other hand, from the perspective

of optimisation, an explanation is that the solution of Eqn. 7.5 is equivalent to the

solution of the following problem in binary feature space:

arg min
bi∈{0,1}

−fibi (7.7)

Based on the above illustration, the traditional method of iris code production can

be explained as follows. Given an unwrapped iris image, the extracted feature

values construct a n-dimensional feature vector. In each dimension of the feature

vector, two anchor points are set at −1 and 1. The traditional method of iris code

production binarizes a feature value by assigning it to the nearest anchor point at
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the corresponding dimension (i.e. Eqn. 7.2).

7.2.2 Iris code production using additional objective term

Based on the derivation from Eqn. 7.2 to Eqn. 7.7 in Section 7.2.1, Eqn. 7.2 for-

mulating the traditional iris code production can be rewritten into the following

equivalent problem:

arg min
bi∈{0,1}
i=1,2,...,n

−
∑
i

fibi (7.8)

Based on Eqn. 7.8, more complex models can be used to obtain iris codes by adding

terms to the objective function of this optimisation problem. It is expected that, by

adding proper objective term, more effective iris codes can be obtained.

This subsection exploits spatial correlation in iris codes as the additional objective

term. It models the spatial correlation of the bits in different positions of an iris code.

Specifically, traditional iris code production method binarizes the feature values in

different positions individually (as shown in Eqn. 7.1 and Eqn. 7.6). In other words,

it considers each feature value separately. However, as studied in [6, 31, 151], the

iris texture has inherent correlations along the radial direction. For example, as

pointed out in [6, 31, 151], a furrow or ciliary pattern tends to propagate in the

radial direction. Therefore, as a feature representation of iris patterns, the bits in

an iris code should be dependent along the vertical direction. Due to the binary

nature of iris codes, it is reasonable to assume that such a vertical dependency will

lead to a vertical bit-adjacency in an iris code. Accordingly, this subsection designs

the additional objective term to exploit the vertical bit-adjacency in an iris code.

The additional objective term is defined as follows:

∑
i

∑
j∈N i

|bi − bj| (7.9)
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where N i denotes two immediate vertical neighbors of bit i: one at the top of i and

one at the bottom of i. Minimizing Eqn. 7.9 with respect to bi ∈ {0, 1} , i = 1, 2, ..., n

prompts each bit in an iris code to have the same value as its vertical neighbours.

Incorporating Eqn. 7.9 into Eqn. 7.8 leads to the following optimisation problem:

arg min
bi∈{0,1}
i=1,2,...,n

∑
i

(−fi)bi + α
∑
i

∑
j∈N i

|bi − bj| (7.10)

where α is a parameter controlling the trade-off between the influence of the sign

of feature values and the vertical adjacency of iris codes. Eqn. 7.10 is a first order

Markov Random Field with binary labels. It can be solved via graph cuts [152,153].

Fig. 7.1 shows examples of (1) the iris code produced by Masek’s implementation of

traditional iris code generation method [15] and (2) the iris code produced using the

additional objective term. All the iris codes are obtained from the same unwrapped

iris image. In each subfigure, the bottom image which corresponds to the iris code

(2) also marks the bits that are different from the iris code produced by Masek’s

implementation (i.e. the changed bits due to the additional objective term). The

red colour is used to mark the bits being 1 in the iris code produced by Masek’s

implementation but being 0 in the current iris code, and the blue colour is used

to mark the bits being 0 in the iris code produced by Masek’s implementation but

being 1 in the current iris code.

It can be seen that, in the iris code produced with the additional objective term (the

bottom image in each subfigure), the regions of 1 and 0 are more adjacent, compared

to the iris code produced by Masek’s implementation of the traditional binarisation

method. Some small regions of 1 or 0 surrounded by large regions with a different

bit value in the iris code produced by Masek’s implementation are assigned the same

bit value as their surrounding regions in the iris code produced using the additional

objective term, due to the exploited spatial dependency.

Also, it is noted that the visual appearance of iris codes with/without considering
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(a) the real part

(b) the imaginary part

Figure 7.1: Examples of the iris codes produced by different methods. For each
sub-figure, the top image shows the iris code produced by Masek’s implementation
of the traditional binarisation method, and the bottom image shows the iris code
produced by the proposed method. The red colour marks the bits being 1 in the iris
code produced by Masek’s implementation but being 0 in the proposed iris code; the
blue colour marks the bits being 0 in iris code produced by Masek’s implementation
but being 1 in the proposed iris code.
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radial correlation shown in Fig. 7.1 are very similar. This is due to the choice of

parameter α in Eqn. 7.10. For the example in Fig. 7.1, a relatively small α is chosen

(0.3). If a larger α is chosen, there will be larger difference in the visual appearance

between the iris code with and without considering radial correlations. However,

in this thesis, α is chosen based on the experimental performance (please see Sec-

tion 7.3.1 for more details). Therefore, with this choice of , although the iris codes

with/without considering radial correlation have similar visual appearance, the iris

code with considering radial correlation experimentally achieves better performance

experimentally.

7.3 Experiment

This section conducts experimental analysis on the proposed optimisation method

to produce iris codes. Firstly, the experimental setting is introduced, including

datasets, parameter setting and performance evaluation (Section 7.3.1). Then, to

study the effect of the proposed method for iris code production, comparisons are

made between the performance of the iris codes produced by an implementation of

traditional iris code generation method [15] and the proposed iris codes produced

using the additional objective term (Section 7.3.2). After that, an analysis of the

spatial correlation of the bits in iris codes is performed based on the proposed

additional objective term (Section 7.3.3), aiming to gain a deeper insight into the

correlation in iris texture. Finally, the computational load of the proposed method

is studied (Section 7.3.4).

7.3.1 Experimental setting

Datasets. The experiments are conducted on four benchmark datasets as intro-

duced in Chapter 3: CASIAT [102], ND0405 [103], CASIAD [102] and UBIRIS2 [19].
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Table 7.1: Information and parameter setting of the datasets used in this experiment.

Dataset
Information Parameter setting

Eyes Images Wavelength α 1/f0 σ/f0

CASIAT 1790 12108 NIR 1.2 22 0.48
ND0405 712 5613 NIR 1.2 35 0.49
CASIAD 284 5037 NIR 1.2 19 0.48
UBIRIS2 171 1000 Visible 0.3 40 0.38

These datasets cover the data captured in varying environments. The information

of the data used in this experiment is introduced in Tab. 7.1.

CASIAT is used to represent the iris captures with a satisfactory quality for iris

recognition. The images in this dataset have a high overall quality, despite the

influence of glasses and specular reflections in some images. To keep CASIAT rep-

resenting the captures with a satisfactory quality, the images where the iris segmen-

tation fails are eliminated (see the details on iris segmentation below), since such

images usually have a higher noise level which causes the iris segmentation failure.

ND0405 represents the iris data with a relatively higher quality. The iris images

in this dataset are captured at a wavelength inducing less noise (NIR) and a close

distance, hence with good resolution and clear iris texture, but suffering from the

noise due to real-world conditions, for example, blurring, specular reflection, rota-

tion, off-angle, etc. In this experiment, a subset with the first 8 images of each eye

is used, and some images are eliminated from the subset since they have too small

eye region.

CASIAD represents the iris data with a relatively lower quality. The images are

captured at NIR wavelength but at a distance. As a result, the iris region has a low

resolution; the iris texture is visually less clear; the noise in this dataset is heavier

than that in ND0405 and CASIAT. This experiment uses the images from both left

and right eyes of all the subjects in CASIAD dataset, and some images with too

small iris regions are eliminated.

UBIRIS2 represents the iris data with a very low quality. The images are captured
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not only at a distance, but also in a wavelength inducing heavy noise (visible). In

the experiment, a subset with 1000 images from 171 eyes is used. This subset was

released for NICE II contest [18]. This experiment reports the result on both the

illumination channel (Y) of YCbCr colour space and the red channel of RGB colour

space, since it is experimentally observed that the performance has some variations

on these two channels (see the experimental results in Section 7.3.2).

The iris segmentation is performed as follows. For CASIAT dataset which is used

to represent the captures with a generally satisfactory quality, Hough transform

based segmentation as in [15] is applied to seek two circular boundaries for limbus

and pupil. For this dataset, the images with the segmentation failure in limbic or

pupillary boundary are manually eliminated. The reason is that the failures of the

method in [15] are mainly due to the influence of noise factors, so the images with

segmentation failure are eliminated to keep the data representing high quality iris

captures. The eyelids, silhouette and reflections are detected using the algorithm

in Chapter 4 for the remaining images in CASIAT dataset. For the other three iris

datasets (ND0405, CASIAD and UBIRIS2), the algorithm in Chapter 4 is employed

for iris segmentation, including the segmentation of limbus and pupil, and the de-

tection of eyelids, reflection and silhouette. The segmentation failures for the other

three datasets are corrected manually, so that most noisy captures are preserved

in these three datasets, enabling them to represent iris captures with varying noise

levels. The size of unwrapped iris image is set to 100×360. 1-D log-Gabor filter [15]

is employed to produce the feature values given an unwrapped iris image.

The gallery and probe images are set for each dataset as follows. For CASIAT, the

first image of each eye is used as the gallery image, and the remaining images are

used as probe images. For ND0405 dataset, the first 2 images of each eye are used

as gallery images, and the rest of the images are used as probes. For CASIAD and

UBIRIS2 datasets, the first 5 images of each eye are used as gallery images, and the

rest of the images are used as probe images. The number of gallery images is chosen
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based on the image quality of each dataset. More gallery images are used for the

dataset with lower quality.

Parameter tuning and performance evaluation. Exclusively separated data

are used for parameter setting and performance evaluation. For CASIAT dataset,

the first 50 eyes are used to tune the parameters, and the remaining 1740 eyes

are used for performance evaluation. For ND0405 dataset, the first 20 eyes are

used to tune the parameters, and the remaining 692 eyes are used to evaluate the

performance. For CASIAD dataset, the first 20 eyes are used to tune the parameters,

the remaining 264 eyes are used to evaluate the performance. For UBIRIS2 dataset,

the first 19 eyes are used to tune the parameters, and the remaining 152 eyes are

used to evaluate the performance.

There are 3 parameters to be determined in the proposed method of iris code produc-

tion: α in Eqn. 7.10 is the parameter controlling the trade-off between the influence

of the sign of feature values and the vertical adjacency of iris codes, 1/f0 and σ/f0

are 1-D log-Gabor parameters (see Eqn. 2.25). Based on the above described data

for parameter setting, the setting of these parameters is reported in Tab. 7.1. Note

that, for 1-D log-Gabor parameters on ND0405, CASIAD and UBIRIS2 datasets,

the setting in Section 6.4.1 is adopted. It is found that the α on colour dataset

(UBIRIS2) is lower than that on NIR datasets. A possible reason is that colour iris

images contain a relatively higher amount of noise, and using a small α on colour

data is able to prevent the bit-adjacency term incorrectly spreading the influence of

noise bits in an iris code.

The performance is evaluated in two tasks: identification and verification. The

identification performance is evaluated by cumulative match characteristic (CMC),

while the verification performance is evaluated by receiver operating characteristic

(ROC).
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Figure 7.2: Comparison of the CMC curves between the proposed iris code and the
iris codes produced by Masek’s implementation of traditional iris code generation
method.

7.3.2 Comparison with iris codes produced by an implemen-

tation of traditional iris code generation method

This subsection compares between the iris codes produced by Masek’s implementa-

tion of traditional iris code generation method [15] (referred to as Baseline) and the

proposed iris code produced with the additional objective term (referred to as Pro-

posed). Fig. 7.2 and Fig. 7.3 show the CMC and ROC curves of all the comparison

methods on all the datasets, respectively.

Moreover, rank 1 recognition accuracy (R1RA) is calculated to represent the iden-

tification performance; equal error rate (EER) and genuine acceptance rate (GAR)
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Figure 7.3: Comparison of the ROC curves between the proposed iris code and the
iris code produced by Masek’s implementation of traditional iris code generation
method.

Table 7.2: The R1RA for comparison between the proposed iris code and the iris code
produced by Masek’s implementation of traditional iris code generation method,
with the result of significance test (in percentage, best performance bolded, format:
mean ± standard deviation).

