
Probabilistic Knowledge and Cognitive Ability

Jason Konek

Abstract

Moss (2013) argues that degrees of belief or credences can amount to knowledge

in much the way that full beliefs can. This paper explores a new kind of objec-

tive Bayesianism designed to take us some way toward securing such knowledge-

constituting credences, or ‘probabilistic knowledge’. Whatever else it takes for an

agent’s credences to amount to knowledge, their success, or accuracy must be the

product of cognitive ability or skill. The brand of Bayesianism developed here helps

ensure this ability condition is satisfied. Cognitive ability, in turn, helps make cre-

dences valuable in other ways: it helps mitigate their dependence on epistemic luck,

for example. What we end up with, at the end of the day, are credences that are

particularly good candidates for constituting probabilistic knowledge. What’s more,

examining the character of these credences teaches us something important about

what the pursuit of probabilistic knowledge demands from us. It does not demand

that we give hypotheses equal treatment, by affording them equal credence. Rather,

it demands that we give them equal consideration, by affording them an equal chance

of being discovered.

Keywords: Probabilistic Knowledge · Cognitive Skill · Accuracy · Explanation

On the Bayesian view, belief is not an on-off matter. Opinions are gradable. An agent

might be more confident that it will rain in London this afternoon than in Leeds, nearly
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certain that the exams she left on her desk yesterday did not grade themselves over the

evening, etc.1 And these opinions pin down different truth-value estimates for different

propositions. (We follow de Finetti and Jeffrey in thinking of propositions as variables

that take the value 1 at worlds where they are true, and 0 where false. Truth-value esti-

mates are estimates of the value, 0 or 1, that the proposition takes at the actual world.)

For example, if you are more confident that it will rain in London (call this proposition

‘LONDON’) than in Leeds (call this proposition ‘LEEDS’), then your state of opinion ‘pins

down’ a higher truth-value estimate for LONDON than LEEDS in the following sense: ev-

ery assignment of truth-value estimates that rationalizes, or makes sense of your opinions

attaches a higher value (a larger truth-value estimate) to LONDON than to LEEDS.2

When an agent’s opinions about propositions X1,X2, . . . are so rich and specific that

they pin down a single estimate xi (a real number between 0 and 1 inclusive) of the truth-

value of each Xi , we say that she has precise degrees of belief or credences for X1,X2, . . .

Having a precise credence xi for a proposition Xi , then, does not require having a full

belief about the objective probability of Xi , or explicitly judging that xi is the best estimate

of Xi ’s truth-value, or anything of the sort. (Neither does it preclude this.) It simply

requires having a doxastic state or state of opinion with a particular property, viz., the

property of being rationalizable only by sets of truth-value estimates which say: xi is the

best estimate of Xi ’s truth-value.3

1I follow many authors in using ‘opinions’ as a catch-all to refer any type of doxastic attitude whatsoever
(cf., Kaplan (2010) and Joyce (2010)). So, for example, full beliefs, comparative beliefs (judgments of the form
X is more likely than Y ), independence judgments, etc., all count as opinions, on this view.

2Kraft et al. (1959) and Scott (1964) provide representation theorems that specify exactly when an agent’s
comparative beliefs ‘pin down’ precise truth-value estimates for all comparable propositions, in the sense
of singling out a unique set of truth-value estimates which rationalize (represent) those beliefs.

3Some Bayesians take credences to be sui generis doxastic attitudes: degreed beliefs with precise strengths
(cf., Pettigrew (2013a)). On this view, an agent who only has comparative beliefs, for example (opinions of
the form X is more likely than Y ) — a rather different type of doxastic attitude — does not count as having
precise credences, regardless of how rich and specific those comparative beliefs happen to be. This contrasts
starkly with the views of Savage (1954), Jeffrey (1965) and Krantz et al. (1971). The account of credences
outlined here is more permissive. Any agent whose opinions are rationalizable by a unique set of truth-value
estimates — whether she has sui generis doxastic attitudes of the sort Pettigrew envisions, or comparative
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When an agent has precise credences, we call the function c that maps each proposi-

tion Xi to its corresponding truth-value estimate xi her credence function or credal distri-

bution.4 When they exist, these credal values, c(Xi ) = xi (the values assigned to X1,X2, . . .

by her credence function), serve as numerical measures of how confident someone in the

corresponding doxastic state can be said to be of the Xi , where c(Xi ) = 0 and c(Xi ) = 1

represent minimal and maximal confidence, respectively. So, for example, if you have a

credence of 0.99 that the exams on your desk did not grade themselves over the evening,

then 0.99 serves as a numerical measure of how confident you are in that proposition. You

are ninety-nine times as confident that they are still sitting on your desk ungraded as not.

We will engage in the useful fiction, from here on out, that the agents under consideration

have perfectly precise credences.

Credences have a range of epistemically laudable properties, just like full beliefs. Just

as full beliefs are evaluable on the basis of their truth, for example, credences are evaluable

on the basis of their accuracy. An agent’s credence in a proposition X is more accurate

the more confidence she invests in X if X is true (i.e., the closer c(X ) is to 1), and the less

confidence she invests in X if X is false (i.e., the closer c(X ) is to 0). Accuracy is a matter of

getting close to the truth, in this sense.5 Just as full beliefs capture more or less appropriate

responses to the available evidence, so too do credences. If you are playing poker in a

casino, you should (probably) have something like a credence of 0.0001 that you will be

dealt a royal flush, in light of your evidence, rather than a credence of 0.9999 (unless you

beliefs, or some combination of the two — counts as having precise credences.
4Most authors treat ‘credal distribution’ as a slightly more general term than ‘credence function’, but

use the two interchangeably when additional precision is unnecessary. We will follow suit. On this usage,
an agent’s credence function c : F → [0,1] is defined on the full algebra F of propositions (closed under
negation and disjunction) that she has opinions about. An agent’s credal distribution, on the other hand, can
refer to either (i) her total credence function c (cf., Moss (2013) and Titelbaum (2015)), or (ii) the restriction
of c to some contextually salient partition of interest, X = {X1, . . . ,Xn} ⊂F (cf., Joyce (2005, 2009)).

5We will make this characterization more precise in and §4.2 and §5.2 using epistemic scoring rules or
inaccuracy scores. A scoring rule I maps credence functions c and worlds w (consistent truth-value assign-
ments) to non-negative real numbers, I(c , w). I(c , w)measures how inaccurate c is if w is actual. Different
scores capture different ways of valuing closeness to the truth.
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know that the game is rigged, or something of the sort); the former is a more appropriate

response to your evidence than the latter. And just as full beliefs are produced by more

or less reliable mechanisms, so too are credences. Wishful thinking, for example, tends

to produce fairly inaccurate credences, and so is a fairly unreliable credence-producing

mechanism.

Sarah Moss (2013) argues that credences share even more in common with full beliefs

than many Bayesian epistemologists have thought (cf. Moss 2013, p. 2). In particular,

she argues that credences can constitute knowledge in much the way that full beliefs can.6

Just as your belief that smoking causes cancer might constitute knowledge, so too might

your extremely low credence that prayer prevents cancer. Moss calls this latter sort of

knowledge ‘probabilistic knowledge’. The aim of this paper is to develop a novel brand of

objective Bayesianism — a theory which says, for any body of evidence, which credences

to have given that evidence7 — designed to take us some way toward securing probabilistic

knowledge.

In §1, I rehearse a few reasons for countenancing probabilistic knowledge. In §2, I pro-

pose two necessary conditions on probabilistic knowledge — an anti-luck condition and

an ability condition — and explore the relationship between the two. I argue that, for the

purpose at hand, i.e., designing helpful formal tools meant to help us secure probabilistic

knowledge, we ought to focus on the ability condition. In §3-4, I search for a way to sift

credal states that satisfy this ability condition from ones that do not. I argue that a partic-

ular ‘summary statistic’ of credal states can help; the smaller this statistic, the greater the

extent to which its accuracy is a product of cognitive ability. In §5, I examine a popular

6Following Moss and others, I use ‘constitutes’ to refer to (as Moss puts it) the metaphysically innocuous
relation that obtains between your doxastic and epistemic states (cf. Moss (2013), fn. 11, pp. 12-3). This
is just the relation that holds when, e.g., a full belief ‘amounts to’, or ‘counts as’, or ‘rises to the level of’
knowledge.

7More cautiously, objective Bayesian theories prescribe adopting certain ‘prior’ (pre-experiment) cre-
dences relative to certain types of ‘prior’ evidence, and perhaps contexts of inquiry or decision.
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objective Bayesian principle for choosing prior (pre-experiment) credences in various con-

texts of inquiry: the maximum entropy principle, or MaxEnt. I use our summary statistic

to evaluate whether MaxEnt delivers skillfully produced posterior (post-experiment) cre-

dences, and hence good candidates for probabilistic knowledge. In §6, I describe a novel

objective Bayesian principle: the maximum sensitivity principle, or MaxSen. I argue that

MaxSen yields better candidates for probabilistic knowledge than MaxEnt. It yields cre-

dences whose accuracy is, to the greatest extent possible, the product of cognitive ability.

The upshot: MaxSen takes us some way toward securing probabilistic knowledge. In §7,

I explore what MaxSen teaches us about the nature of cognitive ability and probabilistic

knowledge. In §8, I summarise the preceding discussion. In §9, I address two pressing

concerns. Finally, in §10, I discuss limitations of the MaxSen principle.

1 Probabilistic Knowledge

Suppose that Amy is waiting on a package. She calls the post office to find out whether it

was delivered this morning. The receptionist checks the driver’s morning itinerary and

says:

(1) It might have been.

(2) More likely than not.

(3) It probably was.

To a first approximation, (1) calls for giving not-too-low credence to the proposition that

her package was delivered (credence above some fairly minimal, contextually determined

threshold, perhaps).8 (2) calls for giving it more credence than its negation. (3) calls for

8See (Swanson, 2006, §2.2.2) for an account of ‘might’ along these lines.
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high credence.9 Suppose that Amy does what’s called for. She responds in one of these

ways. Then we might describe her new state of opinion as follows:

(5) Amy thinks that her package might have been delivered.

(6) Amy thinks that it’s more likely than not that her package was delivered.

(7) Amy thinks that her package was probably delivered.

And if the receptionist’s testimony is reliable, the following seem appropriate too:

(8) Amy knows that her package might have been delivered.

(9) Amy knows that it’s more likely than not that her package was delivered.

(10) Amy knows that her package was probably delivered.

This raises a puzzle. On the one hand, Amy seems to acquire new knowledge. On

the other hand, she seems to lack any full beliefs that might constitute this knowledge.10

None of her old full beliefs (prior to updating on the receptionist’s testimony) seem like

good candidates. And (1)-(3) seem not to call for any new full beliefs. They obviously do

not call for full belief that the package was in fact delivered. Neither do they call for any

particular full belief about chance, e.g., full belief that:

(11) There is a not-too-low chance it was delivered.

(12) There is a higher chance it was delivered than not.

9Assume that Amy’s prior evidence is fairly typical: she has no special reason to think that the recep-
tionist is being intentionally deceptive, or anything of the sort.

10By ‘full belief’ I mean the categorical doxastic attitude of accepting a proposition as true. Full beliefs
are the theoretical loci of traditional epistemology: they are true or false, justified or unjustified, reliably
produced or not, constitute knowledge or not, etc. Some epistemologists maintain that rational full beliefs
are held with certainty, e.g., Levi (1980). Many do not. Likewise, some epistemologists are eliminativists
about full belief, e.g., Jeffrey (1970). But many are not, e.g., Kyburg (1961), Foley (1992) and Leitgeb (2013).
I take no stand on these issues here.
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(13) There is a fairly high chance it was delivered.

After all, Amy knows that the chance that the package was delivered earlier this morning

is currently either 0 or 1.11 And a chance of 0 is inconsistent with any of (11)-(13). So

if the receptionist’s testimony justified full belief in any of (11)-(13), then it would also

justify (together with her background knowledge) full belief that the chance is 1! She

could conclude that there is no chance — zilch — that her package was not delivered.

But her evidence justifies no such thing. For similar reasons, it does not justify any

particular full belief about epistemic probability.12 Hence the conundrum: Amy lacks any

full beliefs that might constitute her new knowledge.

The way out of such conundrums, Moss suggests, is to countenance probabilistic

knowledge: credences can constitute knowledge, just as full beliefs can.

Countenancing probabilistic knowledge not only allows us to make sense of run-

of-the-mill knowledge ascriptions like (8)-(10). It also allows us to make sense of some

puzzling ascriptions of scientific knowledge (of special interest for us). For example, con-

sider the most recent assessment report (AR5) of the Intergovernmental Panel on Climate

Change (IPPC). According to AR5, the majority of climate scientists think that:

(14) The Antarctic ice sheet might suffer abrupt and irreversible loss, even if anthro-
11Most accounts of chance satisfy what List and Pivato (2015) call the chance-future desideratum: the true

chance distribution at any time assigns only 0 or 1 to past events. Notably, though, Meacham (2005, 2010)
rejects this. See List and Pivato (2015) for further discussion.

12Epistemic probabilities, very roughly, provide a measure of the unique rational credence to have in
a proposition relative to a particular body of evidence. To see that (1)-(3) do not call for full belief in a
proposition about epistemic probability (if such probabilities exist), consider the following scenario. Amy
has conclusive evidence about whether her package was delivered or not — perhaps a well-informed mathe-
matician told her that it was delivered if and only if a particular mathematical proposition is true. And she
knows that her evidence is conclusive. She knows that a perfectly rational agent with her evidence would
have either credence 0 or 1 in the mathematical proposition, and accordingly have either credence 0 or 1
that her package was delivered. But Amy cannot tell which way her evidence points, so to speak, due to her
uncertainty about the mathematical proposition. In that case, when the receptionist utters one of (1)-(3),
she might reasonably use this information to weigh the two hypotheses about the the valence of her evi-
dence, and arrive at some middling credence about whether her package was delivered. But she should not
fully believe that the evidential probability takes some middling value. She knows it is either 0 or 1 (her
evidence is conclusive). See (Eriksson and Hajek, 2007, pp. 206-207) for further discussion.
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pogenic emissions of greenhouse gases are stopped. (Stocker et al., 2013, p. 18)

(15) Warming is more likely than not to exceed 4◦ C above pre-industrial levels by 2100

if we fail to take additional measures to curb greenhouse gas emissions. (ibid, p. 18)

(16) It is very likely that heat waves will occur more often and last longer as surface

temperature rises over the 21st century. (ibid., p. 10)

And if the IPCC’s climate models are reliable, the following seem appropriate too:

(17) Those scientists know that the Antarctic ice sheet might suffer abrupt and irre-

versible loss, even if anthropogenic emissions of greenhouse gases are stopped.

(18) Those scientists know that warming is more likely than not to exceed 4◦ C above

pre-industrial levels by 2100 if we fail to take additional measures to curb greenhouse

gas emissions.

(19) Those scientists know that it is very likely that heat waves will occur more often

and last longer as surface temperature rises over the 21st century.

(17)-(19) are puzzling for much the same reason that (8)-(10) are. Inquiry into the cli-

mate system typically leads researchers to adjust their degrees of belief or credences that

various climatic events will or will not occur, as well as their credences about the chances

of those events, the effects of different possible interventions, and so on. But it does not

always yield decisive enough data to license new full beliefs about those matters. Neverthe-

less, such inquiry often seems to deliver new knowledge (the sort of knowledge described

in (17)-(19)). Scientific inquiry seems to be a knowledge-producing enterprise, even if

not always a full-belief-producing enterprise (as it often enough is not).13 Countenancing

probabilistic knowledge allows us to make sense of this fact.
13Of course, scientific inquiry often does lead researchers to adopt new full beliefs. And sometimes these

full beliefs constitute knowledge. But even when inquiry only leads researchers to adjust their degrees of
belief or credences, it still plausibly delivers new knowledge (evidenced by the appropriateness of (17)-(19)).
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The probabilistic knowledge thesis — the thesis that credences can amount to knowl-

edge, just as full beliefs can — has a range of other motivations too, Moss argues. Consider,

for example, the following probabilistic Gettier case (adapted from Zagzebski (1996), pp.

285-6; see Moss (2013), p. 10 for a similar case):14

Suppose that Mary has very good, but not perfect eyesight. She walks into the

house with her daughter, glances across the living room at the man slouched

in the chair by the fire, and whispers, “Quiet, honey. Daddy is probably

sleeping.” But Mary misidentifies the man in the chair. It is not her husband,

Bob, but his similar-looking brother, Rob (whom Mary thought was out of

the country). Luckily, though, Mary’s high credence that Bob is sleeping in

the living room is accurate. Bob, it turns out, is dozing in the other living

room chair, along the far wall, just out of view.