Method CASIAT ND0405 CASIAD UBIRIS2

Baseline 99.18± 0.14 92.74± 0.90 91.45± 0.72 -
Proposed 99.37± 0.12# 93.14± 0.86# 92.91± 0.66# -

Baseline R - - - 50.83± 2.59
Proposed R - - - 51.18± 2.55#

Baseline Y - - - 56.90± 2.60
Proposed Y - - - 58.03± 2.55#

#The p value of paired student-t test is lower than 0.05 level.
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Table 7.3: The EER for comparison between the proposed iris code and the iris code
produced by Masek’s implementation of traditional iris code generation method,
with the result of significance test (in percentage, best performance bolded, format:
mean ± standard deviation).

Method CASIAT ND0405 CASIAD UBIRIS2

Baseline 0.38± 0.06 3.65± 0.32 8.86± 0.42 -
Proposed 0.33± 0.05# 3.47± 0.31# 8.07± 0.40# -

Baseline R - - - 23.61± 0.75
Proposed R - - - 23.42± 0.72#

Baseline Y - - - 20.52± 0.90
Proposed Y - - - 20.67± 0.87#

#The p value of paired student-t test is lower than 0.05 level.

Table 7.4: The GAR@FAR= 0.01% for comparison between the proposed iris code
and the iris code produced by Masek’s implementation of traditional iris code gen-
eration method, with the result of significance test (in percentage, best performance
bolded, format: mean ± standard deviation).

Method CASIAT ND0405 CASIAD UBIRIS2

Baseline 97.76± 0.22 64.00± 5.47 44.64± 2.54 -
Proposed 98.34± 0.22# 68.16± 4.80# 50.66± 2.22# -

Baseline R - - - 4.15± 0.69
Proposed R - - - 4.29± 0.74#

Baseline Y - - - 6.39± 0.97
Proposed Y - - - 5.93± 0.93#

#The p value of paired student-t test is lower than 0.05 level.

when false acceptance rate (FAR) is 0.01% (GAR@FAR= 0.01%) are calculated to

represent the verification performance; decidability index (DI) [6] is calculated to

represent the intra-class and inter-class separability of matching scores. A signifi-

cance analysis is performed based on the above measures using paired student-t test.

For each dataset, 100 subsets are randomly selected from the performance evalua-

tion set; the subjects included in each subset are randomly selected; R1RA, EER,

GAR@FAR= 0.01% and DI are calculated for each subset, and paired student-t

test is performed between the performance of the iris code produced by Masek’s im-

plementation of traditional iris code generation method and the proposed iris code

to study the statistical significance. The mean and standard deviations of R1RA,

EER, GAR@FAR= 0.01% and DI, together with the result of significance analysis,

are reported in Tab. 7.2, Tab. 7.3, Tab. 7.4 and Tab. 7.5, respectively.
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Table 7.5: The DI for comparison between the proposed iris code and the iris code
produced by Masek’s implementation of traditional iris code generation method,
with the result of significance test (best performance bolded, format: mean ± stan-
dard deviation).

Method CASIAT ND0405 CASIAD UBIRIS2

Baseline 4.334± 0.047 3.435± 0.066 2.439± 0.044 -
Proposed 4.639± 0.050# 3.504± 0.069# 2.601± 0.048# -

Baseline R - - - 1.367± 0.034
Proposed R - - - 1.373± 0.034#

Baseline Y - - - 1.531± 0.050
Proposed Y - - - 1.530± 0.050#

#The p value of paired student-t test is lower than 0.05 level.

Note that, in Fig. 7.2(d), Fig. 7.3(d), Tab. 7.2, Tab. 7.3, Tab. 7.4 and Tab. 7.5, Base-

line R and Proposed R are used to refer to the performance of iris codes on the red

channel of RGB colour space of UBIRIS2 dataset, and Baseline Y and Proposed Y

correspond to the illumination channel of YCbCr colour space of UBIRIS2 dataset.

It can be seen that the performance varies on NIR datasets (CASIAT, ND0405,

CASIAD) and colour dataset (UBIRIS2). Considering the result on NIR datasets,

it is found that the proposed iris code generally achieve better CMC and ROC

performance, in comparison to the iris code produced by Masek’s implementation of

traditional iris code generation method. This result demonstrates that more effective

iris codes can be obtained by solving an optimisation problem with an additional

objective term modeling the spatial correlation of the bits in iris codes.

On the other hand, for the colour dataset (UBIRIS2), it is found that the proposed

method leads to little improvement compared to the iris codes produced by Masek’s

implementation of traditional iris code generation method. A possible reason is

that the colour captures in this dataset include too heavy noise. The heavy noise

induces a large amount of highly unreliable feature values. Consequently, the spatial

correlation exploited based on the proposed additional objective term is less reliable.

Finally, it can be seen that, for UBIRIS2 dataset, performance variations are ob-

served on different channels. Specifically, as shown in Tab. 7.2, Tab. 7.3, Tab. 7.4
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and Tab. 7.5, the proposed method leads to very slight improvement on R1RA,

EER, GAR@FAR= 0.01% and DI on the red channel of RGB colour space, while it

only improves R1RA on the illumination channel of YCbCr colour space. A possible

reason of this observation is that different channels include different noise compo-

nents; since the proposed method does not explicitly model the noise, the influence

of different noise components on the proposed method is less controllable; thus it

leads to performance variation on different channels on UBIRIS2 dataset.

In all, the experimental results in this subsection show that: (1) when the iris data

is less noisy, the proposed iris code generated by solving an optimisation problem

is able to achieve generally improved identification and verification performance,

compared to the iris code produced by Masek’s implementation of traditional iris

code generation method; (2) the highest noise level where (1) applies is distant NIR

captures in this experiment; (3) for the iris data with heavier noise (colour captures

in the experiment), the iris code produced by the proposed method performs sim-

ilarly to the iris code produced by Masek’s implementation of traditional iris code

generation method.

7.3.3 Analysis of the spatial correlation in iris textures

The radial correlation of iris textures has been demonstrated in several research

such as [6, 31, 151]. This subsection studies this correlation from the perspective

of iris code optimisation, using the proposed iris code generation method with the

additional objective term. The analysis is performed by varying the neighbour type

in the second term of Eqn. 7.10, and investigating the performance of obtained iris

codes. Intuitively, the best performance will be achieved by a neighbour type that

is closest to the inherent spatial correlation of iris textures. The reason is that such

neighbour type correctly models the inherent spatial dependency in iris textures.

In contrast, a neighbour type that is different from the inherent spatial correlation



7.3. Experiment 164

will introduce incorrect dependency between the bits that should be independent;

it will harm the randomness of iris codes, leading to degraded performance. In

other words, the iris code with the best performance can be obtained only by using

a neighbour type closest to the inherent spatial dependency of iris textures, since

it expresses the inherent spatial correlation in iris textures without influencing the

inherent randomness part of iris codes. This experiment tests three basic neighbour

types, vertical neighbour (including 1 immediate top pixel and 1 immediate bottom

pixel to the centre pixel, referred to as Proposed V), horizontal neighbour (including

1 immediate left pixel and 1 immediate right pixel to the centre pixel, referred to

as Proposed H) and cross neighbour (combination of vertical and horizontal neigh-

bours, referred to as Proposed C).

Fig. 7.4 and Fig. 7.5 show the CMC and ROC curves of the iris codes produced

by the proposed method using the three neighbour types on all the datasets. Also,

similarly to Section 7.3.2, Tab. 7.6, Tab. 7.7, Tab. 7.8 and Tab. 7.9 report respec-

tively the R1RA, EER, GAR@FAR= 0.01% and DI of all the methods on all the

datasets, together with the result of paired student-t test between the best neigh-

bour type and other neighbour types. Note that, in Fig. 7.4(d), Fig. 7.5(d), Tab. 7.6,

Tab. 7.7, Tab. 7.8 and Tab. 7.9, Proposed R H, Proposed R C and Proposed R V

are used to refer to the performance of proposed iris codes on the red channel of RGB

colour space of UBIRIS2 dataset; Proposed Y H, Proposed Y C and Proposed Y V

correspond to the illumination channel of YCbCr colour space of UBIRIS2 dataset.

It is found that, on NIR datasets, the iris code obtained with the vertical neigh-

bour consistently outperforms the iris code obtained using the other two neighbour

types. As for the colour dataset, it can be found that the vertical neighbour has

slightly better performance than the other two neighbour types on the illumination

channel of YCbCr colour space, while, on the red channel of RGB colour space, the

performance of vertical neighbour is the best in EER, GAR@FAR= 0.01%. In all, it

can be concluded that the iris code produced using the vertical neighbour generally
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Figure 7.4: CMC curves of the proposed iris code for the analysis of spatial correla-
tion in iris textures.

Table 7.6: The R1RA for the analysis of spatial correlation in iris textures, together
with the results of significance test (in percentage, best performance bolded, format:
mean ± standard deviation).

Method CASIAT ND0405 CASIAD UBIRIS2

Proposed H 98.65± 0.15# 92.10± 0.90# 90.60± 0.72# -
Proposed C 98.59± 0.17# 92.42± 0.93# 91.16± 0.75# -
Proposed V 99.37± 0.12 93.14± 0.86 92.91± 0.66 -

Proposed R H - - - 51.34± 2.52
Proposed R C - - - 50.98± 2.47#

Proposed R V - - - 51.18± 2.55#

Proposed Y H - - - 55.91± 2.60#

Proposed Y C - - - 57.30± 2.38#

Proposed Y V - - - 58.03± 2.55
#The p value of paired student-t test is lower than 0.05 level.
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Figure 7.5: ROC curves of the proposed iris code for the analysis of spatial correla-
tion in iris textures.

Table 7.7: The EER for the analysis of spatial correlation in iris textures, together
with the results of significance test (in percentage, best performance bolded, format:
mean ± standard deviation).

Method CASIAT ND0405 CASIAD UBIRIS2

Proposed H 0.54± 0.07# 4.02± 0.33# 8.69± 0.43# -
Proposed C 0.54± 0.06# 3.89± 0.31# 8.28± 0.42# -
Proposed V 0.33± 0.05 3.47± 0.31 8.07± 0.40 -

Proposed R H - - - 23.64± 0.69#

Proposed R C - - - 23.50± 0.71#

Proposed R V - - - 23.42± 0.72

Proposed Y H - - - 20.71± 0.83#

Proposed Y C - - - 20.76± 0.80#

Proposed Y V - - - 20.67± 0.87
#The p value of paired student-t test is lower than 0.05 level.
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Table 7.8: The GAR@FAR= 0.01% for the analysis of spatial correlation in iris tex-
tures, together with the results of significance test (in percentage, best performance
bolded, format: mean ± standard deviation).

Method CASIAT ND0405 CASIAD UBIRIS2

Proposed H 96.15± 0.38# 61.93± 5.30# 42.02± 2.34# -
Proposed C 96.47± 0.31# 65.35± 4.74# 45.51± 1.89# -
Proposed V 98.34± 0.22 68.16± 4.80 50.66± 2.22 -

Proposed R H - - - 4.15± 0.69#

Proposed R C - - - 4.17± 0.76#

Proposed R V - - - 4.29± 0.74

Proposed Y H - - - 5.39± 0.87#

Proposed Y C - - - 5.20± 0.73#

Proposed Y V - - - 5.93± 0.93
#The p value of paired student-t test is lower than 0.05 level.

Table 7.9: The DI for the analysis of spatial correlation in iris textures, together with
the results of significance test (best performance bolded, format: mean ± standard
deviation).

Method CASIAT ND0405 CASIAD UBIRIS2

Proposed H 4.243± 0.044# 3.397± 0.067# 2.534± 0.047# -
Proposed C 4.426± 0.044# 3.451± 0.070# 2.651± 0.052 -
Proposed V 4.639± 0.050 3.504± 0.069 2.601± 0.048# -

Proposed R H - - - 1.370± 0.035#

Proposed R C - - - 1.375± 0.035
Proposed R V - - - 1.373± 0.034#

Proposed Y H - - - 1.523± 0.050#

Proposed Y C - - - 1.515± 0.050#

Proposed Y V - - - 1.530± 0.050
#The p value of paired student-t test is lower than 0.05 level.

achieves the best performance among the three neighbour types. This observation

experimentally illustrates that the iris texture has a general spatial correlation along

the radial direction, from the perspective of iris code optimisation. It is consistent

with the demonstrations in previous research such as [6, 31,151].