In some sense, Mary has just the right credences. Her high credence that Bob is sleep-

ing in the living room is appropriate, or justified, in light of her evidence, viz., the appear-

ance of a Bob-ish looking man slouched in the chair by the fire. And her high credence

is fairly accurate, since Bob is in fact sleeping in the living room. (Recall, accuracy is a

matter of getting close to the truth in the sense of lending high credence to truths and low

credence to falsehoods.) Nevertheless, that credence is flawed, in some way. It is flawed in

just the same way, it seems, that Smith’s belief in the original Gettier case is flawed. Smith’s

belief that the man who will get the job has ten coins in his pocket is appropriate, or justi-

fied, in light of his evidence (reliable testimony that Jones will get the job, and a clear view

of the contents of Jones’ pockets). And Smith’s belief is true (since Smith himself will get

the job, and happens to have ten coins in his pocket). But Smith’s belief, just like Mary’s

high credence, is true (accurate) primarily by luck.15

14See also Greco and Turri (2013), §6.
15Since Nozick (1981), epistemologists typically treat lucky true belief as true belief that violates some
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The best explanation of the epistemic incorrectness in these two cases, Moss argues,

is that Mary’s high credence and Smith’s belief both fail to constitute knowledge. One

could attempt to explain the epistemic incorrectness in the two cases by positing that the

absence of luck is a primitive epistemic virtue. But it would be better to identify some

positive virtue that Mary’s high credence and Smith’s belief both lack, in just the way the

probabilistic knowledge thesis does:

I. Constituting knowledge is an epistemic virtue.

II. Epistemic luck undermines knowledge.

III. Both Mary’s high credence and Smith’s belief are accurate primarily by luck.

C. Both Mary’s high credence and Smith’s belief fail to constitute knowledge, and so

lack a certain (positive) epistemic virtue.

To summarise, the thesis that credences can amount to knowledge, just as full beliefs

can, does important theoretical work. It allows us to make sense of run-of-the-mill knowl-

edge ascriptions like (8)-(10), as well as ascriptions of scientific knowledge like (17)-(19).

And it allows us to give a satisfying, unified explanation of the epistemic incorrectness in

both qualitative and probabilistic Gettier cases. Moss argues that it does other important

work as well, e.g., it allows us to develop more plausible knowledge norms for action and

decision. And we could go on. It does even more.16 On top of that, Moss dispels some

appropriate modal condition, e.g., sensitivity, or safety. For an introduction to the literature on epistemic
luck, see Pritchard (2005, 2008).

16For example, probabilistic knowledge plausibly helps us sort genuine learning experiences from ‘mere
cognitive disturbances’. To illustrate, suppose an agent has an experience E that makes her certain of a
proposition D (and nothing else). When does E count as a genuine learning experience, involving the acqui-
sition of new evidence, as opposed to a pathological episode of some sort — a ‘mere cognitive disturbance’?
(Getting this question right is important. Different inferences are warranted in the two cases.) Fans of
E =K will say: exactly when E involves her coming to know D. The same question arises for non-dogmatic
learning experiences. Suppose an agent has an experience E ′ that induces a Jeffrey-shift, i.e., sets her cre-
dences over a partition in a particular way. Again you might ask: When does E ′ count as a genuine learning
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prima facie serious concerns about probabilistic knowledge, e.g., that accepting it forces us

to reject some truisms about knowledge: that it is factive, safe, and (perhaps) sensitive. If

this is all correct, it provides compelling reason to countenance probabilistic knowledge.

Our aim now is to identify necessary conditions on probabilistic knowledge (§2).

Then we will develop formal tools for choosing credences that help to ensure those con-

ditions are met, at least in an interesting range of contexts of inquiry (§3-6). If success-

ful, these tools will yield good candidates for probabilistic knowledge. They will take

us some way toward securing such knowledge. Finally, we will draw out some general

lessons about the nature of probabilistic knowledge (§7).

2 Cognitive Ability

2.1 The Relationship Between Ability and Luck

Pritchard (2010, 2012) defends an anti-luck virtue epistemology. On this view, knowledge

is belief that satisfies two conditions: an anti-luck condition and an ability condition.

ANTI-LUCK CONDITION. Knowledge is incompatible with luck, in the sense of be-

ing safe: if one knows, then one’s true belief could not easily have been false. (cf.

Pritchard (2010), p. 52)

ABILITY CONDITION. Knowledge requires cognitive ability, in the sense that if one

knows, then one’s cognitive success (the truth of one’s belief) is the product of one’s

cognitive ability.17,18 (cf. Pritchard (2012), p. 248)

experience, involving the acquisition of new evidence, as opposed to a ‘mere cognitive disturbance’. One
hypothesis: exactly when those new credences (the direct result of the Jeffrey-shift) constitute probabilistic
knowledge.

17Pritchard endorses a slightly weaker ability condition, viz., that one’s cognitive success must be to a
significant degree creditable to one’s cognitive ability. Cf. (Pritchard, 2012, p. 273).

18Of course, one might understand the ability condition in a more or less demanding way. For example,
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Knowledge-first theorists will be pessimistic about analyzing knowledge in this way.

But they might, nevertheless, agree that the anti-luck and ability conditions specify im-

portant properties of knowledge, properties that make knowledge valuable. Similarly, we

might suggest that suitably modified anti-luck and ability conditions specify important

properties of probabilistic knowledge, even if they do not provide the building blocks of

an analysis.

PROBABILISTIC ANTI-LUCK CONDITION. Probabilistic knowledge is incompatible

with luck, in the sense of being safe: if some of your credences constitute knowledge,

then they could not easily have been wildly inaccurate.

PROBABILISTIC ABILITY CONDITION. Probabilistic knowledge requires cognitive abil-

ity, in the sense that if some of your credences constitute knowledge, then their

success (the accuracy of one’s credences) is the product of cognitive ability.

Typically, these conditions run together (Sosa, 2007, pp. 28-9).19 For example, typically if

an election forecaster has a high credence that candidate A will beat candidate B , and her

credence is not only accurate, but accurate because of her cognitive ability or skill (skill in

assessing the current polling data, extracting the right general lessons from previous elec-

tions, etc.), then it will be safe as well. It could not easily have been inaccurate. Suppose

the election is, in fact, proceeding fairly normally, or typically. There is no cockamamie

plot to steal the election for B , foiled at the last minute, or anything of the sort. So her

data (polling data, data about election dynamics, etc.) could not easily have been wildly

epistemic internalists might be inclined toward the view that the truth of one’s belief is the product of one’s
cognitive ability only if one possesses reflectively accessible epistemic support for that belief. Epistemic
externalists, alternatively, might insist that a wide range of reliable belief formation processes manifest cog-
nitive ability even in the absence of reflectively accessible support. We take a broadly externalist approach
in what follows. And we focus largely on one specific type of cognitive ability (cf. §2.2, especially fn. 22).
Nevertheless, our discussion is pertinent for both internalists and externalists. It teaches us an important
lesson about the nature of cognitive ability even if it does not, as the internalist maintains, tell the whole
story about what cognitive ability consists in.

19See also Greco and Turri (2013), §6.
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misleading. Then, in view of her skill at assessing that data, her high credence that A

will beat B could only be inaccurate (A loses to B) if whole districts miraculously flip par-

ties, or something similar. And worlds in which whole districts miraculously flip parties

are distant possibilities. So her credence could not easily have been inaccurate. Indeed,

the anti-luck and ability conditions seem so intimately related that some epistemologists

presuppose that, once spelt out correctly, one will entail the other.20

But this is a mistake. As intimately related as they are, it would be wrong to suppose

that one entails the other. The anti-luck and ability conditions impose logically indepen-

dent epistemic demands on our full beliefs, as Pritchard emphasizes (Pritchard, 2012, p.

249). The same is true of credences. Your credences can be safe, but not accurate because

skillfully produced. And they can be accurate because skillfully produced, but not safe.

Imagine, for example, that the forecaster’s circumstances are not normal. A large portion

of the pro-candidate-A electorate could easily have had soporific drugs slipped into their

coffee the morning of the election. But the goons tasked with delivering the drugs hap-

pened to slip on the ice and break their vials (or something similarly outlandish). Then

our forecaster’s credence is accurate because skillfully produced, but not safe. It could

easily have been wildly inaccurate (because the goons could easily have not slipped).

Alternatively, imagine that our election forecaster has no clue how to assess polling

data. But a crafty benefactor intent on building up her self-confidence is tracking her

credence (by monitoring her predictions and so on), and paying off voters so as to make

that credence accurate. Then it is accurate, and moreover safe, but not accurate because

skillfully produced.

So neither the probabilistic anti-luck condition nor ability condition entails the other.

Still, they hang together in a way that can and ought to guide our search for helpful formal

tools, tools meant to help us secure probabilistic knowledge. In normal circumstances,

20See Sosa (1999). For additional discussion, see Pritchard (2012), pp. 248-9.
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we can mitigate dependence on luck — make our credences safe — by reasoning skillfully.

We can reason from our evidence in just the right (skillful) way, so that its character is

paramount for explaining our success (the accuracy of our credences). And if we do,

then normally we could not easily fail (arrive at highly inaccurate credences). The reason:

normally our evidence could not easily be highly misleading.

The lesson: formal tools designed to yield skillfully produced credences will typically

turn out to be doubly valuable. They will help ensure that both the ability and anti-luck

conditions are satisfied. In contrast, when these conditions do not hang together in the

normal way — when reasoning skillfully is not enough to mitigate dependence on luck

— savvy prior construction will likely not help however we proceed. Formal tools for

selecting credences simply will not, however well designed, stave off safety-undermining

goons with drugs.

We will focus on the probabilistic ability condition then. Our aim: develop a new

kind of objective Bayesianism designed to deliver credences that are not only reasonably

likely to be accurate, in a wide range of contexts of inquiry, but whose accuracy is, to the

greatest extent possible, a product of cognitive ability. In normal circumstances, these

credences will be safe as well. This is the best available means, it seems, to the end of

securing credences that are eligible candidates for constituting probabilistic knowledge.21

2.2 An Account of Cognitive Ability

What is it for the accuracy of an agent’s credences to be the product of cognitive abil-

ity? One tempting proposal: it is just for them to be produced by some reliable credence-

21Given our focus, we will forgo further discussion of the probabilistic anti-luck condition, and any
pressing concerns, e.g., concerns about what could possibly ground the relevant (contextually sensitive)
threshold, i.e., the threshold below which the accuracy of your credences cannot drop, across some range
of nearby worlds, if those credences are to amount to knowledge. Nota bene: If Moss’ approach is correct,
these concerns are moot. She explores general factivity, anti-luck (safety), and sensitivity conditions on
knowledge (qualitative and probabilistic) which avoid postulating such a threshold (Moss, 2013, pp. 17-20).
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forming mechanism, and for their accuracy to be explained by the exercising of that mech-

anism. Suppose, for example, that a doctor examines a patient, acquires a large mass of

clinical data (the results of blood tests, a lumbar puncture, etc.), and uses it, together with

her prior data (information about which symptoms correlate with which diseases, etc.), to

arrive at a high credence that the patient has multiple sclerosis. Suppose that her high cre-

dence is rather accurate (the patient does have MS), and her reasoning process is reliable.

Suppose finally that the fact that she reasoned so reliably from all of this data explains why

her credence is accurate to the particular degree that it is. (It is not the case that, despite

her impeccable reasoning, her credence is accurate simply by a stroke of luck.) Then the

accuracy of her high credence is the product of cognitive ability, on this proposal.

Unfortunately, this proposal cannot be correct. Reasoning that manifests cognitive

skill often produces equivocal, inaccurate credences. So such reasoning need not be par-

ticularly reliable. It need not tend to produce highly accurate credences. Suppose that our

doctor has almost no access to the patient, and so cannot gather much clinical data. Per-

haps the patient locked herself in her flat, and all the doctor can do is talk to her through

the door. Our doctor might well spread her credence fairly evenly over a range of mutu-

ally exclusive hypotheses about the patient’s illness in a case like this. And such credences

are bound to be fairly inaccurate (after all, they are spread fairly evenly over mostly false

hypotheses). Still, those credences are plausibly the product of cognitive ability. They are

(more or less) the same credences that any skilled, sane doctor would have. The upshot:

in a wide range of cases, skillful reasoning produces fairly equivocal, inaccurate credences.

So such reasoning is not highly reliable. (It is not anti-reliable either, of course.) High

reliability is too much to demand of skill-manifesting credence-forming mechanisms.

Instead, we should say that having cognitive skill is a matter of reasoning in such a way

that your evidence explains the accuracy (or inaccuracy) of your credences to the greatest degree

possible (even if reasoning in this way fails to give you a positively high chance of securing
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accurate credences, e.g., because your evidence is too scant, unspecific, etc.).22 The accu-

racy of your credences is the result of cognitive skill or ability, on this view, exactly to

the extent that the reasoning process that produces them makes evidential factors (how

weighty, specific, misleading, etc., your evidence is) comparatively important for explain-

ing that accuracy, and makes non-evidential factors comparatively unimportant.23

This account rightly recognizes that cognitive skill is valuable not because it always

provides you with a high chance of securing highly accurate credences (it does not, par-

ticularly when evidence is scant); rather, cognitive skill is valuable because it makes ex-

traneous, non-evidential factors — factors that have no bearing on the character of your

evidence — irrelevant to your chance of securing such credences. When you reason from

your evidence in a way that manifests cognitive skill, your chance of success (securing

accurate credences) depends not on whether some non-evidential factor turns out this

way or that, but on whether your evidence is weighty or flimsy, specific or unspecific,

misleading or not, etc.

In addition to respecting this insight about the value of cognitive skill, it also explains

our considered judgments about whether such skill is in play in a range of cases. Suppose,

for example, that a middle aged man comes into the ER with chest pain. Two doctors,

Jim and Betsy, observe him. They both have the same prior evidence, let’s imagine (a

brief description of the man’s symptoms, together with background medical knowledge).

And it fails to discriminate between various competing hypotheses, e.g., that the patient’s

22For the purposes of our discussion, we will understand cognitive skill narrowly as skill at securing
accurate credences. This is not to deny, however, that the exercising of perceptual skills, motor skills, etc.,
involve the manifesting of cognitive skill, understood more broadly, as they surely do.

23Posterior credences are a product of both an agent’s prior credences and her updating rule. So arriving
at posteriors skillfully requires having the right sort of priors/updating rule pair. I will assume, though,
that the agents we consider update by conditionalization, for the sorts of reasons outlined in Greaves and
Wallace (2006), Leitgeb and Pettigrew (2010), and Easwaran (2013) (at least when responding to traditional,
dogmatic learning experiences, i.e., learning with certainty). They do not update by repeated instances of
MaxEnt (see §5), as proposed by Jon Williamson (2010, ch. 4), or some alternative policy. So I will suppress
talk of updating rules in what follows.
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chest pain is caused by a heart attack, that it is caused by hyperventilation, etc. Both

Betsy and Jim’s prior credences, i.e., their credences prior to acquiring new clinical data,

are consistent with the constraints imposed by their prior evidence, let’s stipulate. But

Jim’s credences also reflect a hunch. He ‘feels it in his bones’ that the patient’s chest pain

is a result of hyperventilation, and so lends much more credence to that hypothesis than

to the others. Betsy, on the other hand, spreads her credence much more evenly over all

of the relevant hypotheses.

To be clear, Jim is not recognizing some ineffable signs that Betsy is missing (in the

way that Dr. House might). If he were, he would have more evidence than Betsy, contra

our assumption (even if he could not express that evidence to anyone). The bias in Jim’s

prior reflects a ‘mere hunch’.

Importantly, concentrated priors like Jim’s are rather resilient with respect to a wide

range of data.24 Learning something new does not alter them much (for many new data

items). Betsy’s prior, in contrast, is much more malleable, much more prone to change in

the face of new data. So when Betsy runs her diagnostic tests and updates her prior, she

revises her credences quite a bit. In contrast, when Jim updates on the same clinical data,

he revises his credences fairly minimally.

Suppose that Betsy and Jim are both successful. Their updated credences are fairly

accurate. They both end up concentrating most of their credence on the hyperventilation

hypothesis, and the patient is, in fact, suffering chest pain as a result of hyperventilation.

But Jim is a little closer to certain. His credences are a little more concentrated. So Jim’s

posterior is a little more accurate than Betsy’s. Still, his accuracy seems to be less a product

of cognitive skill than Betsy’s, and more a product of his lucky hunch.