7.3.4 Analysis on the computational cost

The computational cost is a critical factor in real applications. It is expected that

the proposed method has higher computational cost than the traditional binarisa-

tion method. This is because adding the objective term leads to a more complex
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Table 7.10: Computational cost of each method to generate iris codes (ms).

Method CASIAT ND0405 CASIAD UBIRIS2

Baseline 0.60 0.56 0.56 -
Proposed 47.8 46.0 47.9 -

Baseline R - - - 0.35
Proposed R - - - 42.1

Baseline Y - - - 0.53
Proposed Y - - - 39.0

#The p value of paired student-t test is lower than 0.05 level.

algorithm than simple binarisation, and it induces more computational load.

This subsection studies the additional computational cost of the proposed method.

It reports the computational cost of Masek’s implementation of traditional iris code

generation method [15] using simple binarisation (referred to as Baseline) and the

proposed iris code generation method by solving an optimisation problem (referred

to as Proposed). The computational cost is estimated by measuring the elapsed time

to produce an iris code given a vector of feature values. The measure is based on a

Matlab implementation of both methods, running on a desktop with Intel i5-3470

quad-core 3.20GHz CPU, 16GB RAM, Windows 7 64bit system and Matlab 2013a

64bit. Tab. 7.10 reports the mean elapsed time of all the methods to produce an iris

code on all four datasets. Similarly to Section 7.3.2 and Section 7.3.3, in Tab. 7.10,

Baseline R and Proposed R are used to refer to the performance on the red channel of

RGB colour space of UBIRIS2 dataset, and Baseline Y and Proposed Y correspond

to the illumination channel of YCbCr colour space of UBIRIS2 dataset.

It can be seen that, as expected, the computational cost of the proposed method is

higher than the traditional binarisation method. However, the highest elapsed time

to compute an iris code using the proposed method is 47.8ms in the experimental

setting of this subsection. This speed is considered acceptable in real applications,

because the iris code production is performed only once for each iris capture, and a

delay of around 47ms is practically very small.
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7.4 Summary

This chapter investigates the issue of iris code generation from the perspective of op-

timisation. It is demonstrated that the traditional iris code generation method can

be expressed as the solution of an optimisation problem. Furthermore, this chapter

proposes to apply additional term to the objective function of this optimisation prob-

lem, in order to produce more effective iris codes. An additional objective term is

designed to model the spatial correlation of the bits in iris codes. The experimental

results on benchmark datasets demonstrate that the iris code produced by the pro-

posed method leads to a generally improved performance in comparison to the iris

code produced by an implementation of traditional iris code generation method [15],

and the computational cost is acceptable in real applications. The experimental

analysis also provides deeper insights into the characteristics of iris textures and iris

codes. Future work may focus on: (1) designing an objective term to model noise,

in order to achieve more robust performance on heavily degraded captures; (2) ex-

amining the proposed method on more datasets covering more data variations, in

order to investigate the stability and robustness of the proposed method on more

varying data.



Chapter 8

An iris weight map method exploit-

ing bit stability and discriminabil-

ity

Part of this chapter has been adapted from the journal paper [J9] (accepted, in press)

and the conference paper [C5] (published) as in List of Publications.

8.1 Introduction

This chapter proposes and investigates a novel iris weight map method for iris match-

ing stage to improve less constrained iris recognition. The proposed iris weight map

considers both intra-class bit stability and inter-class bit discriminability of iris

codes. It is the combination of a stability map and a discriminability map. The sta-

bility map models the intra-class bit stability in iris codes to improve the intra-class

matching. It assigns more weight to the bits that have values more consistent with

their noiseless and stable estimates obtained using a low rank approximation from a

set of noisy training images. The idea is that a bit is more robust if its value is more

consistent with its noiseless and stable estimate. Specifically, to calculate the stabil-

170
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ity map, low rank approximation is firstly used to estimate the potentially noiseless

and stable iris structures (named meta-image) for each user from the training data;

then, iris codes are extracted from the meta-images (i.e. meta-codes). Meta-codes

are viewed as the estimate of the iris code extracted from noiseless and stable iris

structures. Finally, the stability map is computed based on the consistency between

the iris codes extracted from the training data and meta-codes. It emphasises the

bits which are highly consistent with meta-codes.

On the other hand, the discriminability map expresses the inter-class bit discrim-

inability to enhance the inter-class separation. It emphasises the bits with more

discriminative power in iris codes. The discriminability map is computed using a

1-to-N strategy. For each user, a discriminability map is obtained by comparing the

training iris codes between this user and all the other users.

The final iris weight map is the combination of stability map and discriminability

map. It values the bits that are both highly stable within each class and highly

discriminative between classes for iris matching.

Experiments are conducted on both single-sensor and cross-sensor iris datasets. The

experimental results show that the proposed iris weight map is applicable to both

single-sensor and cross-sensor iris recognition scenarios. It achieves a generally im-

proved performance compared to existing iris weight map methods in both scenarios.

The remainder of this chapter is organised as follows. Section 8.2 describes the pro-

posed method to calculate the iris weight map. Section 8.3 reports the experimental

results. Section 8.4 summarises this chapter.

8.2 Methodology

This section presents the proposed method to compute the new iris weight map. It

begins with the construction of meta-images and meta-codes. Then, it describes the
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method to compute the stability map, the discriminability map, and the final iris

weight map. Finally, it introduces the iris matching strategy given the iris weight

map.

8.2.1 Computation of meta-images and meta-codes

Challenges for iris recognition under less constrained environment are the noise

and degradations, and cross-sensor variations in iris captures. To alleviate these

problems, this subsection computes potentially noiseless and stable structures as

meta-images, and uses the iris codes extracted from these meta-images as meta-

codes to provide an estimate of potentially noiseless and stable iris codes.

The meta-images are computed using low rank approximation [136,137]. The basic

assumption is that, given multiple noisy iris captures of one user, the potentially

noiseless and stable iris structures lie in a low rank subspace, due to the inherent

stability of iris patterns. With this assumption, the meta-image is computed for

each user by seeking a low rank approximation of the training iris images.

Assume there areM training iris images for an arbitrary user. Let I = [I1, I2, ..., IM ] ∈

RN×M be the matrix of all the training images of this user with Ii ∈ RN being a

column vector of the ith training image. The low rank approximation of I is sought

via `1 low rank matrix factorisation model [137]:

arg min
U ,V

∥∥I −UV T
∥∥

1
(8.1)

where U ∈ RN×r and V ∈ RM×r form the factorisation of I; r � m,n is a

parameter controlling the rank of approximation. Eqn. 8.1 can be solved by cyclic

weight median filtering algorithm [137]. After U and V are obtained, the low rank

approximation of I can be calculated by UV T. Each column in UV T corresponds

to the low rank approximation of one training image in I. The meta-image for this
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(a)

(b)

Figure 8.1: Examples of meta-images: (a) example training images; images in the
same column are from the same eye; (b) the estimated meta-images correspond to
the eye in each column of (a).

user is computed as the mean of the low rank approximation of all the training

images in I. Iris codes are extracted from the meta-image as meta-code. Some

examples of meta-images are shown in Fig. 8.1. It can be seen that in meta-images,

most of the noise (like specular reflections) in the training images are suppressed,

and the stable structure is preserved. Note that some eyelids remain in the meta-

images. It is because some regions in training images are always occupied by eyelids

and it lacks the noiseless information for these regions.

8.2.2 The stability map

Suppose the iris code of each user has n bits. Denote the stability map of an arbitrary

user by s = [s1, s2, ...sn]. The stability of the ith bit, si, is modelled by:

si = fs
(
p2
i + q2

i

)
(8.2)

In Eqn. 8.2, pi and qi denote the probability that the ith bit of this user’s iris code

equals to 1 and 0, respectively; pi and qi satisfy pi + qi = 1; fs : R→ R is a function

modelling the relationship between p2
i + q2

i and si. Eqn. 8.2 is a probability based
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model. p2
i +q2

i calculates the probability that the ith bit matches given two iris codes

of one user (assuming the two iris codes are independent), and si is modelled as a

function of p2
i + q2

i .

To design fs (x), the relationship between p2
i + q2

i and si needs to be analysed.

Intuitively, si should be monotonically increasing with p2
i + q2

i . Considering that

p2
i + q2

i = 1−σi where σi is the variance, a higher value of p2
i + q2

i means that the ith

bit has a lower variance in the iris codes of the user, hence this bit is more stable.

In contrast, a lower p2
i + q2

i means that the ith bit has a higher variance, so it is

less stable. Based on the above analysis, two models are investigated to build the

relationship between p2
i + q2

i and si: a linear model and a non-linear model.

The linear model is motivated by [98]. It is formulated as follows:

fs (x) = 2x− 1 (8.3)

It is obvious that the value of p2
i + q2

i is between 0.5 and 1. Eqn. 8.3 uses a linear

mapping to normalise this value to between 0 and 1 as the bit stability.

The non-linear model is inspired by [22]. It is formulated as follows:

fs (x) = (2x− 1)c (8.4)

where scalar c is the adaptive crest factor used as a measure of the quality of stability

maps [22]. For an arbitrary user, let p̃i = pi − 0.5, let ti = 2 (p2
i + q2

i )− 1= 4p̃2
i , and

let µ = 1
n

n∑
j=1

tj. c is determined as follows:

c =


1
µ

if µ > 0

1 if µ = 0

(8.5)

Therefore, from Eqn. 8.4, it follows that si = 4p̃2c
i . The non-linear model calculates
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the bit stability by applying the adaptive crest factor c as the power to the result

of the linear model. The power c is reciprocal of the mean stability obtained by

the linear model when µ 6= 0. Compared to the linear model, the non-linear model

essentially imposes a larger penalty on the highly unstable bits.

For both linear and non-linear models, the key issue is the computation of pi and

qi. Accordingly, it needs to analyse the influence of pi and qi on the final stability.

The influence of pi and qi on the final stability estimate can be illustrated based on

the level of certainty. It is obvious that p2
i + q2

i reaches its minimum (0.5) if and

only if pi = qi = 0.5 (i.e the lowest certainty), and it leads to a minimum stability

of 0 in both linear and non-linear models. On the other hand, p2
i + q2

i reaches its

maximum (1) when either pi or qi is 1 (i.e the highest certainty), and it leads to a

maximum stability of 1 in both models. The two models assign a higher stability to

the ith bit, if pi and qi are more distant from 0.5 (i.e. the higher certainty).

Based on the above analysis, a two-step scheme is proposed to estimate pi and qi us-

ing the consistency between training iris codes and meta-codes (noiseless and stable

information). The first step calculates the intra-class bit distribution. The second

step uses the intra-class bit distribution and the meta-code to calculate pi and qi.

The idea is to improve the obtained stability if the intra-class distribution of a bit is

consistent with the noiseless and stable estimate of this bit (i.e. meta-code), other-

wise a penalty is applied to the stability. This scheme aims to achieve the improve-

ment/penalty by shifting the probabilities of intra-class distribution away/towards

0.5, according to the above analysis based on certainty.

For one specific user, let mi be the times the ith bit is 1 in this user’s training iris

code; let ni be the times of 0. The intra-class bit distribution is modelled as a

binomial distribution: p
′
i = mi

mi+ni
and q

′
i = ni

mi+ni
, where p

′
i denotes the probability

that the ith bit equals to 1, and q
′
i denotes the probability of 0.