24A distribution p is resilient with respect to a datum D to the extent that the result of conditioning p
on D , i.e., pD (·) = p(·|D), is close to p. In §5.2, I introduce one particularly attractive divergence between
distributions: Cramér-von Mises distance, C. If we use Cramér-von Mises distance as our measure of ‘close-
ness’ when explicating resilience, then we can say: a distribution p is resilient with respect to a datum D to
the extent that C(p, pD ) is close to zero.
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The current account explains this judgment. Because Jim’s prior is biased strongly in

favor of the hyperventilation hypothesis (reflecting his hunch), it is fairly resilient with

respect to new data. As a result, his posterior accuracy depends a great deal on his prior ac-

curacy. His high degree of posterior accuracy is explained, in no small part, by the fact

that his prior credences were quite accurate (his hunch was correct). This is constitu-

tive, on the proposed account, of failure to manifest cognitive skill. Skilled reasoning, on

this view, mitigates the explanatory relevance of non-evidential factors, such as fortuitous

prior accuracy, so that they are no more relevant than required by one’s prior evidence.25

If this is right, then we can recast the probabilistic ability condition as follows:

PROBABILISTIC ABILITY CONDITIONÆ. Probabilistic knowledge requires cognitive

ability, in the following sense: if some of your credences constitute knowledge, then

your evidence explains their accuracy to the greatest degree possible.

The hope now is to find some way of sifting credal states that satisfy this ability condition

from ones that do not. My plan is to identify a particular ‘summary statistic’ that tracks

the amount of cognitive ability that a credal state manifests. I will then use this statistic to

develop a novel kind of objective Bayesianism that will help us to secure credences that are

not only reasonably likely to be accurate, at least in a wide range of contexts of inquiry,

but whose accuracy is, to the greatest extent possible, a product of cognitive ability. Such

credences are particularly good candidates for probabilistic knowledge.

3 Chance and Explanation

To identify our summary statistic, we need to say a bit more about how cognitive skill

manages to make evidential factors (how weighty, specific, misleading, etc., your evidence
25Prior evidence E can require a factor F to be relevant to explaining posterior accuracy to at least degree

k in the following sense: F is relevant to at least degree k for every prior p in the set of distributions C
consistent with the constraints imposed by E .
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is) comparatively important for explaining the accuracy of your credences, and make non-

evidential factors (lucky hunches, etc.) comparatively unimportant.

Foreshadowing a bit (in an imprecise, but illustrative way), here is what we will find:

Past facts help to explain future events just in case they also help to explain the chances of

those events at intervening times (supposing those chances are defined).26 So, if wiggling

the past fact does not make the chance of the future event wiggle, so to speak, then the

past fact does not explain the future event. This is, more or less, how cognitive skill works

its magic. It makes it so that wiggling (or altering, in a Lewisian sense) certain past facts

— e.g., the fact that a hunch of yours turned out to be spot-on (or wildly-off) — does not

wiggle (or alter) the chance of a certain future event — e.g., arriving at accurate credences

after performing an experiment, gathering some data, and updating on that data.27 And

in that case, the past fact (about prior accuracy) plausibly does not explain the future

event (attaining posterior accuracy). The character of your data — how weighty, specific,

misleading it is, etc. — explains it instead. And this is just what is required for the future

event to be the product of cognitive skill, on our view.

To fill in the details of this story — about how cognitive skill makes evidential factors

important for explaining accuracy, and makes non-evidential factors unimportant — start

by considering an instructive case involving practical skill:

MARS ROVER. The new Mars rover is beginning its descent through Mars’ atmosphere.

At the outset, it is blind. A bulky heat shield blocks its sensors. But before long it

will eject the heat shield, release its supersonic parachute, and slow down. At that

point, its sensors will make various readings, and it will maneuver its way to the
26More carefully, past facts help to causally explain future events in the sense of figuring into the full, com-

plete causal explanation of those future events, just in case they also help to explain the chances of those events
at intervening times (supposing those chances are defined). See the General Argument on p. 21 for further
discussion.

27An alteration of one event is, to a first approximation, another event that differs slightly in when or
how it occurs. See (Lewis, 2000, p. 188). Altering one event C fails to alter another E if the following is
true: had any one of a range of alterations C1, ...,Cn of C occurred, E would have occurred just the same.
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landing site. If the rover is equipped with a guidance program that makes it skilled

at landing, then its chance of success (touching down close to the target) would be

(more or less) the same (or invariant), whether it happens to emerge from its initial

(blind) descent directly above the landing site, or 1/2 mile to the north, or 3/4

miles to the northeast. Its skill will make it so that (within reasonable bounds) facts

about its initial proximity to the site — facts that it has no information about during

the blind part of its descent (non-evidential factors) — have little to no impact on its

chance of success. As a result, the rover’s initial proximity to the landing site (within

reasonable bounds) will plausibly be irrelevant for explaining why that chance of

success is what it is. In turn, it seems, it will also be irrelevant for explaining why

the rover achieves whatever actual degree of success that it does.

Facts about the rover’s initial proximity to the landing site (i.e., its proximity upon

emerging from initial descent) are not reflected in its prior (pre-heat-shield-ejection) evi-

dence; they do nothing to explain the character of that evidence (the rover is blind during

initial descent). Initial proximity is, in this sense, a non-evidential factor. The rover’s skill

at landing makes this sort of non-evidential factor irrelevant twice over.28 It makes it ir-

relevant for explaining why the rover’s chance of success is what it is (evidenced by the

invariance of that chance across changes in initial proximity). It also makes it irrelevant

for explaining why the rover is actually successful to the degree that it is (why it actually

touches down close to the target or not). The two are intertwined. The rover’s skill seems

to make initial proximity irrelevant for explaining actual success precisely by making it ir-

28This is so whether or not conditions on Mars are kind enough for the rover to have a positively high
chance of success (landing near the target). If the conditions on Mars are massively unpredictable, and the
landing task massively complex, then our skilled rover might have a low chance of landing within, say, 0.5
miles of its landing site. (The Curiosity rover, for example, which was extremely skilled at landing, touched
down 1.5 miles from its landing site.) Our rover might have a much lower chance than it would if it blindly
and unskillfully rocketed due north during initial descent, burning resources before its sensors even come
online (if it is in fact due south). Still, its skill at landing makes non-evidential factors irrelevant (or nearly
irrelevant) for explaining why it achieves the degree of success that it does in fact achieve.
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relevant for explaining the chance of success. And the reason, plausibly, that the rover’s

skill can operate in this way is this: No past fact (e.g., about initial proximity) can help

explain why the rover actually lands close to the target without explaining why its chance

of landing close to the target is what it is.

This phenomenon is quite general. Chances are explanatory foci. Or more carefully:

chances are causal-explanatory foci. A past fact F partially causally explains a future event

E if and only if F partially explains why the chance of E takes the values that it does at

intervening times (supposing the chance of E is defined).29,30 (All the events of interest to

us — touching down near a landing site, diagnosing a patient’s medical condition, etc. —

have causal explanations. So we can safely restrict our attention in this way.)

The General Argument that chances are causal-explanatory foci (summed up infor-

mally after the break) goes as follows.

1. No-Skipping-Intervening-Times Thesis. Suppose that F is a fact about the history of

some (closed) causal system S at a time t− prior to the current time t , and event E

occurs in the history of S at a time t+ after t . (So t intervenes between t− and t+.)

Then F helps to causally explain E (in the sense of figuring into the full, complete

causal explanation of E ) if and only if F helps to explain one of the following:31

(i) why some causally relevant part of S (i.e., some part of S whose state at t
29A fact F about the past causally explains a future event E by explaining how or why some past event C

causally influences E . Perhaps facts are proper causal relata, as Bennett (1988) and Mellor (1995) maintain.
In that case, we might simply say: A past fact F (partially) causes a future event E if and only if F (partially)
causes the chance of E to take the values that it does at intervening times (supposing the chance of E is
defined). But we hope to remain neutral about the nature of causal relata. So our original formulation wins
the day. Whether or not past facts causally promote future events, they surely causally explain future events,
by explaining why their causal ancestors were the way they were.

30For our purposes, it will suffice if the possible outcomes of some interesting range of experiments are
chancy, as the theoretical hypotheses we typically take to explain those outcomes posit. In that case, the
events of interest for us — achieving a particular degree of (posterior) accuracy after conditionalising on the
outcome of an experiment — are also chancy. And in that case, our summary statistic will turn out to be a
good guide to the amount of cognitive ability that a credal state manifests, and useful for helping us secure
probabilistic knowledge.

31The General Argument is modeled on (Joyce, 2007, pp. 200-202).
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influences E ) is in the state that it is in at t ;

(ii) why the causal laws governing S (the laws that underwrite facts about causal

influence in S) are what they are.

2. Chance-Determination Thesis. The chance of E at t is determined — and hence ex-

plained — by the states of the causally relevant parts of S at t , together with causal

laws governing S. So F helps to causally explain why the chance of E is what it is

at t if and only if F helps to explain either (i) or (ii).

C. Chances as Causal-Explanatory Foci Thesis. F helps to causally explain E if and only

if F helps to explain why the chance of E is what it is at t .

Shorter: past facts F causally explain future events E if and only if they explain how

or why events at intervening times influence E ; but facts about such intervening events

are precisely what determine the chance of E at intervening times; so chances are causal-

explanatory foci; past facts F causally explain future events E if and only if they explain

why the chance of E is what it is at intervening times.

The General Argument provides us with good pro tanto reason to think that chances

are causal-explanatory foci quite generally. Of course, a full defense would come with

various qualifications.32 But we will not attempt such a defense here. It will suffice for

32For example, if some event C causally inhibits E , but E nevertheless occurs, then according to the
No-Skipping-Intervening-Times Thesis, any past fact F that helps to explain why C occurred also partially
causally explains E (in virtue of explaining some part of the total causal backstory of E ). Consider a concrete
example. Imagine that immediately prior to t , the chance of a particular particle P decaying at t is 0.01
(rather low). Nevertheless, P does in fact decay at t . Now imagine that some past fact F partially explains
why P ’s chance of decaying is 0.01, by explaining some past event C that inhibits decay. Then according to
the No-Skipping-Intervening-Times Thesis, F partially causally explains why P decays at t (since F explains
C and C features in the total causal backstory of P ’s decaying). This, you might think, shows that the No-
Skipping-Intervening-Times Thesis is false, at least without further qualification.

We might respond as follows. The practice of providing explanations involves answering contextually
salient questions. What this example shows is that in some explanatory contexts, facts like F will not fig-
ure into a relevant answer to the why-question under discussion. But this is true of nearly any putative
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our purposes if the General Argument motivates the following more restricted thesis:

RESTRICTED CHANCE-EXPLANATION THESIS. In some important contexts of in-

quiry, both evidential factors (how weighty, specific, etc., your evidence is) and

non-evidential factors (lucky hunches, etc.) help to explain why you actually ar-

rive at accurate (or inaccurate) post-experiment credences if and only if they help

to explain why your chance of arriving at such credences is what it is.

Recherché concerns about the General Argument will not call the Restricted Chance-

Explanation Thesis into question. So we will assume henceforth that chances are explana-

tory foci, at least in the restricted range of contexts under consideration. Past facts (e.g.,

about the fortuitous accuracy of your pre-experiment credences) help to explain future

events (e.g., settling on accurate post-experiment credences) just in case they also help to

explain the chances of those events at intervening times.

This feature of chance — that it acts an explanatory focal point — might seem exotic.

But it is actually quite banal. An example will help:

ASTHMA DRUG. You have pretty bad asthma. Your doctor recommends a new drug,

BreatheEZ. Happily, it clears right up. A few months later, you stumble across a

report in the Journal of Asthma Studies. The previous clinical trials of BreatheEZ

were flawed. In more recent trials, it failed to demonstrate a statistically significant

increase in positive health outcomes compared to placebo. This, you think, is good

evidence that taking BreatheEZ failed to affect, or explain in any way, the chance that

explanans. What is important is this: in some contexts of inquiry, facts like F do figure into the answer to
the salient why-question. For example, if an inquisitive child asks, “Why did P decay, rather than sponta-
neously turning into a butterfly?” it would be perfectly appropriate to respond, “Well, because of F and
a number of other factors, P had some chance of decaying, albeit a small one. But P had no chance at all
of turning into a butterfly.” The upshot: F is one of the causal-explanatory factors available to figure into
answers about why P decayed, even if it in fact turns out to not be relevant in typical explanatory contexts.
So it is no decisive mark against the No-Skipping-Intervening-Times Thesis that it counts F as part of the
full, complete causal explanation of why P decayed.
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the patients in those studies had of recovering. If it had, you reason, then the new,

improved clinical trials would have demonstrated a statistically significant increase

in health outcomes.

Now suppose you think that you are just like those patients in all of the relevant respects,

and conclude that taking BreatheEZ does not explain why your chance of recovery was

what it was. Then it would be natural to infer that it fails to explain why you actually

recovered. Maybe moving to a new city with different allergens, or something of the

sort, explains your recovery. Whatever the right story is, though, BreatheEZ is no part

of it. This inference is mediated by the chances-as-explanatory-foci thesis. No past fact

(the fact that you took BreatheEZ) can help explain one’s success (recovering from asthma)

without explaining why one’s chance of success was what it was.

We will now attempt to leverage this fact about chance — that chances are explanatory

foci — to identify a ‘summary statistic’ of credal states that will help us sift ones that satisfy

the probabilistic ability condition from ones that do not. Here is how we will proceed.

Firstly, we will look for a statistic that helps us sort out, for any given credal state, what

explains why its chance of success (posterior accuracy) is what it is, in any experimental

context. Does it reflect some sort of hunch that goes beyond the available prior evidence?

A hunch which explains why it has a particularly high (or low) chance of attaining a

particularly high (or low) degree of posterior (post-experiment) accuracy? Or are those

chance-facts explained, rather, by the character of the available experimental evidence:

how weighty it is, how specific it is, etc.?

If we find such a statistic, we will be off to the races. It will help us sort out which

factors explain why any prior (pre-experiment) credal state has the chance that it does

of attaining any particular degree of posterior (post-experiment) accuracy. And because

chances are explanatory foci, this will enable us to sort out which factors explain why
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that credal state actually attains the degree of posterior accuracy that it does. And this is

exactly what determines whether such accuracy is the product of cognitive ability. So we

will be able to sift credal states that satisfy the probabilistic ability condition from ones

that do not.

4 Cognitive Ability and Objective Expected Accuracy

4.1 An Example: Scientific Inquiry

To have a concrete case in front of us, while searching for our ability-tracking summary

statistic, imagine the following. A microbiologist designs and performs an experiment to

adjudicate between competing theoretical hypotheses H1, ..., Hn, e.g., hypotheses about

whether and how over-expression of a certain gene causes chromosomal instability in

breast tumors.33 She has prior (pre-experiment) credences for H1, ..., Hn, which reflect

both her prior evidence — information about past patients, about chromosomal insta-

bility in other sorts of tumors, and so on — as well her personal inductive hunches and

quirks. And she will soon acquire new experimental data, which she will use to update

those prior credences, to arrive at new, better-informed posterior (post-experiment) cre-

dences.

For precision, assume that our agent has opinions about propositions in an atomic

Boolean algebra F , which means that (i) F is closed under negation and disjunction,

and (ii) every proposition in F can be expressed as a disjunction of atoms (the logically

strongest elements of F ).34,35 We can think of each atom w of F as the ‘possible world’

33Gene expression is the transcription and translation process that turns genetic information into protein.
A gene is over-expressed when that process goes awry, yielding a surplus of protein.

34The atoms w of F are the logically strongest elements of F in the following sense: for every X ∈F , w
either entails X or ¬X , and X entails w only if w =X or X = Y &¬Y for some Y ∈F .

35F need not be finite. In some examples, though, we will assume that it is, simply for expositional ease.
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in which all of the propositions X in F that w entails are true, and all other propositions

Y in F are false.36 Let W be the set of all such atoms or ‘worlds’.37 Let c : F → [0,1]

be the real-valued credence function (or credal distribution) that measures how confident

our microbiologist is in propositions in F . And let ch : F → [0,1] be the true chance

function, i.e., the real-valued function that specifies the true chances of propositions in F

(immediately prior to conducting the experiment).38

Assume also that our agent satisfies some fairly uncontroversial epistemic norms. Her

credences are probabilistically coherent.39 She updates by conditionalization, so that,

when she acquires a new datum D (and nothing more), she adopts a posterior credence

function c ′ : F → [0,1] which satisfies c ′(X ) = c(X |D) for all X ∈ F .40 And she obeys

the Principal Principle. So she treats chance as an epistemic expert. When she learns that

chance’s probability for X at t is x, she straightaway adopts x as her new credence for

X .41

36Thinking of atoms w of F as possible worlds in this way is metaphysically innocuous. The point
is simply that such w function as doxastically possible worlds for the agent. They are the finest-grained
descriptions of the way the world could be from her perspective.