After the intra-class bit distribution is obtained, pi and qi are estimated as follows.
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For the case that the ith bit of the meta-code is 1, qi is calculated by:

qi =


0.5+β1

(
q
′
i−0.5

)
0.5+β1(q′i−0.5)+p

′
i

if q
′
i ≥ 0.5

β2q
′
i

β2q
′
i+p
′
i

if q
′
i < 0.5

(8.6)

where β1, β2 ∈ [0, 1] are parameters and their effect will be illustrated later. After

obtaining qi, pi is set by pi = 1 − qi. The above method to calculate pi and qi can

be decomposed into the following process. Firstly, pi is set by pi = p
′
i. Then, if

q
′
i ≥ 0.5, qi is obtained by qi = 0.5 + β1

(
q
′
i − 0.5

)
; if q

′
i < 0.5, qi is obtained by

qi = β2q
′
i. Finally, pi and qi are normalised to have a sum of 1. The reason of the

above process can be explained as follows:

• Given that the ith bit of the meta-code is 1, q
′
i ≥ 0.5 means that the ith bit in

most of training iris codes is different from the ith bit in the meta-code which is

noiseless and extracted from stable iris structures. Due to such inconsistency

between the intra-class distribution of the ith bit and the noiseless and stable

counterpart estimate of this bit, the ith bit is considered to be more vulnerable

to noise and variations in iris captures, i.e. less reliable. Therefore, a penalty

is applied to the obtained stability: qi is calculated by shifting q
′
i towards 0.5.

This leads to a lower certainty after normalisation and hence reducing the

stability value (i.e. qi corresponds to a lower stability compared to q
′
i).

• On the contrary, q
′
i < 0.5 means that the intra-class distribution of the ith

bit is consistent with the meta-code. Hence, this bit is considered to be more

robust to noise and capturing variations, i.e. more reliable. Thus, the obtained

stability is improved: qi is determined by reducing q
′
i. This reduction shifts

q
′
i away from 0.5. It results in higher certainty after normalisation and hence

improving the stability value (i.e. qi corresponds to a higher stability compared

to q
′
i).

To illustrate the effect of β1 and β2, Fig. 8.2 plots the function defined by Eqn. 8.6
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Figure 8.2: The function defined by Eqn. 8.6 with different choices of β1 and β2.

with different choices of β1 and β2. From Fig. 8.2(a), it can be seen that β1 controls

the strength of penalty on bit stability when the intra-class distribution is inconsis-

tent with meta code (q
′
i ≥ 0.5). When q

′
i ≥ 0.5, a smaller β1 leads to a qi closer

to 0.5, and it results a lower stability value as discussed above. In other words, a

smaller β1 imposes a heavier penalty to the stability of the bits whose intra-class

distribution is inconsistent with meta-code. As a special case, β1=1 means that no

penalty is applied.

On the other hand, from Fig. 8.2(b), it can be seen that β2 determines the level

of improvement of bit stability when the intra-class distribution is consistent with

meta-code (q
′
i < 0.5). When q

′
i < 0.5, a smaller β2 makes the obtained qi more

distant from 0.5, leading to a higher stability value as discussed above. That is, a

smaller β2 applies more improvement to the stability of the bits whose intra-class

distribution is consistent with meta-code. As a special case, β2=1 means that no

improvement is applied.

Finally, Eqn. 8.6 has discontinuity: since limq
′
i→0.5+qi = 0.5 and limq

′
i→0.5−qi =

β2
β2+1

≤ 0.5 (0 ≤ β2 ≤ 1), Eqn. 8.6 is discontinuous at q
′
i = 0.5 when β2 6= 1. This

is reasonable. In the proposed method, q
′
i > 0.5 and q

′
i < 0.5 correspond to two

different cases (i.e. the intra-class distribution is inconsistent/consistent with meta-
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code); since the proposed method applies different strategies to these two cases, it

leads to different right and left limits of qi at q
′
i = 0.5. As a detailed discussion, the

left and right limit of qi at q
′
i = 0.5 is firstly analysed as follows:

• The right limit of qi at q
′
i = 0.5 is 0.5. Note that q

′
i → 0.5+ means q

′
i > 0.5.

For Eqn. 8.6 (the meta-code is 1), it corresponds to the case that the intra-

class distribution is inconsistent with meta-code. For this case, the proposed

method applies a penalty to the obtained stability by shifting q
′
i towards 0.5

(see the explanations following Eqn. 8.6). Therefore, the right limit of qi at

q
′
i = 0.5 is essentially the probability corresponding to the lowest stability

that can be obtained after applying this penalty. This lowest stability that

the right limit of qi corresponds to is equal to the minimum stability (qi = 0.5

corresponds to si = 0).

• The left limit of qi at q
′
i = 0.5 is β2

β2+1
< 0.5 (assuming β2 6= 1; β2 = 1 will

be discussed later). Note that q
′
i → 0.5− means q

′
i < 0.5. For Eqn. 8.6,

it corresponds to the case that the intra-class distribution is consistent with

meta-code. For this case, the proposed method improves the obtained stability

by reducing q
′
i. Therefore, the left limit of qi at q

′
i = 0.5 is actually the

probability corresponding to the lowest stability that can be obtained after

this improvement. Due to the proposed improvement, this lowest stability

that the left limit corresponds to is larger than the minimum stability (qi < 0.5

corresponds to si > 0).

• As stated before, β2 = 1 means that no improvement is applied when the intra-

class distribution is consistent with meta-code. In this case, the left limit of qi

at q
′
i = 0.5 is 0.5. This left limit means that the lowest stability that can be

obtained without the improvement equals to the minimum stability (qi = 0.5

corresponds to si = 0), when the intra-class distribution is consistent with

meta-code.
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From the above analysis, it can be seen that the discontinuity is due to the proposed

improvement to the stability, when the intra-class distribution is consistent with

meta-code. With this improvement(i.e. β2 6= 1), the left and right limit of qi at

q
′
i = 0.5 are different, and they correspond to different minimum stabilities in two

different cases in the proposed method. Without this improvement (i.e. set β2 = 1),

Eqn. 8.6 is continuous.

In Eqn. 8.6, q
′
i = 0.5 is incorporated into the branch of q

′
i > 0.5, because it leads

to a more reasonable stability. q
′
i = 0.5 means the highest instability in the intra-

class distribution. Since, in this case, the intra-class distribution shows the highest

instability and the consistency between the intra-class distribution and meta-code

cannot be determined, q
′
i = 0.5 is combined with the branch of q

′
i > 0.5 to assign the

minimum stability of 0 to the ith bit (recall that the proposed method determines

the stability based on both intra-class distribution and the consistency between the

intra-class distribution and meta-code).

Similarly to Eqn. 8.6, when the ith bit of the meta-code is 0, pi is calculated by:

pi =


0.5+β1

(
p
′
i−0.5

)
0.5+β1(p′i−0.5)+q

′
i

if p
′
i ≥ 0.5

β2p
′
i

β2p
′
i+q
′
i

if p
′
i < 0.5

(8.7)

After obtaining pi, qi is set by qi = 1 − pi. The effect of Eqn. 8.7 and parameters

β1, β2 are the same as that in the above illustrations based on Eqn. 8.6.

Comparing with using intra-class bit distribution only to compute the stability map

(i.e. set pi = p
′
i and qi = q

′
i), the proposed stability map considers not only the

intra-class bit distribution, but also the robustness of the bit to noise and capturing

variations. It increases the weight if the intra-class distribution of a bit is consistent

with its noiseless and stable estimate, otherwise the weight is reduced. Such a scheme

is preferable for intra-class matching. It assigns higher weight to the bits that are

not only stable within class, but also robust to noise and capturing variations. Such
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bits are more likely to be consistent given two iris codes of the same eye under less

constrained capture conditions, leading to a better intra-class matching.

However, the influence of the proposed stability map on the inter-class comparison

is less controllable. Given two iris codes from different eyes, this stability map is

possible to emphasise the local consistency in some regions and ignore the inconsis-

tency in some other regions. In other words, the stability map is possible to impair

inter-class separation. The main reason is that the stability map only models the

intra-class matching which mainly relies on the bit consistency (stability), but it

ignores the inter-class relations where the bit inconsistency (discriminability) plays

a more important role. To address this problem, a discriminability map is proposed

to model the inter-class comparison.

8.2.3 The discriminability map

The aim of discriminability map is to emphasise the bit with higher inter-class

discriminative power. The discriminability map is calculated using a 1-to-N strategy.

For an arbitrary user, let d = [d1, d2, ..., dn] ∈ Rn be the discriminability map of this

user; denote the probability that the ith bit of all other users’ iris code equals to 1

and 0 by p∗i and q∗i , respectively; p∗i + q∗i = 1. pi and qi are still used to denote the

probability that the ith bit of this user’s iris code equals to 1 and 0, respectively.

The discriminability of the ith bit in the iris code, di, is calculated by:

di = fd (piq
∗
i + qip

∗
i ) (8.8)

where fd : R→ R is a function modelling the relationship between piq
∗
i +qip

∗
i and di.

Similarly to the bit stability model (Eqn. 8.2), Eqn. 8.8 is also a probability based

model. piq
∗
i + qip

∗
i calculates the probability that the ith bit does not match given

one iris code of one user and one iris code of a different user, and di is modelled as

a function of piq
∗
i + qip

∗
i . piq

∗
i + qip

∗
i reaches its maximum (1) when pi = 1, p∗i = 0
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or pi = 0, p∗i = 1, which means that the ith bit of the iris code is most likely to be

different between this user and other users. On the other hand, piq
∗
i + qip

∗
i reaches

the minimum (0) when pi = p∗i = 1 or pi = p∗i = 0.

Similarly to the model for bit stability in the Section 8.2.2, di should be monotoni-

cally increasing with piq
∗
i + qip

∗
i . Let t

′
=
[
t
′
1, t
′
2, ..., t

′
n

]
∈ Rn with t

′
i = piq

∗
i + qip

∗
i .

The relationship between piq
∗
i + qip

∗
i and di is modelled as follows:

fd

(
t
′

i

)
=

t
′
i −min

{
t
′}

max {t′} −min {t′}
(8.9)

where min{•} and max{•} calculate the minimum and maximum value in a vector,

respectively.

For an arbitrary user, pi and qi can be estimated using the method in Section 8.2.2.

As for p∗i and q∗i , assuming that in all the training iris codes of the other users,

the ith bit is 1 for m
′
i times and is 0 for n

′
i times, the following estimation is used:

p∗i =
m
′
i

m
′
i+n

′
i

and q∗i =
n
′
i

m
′
i+n

′
i

.

To investigate the influence of pi, qi, p
∗
i and q∗i on the discriminability map, t

′
i =

piq
∗
i + qip

∗
i can be written as follows:

t
′

i = piq
∗
i + qip

∗
i

= pi (1− p∗i ) + (1− pi) p∗i

= (1− 2pi) p
∗
i + pi

(8.10)

Since di is monotonically increasing with t
′
i as in Eq. 8.9, some interesting charac-

teristics of the discriminability map can be found:

• if pi = 0.5 (pi = qi), t
′
i will be always 0.5 whatever the value of p∗i . In other

words, when the intra-class value of the ith bit is highly uncertain, a moderate

discriminability will be assigned. This is reasonable, since, in such case, the

value of the ith bit of this user’s iris code is very likely to flip between 0 and



8.2. Methodology 182

1, so this bit is always possible to be the same with some iris codes and to

be different with other iris codes in intra-class comparisons. A similar case is

p∗i = 0.5 (p∗i = q∗i ).

• if pi < 0.5 (pi < qi), t
′
i is monotonically increasing with p∗i , and hence di is

monotonically increasing with p∗i . That is, if the ith bit of an user’s iris code is

more likely to be 0, the di of this user will be higher when the ith bit of other

users’ iris code is more likely to be 1.

• if pi > 0.5 (pi > qi), t
′
i is monotonically decreasing with p∗i , so that di is

monotonically decreasing with p∗i . That is, if the ith bit of an user’s iris code

is more likely to be 1, the di of this user will be lower when the ith bit of other

users’ iris code is more likely to be 1.

It is obvious that these properties make possible to emphasise the bits with higher

inter-class discriminative power.

8.2.4 The combined map

Given the stability map and the discriminability map of one user, the final iris weight

map of this user, denoted by w, is computed by combining the two maps as follows:

w = s⊗ d (8.11)

where ⊗ is element-wise multiplication operator. This combination emphasises the

bits that are both more stable within each class and more discriminative between

classes.

Some examples of the proposed stability map, discriminability map and combined

map are shown in Fig. 8.3. It can be seen that, the stability maps assign lower

weights to the regions corresponding to top and bottom of iris, and it assigns higher
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(a) Stability map (b) Discriminability map (c) Combined map

Figure 8.3: Examples of stability map with linear model, discriminability map and
combined map; the images in the same row correspond to the same subject; the
maps based on non-linear model are visually similar.

weights to the regions corresponding to both sides of iris. This is because top and

bottom regions of iris are likely to be occluded by eyelids, hence the corresponding

bits are less stable. On the other hand, the discriminability maps have a fog-like

effect. This is because most of bits in iris codes have medium discriminability,

and this results that most bits in the discriminability maps correspond to medium

intensity values. However, it can be seen that light and dark regions exist in the dis-

criminability maps, corresponding to the bits with higher and lower discriminability,

respectively. Finally, it can be seen that the combined maps emphasise the bits with

both high stability and discriminability.

8.2.5 Iris matching

Assume there are a probe iris code denoted by Cprobe, a gallery iris code of the jth

user denoted by Cj
gallery, and an iris weight map for the jth user denoted by wj. The

distance between the gallery iris code and the probe iris code is calculated using a

weighted Hamming distance [22, 98] (assuming the bits corresponding to noise like

reflections have been eliminated for iris matching):

HD =

∥∥(Cprobe ⊕Cj
gallery

)
⊗wj

∥∥
‖wj‖

(8.12)
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where ⊕ is element-wise exclusive-or operator.

8.3 Experiment

This section presents the results of experimental analysis. Firstly, it introduces the

datasets used in the experiment, followed by the experimental configuration, param-

eter setting and performance evaluation. Then, it analyses the proposed stability

map, discriminability map and combined map individually to investigate the effect

of each individual map. Next, it compares the proposed iris weight map to state-

of-the-art iris weight map methods. It shows that the proposed iris weight map

achieves a generally improved performance. Finally, it analyses the computational

cost of the proposed method.

8.3.1 Datasets

The experiments are performed on four datasets introduced in Chapter 3: CASIAD [102],

UBIRIS2 [19], CSIR [106] (recall that the images in CSIR dataset are captured by

two devices with different sensors: AD100 and IKEMB-220) and MICHE [5] (recall

that the images in MICHE dataset are captured by two mobile devices with dif-

ferent sensors: iPhone5 and Samsung Galaxy S4). The above datasets are chosen

such that the experiments are performed on both single-sensor datasets (CASIAD,

UBIRIS2) and cross-sensor datasets (CSIR, MICHE) captured in less constrained

environments. Tab. 8.1 introduces the information of all the datasets used for the

experiments in this chapter.

The images used for experiments are as follows. For CASIAD dataset, This experi-

ment uses the images from both left and right eyes of all the subjects, and 97 images

with too small iris regions are eliminated. For UBIRIS2, a subset with 1000 images

from 171 subjects is adopted. This subset was released for NICE II contest [18]. For
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Dataset CASIA4 UBIRIS2 CSIR MICHE
Eye number 284 171 200 75

Image number 5037 1000 7787 1479
Sensor type Single-sensor Single-sensor Cross-sensor Cross-sensor
Wavelength NIR Visible NIR Visible

Table 8.1: Summarisation on the datasets for experiments in this chapter.

CSIR dataset, all the subjects are adopted in this experiment. 213 images with too

small iris region are eliminated. It results a subset with 7787 images from 200 eyes.

For MICHE dataset, a subset is employed in this experiment. For each eye, at most

20 images are randomly selected, 10 from iPhone5 captures and 10 from Samsung

Galaxy S4 captures. 19 images with too small iris region are eliminated. It leads to

a subset with 1479 images from 75 eyes. For UBIRIS2 and MICHE datasets, this

experiment operates on the red channel of RGB colour space.

For all the datasets, the iris region is segmented using the algorithm in Chapter 4.

The failed segmentations are manually corrected. The size of unwrapped iris images

is set to 100 × 360. Iris codes are extracted from the unwrapped images using 1-D

log-Gabor filter [15].

8.3.2 Experimental configuration

This subsection introduces the experimental configuration for the experiments in

this chapter. Since the experiments are conducted on both single-sensor data and

cross-sensor data, this leads to a configuration for single-sensor experiment and a

configuration for cross-sensor experiment.

Configuration for single-sensor experiment. The following data are employed

for single-sensor experiment. For CASIAD and UBIRIS2 datasets, all the images are

used. For CSIR dataset, the images captured by IKEMB-220 are used. For MICHE

dataset, the images captured by Samsung Galaxy S4 are used. On all the datasets,
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for each eye, the first 5 images are used as gallery images, the rest images are used

as probe images. If an eye has less than 5 images, all the images are used as gallery

images, and there are no probe images for this eye. For each eye, the meta-image,

meta-code and iris weight map are learned from the gallery images.

Configuration for cross-sensor experiment. This configuration is only applica-

ble to CSIR and MICHE datasets. For each eye in CSIR dataset, the first 5 images

captured by AD100 and the first 5 images captured by IKEMB-220 are used as the

learning data. The meta-image, meta-code and iris weight map are obtained from

the learning data. The 6th to 10th images captured by AD100 are used as gallery

images, and probe images are the images captured by IKEMB-220 but not included

in the learning data. The configuration on MICHE dataset is similar to that on

CSIR dataset. For each eye, the learning data include 10 images, 5 from iPhone5

captures and 5 from Samsung Galaxy S4 captures. The 6th to 10th images captured

by iPhone5 are used as the gallery images, and probe images are the images captured

by Samsung Galaxy S4 but not included in the learning data.

8.3.3 Parameter tuning and performance evaluation

For CASIAD dataset, the first 20 eyes are used for parameter tuning, and the re-

maining eyes are used for performance evaluation. For UBIRIS2 dataset, the first

19 eyes are used for parameter tuning, and the remaining eyes are used for perfor-

mance evaluation. For CSIR and MICHE datasets, the learning data in cross-sensor

experiment are used for parameter tuning, and all the eyes are used for performance

evaluation in both single-sensor and cross-sensor experiments. Note that, for CSIR

and MICHE datasets, the gallery images in the single-sensor experiment are in-

cluded in the data for parameter tuning. This is considered to be acceptable, since

gallery images can be considered as known data, and the probe data used in per-

formance evaluation remains excluded from parameter tuning in both single-sensor
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Database r β1 β2 1/f0 σ/f0

CASIA4 1 0.3 0.8 19 0.48
UBIRIS2 1 0.3 0.8 40 0.38

CSIR 1 0.7 0.8 24 0.42
MICHE 1 0.7 0.8 17 0.26

Table 8.2: Parameter setting.

and cross-sensor experiments.

There are 5 parameters to be determined: r is the size of U and V in Eqn. 8.1, β1

and β2 in Eqn. 8.3 and Eqn. 8.4, 1/f0 and σ/f0 are 1-D log-Gabor parameters (see

Eqn. 2.25). Based on the above described data for parameter setting, the setting of

these parameters are reported in Tab 8.2. Note that, for 1-D log-Gabor parameters

(1/f0 and σ/f0) on CASIAD and UBIRIS2 datasets, the setting in Section 6.4.1 is

adopted; for CSIR and MICHE datasets, uniform parameter setting is used for both

single-sensor and cross-sensor experiments.

The performance is evaluated in two tasks: identification and verification. The

identification performance is evaluated by cumulative match characteristic (CMC),

while the verification performance is evaluated by receiver operating characteristic

(ROC).

Also, paired student-t test are performed to analyse the statistical significance of

the experimental results. Specifically, in all the datasets, 100 subsets are randomly

selected from the performance evaluation set. The subjects included in each subset

are randomly selected. For each subset, R1RA is calculated to represent the iden-

tification performance; equal error rate (EER) and genuine acceptance rate (GAR)

when false acceptance rate (FAR) is 0.01% (GAR@FAR= 0.01%) are calculated

to represent the verification performance; decidability index (DI) [6] is calculated

to represent the intra-class and inter-class separability of matching scores. The p

value of paired student-t test on R1RA, EER, GAR@FAR= 0.01% and DI between

different methods are used to evaluate the statistical significance. The comparison
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methods where the paired t-test is applied vary according to different experiments.

This will be described specifically in each experiment in the following Section 8.3.4

and Section 8.3.5.

8.3.4 Analysis of the proposed iris weight map

The proposed iris weight map is the combination of a stability map and a discrim-

inability map. Furthermore, the stability map can be produced using a linear model

(Eqn. 8.3) or a non-linear model (Eqn. 8.4). This section makes detailed analysis

on these maps (two stability maps corresponding to linear and non-linear models,

discriminability map, two combined maps corresponding to combining the discrim-

inability map with each of the two stability maps). To investigate the effect of using

meta-code to compute the stability map, two baseline stability maps are designed

corresponding to the linear and nonlinear models. The two baseline maps are com-

puted using only the intra-class bit consistency, without using meta-codes. That is,

based on Eqn. 8.2, two baseline stability maps are produced, one using the linear

model in Eqn. 8.3 and the other using the nonlinear model in Eqn. 8.4, with pi and qi

in Eqn. 8.2 calculated as follows: pi = mi

mi+ni
and qi = ni

mi+ni
. Note that the baseline

map using linear model is equivalent to the personalised weight map in [98].

The above maps are referred to as follows: the baseline stability map with the linear

model is referred to as Baseline L, the baseline stability map with the non-linear

model is referred to as Baseline NL, the proposed stability map with the linear

model is referred to as Proposed S L, the proposed stability map with the non-

linear model is referred to as Proposed S NL, the proposed discriminability map is

referred to as Proposed D, the combined map of the proposed stability map with the

linear model and the proposed discriminability map is referred to as Proposed C L,

the combined map of the proposed stability map with the non-linear model and the

proposed discriminability map is referred to as Proposed C NL.
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Results of single-sensor experiments. Fig. 8.4 and Fig. 8.5 report the CMC

and ROC curves of the above iris weight maps in the single-sensor experiment,

respectively. The paired student-t test is performed between: (1) Baseline L and

Proposed S L, Baseline NL and Proposed S NL to analyse the effect of using meta-

code; (2) Proposed S L and Proposed C L, Proposed D and Proposed C L, Pro-

posed S NL and Proposed C NL, Proposed D and Proposed C NL, to study the

effect of combining individual maps. Tab. 8.3, Tab. 8.4, Tab. 8.5 and Tab. 8.6 re-

port the mean and standard deviation of R1RA, EER, GAR@FAR= 0.01% and DI,

together with the result of corresponding significance test, respectively. In these

tables, the results of significance test in the row ‘Baseline L’ and ‘Baseline NL’ cor-

respond to the above two tests in paired t-test (1), and the results of significance test

in the row ‘Proposed S L’, ‘Proposed C L’, ‘Proposed S NL’ and ‘Proposed C NL’

correspond to the above four tests in paired t-test (2).

The following observations are obtained from the results of single-sensor experi-

ments shown in Fig. 8.4, Fig. 8.5, Tab. 8.3, Tab. 8.4, Tab. 8.5 and Tab. 8.6. First,

compared to baselines, the propose stability map is able to achieve an improved

identification performance with either linear or non-linear model. However, the

verification performance of the propose stability map exhibits no improvement in

comparison to baselines. The reason is that the proposed stability map focuses on

intra-class matching, but it is possible to impair the inter-class separation, as illus-

trated in Section 8.2.2. Better intra-class matching improves the accuracy of the

lowest matching scores, leading to a better R1RA. However, impaired inter-class

separation influence the verification performance.

Second, individual discriminability map is insufficient to achieve a generally good

performance in both identification and verification tasks. In terms of identification,

the R1RA achieved by proposed discriminability map (Proposed D) is generally

lower than proposed iris weight maps with the linear model (Proposed S L and Pro-

posed C L) in all datasets. The only exception is CSIR dataset where proposed dis-
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Figure 8.4: The CMC curves to analyse the proposed iris weight map in the single-
sensor experiment.

Table 8.3: The R1RA to analyse the proposed iris weight map in the single-sensor
experiment, with the result of significance test (in percentage, best performance
bolded, format: mean ± standard deviation).