37If you prefer to model propositions as sets of worlds, let W be the set of all possible worlds, and let F
be a sigma-algebra of subsets of W (closed under complement and union).

38On many accounts of chance, e.g., the propensity theories of Fetzer (1982, 1983) and Gillies (2000),
the true chance function is only defined on a rather restricted set of propositions. On other accounts, e.g.,
Hitchcock (2012) and (citation omitted for anonymity), even supposing the chances are well-defined, they
need not be precise. Chances are often imprecise (modelable by a set of probability functions). We restrict
our attention, however, to algebras F for which the true chances are both defined and precise.

39See Joyce (1998, 2009), Predd et al. (2009), and Schervish et al. (2009) for an accuracy-dominance ar-
gument that rational credence functions must be probabilistically coherent, i.e., must satisfy the laws of
finitely additive probability:

1. c(>) = 1
2. c(⊥)≤ c(X )
3. c(X1 ∨ ...∨Xn) = c(X1)+ ...+ c(Xn) for any pairwise incompatible propositions X1, ...,Xn

Axiom 1 says that you must invest full confidence in tautologies. Axiom 2 says that you must invest at
least as much confidence in any proposition X as you do a contradiction. Axiom 3 says that the amount
of confidence that you invest in a disjunction X1∨ ...∨Xn of pairwise incompatible propositions X1, ...,Xn
must be the sum of your degrees of confidence in each of the Xi .

40When c(D)> 0, c(X |D) is just c(X &D)/c(D). For an expected accuracy argument for conditionaliza-
tion, see Greaves and Wallace (2006), Leitgeb and Pettigrew (2010), and Easwaran (2013).

41For ease of exposition, we focus on a version of the Principal Principle that Pettigrew (2015, p. 137)
calls the extended temporal principle:
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Finally, make a couple of additional assumptions about the propositions in our mi-

crobiologist’s algebra. She has credences about the competing theoretical hypotheses

H1, ..., Hn that she hopes to adjudicate between, which we suppose are pairwise incompat-

ible and jointly exhaustive. She has credences about the different possible experimental

outcomes she might observe, or the new data she might receive, D1, ..., Dm (also pairwise

incompatible and jointly exhaustive). And these two sets of propositions are related. Each

hypothesis Hi specifies chances for the possible data items D1, ..., Dm. To have a way of

talking about them, let chi be the function that would specify the chances if Hi were true.

So the chance that our microbiologist’s experiment would yield outcomes D1, ..., Dm if

Hi were true is chi (D1), ..., chi (Dm), respectively. (This notation will be helpful shortly.)

Our question is this: What can we say about the extent to which the character of our

microbiologist’s evidence explains the accuracy of her posterior credal state (and hence

the extent to which her credences satisfy the probabilistic ability condition)? Do other

factors play a significant explanatory role? In particular, do her prior credences reflect

some sort of hunch that goes beyond her prior evidence (as Dr. Jim’s did), so that her

posterior accuracy depends, in large part, on fortuitous prior accuracy?

First, we will outline the answer. Then we will unpack it. The answer, briefly, is

this: If her objective expected posterior accuracy would be the same (invariant), regardless of

whether her prior credences reflect a particularly accurate hunch or not, then that hunch

plausibly plays no role in explaining why she has a particularly high (or low) chance of

attaining a particularly high (or low) degree of posterior accuracy. And if the accuracy

ETP. If an agent has a credence function c : F → [0,1], then rationality requires that

c(X |Tch) = ch(X )

for all propositions X in F , and all possible current chance functions ch such that c(Tch)> 0,
where Tch is the proposition that the current chance function is ch.

See Pettigrew (2015) for a chance-dominance argument for ETP, as well as discussion of alternative deference
to chance principles.
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(or inaccuracy) of her hunch does not explain why her chances are what they are, then

it simply cannot explain why she attains the actual degree of posterior accuracy that she

does. Chances, after all, are explanatory foci.

The upshot: if her objective expected posterior accuracy would be the same, whether

her prior credences reflect a particularly accurate hunch or not, then the accuracy of that

hunch is plausibly irrelevant for explaining why she attains whatever actual degree of

posterior accuracy that she does. Rather, her success or failure on that front is explained

primarily by the character of her evidence: how weighty, specific, misleading it is, etc.

And this is just what is required for the accuracy of her posterior credences to be the

product of cognitive ability.

To unpack this answer, make two observations.

4.2 Observation 1: Accuracy vs. Expected Accuracy

Firstly, we can distinguish between the actual accuracy of our microbiologist’s prior and

posterior credences — roughly, how close they are to the actual truth-values — and the

objective expected posterior accuracy of her credences. A bit of background will help il-

luminate what objective expected accuracy is and why it is important. Expectations are

estimates.42 More carefully, if V is some (real-valued) variable — e.g., the annual rainfall

in New York, the amount of money in your bank account, the degree of inaccuracy of a

microbiologist’s credences — then Expp(V) =
∑

w∈W p(w)·V(w) is the best estimate of V ,

according to the probability function p, where V(w) is the value that V takes in world w

(the annual rainfall in New York in w, etc.).43 Objective expectations are the estimates de-

termined by objective probability functions — the true chance function, in particular. So,

for example, if ch is the true chance function, then its best estimate of the annual rainfall
42See for example Jeffrey (2004), chapter 4.
43Variables V : W →R are functions from worlds to real numbers which model (measurable) quantities

of interest, e.g., the annual rainfall in New York (in inches), or the length of Russell’s yacht (in feet).
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R in New York is just the objective expected value of R, Expch(R) =
∑

w∈W ch(w) ·R(w).

Similarly, chance’s best estimate of how successful our microbiologist will be — how

accurate her credences will be after performing the experiment, observing the outcome,

and updating on her new data — is just her objective expected posterior accuracy. Imagine,

for example, that Hi is the true theoretical hypothesis. So chi is the true chance function

(just prior to performing the experiment). And the chance of the experiment producing

outcomes D1, ..., Dm is chi (D1), ..., chi (Dm), respectively. Now note that updating (condi-

tioning) her prior credence function c on these bits of possible new evidence yields differ-

ent posterior credence functions, cD1
, . . . , cDm

. And each of these credence functions is (or

at least could be) accurate to a different degree. So not only does chance have views about

which bit of evidence our microbiologist will receive — given by chi (D1), ..., chi (Dm) —

it also has views about how likely she is to attain various different degrees of posterior

accuracy; views which are summed up by chance’s best estimate of her success, i.e., her

objective expected posterior accuracy.

To keep track of these degrees of accuracy, and to say explicitly what our microbiol-

ogist’s objective expected posterior accuracy is, let’s introduce some notation. Firstly, at

any world w, let “c ′” denote the result of updating (conditioning) our microbiologist’s

prior credence function c on the experimental data that she receives in w. For example,

if she receives data D j in w (i.e., w implies D j ), then “c ′” denotes cD j
at w. (So “c ′” is a

non-rigid designator.) Next, let I(c ′, w) be a non-negative real number which (in some

as of yet unspecified way) measures the inaccuracy of c ′ at w. So if our microbiologist

receives data D j in w, then I(c ′, w) = I(cD j
, w).

Interpret I as follows. If I(c ′, w) = 0, then c ′ is minimally inaccurate at w. Inaccuracy

increases as I(c ′, w) grows larger. Finally, let Ic ′ : W → R be the function which maps

any world w to c ′’s measure of inaccuracy at that world, I(c ′, w). (See §5.2 for extended

discussion of inaccuracy measures.)

29



Now we can specify the objective expected posterior accuracy of our microbiologist’s

credences: Expchi
(Ic ′) =

∑

D j∈{D1,...,Dm} chi (D j ) ·
∑

w∈D j
chi (w|D j ) · I(cD j

, w). This is chi ’s

best estimate of how successful she will be. It summarizes all of the information that chi

sees as relevant to what degree of posterior accuracy she will achieve. The closer Expchi
(Ic ′)

is to zero, the more likely she is (all things considered) to be successful, according to chi

(i.e., to end up with accurate post-experiment credences).

4.3 Observation 2: Counterfactual Independence as a Guide to Ex-

planatory Irrelevance

Second observation: Chance’s best estimate of how successful our microbiologist will

be — or rather, how that estimate behaves across a range of counterfactual scenarios —

is a good guide to what is relevant (and not relevant) for explaining why her chance of

success is what it is. Imagine, for example, that she could perform her experiment using

instrument A, B or C . If chance’s best estimate of how successful she will be — her ob-

jective expected posterior accuracy — would be the same whether she opted for A, B or

C , then which instrument she uses plausibly plays no role in explaining why that expec-

tation is what it is. Counterfactual independence provides good (but defeasible) evidence

of explanatory irrelevance.44

Moreover, expectations are typically good proxies for whole distributions (at least for

the purposes of sorting out what does and does not help to explain one’s chance of suc-

cess). In many experimental contexts, if one’s expected accuracy would stay the same, were

the value of some variable to change (e.g., which instrument our microbiologist uses), then
44Counterfactual independence only provides defeasible evidence of explanatory irrelevance, however.

Imagine, for example, that our microbiologist uses high quality growth media A for her cell culture. If
she had used lower quality growth media B or C , however, her lab-mate would have added a supplement
that made it functionally equivalent to A. In that case, using A helps to (causally) explain why her expected
accuracy is what it is, even though that expectation would be the same whether she opted for A, B or C . We
ignore cases cases of this sort, involving preemption or trumping, in what follows. Such cases are outside
the domain of applicability of the tools developed here.

30



one’s entire distribution of chances over accuracy hypotheses (hypotheses about what de-

gree of posterior accuracy one achieves) would stay the same.45 So we can say: which

instrument she uses — A, B or C — plausibly plays no role in explaining why her chance

of attaining any particular degree of posterior accuracy is what it is. (We could, if we

were so inclined, avoid using expectations as proxies. But doing so would be messy, and

provide no additional insight. So the game is not worth the candle.46)

More generally, if chance’s best estimate of your success — your objective expected

posterior accuracy — would be the same, regardless of what value some variable V takes,

then V plausibly plays no role in explaining why your chance of attaining any particular

degree of posterior accuracy is what it is.

Now recall our initial question. We wanted to know whether our microbiologist’s

prior credences reflect some sort of hunch that goes beyond her prior evidence; a hunch

which explains why she has a particularly high (or low) chance of attaining a particularly

high (or low) degree of posterior accuracy; a hunch which, as a result, helps explain why

she attains whatever actual degree of posterior accuracy that she does. We now have the

tools to sort this out.

45Letting expected accuracy go proxy for the entire distribution of chances over accuracy hypotheses is
often harmless. Specifically, when your prior credences over candidate chance functions takes the form
of a beta distribution (a very flexible class of prior distributions; see f.n. 53), and those chance functions
themselves are binomial distributions (which will be the case, e.g., when the trials of your experiment are
identical and independent, and yield a sequence of ‘successes’ and ‘failures’), then the distribution over
accuracy hypotheses determined by any such chance function can be approximated by an exponential dis-
tribution. And it is easy to show that the Cramér-von Mises distance (to take one example) between any
two exponential distributions is bounded by the difference between their means, or expected values. So
objective expected posterior accuracy is invariant across a range of values for some variable only if the entire
distribution of chances over posterior accuracy hypotheses is invariant.

46We could, in principle, directly examine how much one’s chance distribution over accuracy hypotheses
would vary across a range of values for some variable of interest (using an appropriate metric on the space
of probability distributions, such as Cramér-von Mises distance; cf. §6). This would allow us to avoid the
detour through objective expected accuracy altogether.
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4.4 Explaining Posterior Accuracy

Suppose our microbiologist’s objective expected posterior accuracy would be the same,

regardless of whether her prior credences reflect a particularly accurate hunch or not;

regardless whether the variable of interest for us — prior accuracy — takes a particularly

high or low value. Put differently, suppose it would be the same, regardless of whether

the true hypothesis turns out to be Hi — one that her prior credence function c initially

centers a great deal of probability mass around (in which case c has a high degree of prior

accuracy) — or whether it turns out to be H j — one that c centers little mass around (in

which case c has a lower degree of prior accuracy).

More succinctly, suppose:

INVARIANCE. Expchi
(Ic ′)≈ Expch j

(Ic ′) for all Hi and H j with 1≤ i , j ≤ n.

Then we can say: whether c reflects a particularly accurate hunch or not (whether c attains

a particularly high or low degree of prior accuracy) is irrelevant for explaining why its

chance of attaining any particular degree of posterior accuracy is what it is.

Finally, recall that chances are explanatory foci. No past fact (e.g., facts about prior

accuracy) can explain a future event (attaining a particular degree of posterior accuracy)

without (partially) explaining why that event had the chance of occurring that it did.

So, since fortuitous prior accuracy is irrelevant for explaining why c ’s chance of posterior

accuracy is what it is, it is also irrelevant for explaining why c attains whatever actual

degree of posterior accuracy that it does.

Our microbiologist’s posterior credences, then, are more like Dr. Betsy’s than Dr.

Jim’s. Their accuracy is more the product of cognitive skill than lucky hunch. The reason:

her prior credences have a special property. Their objective expected posterior accuracy

is invariant across theoretical hypotheses. This allows us to tell a principled story about

what does and does not explain her success (or failure) at the end of the day; her high (or
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low) degree of posterior accuracy. Her posterior accuracy (or inaccuracy) is not explained

by fortuitous prior accuracy (or lack thereof). It is not explained by the accuracy (or

inaccuracy) of a spot-on (or wildly-off) prior hunch. The reason: No such hunch helps

to explain why her chance of attaining a particularly high (or low) degree of posterior

accuracy is what it is. (If it did, then wiggling the accuracy of that hunch by wiggling

which theoretical hypothesis is true would also wiggle her objective expected posterior

accuracy.) And chances are explanatory foci. So no such hunch helps to explain why

she actually attains a particularly high (or low) degree of posterior accuracy. Rather, her

success (or failure) on this front is explained primarily by the character of her evidence.

This answer to our initial question has various moving parts. But once we get a grip

on them, the point is simple. Consider an analogy. If chance’s best estimate of how many

games Ghana will win in the World Cup — Ghana’s objective expected win total — would

be the same, regardless of what color socks they decide to wear, then sock color plausibly

plays no role in explaining why their chance of winning 1, or 2, or 3 games, etc., is what it

is. And chances are explanatory foci. So sock color also plays no role in explaining why

they actually win the number of games that they do.

Conversely, if Ghana’s objective expected win total would differ depending, e.g., on

how many days of rest the team receives in the weeks leading up to the World Cup, then

rest time plausibly does play a role in explaining why their chance of winning 1, or 2, or

3 games, etc., is what it is. And again chances are explanatory foci. So rest time also plays

some role in explaining why they actually win the number of games that they do.

Similarly, if chance’s best estimate of how successful our microbiologist’s credences

will be — her objective expected posterior accuracy — would be the same, regardless of

how accurate a hunch those credences happen to encode, then that hunch plausibly plays

no role in explaining why her chance of being accurate to degree x, y, or z is what it is.

And chances are explanatory foci. So having a spot-on (or wildly-off) hunch also plays no
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role in explaining why she actually attains the degree of posterior accuracy that she does.

Our microbiologist’s actual degree of posterior accuracy is, rather, explained primarily

by the character of her evidence: how weighty it is, how specific it is, whether or not it is

misleading, etc. And this is just what is required for the accuracy of her posterior credences to

be the product of cognitive ability.

We now have the ‘summary statistic’ of credal states that we have been looking for;

the statistic that will help us sift credal states that satisfy the probabilistic ability condition

from ones that do not. It is: variance in objective expected posterior accuracy across theo-

retical hypotheses. (We will say more about how to measure variance in §6.) The smaller

this statistic, the greater the extent to which posterior accuracy is the product of cognitive

ability.

My aim now is to use this statistic to help us secure nice posterior credences — cre-

dences that are not only reasonably likely to be accurate, but whose accuracy is the prod-

uct of cognitive ability — in a wide range of inference problems. Inference problems, of the

sort familiar from classical statistics, arise in structured, but nonetheless fairly ubiquitous

contexts of inquiry (in the sciences, in engineering, etc.): we have competing hypotheses

we wish to adjudicate between; we will soon acquire new (experimental) data that we can

use (together with our prior data) to help us so adjudicate; and we know enough about the

data-generating process (the experiment) to know which data items could be produced,

and what the chances of receiving each of the various possible data items would be, were

these different theoretical hypotheses true (typically as a result of careful experimental

design). The formal tools developed here will take us some way toward securing proba-

bilistic knowledge in many of these important contexts of inquiry.