Method CASIAD UBIRIS2 CSIR MICHE

Proposed D 90.57± 0.48 51.43± 2.11 85.41± 0.85 73.31± 2.02

Baseline L 91.44± 0.47# 61.80± 1.97# 84.74± 0.83# 75.05± 1.93#

Proposed S L 91.53± 0.50# 63.24± 2.03# 85.00± 0.82# 75.57± 1.83#

Proposed C L 91.84± 0.48# 68.84± 2.05# 85.24± 0.81# 76.33± 1.76#

Baseline NL 90.72± 0.54# 60.20± 1.95# 82.59± 0.86# 73.06± 2.06#

Proposed S NL 91.07± 0.52# 63.89± 1.92# 83.11± 0.86# 73.72± 1.98#

Proposed C NL 91.52± 0.50# 66.09± 1.78# 83.51± 0.83# 73.38± 2.02#

#The p value of paired student-t test is lower than 0.05 level.
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Figure 8.5: The ROC curves to analyse the proposed iris weight map in the single-
sensor experiment.

Table 8.4: The EER to analyse the proposed iris weight map in the single-sensor
experiment, with the result of significance test (in percentage, best performance
bolded, format: mean ± standard deviation).

Method CASIAD UBIRIS2 CSIR MICHE

Proposed D 8.11± 0.24 22.38± 0.51 10.54± 0.40 28.16± 0.92

Baseline L 4.95± 0.23# 15.38± 0.58# 6.58± 0.30# 17.44± 0.93#

Proposed S L 5.07± 0.22# 16.45± 0.67# 6.76± 0.32# 18.27± 0.94#

Proposed C L 4.18± 0.20# 12.23± 0.49# 6.29± 0.29# 16.42± 0.93#

Baseline NL 4.67± 0.54# 14.18± 0.69# 6.07± 0.27# 15.16± 1.04#

Proposed S NL 4.65± 0.22# 13.81± 0.72# 6.04± 0.27# 15.29± 1.02#

Proposed C NL 3.79± 0.20# 12.02± 0.56# 5.87± 0.25# 13.34± 0.98#

#The p value of paired student-t test is lower than 0.05 level.
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Table 8.5: The GAR@FAR= 0.01% to analyse the proposed iris weight map in the
single-sensor experiment, with the result of significance test (in percentage, best
performance bolded, format: mean ± standard deviation).

Method CASIAD UBIRIS2 CSIR MICHE

Proposed D 49.13± 1.41 3.98± 0.65 30.78± 3.32 9.84± 0.93

Baseline L 65.16± 1.53# 6.97± 1.78# 52.41± 2.84# 15.11± 4.12#

Proposed S L 64.00± 1.53# 10.06± 1.05∗ 50.93± 2.70# 13.74± 4.42#

Proposed C L 69.42± 1.35# 9.85± 2.50# 51.64± 4.11# 16.06± 5.51#

Baseline NL 67.70± 1.46# 8.11± 2.92# 53.59± 2.04# 17.70± 6.38#

Proposed S NL 68.07± 1.40# 10.24± 2.29# 53.78± 2.10# 17.17± 5.95#

Proposed C NL 73.41± 1.23# 13.81± 3.78# 56.91± 2.74# 25.23± 5.61#

#The p value of paired student-t test is lower than 0.05 level.
∗The p value of paired student-t test is higher than 0.05 level.

Table 8.6: The DI to analyse the proposed iris weight map in the single-sensor
experiment, with the result of significance test (best performance bolded, format:
mean ± standard deviation).

Method CASIAD UBIRIS2 CSIR MICHE

Proposed D 2.499± 0.029 1.439± 0.029 2.334± 0.037 1.081± 0.034

Baseline L 3.197± 0.044# 2.003± 0.046# 3.067± 0.053# 1.848± 0.065#

Proposed S L 3.266± 0.043# 1.969± 0.047# 3.016± 0.052# 1.782± 0.062#

Proposed C L 3.221± 0.070# 2.296± 0.048# 3.051± 0.050# 1.903± 0.061#

Baseline NL 3.433± 0.048# 2.161± 0.057# 3.224± 0.055# 2.084± 0.076#

Proposed S NL 3.409± 0.047# 2.204± 0.057# 3.214± 0.054# 2.064± 0.075#

Proposed C NL 3.564± 0.046# 2.458± 0.061# 3.251± 0.054# 2.241± 0.073#

#The p value of paired student-t test is lower than 0.05 level.

criminability map has the best rank 1 recognition accuracy. As for verification, the

performance of proposed discriminability map is the lowest among all the proposed

iris weight maps. The possible reason is that, although the proposed discriminabil-

ity map includes the information on inter-class bit discriminability, this map itself

is insufficient to indicate the reliability of bits for iris matching. For example, as

discussed in Section 8.2.3, the proposed discriminability map assigns a bit moderate

discriminability if pi = qi; however, pi = qi means that the ith bit is highly unstable

within class, so such bits are less reliable; although assigning such bits a moderate

weight is consistent with the aim of the discriminability map, it is possible to reduce

the overall performance using the weight individually.

Third, it can be seen that combining the proposed stability map and discriminabil-
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ity map leads to generally improved identification and verification performance in

both identification and verification tasks, with either linear or non-linear model.

The only two exceptions are the identification performance of the non-linear model

on CSIR and MICHE datasets. This observation demonstrates the effectiveness of

proposed method which computes two individual weight maps based on intra-class

stability and inter-class discriminability respectively and combines the two weight

maps to produce the final iris weight map. The improvement is due to the advan-

tage of considering both intra-class stability and inter-class discriminability. Such

combination scheme only emphasises the bits with both high intra-class stability

and hight inter-class discriminability. The weight is suppressed if a bit is weak in

either stability or discriminability. As an example, considering the bit with pi = qi

as discussed in the second observation above, although it has a moderate weight in

the proposed discriminability map, the weight of such bits is 0 in proposed stability

map (see Section 8.2.2); therefore, the final weight of such bit is 0 after combination.

Four, considering the performance of the final combined maps, it can be found

that the performance of linear and non-linear models varies in identification and

verification tasks. Specifically, the linear model (Proposed C L) performs better

than non-linear model (Proposed C NL) in the identification task, but the non-

linear model is better in the verification task. This can be explained by the different

characteristics of the two models. For a less stable bit within class, the non-linear

model (Eqn. 8.4 and Eqn. 8.5) essentially applies heavier penalty to this bit than

the linear model (Eqn. 8.3). In the identification task with single-sensor data, such

heavier penalty is possible to harm intra-class matching. In the iris code of single-

sensor captures, a bit may still contain some useful similarity information, despite

of a lower intra-class stability. Applying heavier penalty on such bits may cause

the loss of similarity information, hence leading to a dropped rank 1 recognition

accuracy. However, heavier penalty on less stable bits may be able to improve the

verification performance by enhancing the inter-class separation. For the iris code
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of a specific eye, the more likely a bit flips, the more likely it falsely matches with

the bits in the iris codes of other eyes. A heavier penalty on the weight of such

bits is able to suppress false inter-class matching, hence improving the verification

performance.

Results of cross-sensor experiments. Fig. 8.6 and Fig. 8.7 report the CMC

and ROC curves of different iris weight maps in the cross-sensor experiment, respec-

tively. The significance analysis in the cross-sensor experiment is the same to that

in the single-sensor experiment. The R1RA, EER, GAR@FAR= 0.01% and DI with

the corresponding results of significant analysis are reported in Tab. 8.7, Tab. 8.8,

Tab. 8.9 and Tab. 8.10, respectively.

Considering the result of cross-sensor experiments shown in Fig. 8.6, Fig. 8.7, Tab. 8.7,

Tab. 8.8, Tab. 8.9 and Tab. 8.10, it is found that some conclusions are similar with

single-sensor experiment, while others are not. Specifically, the second and third

observations in the case of single-sensor experiments hold for the cross-sensor ex-

periments as well. That is, individual discriminability map is insufficient to achieve

a generally good performance, while combining the proposed stability and discrim-

inability maps leads to a generally improved performance.

On the other hand, different observations are obtained for the performance between

the proposed stability maps and the baselines (i.e. the first observation in single-

sensor experiment), and the final performance of the linear and non-linear models

(the fourth observation). In terms of the performance between the proposed stability

maps and the baselines, it is found that only proposed stability map with the non-

linear model (Proposed S NL) leads to an improved identification performance. The

possible reason is explained as follows. The iris codes extracted from cross-sensor

captures have a higher complexity than the iris codes extracted from single-sensor

captures, due to the cross-sensor variation. Given such higher complexity, the linear

model is too simple to express the relationship between p2
i + q2

i and si in Eqn. 8.2

(similar to under fitting). As a result, with the linear model, the estimated prob-
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Figure 8.6: The CMC curves to analyse the proposed iris weight map in the cross-
sensor experiment.
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Figure 8.7: The ROC curves to analyse the proposed iris weight map in the cross-
sensor experiment.

abilities pi and qi are not correctly mapped to a suitable stability value, hence it

leads to little improvement of the performance. In contrast, the non-linear model,

which has higher complexity than the linear one, is still able to accurately model the

relationship between p2
i + q2

i and si, leading to an improved performance (note that

the estimated pi and qi are exactly the same for the linear and non-linear models).

Also, comparing the final performance of the linear and non-linear models, Pro-

posed C NL performs consistently better than Proposed C L in both identification

and verification tasks. The possible reason is that, differently from single-sensor
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Table 8.7: The R1RA to analyse the proposed iris weight map in the cross-sensor
experiment, with the result of significance test (in percentage, best performance
bolded, format: mean ± standard deviation).

Method CSIR MICHE

Proposed D 74.83± 1.08 49.07± 1.50

Baseline L 83.85± 0.97# 61.83± 1.70#

Proposed S L 83.43± 0.95# 62.02± 1.68#

Proposed C L 84.54± 0.86# 64.46± 1.57#

Baseline NL 82.81± 1.14# 60.94± 1.67#

Proposed S NL 83.96± 0.94# 64.04± 1.72#

Proposed C NL 85.00± 0.87# 66.82± 1.50#

#The p value of paired student-t test is lower than 0.05 level.

Table 8.8: The EER to analyse the proposed iris weight map in the cross-sensor
experiment, with the result of significance test (in percentage, best performance
bolded, format: mean ± standard deviation).

Method CSIR MICHE

Proposed D 12.93± 0.39 29.55± 0.53

Baseline L 8.15± 0.33# 22.65± 0.62#

Proposed S L 8.33± 0.34# 23.20± 0.58#

Proposed C L 7.62± 0.31# 21.25± 0.56#

Baseline NL 7.60± 0.36# 20.10± 0.59#

Proposed S NL 7.56± 0.35# 20.60± 0.58#

Proposed C NL 6.93± 0.34# 18.39± 0.61#

#The p value of paired student-t test is lower than 0.05 level.

Table 8.9: The GAR@FAR= 0.01% to analyse the proposed iris weight map in
the cross-sensor experiment, with the result of significance test (in percentage, best
performance bolded, format: mean ± standard deviation).

Method CSIR MICHE

Proposed D 27.49± 1.79 1.67± 0.33

Baseline L 39.87± 2.89# 4.94± 0.64#

Proposed S L 38.61± 2.87# 4.72± 0.60#

Proposed C L 42.41± 3.47# 5.96± 0.93#

Baseline NL 42.51± 2.49# 4.87± 0.88#

Proposed S NL 43.36± 2.34# 5.20± 1.06#

Proposed C NL 49.33± 2.26# 8.76± 1.01#

#The p value of paired student-t test is lower than 0.05 level.



8.3. Experiment 197

Table 8.10: The DI to analyse the proposed iris weight map in the cross-sensor
experiment, with the result of significance test (best performance bolded, format:
mean ± standard deviation).

Method CSIR MICHE

Proposed D 2.123± 0.036 1.048± 0.025

Baseline L 2.738± 0.049# 1.462± 0.031#

Proposed S L 2.695± 0.047# 1.431± 0.031#

Proposed C L 2.753± 0.047# 1.535± 0.033#

Baseline NL 2.898± 0.057# 1.608± 0.037#

Proposed S NL 2.889± 0.054# 1.604± 0.037#

Proposed C NL 2.962± 0.055# 1.774± 0.039#

#The p value of paired student-t test is lower than 0.05 level.

data where a bit with a lower intra-class stability may still contain some useful simi-

larity information, the information in a less stable bit is less valuable for cross-sensor

data, due to the higher data complexity. In this case, the heavier penalty assigned

by the non-linear model on less stable bits is preferable for both identification and

verification tasks.

Overall conclusions of the analysis. The above observations and analysis in

both single-sensor and cross-sensor experiments lead to some conclusions as follows:

• The proposed stability map considering the bit consistency between the iris

codes and meta-code is able to achieve an improved identification performance,

in comparison to the baseline maps which do not use the meta-code. However,

in the proposed stability model (Eqn. 8.2), besides the estimated probabilities

pi and qi, the accuracy of fs also plays a critical role in the performance. For

example, for the identification task on single-sensor data, the linear model

performs better, but, for the same task on cross-sensor data (with higher

complexity), the non-linear model is preferable.

• Individual discriminability map is insufficient to achieve generally good per-

formance alone.

• Combining proposed stability and discriminability maps leads to generally
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improved identification and verification performance, with either linear or non-

linear models, on both single-sensor and cross-sensor data.

• Considering the performance of the combined map using linear and non-linear

models, it is found that the linear model performs better for the identification

task on single-sensor data. For the other cases in the experiment, the non-

linear model is preferable, especially for the cross-sensor iris recognition tasks.

8.3.5 Comparison with other methods

The proposed iris weight map is compared with 5 existing iris weight map methods:

1-D log-Gabor filter without any weight maps as the baseline [15], fisher feature

selection (FFS) as used in [99], fragile bits (FB), personalized weight map (PW) [98]

and power law based weight map (PL) [22]. The proposed combined map with

linear model is referred to as Proposed L, and the proposed combined map with

non-linear model as Proposed NL. Note that several feature selection strategies are

used in [99]. The fisher feature selection is chosen as a reference for the performance

of feature selection methods due to the following reasons: (1) as reported in [99],

the performance of different feature selection strategies varies on different datasets

using Gabor features; (2) it can be seen in [99] that the performance of FFS is stable

at a mid-level and close to the top performance.

Fig. 8.8 and Fig. 8.9 show the CMC and ROC curves for all the comparison methods

in the single-sensor experiment, respectively. Fig. 8.10 and Fig. 8.11 show the CMC

and ROC curves in the cross-sensor experiment, respectively. The paired student-

t tests are performed between the method with the best performance and all the

other methods. Tab. 8.11, Tab. 8.12, Tab. 8.13 and Tab. 8.14 show respectively the

mean and standard deviation of R1RA, EER, GAR@FAR= 0.01% and DI, together

with the results of paired student-t tests, in the single-sensor experiment. Tab. 8.15,

Tab. 8.16, Tab. 8.17 and Tab. 8.18 show these results in the cross-sensor experiment.
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Figure 8.8: The CMC curves for comparison between proposed iris weight maps and
existing iris weight map methods in the single-sensor experiment.

Table 8.11: The R1RA for comparison in the single-sensor experiment, with the
result of significance test (in percentage, best performance bolded, format: mean ±
standard deviation).

Method CASIAD UBIRIS2 CSIR MICHE

Baseline 90.49± 0.48# 50.54± 2.02# 85.41± 0.84# 73.99± 1.95#

FFS 90.86± 0.52# 57.08± 1.96# 85.36± 0.86# 74.47± 1.90#

FB 91.51± 0.46# 63.18± 1.93# 85.36± 0.84# 75.93± 1.81#

PW 91.44± 0.47# 61.80± 1.97# 84.74± 0.83# 75.05± 1.93#

PL 91.50± 0.48# 62.28± 1.98# 86.02± 0.84 75.37± 1.82#

Proposed L 91.84± 0.48 68.84± 2.05 85.24± 0.81# 76.33± 1.76

Proposed NL 91.52± 0.50# 66.09± 1.78# 83.51± 0.83# 73.38± 2.02#

#The p value of paired student-t test is lower than 0.05 level.



8.3. Experiment 200

False acceptance rate

G
en

u
in

e
 a

cc
ep

ta
n
c
e 

ra
te

(a) CASIAD

False acceptance rate

G
en

u
in

e
 a

cc
ep

ta
n

c
e 

ra
te

(b) UBIRIS2

False acceptance rate

G
en

u
in

e
 a

cc
ep

ta
n

c
e 

ra
te

(c) CSIR

False acceptance rate

G
en

u
in

e
 a

cc
ep

ta
n
c
e 

ra
te

(d) MICHE

Figure 8.9: The ROC curves for comparison between proposed iris weight maps and
existing iris weight map methods in the single-sensor experiment.

Table 8.12: The EER for comparison in the single-sensor experiment, with the
result of significance test (in percentage, best performance bolded, format: mean ±
standard deviation).

Method CASIAD UBIRIS2 CSIR MICHE

Baseline 8.92± 0.27# 23.65± 0.56# 10.95± 0.40# 28.45± 0.88#

FFS 8.62± 0.26# 21.92± 0.61# 10.90± 0.40# 27.20± 0.91#

FB 5.60± 0.22# 16.00± 0.55# 7.35± 0.30# 20.56± 0.93#

PW 4.95± 0.23# 15.38± 0.58# 6.58± 0.30# 17.44± 0.93#

PL 4.86± 0.22# 15.08± 0.63# 8.93± 0.37# 16.77± 0.93#

Proposed L 4.18± 0.20# 12.23± 0.49# 6.29± 0.29# 16.42± 0.93#

Proposed NL 3.79± 0.20 12.02± 0.56 5.87± 0.25 13.34± 0.98
#The p value of paired student-t test is lower than 0.05 level.
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Table 8.13: The GAR@FAR= 0.01% for comparison in the single-sensor experiment,
with the result of significance test (in percentage, best performance bolded, format:
mean ± standard deviation).

Method CASIAD UBIRIS2 CSIR MICHE

Baseline 44.63± 1.63# 4.09± 0.61# 31.10± 2.07# 9.77± 1.13#

FFS 46.62± 1.57# 3.52± 0.59# 31.37± 2.09# 10.38± 1.47#

FB 60.36± 1.62# 6.12± 1.58# 46.02± 2.60# 12.25± 3.55#

PW 65.16± 1.53# 6.97± 1.78# 52.41± 2.84# 15.11± 4.12#

PL 65.88± 1.53# 7.23± 2.04# 37.70± 2.66# 14.63± 4.86#

Proposed L 69.42± 1.35# 9.85± 2.50# 51.64± 4.11# 16.06± 5.51#

Proposed NL 73.41± 1.23 13.81± 3.78 56.91± 2.74 25.23± 5.61
#The p value of paired student-t test is lower than 0.05 level.

Table 8.14: The DI for comparison in the single-sensor experiment, with the result
of significance test (best performance bolded, format: mean ± standard deviation).

Method CASIAD UBIRIS2 CSIR MICHE

Baseline 2.435± 0.029# 1.364± 0.029# 2.315± 0.038# 1.081± 0.034#

FFS 2.475± 0.030# 1.534± 0.033# 2.318± 0.038# 1.144± 0.035#

FB 2.992± 0.038# 1.916± 0.040# 2.863± 0.045# 1.602± 0.053#

PW 3.197± 0.044# 2.003± 0.046# 3.067± 0.053# 1.848± 0.065#

PL 3.247± 0.044# 2.037± 0.048# 2.603± 0.042# 1.898± 0.066#

Proposed L 3.266± 0.043# 2.296± 0.048# 3.051± 0.050# 1.903± 0.061#

Proposed NL 3.564± 0.046 2.458± 0.061 3.251± 0.054 2.241± 0.073
#The p value of paired student-t test is lower than 0.05 level.

Results of the singe-sensor experiments. Considering the result shown in

Fig. 8.8, Fig. 8.9, Tab. 8.11, Tab. 8.12, Tab. 8.13 and Tab. 8.14, it is found that

the proposed weight map with linear model (Proposed L) generally achieves the

highest rank 1 recognition accuracy among all the methods compared in the iden-

tification task. In terms of verification performance, Proposed NL outperforms all

other methods. Also, the verification performance of Proposed L is better than all

the existing methods, although its performance is lower than Proposed NL.

Results of the cross-sensor experiments. Considering the result shown in

Fig. 8.10, Fig. 8.11, Tab. 8.15, Tab. 8.16, Tab. 8.17 and Tab. 8.18, it is found that

the proposed weight map with non-linear model (Proposed NL) outperforms all the

comparison methods in both identification and verification tasks. Also, in verifica-

tion task, Proposed L performs generally better than existing methods, although

the performance is lower than Proposed NL.
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Figure 8.10: The CMC curves for comparison between proposed iris weight maps
and existing iris weight map methods in the cross-sensor experiment.
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Figure 8.11: The ROC curves for comparison between proposed iris weight maps
and existing iris weight map methods in the cross-sensor experiment.

Table 8.15: The R1RA for comparison in the cross-sensor experiment, with the
result of significance test (in percentage, best performance bolded, format: mean ±
standard deviation).

Method CSIR MICHE

Baseline 74.82± 1.09# 49.63± 1.45#

FFS 74.95± 1.08# 51.38± 1.47#

FB 81.93± 0.92# 59.60± 1.47#

PW 83.85± 0.87# 61.83± 1.70#

PL 84.84± 0.86# 64.21± 1.65#

Proposed L 84.54± 0.86# 64.46± 1.57#

Proposed NL 85.00± 0.87 66.82± 1.50
#The p value of paired student-t test is lower than 0.05 level.
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Table 8.16: The EER for comparison in the cross-sensor experiment, with the re-
sult of significance test (in percentage, best performance bolded, format: mean ±
standard deviation).

Method CSIR MICHE

Baseline 13.22± 0.38# 29.37± 0.62#

FFS 13.24± 0.40# 28.22± 0.55#

FB 9.33± 0.32# 24.52± 0.56#

PW 8.15± 0.33# 22.65± 0.62#

PL 7.93± 0.33# 21.63± 0.58#

Proposed L 7.62± 0.31# 21.24± 0.56#

Proposed NL 6.93± 0.34 18.39± 0.61
#The p value of paired student-t test is lower than 0.05 level.

Table 8.17: The GAR@FAR= 0.01% for comparison in the cross-sensor experiment,
with the result of significance test (in percentage, best performance bolded, format:
mean ± standard deviation).

Method CSIR MICHE

Baseline 26.06± 1.56# 1.70± 0.30#

FFS 26.62± 1.56# 2.16± 0.27#

FB 36.64± 2.28# 3.31± 0.81#

PW 39.87± 2.89# 4.94± 0.64#

PL 42.40± 2.30# 5.20± 0.72#

Proposed L 42.41± 3.47# 5.96± 0.93#

Proposed NL 49.33± 2.26 8.76± 1.01
#The p value of paired student-t test is lower than 0.05 level.

Table 8.18: The DI for comparison in the cross-sensor experiment, with the result
of significance test (best performance bolded, format: mean ± standard deviation).

Method CSIR MICHE

Baseline 2.102± 0.036# 1.054± 0.023#

FFS 2.106± 0.036# 1.105± 0.025#

FB 2.516± 0.040# 1.328± 0.028#

PW 2.738± 0.049# 1.462± 0.031#

PL 2.768± 0.049# 1.523± 0.033#

Proposed L 2.753± 0.047# 1.535± 0.033#

Proposed NL 2.962± 0.055 1.774± 0.039
#The p value of paired student-t test is lower than 0.05 level.
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Overall conclusions on comparison results. Considering the above results

in both single-sensor and cross-sensor experiments, the concluding remarks are as

follows.

• In the single-sensor experiment, the proposed linear model performs generally

better than the existing iris weight map methods in both identification and

verification tasks, while the proposed non-linear model is able to achieve even

better verification performances than the linear model.

• In the cross-sensor experiment, the proposed non-linear model consistently

outperforms the linear model and existing iris weight map methods.

8.3.6 Analysis of computational cost

This subsection analyses the computational cost of the proposed method. Compar-

isons of the computational cost are made between the proposed method and existing

iris weight map methods, including FFS [99], FB [97], PW [98], PL [22].