It is worth noting, before we move on, that the central examples in §5-6 will involve

a particularly simple type of inference problem: flipping a coin in order to adjudicate

between competing hypotheses about its bias. But one might wonder: What does this tell
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us about the more complicated inference problems that arise in the sciences, etc.? The

answer: a surprising amount. To the extent that the formal tools developed here help

secure probabilistic knowledge in simple, coin-flipping problems, they will also help us

secure such knowledge in any inference problem that involves performing a fixed number

of identical and independent trials of an experiment with only finitely many possible

outcomes. Quite a lot of inference problems in the sciences, engineering, etc., are like

this (though, of course, many are not). See §10 for further discussion.

5 The Maximum Entropy Method

5.1 A Case Study

Consider an agent with opinions about propositions in an atomic Boolean algebra F .

She is planning to perform an experiment aimed at adjudicating between competing the-

oretical hypotheses, H1, ..., Hn (pairwise incompatible and jointly exhaustive). And her

experiment might yield data items, D1, ..., Dm (also pairwise incompatible and jointly ex-

haustive). Suppose that F contains H1, ..., Hn and D1, ..., Dm.

According to one popular brand of objective Bayesianism — the maximum entropy

principle, or MaxEnt — our agent should take her prior information into account in in-

quiry as follows:

• Firstly, she should summarize that prior information by a system of constraints on

prior credence functions b : F → [0,1], e.g.:

– b (Hi )≥ b (H j ) (i.e., Hi is at least as probable as H j )

– 0.6≤ b (Hi )≤ 0.9 (i.e., Hi is probable to at least degree 0.6 and at most 0.9)

– b (Hi |D) ≥ b (H j |D ′) (i.e., Hi conditional on D is at least as probable as H j

conditional on D ′)
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which we represent by a set C of credence functions, viz., the set of all minimally ra-

tional credence functions, b (i.e., b that satisfy Probabilism, the Principal Principle,

etc.), consistent with those constraints.

• Secondly, she should adopt some prior credence function c : F → [0,1] or other

that maximizes Shannon entropy over C.47 (Under a broad range of conditions, this

‘MaxEnt prior’ will turn out to be unique.48)

If she has no prior information about H1, ..., Hn at all — her evidence fails to constrain her

prior credences altogether — then the maximum entropy distribution is just the uniform

distribution.49 So MaxEnt agrees with Laplace’s Principle of Indifference:

47If the credence functions c in C are defined over only finitely many theoretical hypotheses, then their
‘entropy’ or ‘uninformativeness’, on the MaxEnt approach, is measured by their Shannon entropy,

H (c) =−
∑

1≤i≤n

c(Hi ) · log(c(Hi ))

If they are defined over uncountably many theoretical hypotheses, parameterized by θ1, ...,θn , then it is
standardly measured by their differential entropy,

h(c) =−
∫ +∞

−∞
. . .
∫ +∞

−∞
f (x1, ..., xn) · log( f (x1, ..., xn))d xn . . . d x1

where f is c ’s joint probability density function for θ1, ...,θn . See footnote 52 for more information about
probability density functions.

48Since Shannon entropy H is a continuous, strictly convex, real-valued function, there will be a unique
MaxEnt prior whenever C is closed (i.e., contains all of its limit points), bounded (i.e., is a subset of a ball
of finite radius), and convex (i.e., is closed under mixtures). This will be the case, for example, when the
agent’s prior evidential constraints specify a (closed) range of expected values for some number of variables
(the expected annual rainfall in New York is between 30 and 60 inches (inclusive); the expected price of
Tesla’s stock at the end of the quarter is between 210 and 230 (inclusive); etc.). When there is no unique
MaxEnt prior — either because (i) many priors maximize entropy, or (ii) none do — objective Bayesians such
as Jon Williamson (2010) recommend either (iii) adopting some prior or other that maximizes entropy (in
the former case), or (iv) adopting some prior or other with “sufficiently high” entropy (in the latter case),
where what counts as sufficiently high depends on pragmatic considerations.

49More carefully, when our evidence provides no constraints on prior credences c : F → [0,1], and there
exists a countably additive uniform distribution on F , then the MaxEnt distribution is just the uniform
distribution. In certain contexts, however, the MaxEnt prior exists while a countably additive uniform
prior does not. It is well known, for example, that if F is an infinite-dimensional space, then there is no
Lebesgue measure on F , and hence, no analogue of the standard uniform distribution on F . But there is
often a MaxEnt prior on such F . See, for example, Furrer et al. (2011).
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POI. If an agent has no information about hypotheses H1, ..., Hn, and so no reason to

think that any one is more or less probable than any other, then she ought to be

equally confident in each: c(Hi ) = c(H j ) for all Hi and H j .

Indeed, we can think of MaxEnt generally as making the same sort of recommendation

as POI. POI says that in one special case — when your evidence imposes no constraints

on your credences — those credences should be uniform. MaxEnt says that in all cases

your credences should be as close to uniform as possible, while satisfying the constraints

imposed by your prior evidence.50

Jaynes offered an information-theoretic rationale for MaxEnt. Shannon entropy, Jaynes

thought, is uniquely reasonable as a measure of the informativeness of a prior. So “the

maximum-entropy distribution may be asserted for the positive reason that it is... max-

imally noncommittal with regard to missing information,” he concluded (Jaynes, 1957,

p. 623). But many find this argument uncompelling.51 We will explore, briefly, whether

MaxEnt has an alternative rationale — whether it delivers credences that are eligible can-

didates for constituting probabilistic knowledge.

Imagine that a bookie hands you and your friend a coin, and offers you a bet: win

$w if it comes up heads; lose $l if not. Neither of you have any prior evidence about

the coin’s bias, i.e., the chance that it will come up heads. But you are allowed to flip the

coin for a bit — 14 times, perhaps — in order to gather some new evidence before deciding

whether or not to take the bet. You adopt the maximum entropy prior, which given your

dearth of evidence is just the uniform distribution u. So you spread your credence evenly

over the various competing hypotheses about the bias of the coin — hypotheses of the

50If c uniquely maximizes Shannon entropy over C, then it is as close as possible to the uniform dis-
tribution u in the following sense: for any other b ∈ C, the Kullback-Leibler divergence of u from b ,
DKL(b , u) =

∑

w b (w) · log(b (w)/u(w)), is greater than the KL divergence of u from c .
51See for example Seidenfeld (1986) and Joyce (2009, pp. 284-5).
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form B = x (read: the coin’s bias B is x).52

Figure 1: The uniform distribution u and

more concentrated beta distribution b (with

shape parameters α= 10 andβ= 4) over hy-

potheses of the form B = x.

Your friend, in contrast, adopts a more

concentrated prior credence function b

(e.g., a beta distribution which centres most

of its probability density around the hy-

pothesis the coin’s bias is 5/7; see figure

1).53 Your friend’s prior credences, as a

result (like Dr. Jim’s in §2), are rather

resilient with respect to a wide range of

data. Flipping the coin a few times and

observing its outcome does not alter them

much.54 In contrast, your prior credences

(like Dr. Betsy’s) are much more mal-

leable, much more prone to change in the face of new data. When you flip the coin and

observe its outcome, you revise your credences quite a bit.

The upshot: your friend’s success — whatever degree of posterior accuracy she actually

ends up with after flipping the coin and observing its outcome — seems to be more a

52More carefully, your credences about the coin’s bias B are given by u(s ≤ B ≤ t ) =
∫ t

s f (x)dx for
0≤ s < t ≤ 1, where f is the uniform probability density function f , i.e., the function that assigns the same
probability density to each hypothesis, B = x (0≤ x ≤ 1), viz., f (x) = 1.

A distribution u’s density function f , intuitively, centers more probability density on hypotheses that
u sees as more plausible. The probability that u assigns to the true hypothesis being in some set S is equal
to the volume under f on that region S (which is higher the more mass f attaches to hypotheses in S).

53Beta distributions b are parameterized by two quantities, α and β. These ‘shape parameters’ deter-
mine which hypotheses the distribution b focuses its probability mass on. The ‘concentration parameter’,
α+β, corresponds roughly to how ‘peaked’ b is around its mean. The larger (smaller) α is compared to
β, the more b focuses probability mass on chance hypotheses B = x with x ≈ 1 (x ≈ 0). Beta distribu-
tions are fairly computationally tractable, and form a very flexible class of distributions. In fact, any prior
can be approximated by a mixture of beta distributions (Walley, 1996, p. 9). And beta distributions have
nice dynamic properties as well. For example, they continue to be beta distributions when updated on
various sorts of data (they are conjugate priors to the binomial, negative binomial and geometric likelihood
functions). For these reasons, we will focus on them in many of our examples.

54See footnote 62 for an illustration of b ’s resilience.
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product of her lucky (or unlucky) hunch (viz., that the coin’s bias is approximately 5/7)

than yours. It is less a product of cognitive skill.

Our summary statistic bears this out, as we will demonstrate shortly. Here is what

we will show. Chance’s best estimate of how successful u will be — u’s objective ex-

pected posterior accuracy — varies fairly minimally across hypotheses about the coin’s

bias: much less than b ’s. It would take nearly the same value, regardless of how accurate

a hunch u happens to encode (regardless of whether the true hypothesis ends up being

one that makes u have a relatively high degree of prior accuracy or not). So having a

spot-on (or wildly-off) hunch about the coin’s bias plays less of a role in explaining why

your chance of securing particularly accurate (or inaccurate) posterior credences is what

it is. Consequently, it plays less of a role in explaining why you actually end up with

particularly accurate (or inaccurate) posterior credences. The accuracy of your posterior

credences is explained, to a much greater degree, by the character of your evidence: how

many times you flip the coin (how weighty your evidence is), whether the frequency of

heads in your sequence of coin flips ends up being close to the coin’s true bias (how mis-

leading your evidence is), etc. And this is just what is required for the accuracy of your

posterior credences to be more a product of cognitive skill than your friend’s.

For concreteness, let’s measure (in)accuracy by an epistemic scoring rule or inaccuracy

score. An inaccuracy score is a function I, which maps credence functions c and worlds w

to non-negative real numbers, I(c , w). I(c , w)measures how inaccurate c is if w is actual.

If I(c , w) equals zero, then c is minimally inaccurate (maximally close to the truth) at w.

Inaccuracy increases as I(c , w) grows larger.

Reasonable inaccuracy scores satisfy a range of constraints (see Joyce (1998, 2009) and

Pettigrew (2015)). But instead of detailing these constraints, we will simply focus our at-

tention on a particularly attractive inaccuracy measure: the continuous ranked probability

score (CRPS). Readers that are uninterested in the details of the CRPS (which are fairly
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formal), or the reasons for focusing on it, can skip ahead to §5.3.

5.2 Continuous Ranked Probability Score

The continuous ranked probability score (CRPS), as detailed in, e.g., Hersbach (2000) and

Gneiting and Raftery (2007), provides one way of measuring the inaccuracy of continuous

credal distributions. Your credal distribution is continuous when you have credences about

variables (e.g., the annual rainfall in New York) which can take uncountably many values

(rather than credences about, e.g., a finite number of propositions, which take only two

values: 1 at worlds where they are true, and 0 where false).55 So, in particular, if you

have credences about the bias of a coin (a variable which can take any of the uncountably

many real values between 0 and 1) — as you do in the case at hand — then your credal

distribution is continuous.

According to the CRPS, the inaccuracy at a world w of a continuous credal distribu-

tion p over hypotheses about the value of a variable V is given by:

(CRPS) I(p, w) =
∫∞
−∞ |P (x)−1(x ≥ V(w))|2dx

where V(w) is the value of V at w, and 1 is the indicator function, defined as follows:56

1(x ≥ V(w)) =























0 if x < V(w)

1 if x ≥ V(w)

55Strictly speaking, a distribution p : F → [0,1] over hypotheses about the values of variables V1, ...,Vn
is called continuous when its cumulative distribution function P : F → [0,1] is continuous. The CDF
P of p is defined by P (x) = p(V ≤ x), and specifies the probability (according to p) that V takes a value
less than or equal to x. (The notion of continuity in play here is the standard topological notion. The
relevant topology on F is just the topology generated by modeling the atoms of F , which take the form
V1 = x1&...&Vn = xn , as points 〈x1, ..., xn〉 in Rn , and lifting the standard open ball topology on Euclidean
n-space.) Some authors reserve the term for distributions with absolutely continuous CDFs.

56When we say that V(w) = x is the value of V at w, this is shorthand for the following: the atom w
entails the truth of V = x and falsehood of V = y for all y 6= x.
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The remainder of §5.2 is devoted to unpacking this definition, and to exploring the various

desirable properties of the CRPS. But firstly, a bit of background.

The CRPS falls out of a very general framework for thinking about accuracy. Petti-

grew (2013b) introduces the framework as follows:

The idea is that the epistemic utility (accuracy) of a credence function at a

world ought to be given by its ‘proximity’ to the credence function that is

‘perfect’ or ‘vindicated’ at that world — that is, the credence function that per-

fectly matches whatever it is that credence functions strive to match. Thus, we

need to identify, for each world, the ‘perfect’ or ‘vindicated’ credence func-

tion; and we need to identify the correct measure of distance from each of

these credence functions to another credence function. (Pettigrew 2013b, p.

899; parenthetical mine)

Figure 2: The Cramér-von Mises distance be-

tween beta distributions, p and q , is given by

the average squared difference between their

CDFs, P and Q (shaded area).

The CRPS takes the perfect or vindicated

credence function at w, υw , to be the

omniscient credence function, i.e., the cre-

dence function that centres all of its prob-

ability density on the hypothesis that de-

scribes the true value of V at w, V(w)

(e.g., the hypothesis that describes the

true bias of the coin at w). In addi-

tion, it measures the proximity of one

credence function p to another q by the

Cramér-von Mises distance between the

two: C(p, q)=
∫∞
−∞ |P (x)−Q(x)|2dx. The

proximity of p to q , on this view, is a function of the area between their cumulative distri-
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bution functions (CDFs), P and Q (counting regions of smaller divergence between P and

Q for less, and regions of greater divergence for more; see figure 2). The CDF P of a distri-

bution p over hypotheses about the value of a variable V is defined by P (x) = p(V ≤ x),

and specifies the probability (according to p) that V takes a value less than or equal to x.

So to recap, the CRPS says: accuracy at a world w is a matter of getting close to the

truth at that world, in the sense of pinning down estimates that are close to perfect or

vindicated at w, where (i) closeness is measured by Cramér-von Mises distance, and (ii) the

(alethically) perfect estimates at w are those given by the omniscient credence function,

υw , which centres all of its probability density on the hypothesis that describes the true

value of V at w, viz., V(w).

With these two components in place — a notion of perfection or vindication for cre-

dence functions, and a reasonable measure of distance between credence functions — it is

easy to see why the CRPS takes the form that it does. We just need one more observa-

tion: The cumulative distribution function Υw of the perfect, or vindicated distribution

υw over hypotheses about V is equal to:

1(x ≥ V(w)) =























0 if x < V(w)

1 if x ≥ V(w)

The reason is simple: Υw(x) = υw(V ≤ x) specifies the probability, according to υw , that

V takes a value less than or equal to x. And υw assigns probability 1 to the hypothesis that

describes the true value of V at w, i.e., V(w), and probability 0 to all other hypotheses.

This means inter alia that it assigns probability 1 to the proposition that V takes a value

less than or equal to x for any x greater than or equal to V(w). Shorter: Υw(x) = 1 if

x ≥ V(w). Likewise, υw assigns probability 0 to the proposition that V takes a value less

than or equal to x for any x strictly less than V(w). Shorter: Υw(x) = 0 if x < V(w).
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This gives us the CRPS. The inaccuracy of a continuous credal distribution p at a

world w, according to the CRPS, is given by its proximity — measured by Cramér-von

Mises distance — to the perfect, or vindicated credal distribution at w, υw . And the

Cramér-von Mises distance from p to υw is just I(p, w) =
∫∞
−∞ |P (x)−1(x ≥ V(w))|2dx.

The continuous ranked probability score is an attractive measure of accuracy for a va-

riety of reasons. It is extensional: The accuracy of a credal distribution over hypotheses

about the value of a variable V is a function exclusively of (i) the various estimates it en-

codes — of the truth-values of those hypotheses, and of V itself — and (ii) the actual values

of those quantities.57 How justified that credal distribution is, in light of some body of ev-

idence, how reliably produced it is, etc., makes no difference to its accuracy, according to

the CRPS, except insofar as they help to determine how close its estimates are to the actual

values of those quantities. The CRPS is truth-directed: Moving your credences uniformly

closer to the truth (while remaining coherent) always improves accuracy.58 It is strictly

57It is worth noting that two distributions p and q might do equally well estimating the truth-values
of hypotheses about the value of V , intuitively, and yet have different inaccuracy scores according to the
CRPS, in virtue of encoding different estimates for V itself. For example, let V be the bias of the coin,
and p and q be distributions that spread their probability mass uniformly over the ranges [0.3,0.4] and
[0.4,0.5], respectively. That is, the density function function that defines p, fp , attaches the same positive
probability mass (=10) to any hypothesis V = x with x ∈ [0.3,0.4], and probability mass 0 to every other
hypothesis. Similarly for q (mutatis mutandis). Now suppose that the true bias of the coin is 0.6. The
value of V at the actual world w is 0.6. Then p and q seem to do equally well estimating the truth-values
of hypotheses about the value of V . They each spread their probability mass uniformly over sets of equal
Lebesgue measure — sets containing only false hypotheses — and consequently attach no probability mass
to the true hypothesis, V = 0.6. Yet, p’s best estimate of V , Expp (V) = 0.35, is further from V’s true value,
0.6, than q’s best estimate, Expq (V) = 0.45. The CRPS treats this fact as relevant to the accuracy of p and
q : I(p, w)≈ 0.233 and I(q , w)≈ 0.133.

This is a feature of the CRPS, not a bug. It is precisely to yield accuracy assessments that are “sensitive
to distance” in this way — assessments that “give credit” to a distribution for determining a best estimate
(expectation) that is close to the true value of the variable by “assigning high probabilities to values near but
not identical to the one materializing” — that statisticians sometimes opt for scores like the CRPS, rather
than the predictive deviance score, or the ignorance score, etc. (Gneiting and Raftery, 2007, pp. 365-367).
This is precisely the reason that statisticians such as Gneiting and Raftery deem it “more compelling to
define scoring rules directly in terms of predictive cumulative distribution functions,” as the CRPS does,
rather than in terms of predictive densities (Gneiting and Raftery, 2007, p. 365).

58More carefully, the CRPS is truth-directed in the following sense: if p and q are both probabilistically
coherent, continuous distributions over hypotheses about the value of a variable V , and (i) |p(V ∈ S)−
w(V ∈ S)| ≤ |q(V ∈ S)−w(V ∈ S)| for all S ⊆R, and (ii) |p(V ∈ S ′)−w(V ∈ S ′)|< |q(V ∈ S ′)−w(V ∈ S ′)|
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proper: Any (coherent) continuous credal distribution expects itself to be more accurate

than any other distribution (Gneiting and Raftery, 2007, p. 367).59 Perhaps most telling,

it is a natural extension of the Brier score, B(p, w) = (1/n) ·
∑n

i=1 |p(Hi )−w(Hi )|2 — a

paradigmatically reasonable scoring rule for discrete distributions — to the space of con-

tinuous distributions (cf. Joyce, 2009, §12, and Gneiting and Raftery, 2007, p. 365).60 It

also yields the correct verdict about comparative accuracy in those cases where obviously

correct answers are to be had.61

5.3 Case Study Continued

The bookie hands you and your friend the coin. You adopt the uniform prior credal

distribution u over hypotheses about the coin’s bias B . Your friend adopts a more con-

centrated prior credal distribution b (figure 3). Now imagine that the true bias of the coin

is 5/7. The value of B at the actual world w is 5/7. Imagine also that when you flip the

coin your allotted 14 times, it comes up heads 10 times and tails 4. So your new data D

is perfectly non-misleading. The true bias of the coin is exactly the frequency of heads in

D , viz., 5/7.

When you and your friend condition on your new data D , the two of you arrive at

for some S ′ ⊆ R, then (iii) I(p, w) < I(q , w). This is weaker than the notion of truth-directedness found
in (Joyce, 2009, p. 269), which applies unrestrictedly, not simply to coherent distributions. But the CRPS
is not defined for incoherent distributions, and so should not be expected to satisfy Joyce’s more general
truth-directedness constraint.

59For more on propriety, which goes under various names in the literature, see the discussion of cogency
in (Oddie, 1997, §3), the discussion of self-recommendation in (Greaves and Wallace, 2006, §3), and the
discussion of propriety in (Joyce, 2009, §8).

60A distribution p : F → [0,1] over hypotheses about the values of variables V1, ...,Vn is called discrete
when its cumulative distribution function P : F → [0,1] is somewhere discontinuous (cf. footnote 55 for
additional detail). If, for example, you have credences about a finite number of propositions, which can
take only two values (1 at worlds where they are true, and 0 where false), then your credal distribution is
discrete.

61For example, if p and q are beta distributions with the same mean x, but increasing variance, then p is
more accurate (less inaccurate) than q at a world w where the true value of V is x, according to the CRPS:
I(p, w)< I(q , w). Similarly, if p and q are beta distributions with the same variance, but their means — x
and y, respectively — are such that z < x < y, then p is more accurate (less inaccurate) than q at a world w ′

where the true value of V is z: I(p, w ′)< I(q , w ′).
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Figure 3: u and b .

the posterior credence functions u ′ =

uD and b ′ = bD , respectively (figure

4). The result: your friend is more

successful. Her posterior is more ac-

curate than yours: I(u ′, w) = 0.028 >

0.020= I(b ′, w). But her accuracy is less

a product of cognitive ability than yours.

The reason, informally, is that your

friend’s credences are rather resilient

with respect to a wide range of data. Not only do they in fact remain relatively unchanged

by updating on D (evident from figures 3 and 4), but they would have remained similarly

unchanged, even if the character of her evidence had been a bit different: had she observed

8 or 9 heads, rather than 10, for example.62 As a result, the accuracy of her credences seems

Figure 4: uD and bD .

to have relatively little to do with the

character of her evidence. It is ex-

plained primarily by the (fortuitous)

accuracy of her prior credences. The

true bias of the coin, viz., 5/7, hap-

pened to be equal to the mean of your

friend’s rather concentrated prior cre-

dence function b . So the hypothe-

sis describing that true bias (5/7) hap-

pened to be in the centre of the neigh-

62The Cramér-von Mises distance between b and bD is fairly small: only about 0.002. The Cramér-von
Mises distance between u and uD , in contrast, is 0.068 (34 times bigger). Had your friend observed 8 or
9 heads, rather than 10, the distance between her prior and posterior would have been 0.006 and 0.016,
respectively. Yours would have been 0.046 and 0.033 (8 times and 2 times bigger, respectively).
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borhood where b lumps nearly all of its probability density. Shorter: her hunch — that

the coin’s bias is approximately 5/7 — happened to be correct. And her posterior is ac-

curate, in no small part, because her prior happened to be so accurate (her hunch was

correct). This is constitutive, on our view, of failure to manifest cognitive skill or ability.

Your degree of posterior accuracy is explained, on the other hand, primarily by the char-

acter of your evidence: the fact that it is fairly weighty (14 tosses, rather than only 2 or 3),

the fact that it is maximally non-misleading (the frequency of heads in your data sample

matches the coin’s true bias), and so on.

Our summary statistic — variance in objective expected posterior accuracy across the-

oretical hypotheses — bears this out. It predicts that the accuracy of your posterior cre-

dences is, to a much greater extent than your friend’s, the product of cognitive ability.

The reason: u’s objective expected posterior accuracy varies fairly minimally across hy-

potheses about the bias of the coin: much less than b ’s.

To see this, let’s simply calculate and compare the objective expected posterior accu-

racy of u and b , respectively, relative to each hypothesis, B = x, about the bias of the coin.

Assume that the trials of your experiment — the tosses of the coin — are independent and

identically distributed. That is, the chance of getting heads on any toss i , given that you

get a heads on toss j , is just the unconditional chance of getting a heads on toss i (tosses

are independent). And the unconditional chance of getting a heads on any toss i is the

same as the unconditional chance of getting a heads on any other toss j (tosses are iden-

tically distributed). In that case, each hypothesis, B = x, about the bias of the coin fully

specifies chances for all of the possible outcomes you might observe: every possible finite

sequence of heads and tails. In particular, if the bias B of the coin is x, then the chance of

your 14 flips resulting in any sequence with k heads and 14−k tails is xk · (1− x)14−k . For

example, let S be the proposition H1&...&Hk&Tk+1&...&T14 (heads on the first k tosses,

tails on the next 14− k tosses), and let chx be the function that would specify the chances
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if B = x were true. Then supposing the bias B of the coin is x, the chance of S is:

chx(S)

=chx(H1&...&T14)

=chx(H1|H2&...&T14) · chx(H2|H3&...&T14) · ... · chx(T14) (Axioms of Probability)

=chx(H1) · ... · chx(T14) (Independence)

=xk · (1− x)14−k (Identically Distributed)

And the chance of your 14 flips resulting in some sequence or other with k heads and

14− k tails — call this proposition Dk — is:

chx(Dk) =
�14

k

�

· xk · (1− x)14−k

The propositions D0, ..., D14 are the possible new data items you might receive (and are

mutually exclusive and jointly exhaustive). They capture all of the information you might

learn — how many times the coin came up heads and tails, respectively — that is relevant

to adjudicating between hypotheses about the bias of the coin. (The order of heads and

tails, and so on, is irrelevant. The number of heads is what statisticians call a ‘sufficient

statistic’.)

Now recall that updating (conditioning) your prior credence function, u, on these bits

of new evidence yields different posterior credence functions, uD0
, . . . , uD14

, each of which

is (or at least could be) accurate to a different degree. And since chance has views about

which of these data items you will receive, it also has views about how likely you are to

attain these different degrees of posterior accuracy.

These views are summed up by u’s objective expected posterior accuracy — chance’s

best estimate of how successful u will be — which we can now calculate as follows:63

63Line 4 assumes that the coin’s bias is not itself a chancy matter, in the following sense: chx attaches zero
probability to any world w such that B(w) 6= x.
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Expchx
(Iu ′) (1)

=
14
∑

k=0

∑

w∈Dk

chx(w)I(uDk
, w) (2)

=
14
∑

k=0

∑

w∈Dk

chx(w)
∫ ∞

−∞
|UDk
(y)−1(y ≥ B(w))|2dy (3)

=
14
∑

k=0

∑

w∈Dk

chx(w)
∫ ∞

−∞
|UDk
(y)−1(y ≥ x)|2dy (4)

=
14
∑

k=0

chx(Dk)
∫ ∞

−∞
|UDk
(y)−1(y ≥ x)|2dy (5)

=
14
∑

k=0

�

14
k

�

xk(1− x)14−k
∫ ∞

−∞
|UDk
(y)−1(y ≥ x)|2dy (6)

The mathematical details are not terribly important. What is important is that we have

a well-motivated, concrete way of measuring chance’s best estimate of how successful u

will be if the bias B of the coin is x. So we can examine how much this best estimate

— u’s objective expected posterior accuracy — varies across hypotheses about the coin’s

Figure 5: The objective expected posterior ac-

curacy of u across hypotheses B = x.

bias. And, as it turns out, it varies fairly

minimally, as figure 5 shows. This tells

us something important about what ex-

plains the accuracy of your posterior cre-

dences, and in turn, the amount of cog-

nitive ability that your credal state mani-

fests.

The story — of what explains your

success and why — is familiar by now.

Suppose chance’s best estimate of how

successful your credences will be — your

objective expected posterior accuracy — would be the same, regardless of how accurate a
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hunch those credences happen to encode. That is, suppose your prior credence function,

u, satisfies:

INVARIANCE. Expchx
(Iu ′) = Expchy

(Iu ′) for all 0≤ x, y ≤ 1.

(The uniform prior credence function u does not perfectly satisfy INVARIANCE, in the

case at hand. Other prior credence functions, as we will see in §6, vary less across hy-

potheses about the coin’s bias. But u does come pretty close: Expchx
(Iu ′) is roughly 0.065

for all 0≤ x ≤ 1.) Then the accuracy of that hunch is (more or less) irrelevant for explain-

ing why your chance of being accurate to any particular degree x, y, or z is what it is. And

chances are explanatory foci. So having a spot-on (or wildly-off) hunch also plays no role

in explaining why you actually attain the degree of posterior accuracy that you do (viz.,

I(u ′, w) ≈ 0.028). The accuracy of your posterior credences is explained, rather, by the

character of your evidence: the fact that it is fairly weighty (14 tosses, rather than only 2

or 3), the fact that it is maximally non-misleading (the frequency of heads in your data,

viz., 5/7, matches the coin’s true bias), and so on. And this is just what is required for the

accuracy of your posterior credences to be the product of cognitive ability.

Your situation mirrors the Mars rover’s in many ways. Suppose that chance’s best

estimate of how successful the rover will be — its objective expected distance from the

landing site — would be the same, regardless of whether it happens to emerge from its

initial (blind) descent directly above the site, or 1/2 mile to the north, or 3/4 miles to the

northeast, etc. (Even the fanciest Mars rover does not perfectly satisfy this supposition.

But in virtue of the actual Mars rover’s skill at landing, it comes pretty close.) Then its

initial proximity to the landing site (a non-evidential factor) is (more or less) irrelevant for

explaining why its chance of landing within 1, or 2, or 3 miles of that site, etc., is what it

is. And chances are explanatory foci. So initial proximity is also (more or less) irrelevant

for explaining why it attains the actual degree of success that it does — why it actually

49



lands close to its target (or not).

Figure 6: The objective expected posterior ac-

curacy of b across hypotheses B = x.

Your friend, however — the one who

adopts the more biased beta prior b — is

in a different boat. Her prior’s objective

expected posterior accuracy varies rather

significantly across hypotheses about the

coin’s bias (figure 6). So the fact that she

happened to have such a high chance of

success (such a low chance of posterior in-

accuracy) is explained, in no small part,

by the fact that the true bias of the coin,

viz., 5/7, happened to be in the centre of

the neighborhood where b lumps the majority of its probability density. It is explained,

in no small part, by the fact that her hunch — that the coin’s bias is approximately 5/7

— happens to be correct. Having a spot-on hunch, then, also plays a significant role in

explaining why she actually attains the degree of posterior accuracy that she does (viz.,

I(b ′, w)≈ 0.020).

Her situation is like a less skilled rover’s. A less skilled rover might emerge from its

initial descent directly above its landing site. And its landing strategy might give it a high

chance of success in that case. So it might land close to its target. Still, unlike the skilled

Mars rover, its objective expected degree of success varies significantly across changes in

initial proximity. How close it happens to be to the landing site after emerging from its

initial (blind) descent makes a big difference to its chance of success. The upshot: non-

evidential factors (facts about initial proximity) are relevant for explaining why its chance

of success is what it is. In turn, they are relevant for explaining why it is successful to the

degree that it is (why it lands close to its target or not).
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This all serves to highlight an important virtue of MaxEnt. It delivers posterior cre-

dences whose accuracy is, to a large extent, the product of cognitive ability. In this respect, it

outperforms other brands of objective Bayesianism that recommend more concentrated

priors. Unlike those other brands of objective Bayesianism, the accuracy of MaxEnt’s

posterior credences is explained primarily by facts about the evidence that they were con-

ditioned on — how weighty it is, how specific it is, how misleading it is, etc. — rather

than, e.g., the fact that its recommended prior credences encode a spot-on (or wildly-off)

hunch (a non-evidential factor). And this is just what is required for posterior accuracy

to be the product of cognitive ability.

So MaxEnt does seem to recommend credal states that are at least reasonably eligi-

ble candidates for constituting probabilistic knowledge (at least in simple inference prob-

lems); the sorts of states in which we might be plausibly said to know, e.g.:

(20) that the coin might come up heads on the next toss.

(21) that it’s more likely than not that the coin’s bias is between 0.6 and 0.8.

(22) that the coin’s bias is probably greater than 0.5.

But MaxEnt does not deliver credences that maximally eligible candidates for constitut-

ing probabilistic knowledge, I will argue. An alternative objectivist method, the MaxSen

method, delivers better candidates.

6 The MaxSen Method

Once more, suppose that our agent has opinions about propositions in an atomic Boolean

algebra F . She designs an experiment to adjudicate between competing theoretical hy-

potheses, H1, ..., Hn (pairwise incompatible and jointly exhaustive). And her experiment
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might yield any of the possible data items, D1, ..., Dm (also pairwise incompatible and

jointly exhaustive). Suppose that F contains H1, ..., Hn and D1, ..., Dm. Finally, let chi be

the function that would specify the chances if Hi were true. So the chance that the ex-

periment would yield outcomes D1, ..., Dm if Hi were true is given by chi (D1), ..., chi (Dm),

respectively.

According to the maximum sensitivity principle, or MaxSen, our agent should take her

prior information into account as follows:

• Firstly, she should summarise that prior information by a system of constraints on

prior credence functions, b : F → [0,1], e.g.:

– b (Hi )≥ b (H j ) (i.e., Hi is at least as probable as H j )

– 0.6≤ b (Hi )≤ 0.9 (i.e., Hi is probable to at least degree 0.6 and at most 0.9)

– b (Hi |D) ≥ b (H j |D ′) (i.e., Hi conditional on D is at least as probable as H j

conditional on D ′)

which we represent by a set C of credence functions, viz., the set of all minimally ra-

tional credence functions, b (i.e., b that satisfy Probabilism, the Principal Principle,

etc.), consistent with those constraints.