The computational cost is evaluated by the mean elapsed time to calculate an iris

weight map for an eye, given unwrapped iris images and the corresponding iris codes.

For FB, PW and PL, this is the time to calculate the stability map (tS); for FFS,

this is the time to calculate the discriminability map (tD); for the proposed method,

this includes the time to calculate the stability map (tS), discriminability map (tD)

and meta-code (tM). Tab. 8.19 reports the computational cost of all the comparison

methods. The results in Tab. 8.19 are measured based on a Matlab implementation

of all the methods, running on a desktop with Intel i5-3470 quad-core 3.20GHz CPU,

16GB RAM, Windows 7 64bit system and Matlab 2013a 64bit. The results are based

on the single-sensor configuration in Section 8.3.2, and the results are similar under

the cross-sensor configuration.
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Table 8.19: Analysis of computational cost (ms).

Dataset
FFS FB PW PL Proposed L Proposed NL
(tD) (tS) (tS) (tS) (tS+tD+tM) (tS+tD+tM)

CASIAD 4.7 3.0 2.9 5.3 7.7 + 3.9 + 148.1 10.1 + 3.9 + 148.6
UBIRIS2 3.7 2.5 2.4 4.2 6.2 + 3.4 + 128.6 8.0 + 3.4 + 123.8

CSIR 4.4 3.0 2.8 5.2 7.3 + 3.8 + 176.4 9.6 + 3.8 + 165.2
MICHE 4.5 3.1 2.9 5.3 7.6 + 3.9 + 222.8 10.0 + 4.0 + 221.7

It can be seen that the proposed method has higher computational cost than ex-

isting iris weight map methods. This is because the proposed method needs to

compute more components than existing iris weight map methods. Specifically, ex-

isting iris weight map methods compute either a stability map (FB, PW, PL) or a

discriminability map (FFS), while the proposed method computes a stability map,

a discriminability map together with meta-codes. The computational cost of each

component of the proposed method is analysed as follows. On the one hand, the

proposed stability and discriminability maps do not induce too much computational

cost. It can be seen that, in the proposed method, tD is similar to the time to calcu-

late existing iris weight maps, while tS is slightly higher than the time to calculate

existing iris weight maps. On the other hand, the calculation of meta-code accounts

for the heaviest computational cost in the proposed method. It can be seen that

tM is significantly larger than tS and tD for Proposed L and Proposed NL. In all, it

can be concluded that the proposed method has a higher computational cost than

existing iris weight maps, and the additional computational cost is mainly induced

by the calculation of meta-code.

However, despite of a higher computational cost compared to existing methods, the

proposed method is still efficient. As shown in Tab. 8.19, the total time to compute

the proposed iris weight map (tS + tD + tM) is generally lower than 250ms. In other

words, under the experimental configuration in this section, the proposed iris weight

map can be computed in less than 1/4 seconds for each eye. Since the calculation

of iris weight map only happens once for each eye, this speed is considered efficient.
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8.4 Summary

This chapter proposes and investigates a novel iris weight map method for robust

iris matching in less constrained environments. The proposed method models intra-

class bit stability and inter-class bit discriminability individually to produce two

weight maps: a stability map and a discriminability map. The final iris weight map

is the combination of the two maps. Furthermore, the stability map is calculated

using two models: a linear model and a non-linear model. It leads to two final iris

weight maps: one using the linear stability model and the other using the non-linear

stability model. Experiments are conducted using both single-sensor and cross-

sensor data captured in less constrained environments, and the performance of the

proposed iris weight map is evaluated in two tasks: identification and verification.

The analysis focuses on: (1) the performance of each individual weight map in the

proposed method; (2) the comparison of performance between the proposed iris

weight map and existing iris weight map methods; (3) the computational cost of the

proposed iris weight map method. The main findings are summarised as follows:

• For both proposed linear and non-linear models, the combination of stability

map and discriminability map leads to a generally improved performance in

comparison to each individual map.

• For single-sensor iris recognition, the proposed linear model generally outper-

forms the existing iris weight map methods in both identification and verifi-

cation tasks, while the proposed non-linear model is able to achieve an even

better verification performance than the linear model.

• For cross-sensor iris recognition, the proposed non-linear model consistently

outperforms the linear model and existing iris weight map methods.

• The proposed iris weight map can be computed efficiently, although it requires

higher computational cost than the existing iris weight map methods.
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Finally, since the experimental observations show that the identification performance

of proposed linear and non-linear models vary in single-sensor and cross-sensor ex-

periments, future research may consider a model which is able to achieve a more

consistent identification performance on both single-sensor and cross-sensor cap-

tures.



Chapter 9

Conclusion

9.1 Summary of thesis achievements

This thesis addresses the challenge of less constrained iris recognition with the sub-

ject at-a-distance and on-the-move. Five methods are proposed to improve the

performance of different stages in less constrained iris recognition. Comprehensive

experimental analysis are performed for each method. The results demonstrate that

the proposed methods have achieved generally improved performance in comparison

to state-of-the-art methods. Detailed achievements are as follows:

• A robust iris segmentation algorithm is proposed for less constrained iris cap-

tures. This algorithm formulates iris segmentation as robust `1-norm regres-

sion using three models: a circle model, a parametric ellipse model and an

ellipse model. To further improve the robustness, a model selection method is

proposed to select the best model as the final segmentation result, based on a

ring-shaped region around the segmentation boundary sought by each model.

Comprehensive experimental analysis are made for each individual model as

well as the model selection method. The comparison with state-of-the-art

algorithms demonstrates that the proposed algorithm achieves a generally im-
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proved performance.

• Regional features are investigated for iris liveness detection. Regional features

exploit the information not only from low level features, but also from high

level feature distribution. A spatial pyramid model and a relational measure

model are employed to express the high level feature distribution. The con-

structed regional features based on the two models are fused at the score level

to make the final decision. Experiments are conducted on four benchmark

datasets for iris liveness detection. The results show that regional features are

able to achieve a generally improved performance compared to traditional low

level features. It is also demonstrated that, in three of the four datasets used

in the experiment, regional feature based iris liveness detection method is able

to achieve a comparable performance to state-of-the-art methods with accu-

rate iris localisation, proper preprocessing and reliable feature selection; in a

dataset with heavier noise, regional feature based method is able to achieve

better performance than state-of-the-art methods, even with some error in-

duced by the above three components.

• A signal level information fusion method is proposed to mitigate the noise in

less constrained iris captures to improve the recognition performance. This

method is based on a sparse-error low rank matrix factorisation (SE-LRMF)

model. Given multiple noisy iris captures, SE-LRMF is used to separate noise-

less iris structures and noise for information fusion. The noiseless iris struc-

tures are fused using a low rank mean (LRM) method, while the noise is used

for an error weighted mean (EWM) fusion method. The results of LRM and

EWM are combined at the code level to produce a final iris code. Experiments

are conducted on benchmark iris datasets captured under varying less con-

strained environments. Experimentally, the proposed method demonstrates

an improved performance compared to existing information fusion methods as

well as recently proposed methods without information fusion, especially for
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the datasets with heavier noise.

• The method to generate iris codes is investigated from the perspective of opti-

misation. It is demonstrated that the traditional iris code generation method

can be expressed as the solution of an optimisation problem. Therefore, it

is possible to apply additional objective terms to this optimisation problem

to produce more effective iris codes. This thesis designs an additional objec-

tive term exploiting the spatial correlation of the bits in an iris code. The

experimental results on benchmark datasets demonstrate that the iris code

produced with this objective term leads to a generally improved performance

in comparison to the iris code produced by an implementation of traditional

iris code generation method [15], and the computational cost is acceptable in

real applications. Also, based on this objective term, the spatial correlation

of iris textures demonstrated in literature like [6, 31, 151] is experimentally

studied and verified.

• An iris weight map method is investigated for robust iris matching. This

weight map is the combination of two weight maps: a stability map modelling

the intra-class bit stability and a discriminability map expressing the inter-

class bit discriminability. Furthermore, the stability map is calculated using

two models: a linear model and a non-linear model. This leads to two final

iris weight maps: one using the linear stability model and the other one using

the non-linear stability model. Experiments are conducted using both single-

sensor and cross-sensor datasets. The results demonstrate that both models

achieve generally improved performance in comparison to existing iris weight

map methods for iris matching.
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9.2 Summary of findings

The achievements in this thesis lead to several novel directions to improve the per-

formance of less constrained iris recognition, summarised as follows:

• More robust models to overcome noise. This thesis finds that more robust

models, such as the `1-norm regression in Chapter 4 and low rank model

in Chapter 6, are able to improve the performance of less constrained iris

recognition.

• Explicitly modeling the noise to mitigate its influence. This thesis finds that,

by explicitly modelling the noise, the influence of noise can be mitigated and

the performance of less constrained iris recognition can be improved. The is

demonstrated by the model and experimental results in Chapter 6.

• Exploiting high level information. Chapter 5 of this thesis finds that high

level information is able to improve the performance of iris liveness detection,

especially for a dataset with heavier noise. Accordingly, it may be possible to

seek high level information to construct more effective features for the other

stages of less constrained iris recognition.

• Seeking information from multiple captures. This thesis finds that seeking

information from multiple captures is able to improve the performance of less

constrained iris recognition, as demonstrated by the methods in Chapter 6 and

Chapter 8.

• Incorporating more information into the model. This thesis finds that the

performance of less constrained iris recognition can be improved by incorpo-

rating more information into the model. For example, the model in Chapter 7

incorporates the prior information of iris textural correlation; the model in



9.3. Future work 212

Chapter 8 incorporates the information of bit discriminability; both models

achieve improved performance.

9.3 Future work

Future work may be conducted from the following perspectives to further improve

the performance of less constrained iris recognition. First, better performance may

be achieved by fusing iris with some other modalities. Although it is generally

believed that combining a strong biometric like iris with a weak one leads to limited

improvement, some recent research has shown that, in less constrained environment,

an improved performance can be achieved by fusing iris with other modalities such

as periocular [23,154–156] and face [112,157]. Therefore, it is possible to seek to fuse

iris with other biometric modalities to improve the performance of iris recognition

in less constrained environments.

Second, algorithms may be designed to explicitly model the noise to alleviate its

influence. As shown in Chapter 6, a model for information fusion with a term

explicitly modelling the noise is able to achieve a generally improved performance.

Therefore, similar approaches may be considered for other stages of less constrained

iris recognition to improve the robustness.

Third, more robust models may be considered to achieve improvements. As shown

in Chapter 4, the performance of iris segmentation can be improved by formulating

the problem using robust `1-norm regression. Similarly, the model in Chapter 6

also relies on the robustness of `1-norm. Thus, it is possible to introduce other

robust functions such as `p-norm (p < 1) [158, 159], `2,1-norm [160, 161] and Huber

loss [162] into the problem formulation to achieve improvements for different stages

in less constrained iris recognition.

Four, high level information may be exploited to improve less constrained iris recog-
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nition. As shown in Chapter 5, features including high level feature distribution

information achieve generally improve performance for iris liveness detection, com-

pared to low level features directly extracted from pixels. Since most existing

features for iris recognition are still low level features [6, 7, 10, 15, 20, 23, 81, 83],

it is expected that features with high level information will improve state-of-the-

art performance. Especially, deep learning technique based on deep neural net-

works [76, 84, 163, 164] may have high potential to be used to exploit high level

information for less constrained iris recognition.

Five, textural correlation in iris captures may be studied to improve iris recognition.

As shown in Chapter 7, the performance of iris recognition is generally improved

with a model considering the iris textural correlation to produce iris codes. Future

research may consider a comprehensively quantitative analysis on iris textural cor-

relation, in order to seek the direction with higher discriminating power to assist

parameter selection and to design more powerful features.

Six, information may be exploited from multiple iris captures to improve the ro-

bustness of less constrained iris recognition. In the thesis, the methods in Chapter 6

and Chapter 8 seek the information that are noiseless or robust to noise from mul-

tiple noisy captures, leading to improved performance compared to state-of-the-art

methods. Future research may focus on more effective models to seek information

from multiple captures, in order to achieve a more robust performance.
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