• Secondly, she should adopt some prior credence function c : F → [0,1] or other

that minimizes

var(c) =maxi Expchi
(Ic ′) - min j Expch j

(Ic ′)

over C. (Under a broad range of conditions, this ‘MaxSen prior’ will turn out to be

unique.64)

64Suppose that C is closed, bounded and convex (cf. footnote 48). And suppose that for any f , g and
c = λ · f + (1− λ) · g in C (where 0 < λ < 1), I satisfies two constraints, which we might call worst-case
expected convexity and best-case expected concavity:
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MaxSen first says that you ought to choose your prior credence function from amongst

the minimally rational credence functions that satisfy the constraints imposed by your

prior evidence. This bit is common to all kinds of objective Bayesianism, including Max-

Ent. Different Bayesians disagree about the nature of one’s prior evidential constraints,

and provide different justifications for complying with them. They also disagree about

which minimally rational credence functions consistent with those prior evidential con-

straints are rationally permissible full stop. But everyone agrees on this much: all min-

imally rational credence functions obey some fairly uncontroversial epistemic norms.

They obey Probabilism, for example, and some version of Lewis’ Principal Principle.

These norms, in turn, guarantee that the candidate prior credence functions that you

are choosing between — the minimally rational credence function consistent with the

constraints imposed by your evidence — are not too badly off in terms of accuracy. For

example, Joyce (1998, 2009) shows that all and only the probabilistically coherent cre-

dence functions avoid the epistemic sin of accuracy-domination. Every probabilistically

incoherent credence function b is accuracy-dominated by a coherent credence function c ,

in the sense that b is strictly less accurate than c regardless of which world is actual. No

coherent credence function, in contrast, is accuracy-dominated in this way.65 Similarly,

(WCE-Convexity) maxi Expchi
(Ic ′)< λ · [max j Expch j

(I( f ′))]+ (1−λ) · [maxk Expchk
(I(g ′))]

(BCE-Concavity) mini Expchi
(Ic ′)> λ · [min j Expch j

(I( f ′))]+ (1−λ) · [mink Expchk
(I(g ′))]

If I satisfies BCE-Concaivity, then whenever c strikes a compromise between f and g (i.e., c = λ· f +(1−λ)·
g ), the worst case expected inaccuracy of c is better, on balance, than the worst case expected inaccuracies of
f and g , respectively. So compromising has an alethic benefit: it safeguards against catastrophic worst-case
failure. Similarly, if I satisfies WCE-Convexity, then whenever c strikes a compromise between f and g ,
the best case of the less compromising f and g is, on balance, better than that of the compromise c . So
compromising also has an alethic cost: it forgoes the possibility of maximal best-case success.

When I satisfies these two constraints (and is continuous), var is a continuous, strictly convex, real-valued
function. And any such function takes a unique minimum on any closed, bounded, convex set C. Specifying
what to do when there is no unique MaxSen prior — when var does not take a unique minimum on C, so
that MaxSen does not yield a unique recommendation about which prior credence function to adopt — is
beyond the purview of our project. The aim, recall, is not to provide the definitive set of formal tools for
choosing prior credences, but rather, to illustrate one kind of tool for securing probabilistic knowledge in
a range of inference problems.

65See also Predd et al. (2009), Schervish et al. (2009), and Pettigrew (2015).
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Pettigrew (2013b, 2015) shows that all and only the credence functions that satisfy the

Principal Principle avoid the epistemic sin of prior chance-domination. If a credence func-

tion b violates the Principal Principle, then it is prior chance-dominated by a credence

function c that satisfies it in the following sense: every chance function consistent with

your prior evidence expects b to attain a strictly lower degree of prior accuracy than c . No

credence function that satisfies the Principal Principle, in contrast, is chance-dominated

in this way.

To recap, then, MaxSen comes in two bits. The first directs you to choose a prior

credence function from amongst the minimally rational credence functions that satisfy the

constraints imposed by your prior evidence. This guarantees that your prior credal state

is not too badly off in terms of accuracy. At the very least, it avoids the epistemic defects of

accuracy-domination and chance-domination, respectively. MaxSen then says that, from

amongst the minimally rational credence functions that satisfy the constraints imposed

by your prior evidence, you ought to select the prior that minimizes variance in objective

expected posterior accuracy across the theoretical hypotheses under investigation. This

bit is unique to MaxSen. The motivation for minimizing variance is familiar: If chance’s

best estimate of how successful your credences will be — your objective expected posterior

accuracy — would be the same, or invariant, regardless of how a certain non-evidential

factor behaves — fortuitous prior accuracy, in particular — then that factor plausibly plays

no role in explaining why your chance of being accurate to degree x, y, or z is what it is.

And chances are explanatory foci. So it also plays no role in explaining why you actually

attain the degree of posterior accuracy that you do.

Selecting prior credences by minimizing variance, then, will yield posterior credences

whose accuracy is explained, as much as possible, by evidential rather than non-evidential

factors; by the fact that your evidence had a particular character (weighty, specific, non-

misleading, etc.), rather than the fact that from amongst all of the credal states consistent
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with your prior evidence, you happened to settle on a particularly accurate (or inaccurate)

one. And this is just what is required for accuracy to be the product of cognitive ability.

So selecting prior credences in this way will yield posterior credences whose accuracy is,

to the greatest extent possible, the product of cognitive ability. The upshot: MaxSen’s

posterior credences will be particularly eligible candidates for constituting probabilistic

knowledge — more so than those delivered by MaxEnt, or any other brand of objective

Bayesianism. And it is no mystery why. MaxSen simply directs us to choose the prior

credences that give rise to those eligible posteriors, whatever they are. So it beats its com-

petitors by construction.

MaxSen treats variance in objective expected posterior accuracy across theoretical hy-

potheses, somewhat crudely, as the difference in its maximum and minimum expected

inaccuracies. Of course, this is only one measure of variance. For example, if there were

some good epistemic reason to privilege a particular base measure on the space of theo-

retical hypotheses, for the purposes of integration, then we could substitute the standard

statistical measure of variance for our somewhat crude measure.66 (Though it is diffi-

cult to see how we might privilege a particular base measure without simply begging the

question in favor of some prior credences or other.) But the crude measure will do, for

our purposes. It places an upper bound on statistical variance (whatever base measure

you choose), and plausibly any other measure of variance worth its salt. So invariance

according to our crude measure entails invariance according to any reasonable measure.

More importantly, our aim is to illustrate one kind of formal tool for securing prob-

abilistic knowledge, not to provide the definitive set of tools for that end. If successful,

66Suppose there is good epistemic reason to privilege a particular base measure µ on the space H of
theoretical hypotheses, for the purposes of integration. Then substituting the standard statistical measure
of variance in for our measure (difference between maximum and minimum expected inaccuracy) yields a
version of MaxSen that recommends minimizing Var(c) =

∫

H f (c , x)µ(dx), where f (c , x) is the squared
difference between the mean objective expected posterior inaccuracy of c (relative to µ), on the one hand,
and the expected inaccuracy determined by c hx (the true chance function if Hx were true), on the other:
f (c , x) = [

∫

H Expc hy
(Ic ′)µ(dy)−Expc hx

(Ic ′)]
2.
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what we will end up with is a framework for theorizing about how to secure probabilistic

knowledge. That is what we are really after. So we need not fuss too much about whether

our measure of variance is just right.

To illustrate the MaxSen method, imagine once more that a bookie hands you a coin,

and offers you a bet. You have no prior evidence about the coin’s bias. (Or rather, you

have almost no prior evidence. To make it manageable to compute the MaxSen prior,

assume that your prior evidence rules out any credence function that does not take the

form of a beta distribution.67) The generous bookie, however, allows you to flip the coin

n times before deciding whether or not to take the bet.

MaxEnt recommends that you take your prior information (or lack thereof) into ac-

count, in your inference problem, by adopting uniform prior credences over hypotheses

about the bias of the coin. It recommends, always and everywhere, adopting credences

that are as close to uniform as possible, while satisfying the constraints imposed by your

prior evidence. And in this case, the constraints imposed by your evidence are so loose

Figure 7: The MaxSen (beta) distribution

when n = 8 (α=β= 1.45).

that you can adopt perfectly uniform cre-

dences.

MaxSen, in contrast, recommends adopt-

ing non-uniform prior credences. Which

prior it recommends depends on additional

details regarding the set-up of your experi-

ment: in particular, how many times you

are going to flip the coin. (See the dis-

cussion of the Likelihood Principle in §9.1

for more on MaxSen’s sensitivity to exper-

imental set-up.) For example, if you are going to flip the coin 8 times (n = 8), then the

67See footnote 53 for more information about beta distributions.
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MaxSen prior is the beta distribution with α = β = 1.45 (figure 7). If instead you are

Figure 8: MaxSen beta prior with n = 8

(α = β = 1.45) and n = 20 (α = β ≈ 2),

respectively.

going to flip the coin twenty times (n = 20),

then the MaxSen prior is the beta distribu-

tion with α=β≈ 2 (figure 8). We will now

explore why.

Suppose that you plan to flip the coin 8

times. To construct the MaxSen prior in this

case, we need to find the prior whose objec-

tive expected posterior accuracy varies least

across hypotheses about the coin’s bias. We

could use any number of optimization algo-

rithms to do this. But, since our aim is just

to illustrate one kind of formal tool for delivering skillfully produced credences, in the

hopes of providing a framework for theorizing about how to secure probabilistic knowl-

edge, we will use a rough, but simple technique.

Firstly, we run a simple regression to approximate the variance,

var(c) =maxx Expchx
(Ic ′) - miny Expchy

(Ic ′),

of every prior credence function c consistent with the constraints imposed by your prior

evidence (figure 9). Then we use standard optimization techniques to find the prior for

which this approximated variance is smallest. Remember, to make it manageable to com-

pute the MaxSen prior, we assumed that c takes the form of a beta distribution. This

means that c is fully determined by two shape parameters, α andβ, which determine how

tightly c concentrates its probability density on hypotheses about the coin’s bias, of the

form B = x (the larger α+β is, the more tightly it focuses its density), and where exactly

c centres that density. So we can survey the full space of credence functions consistent
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Figure 9: Approximation of var with n=8.

with your prior evidence by surveying all

the values that α and β can take. Inspec-

tion of figure 9 reveals that the prior we

are searching for — the prior whose ob-

jective expected posterior accuracy varies

least across hypotheses about the coin’s

bias — is, approximately, the beta distribu-

tion with α=β= 1.4. Standard optimiza-

tion techniques show that the prior that

minimizes variance (in objective expected

posterior accuracy) is, more precisely, the beta distribution with α=β= 1.45 (figure 7).

This is the MaxSen prior.

In our toy example (when you plan to flip the coin 8 times), MaxEnt delivers credences

(uniform credences over hypotheses about the coin’s bias) whose posterior accuracy is, to

a large extent, the product of cognitive ability. The objective expected posterior accuracy

of those credences varies fairly minimally across hypotheses about the coin’s bias (figure

5). This is good evidence that their posterior accuracy is explained primarily by facts

about the evidence used to update them — how weighty, specific, misleading it is, etc. —

rather than fortuitous prior accuracy. And this is what is required for posterior accuracy

to be the product of cognitive ability.

All of this notwithstanding, MaxSen delivers posterior credences whose accuracy is,

to the greatest extent possible, the product of cognitive ability. Their accuracy is explained,

to the greatest possible degree, by the character of the evidence on which they are based.

The story of why this is so, once again, is familiar.

Suppose chance’s best estimate of how successful your MaxSen-recommended prior

credences will be — your objective expected posterior accuracy — would be exactly the
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Figure 10: Expected posterior accuracy of

both u and s : Expchx
(Iu ′) and Expchx

(Is ′)

(rescaled to emphasize difference in variation

across hypotheses B = x).

same, regardless of how accurate a hunch

those credences happen to encode. Put

differently, suppose it would be the

same, regardless of whether the true hy-

pothesis about the coin’s bias turns out

to be B = x — one that your prior

credence function s centres a great deal

of probability density around (in which

case s has a high degree of prior accuracy)

— or whether it turns out to be B = y —

one that s centres little probability den-

sity around (in which case s has a lower

degree of prior accuracy). More succinctly, suppose s satisfies:

INVARIANCE. Expchx
(Is ′) = Expchy

(Is ′) for all 0≤ x, y ≤ 1.

Figure 11: The objective expected posterior

accuracy of the MaxSen prior s across hy-

potheses B = x.

(Like the MaxEnt prior u, the MaxSen

prior s does not perfectly satisfy this sup-

position. But it comes as close as any

beta distribution can, simply by construc-

tion: closer than the credences delivered

by MaxEnt (figure 10), or any other brand

of objective Bayesianism. And this really

is pretty close to invariant (figure 11). The

difference between s ’s maximum (=0.077)

and minimum (=0.065) objective expected

inaccuracies is only 0.012.)
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This tells us something important about what explains the accuracy of your posterior

credences, and in turn, the amount of cognitive ability that your credal state manifests.

Counterfactual independence provides good (if defeasible) evidence for explanatory irrel-

evance. And the chance of your posterior credences attaining any particular degree of

accuracy, x, y, or z, is counterfactually independent of how accurate a hunch your prior

credences happen to encode. It would be the same, regardless of how accurate that hunch

was. (This is what INVARIANCE tells us.) So the accuracy of any such hunch is plausibly

irrelevant (or nearly so) for explaining why your chance of success (posterior accuracy) is

what it is. And chances are explanatory foci. So having a spot-on (or wildly-off) hunch (a

non-evidential factor) also plays no role in explaining why you actually attain the degree

of posterior accuracy that you do. The accuracy of your posterior credences is explained,

rather, by the character of your evidence: how weighty, specific, misleading it is, etc. And

this is just what is required for posterior accuracy to be the product of cognitive ability.

Once more, the situation is not unlike the skilled Mars rover’s. Whether it happens

to emerge from its initial (blind) descent directly above the landing site, or 1/2 mile to the

north, or 3/4 miles to the northeast, it has roughly the same chance of success (landing

close to the target). The result: initial proximity (a non-evidential factor) plays virtually

no role in explaining its success. Rather, facts about the quality of its evidence (evidence

about its trajectory prior to entering Mars’ atmosphere, sensor readings after initial de-

scent, etc.), and how it responds to that evidence are primarily responsible for explaining

its success.

You might worry that invariant chances of success come cheap. A defective rover —

no parachute, no sensors, no rocket thrusters, etc. — has the same chance of success,

regardless of its initial proximity to the landing site, viz., no chance! It is bound to be

unsuccessful. Similarly, a defective prior — e.g., the incoherent prior c0 that assigns cre-

dence 0 to all competing theoretical hypotheses H1, ..., Hn and all possible experimental
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outcomes, or data items D1, ..., Dm — is bound to be unsuccessful (inaccurate). In fact, it is

certain to attain the same (low) degree of posterior accuracy, on a wide range of plausible

inaccuracy measures, come what may.68 So its chance of success is invariant too.

Does MaxSen recommend incoherent priors, then? No! It only appears to do so if we

ignore one of MaxSen’s two pieces of advice. First, MaxSen says that you ought to choose

minimally rational prior credences that satisfy the constraints imposed by your prior ev-

idence. Then it says that your credences should minimize variance (in objective expected

posterior accuracy across theoretical hypotheses) from amongst those minimally rational,

constraint-satisfying credences. So MaxSen always recommends coherent prior credences,

so long as minimally rational credence functions are always probabilistically coherent.

And all Bayesians agree: they are. Accuracy-dominated credence functions are not even

minimally rational. And credence functions avoid the sin of accuracy-domination just in

case they are probabilistically coherent.

Still you might worry. Even if a rover is not fully defective — perhaps it has a partially

functioning parachute, bargain-bin sensors, temperamental rocket thrusters, etc. — it

might yet have a very low chance of success regardless of its initial proximity to the landing

site. As a result, its chance of success might be close to invariant. But such invariance is

cheap. There might well be another rover whose chance of success — despite varying

more significantly across changes in initial proximity — is always higher than that of the

partially defective rover.

Similarly, even if a prior is minimally rational, you might worry — even if it obeys

Probabilism, the Principal Principle, etc. — it could nevertheless have a uniformly low

68More carefully, c0 : F → [0,1] will attain exactly the same degree of posterior (and prior) accuracy,
come what may, relative to any extensional inaccuracy measure I. I is extensional iff I(c , w) is a function
exclusively of c(X ) (c ’s estimate of X ’s truth value), and w(X ) (X ’s truth-value at w), for all X ∈F . Since
c0 assigns exactly the same credence (viz., 0) to every Hi , D j ∈F , and exactly one of element of {H1, ..., Hn}
and {D1, ..., Dm} is true, come what may (both are partitions), c0’s inaccuracy is the same, come what may,
according to any extensional I.
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objective expected posterior accuracy (low across all theoretical hypotheses). As a result,

its objective expected posterior accuracy might be close to invariant. But this sort of

invariance seems cheap. For all we have said, there might be another prior whose objec-

tive expected posterior accuracy — despite varying more significantly across theoretical

hypotheses — is always higher. That is, there might be another prior that posterior chance-

dominates it.

Does MaxSen recommend such defective priors? No! As it turns out, no prior cre-

dence function that satisfies the Principal Principle is posterior chance-dominated. We

mentioned earlier that Pettigrew (2013b, 2015) establishes the following result: if a cre-

dence function satisfies the Principal Principle, then it is not prior chance-dominated.

That is, no other credence function has uniformly higher objective expected prior accu-

racy (higher across all theoretical hypotheses). In fact, though, something stronger is true:

if a credence function satisfies the Principal Principle, then not only is it not prior chance-

dominated, but it is not posterior chance-dominated either. There is no other credence

function that has uniformly higher objective expected posterior accuracy.69 So MaxSen

never recommends such defective priors, so long as minimally rational credence functions

always obey the Principal Principle.

The take-home lesson is this: being accurate and being skillfully produced are both

69To see this, note that if a credence function c satisfies the version of the Principal Principle we intro-
duced earlier (footnote 41) — the extended temporal principle — then c(X |Tch) = ch(X )whenever c(Tch)> 0.
This means that

Expc (Ib ′) =
∑

1≤i≤m

∑

w∈D j

c(w) ·I(bD j
, w) =

∑

ch

c(Tch)[
∑

1≤i≤m

∑

w∈D j

ch(w) ·I(bD j
, w)]

Greaves and Wallace (2006) show that Expc (Ib ′) takes a minimum at b = c , so long as I is a strictly proper
inaccuracy score. But now suppose (for reductio) that some credence function b 6= c has uniformly lower
objective expected posterior inaccuracy, so that

Expch(Ib ′) =
∑

1≤i≤m

∑

w∈D j

ch(w) ·I(bD j
, w)<

∑

1≤i≤m

∑

w∈D j

ch(w) ·I(cD j
, w) = Expch(Ic ′)

for every chance function ch. Then whatever values the c(Tch)’s take, we have Expc (Ib ′)< Expc (Ic ′), which
contradicts the claim that Expc (Ib ′) takes a minimum at b = c .
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epistemically laudable properties. Both are plausibly necessary for probabilistic knowl-

edge. And MaxSen is designed to secure both. It directs you to choose minimally rational

prior credences that satisfy the constraints imposed by your prior evidence in order to

ensure that they are reasonably accurate. At the very least, such credences avoid the epis-

temic sins of accuracy-domination and chance-domination (prior and posterior). MaxSen

then directs you to choose prior credences that minimize variance in objective expected

posterior accuracy (from amongst the minimally rational credal states that satisfy those

constraints) in order to ensure that they are the product of cognitive ability.

To sum up, if what we have said is correct, then MaxSen delivers credences that are not

only reasonably likely to be accurate, in a wide range of inference problems, but whose

accuracy is, to the greatest extent possible, explained by facts about the evidence (prior

and experimental) on which they are based. In turn, the accuracy of those credences is, as

much as possible, the product of cognitive ability.

So MaxSen takes us some way toward securing probabilistic knowledge. It delivers

credences that are maximally eligible candidates for constituting such knowledge. It does

as much as possible — more than MaxEnt, or any other brand of objective Bayesianism

— to help secure a credal state in which you might plausibly be said to know, e.g.:

(23) that the next trial of your experiment will almost certainly not produce data D .

(24) that it’s more likely than not that the true theoretical hypothesis is either Hi or H j .

(25) that the true hypothesis is probably one of H1, ..., Hk .

Before concluding, it is worth examining these ‘maximally eligible candidates’ a bit

more closely. They obey a particular principle of equality, as we will see in §7. More

specifically, MaxSen delivers credences that give theoretical hypotheses equal considera-

tion, in a certain sense, rather than equal treatment. This tells us something important
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about the nature of cognitive ability. The demands of cognitive ability manifest them-

selves as demands of equal consideration.

7 Two Principles of Equality

Peter Singer (1975) argued that the most basic principle of equality is a principle of equal

consideration. The interests of all — human or otherwise — deserve equal consideration in

moral deliberation. Importantly, though, “equal consideration for different beings may

lead to different treatment” (Singer 1975, p. 2). For example:

If I were to confine a herd of cows within the boundaries of the county of, say,

Devon, I do not think I would be doing them any harm at all; if, on the other

hand, I were to take a group of people and restrict them to the same county,

I am sure many would protest that I had harmed them considerably, even if

they were allowed to bring their families and friends, and notwithstanding

the many undoubted attractions of that particular county. (Singer 1985, p. 6)

Humans have interests “in mountain-climbing and skiing, in seeing the world and in sam-

pling foreign cultures;” whereas cows do not (Singer, 1985, p. 6). So we are not required

to treat humans and cows equally, simply in virtue of giving equal consideration to their

respective interests. Indeed, we will often be required not to treat them equally.

We can and must, then, distinguish between two importantly different principles of

equality, according to Singer — principles of equal treatment and consideration, respec-

tively — which govern our practical and evaluative attitudes toward individuals. Simi-

larly, we can (and, I think, must) distinguish between importantly different principles of

equality governing our doxastic attitudes toward theoretical hypotheses. On the one hand,

we have a principle of equal doxastic treatment, which demands that we treat theoretical
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hypotheses equally by giving them equal credence. On the other hand, we have a prin-

ciple of equal doxastic consideration, which demands that we reason about theoretical

hypotheses in such a way as to give each one an equal chance of being discovered, i.e., of

you learning of its truth (or having accurate posterior credences about its truth), if indeed

it is true.

If we had explored MaxEnt, and then called it a day before discovering MaxSen, we

might have suggested the following: While morality requires us to give individuals equal

consideration, the pursuit of probabilistic knowledge requires us to give theoretical hy-

potheses equal treatment. After all, MaxEnt recommends that you have credences that are

as close to uniform, or equal as possible, while satisfying the constraints imposed by your

prior evidence. And it seems to deliver credences that are, to a large extent, the product

of cognitive ability, and hence good candidates for probabilistic knowledge. So we seem

to have learned something surprising about the nature of cognitive ability, and in turn,

about the nature of probabilistic knowledge: both involve treating hypotheses equally, by

giving them equal credence (or as close to equal credence as possible, while satisfying the

constraints imposed by your prior evidence).

But this would have been a mistake. Just as morality requires us to give individuals

equal consideration, so too does the pursuit of probabilistic knowledge require us to give

theoretical hypotheses equal consideration. Treating cows and humans equally is prefer-

able, from the moral perspective, to the status quo (factory farms and the like). But it does

not follow that it is the morally best option. It does not follow that morality requires equal

treatment. Similarly, treating all theoretical hypotheses equally, by adopting uniform or

equal prior credences, is preferable, from the epistemic perspective, to adopting various

more concentrated priors. It is a better means to the end of securing skillfully produced

credences, and in turn, credences that are good candidates for probabilistic knowledge.

But it does not follow that it is the best option. It does not follow that having such ability
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or knowledge requires equal treatment.

MaxSen, not MaxEnt, delivers the most skillfully produced credences possible, and

in turn, maximally eligible candidates for probabilistic knowledge. But MaxSen does not

recommend giving theoretical hypotheses equal treatment by giving each one equal cre-

dence. Instead, MaxSen recommends giving them equal consideration by giving each one

the same chance of being discovered, i.e., of you learning of its truth (or having accurate

posterior credences about its truth), if indeed it is true. This is just what minimizing

variance in objective expected posterior accuracy amounts to.

The primary difference between these two doxastic equality principles — and, in turn,

between MaxEnt and MaxSen — is that the principle of equal consideration recognizes

that certain theoretical hypotheses speak up more clearly and forcefully than others do,

to put it metaphorically. Certain hypotheses have a high chance of producing rather ex-

treme, probative data: data that forces most priors (save for fantastically pigheaded ones)

to centre most of their probability density around them.70 They scream, if you will, “I’m

true!” This sort of boisterous hypothesis does not need equal treatment (credence) to re-

ceive equal consideration. It does not need equal treatment to have the same chance of

being discovered as other hypotheses, i.e., of you learning of its truth, if it is true.

For example, if you are going to flip the coin of unknown bias 8 times, MaxSen recom-

mends giving less credence to hypotheses according to which the bias of the coin is closer

to 0 or 1, and more credence to hypotheses according to which it is closer to 1/2, as figure

12 reminds us. The reason: hypotheses according to which the bias is close to 0 or 1 speak

up more clearly than hypotheses according to which it is close to 1/2. They have a high

chance of producing extreme, probative data (almost all tails, or all heads, respectively):

70Strictly speaking, of course, hypotheses do not produce data. We ought to say: if certain ‘boisterous’
hypotheses were true (e.g., if the bias of the coin were 0.99), then there would be a high chance that con-
ducting the experiment (e.g., flipping the coin n times) would produce rather extreme, probative data (e.g.,
a string of nearly n heads).
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data that forces most priors (the MaxSen prior included) to centre most of their proba-

bility density around them. So they do not need as much credence (equal treatment) to

receive equal consideration.

Figure 12: MaxSen prior (n = 8).

This is a bit like a teacher in a

classroom filled with children, some of

whom are boisterous and some of whom

are reserved. To give equal considera-

tion to the opinions of all children, the

teacher need not pay equal attention to

them all. Indeed, she should strive to lis-

ten more carefully to the reserved, quiet

children: eliciting their thoughts, boost-

ing their confidence, and so on. The

boisterous children will make themselves known without such special attention.

If this is right, then we have learned something surprising about the nature of cognitive

ability or skill, and in turn, about the nature of probabilistic knowledge. Having cognitive

ability does not involve treating hypotheses equally. Rather, it involves giving them equal

consideration. It involves reasoning about them in such a way that you have an equal

chance of discovering them (of learning that they are true, if they are).

8 Conclusion

Moss (2013) provides compelling reasons to countenance probabilistic knowledge. Cre-

dences can amount to knowledge in much the way that full beliefs can. I suggested that

whatever else it takes for an agent’s credences to amount to knowledge, they must satisfy

both an anti-luck condition and an ability condition: their accuracy must not be lucky (it
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must be safe); and it must be the product of cognitive ability or skill.

So I set out to find formal tools for choosing prior credences, at least in a range of

inference problems, to help ensure those conditions are met. The best tools for this end,

I argued, would be designed specifically to yield credences that manifest cognitive skill.

Normally, cognitive skill mitigates dependence on luck. When it does not, savvy prior

construction won’t help us much anyway.

I then provided an account of cognitive skill or ability that says: having cognitive

ability is a matter of reasoning in such a way that your evidence explains the accuracy (or

inaccuracy) of your credences to the greatest degree possible. To help sift credal states

that satisfy the ability condition on probabilistic knowledge from ones that do not, I

searched for a summary statistic that tracks the amount of cognitive ability that a credal

state manifests. I pointed to one statistic that seems to fit the bill: variance in objective

expected posterior accuracy across theoretical hypotheses. The smaller this statistic, I

argued, the greater the extent to which a credal state’s posterior accuracy is a product of

cognitive ability.

I then used this statistic to develop a novel kind of objective Bayesianism, MaxSen.

MaxSen advises adopting the prior credal state (from amongst the credal states consistent

with your prior evidence) that minimizes this statistic. So the posterior accuracy of its

credences are, to the greatest extent possible, the product of cognitive ability. Those cre-

dences, then, are particularly eligible candidates for constituting probabilistic knowledge.

Finally, I argued that MaxSen teaches us something important about the nature of

cognitive ability and probabilistic knowledge. Having credences that amount to proba-

bilistic knowledge, and so inter alia are the product of cognitive ability, requires giving

theoretical hypotheses equal consideration, rather than equal treatment.

In appendices A and B, I tie up some important loose ends. Appendix A addresses two

pressing objections. For example, Venn (1866), Keynes (1921) and Fisher (1922) provide
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examples that seem to show that MaxEnt yields inconsistent results in a range of cases,

depending on how you describe them. The proponent of MaxSen must show that these

problems do not extend to her proposal. Appendix B discusses MaxSen’s limitations.

9 Appendix A: Objections

9.1 Likelihood Principle

The MaxSen method seems to run afoul of the Likelihood Principle (Edwards et al., 1963,

p. 237):

LIKELIHOOD PRINCIPLE. For any two experiments aimed at adjudicating between the-

oretical hypotheses H1, ..., Hn, and any two items of data D and D ′ produced by

those experiments, if D and D ′ have the same inverse probabilities (or ‘likelihoods’),

up to an arbitrary positive constant k > 0 — which is just to say that all hypotheses

Hi and H j (with 1 ≤ i , j ≤ n) render the first datum, D , k times as probable as

the second datum, D ′: p(D |Hi )/p(D ′|Hi ) = k = p(D |H j )/p(D ′|H j ) — then the

evidential import of D and D ′ for H1, ..., Hn is the same.

Many Bayesian statisticians, such as Savage, de Finetti and Berger (as well as frequentist

statisticians such as Fisher) take the LP to be central to rational inductive inference. Birn-

baum (1962) summarizes the standard Bayesian rationale for the LP as follows. First, on

the Bayesian view, according to Birnbaum, the aim of rational inductive inference is to use

“experimental results along with other available [prior] information” to determine a pos-

terior that provides “an appropriate final synthesis of available information” (Birnbaum,

1962, p. 299).

Second, Bayes’ theorem tells us that posterior (post-experiment) probabilities, p(·|D),

are fully determined by two components: a prior (pre-experiment) probability function,
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p(·), which specifies how probable the various theoretical hypotheses H1, ..., Hn are in

light of and an inverse probability function, or likelihood function, p(D |·), which speci-

fies how probable the hypotheses H1, ..., Hn render D .

BAYES’ THEOREM. p(Hi |D) = [p(D |Hi ) · p(Hi )]/p(D)

= [p(D |Hi ) · p(Hi )]/
∑

j p(D |H j ) · p(H j )

Finally, because the prior distribution captures the evidential import of the prior data (no

more, no less), the likelihood function (inverse probabilities) must capture the evidential

import of the experimental data, on the Bayesian view (no more, no less). “In this sense,”

Birnbaum says, “we may say that [Bayes’ theorem] implies [the likelihood principle]”

(Birnbaum, 1962, p. 299). “The contribution of experimental results to the determination

of posterior probabilities is always characterized just by the likelihood function and is

otherwise independent of the structure of an experiment” (ibid.).

MaxSen seems to violate the LP by making ‘extraneous’ features of the experimental

set-up — in particular, its stopping rule — relevant to the evidential import of the experi-

mental data. Stopping rules are rules that specify when to stop gathering new data. For

example, a fixed stopping rule might tell you to flip a coin of unknown bias exactly 5, or

10, or 15 times. An optional stopping rule, on the other hand, might tell you to flip the

coin until at least half of the tosses come up heads. Stopping rules have no bearing on the

import of the experimental data, according to the LP, because they have no influence on

likelihoods. Imagine, for example, that you perform some experiment and it produces

some outcome. Whether you plan to perform 5, or 10, or an indefinite number of trials

after this first trial, in accordance with various different stopping rules, has no influence

on likelihoods. It makes no difference to how probable any of the various theoretical hy-

potheses under consideration render the outcome of the first trial. So it should have no
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bearing on the evidential import of that outcome, according to the LP. All such features

of the experimental set-up are extraneous.

The argument that MaxSen violates the LP, by making stopping rules relevant to ev-

idential import or force, goes as follows. First, as any proponent of the method would

happily admit, stopping rules are relevant to which prior you ought to adopt, according

to MaxSen. Suppose that you and your friend are going to flip a coin, in order to adju-

dicate between competing hypotheses about its bias. You adopt different fixed stopping

rules: you plan to flip the coin 8 times, while your friend plans to flip it 20 times. Then

MaxSen recommends that you adopt a certain beta prior (α=β= 1.45) which gives more

credence to hypotheses according to which the bias is close to 1/2, and less credence to

those according to which it is closer to 0 or 1. It recommends that your friend adopt a

different, more concentrated prior (α=β≈ 2). (See figure 8.)

The argument continues:

1. Posterior probabilities reflect the evidential import of the total data (prior and ex-

perimental) for the theoretical hypotheses under investigation (no more, no less).

2. MaxSen renders posteriors sensitive to stopping rules (by rendering priors sensitive

to stopping rules).

3. So, according to MaxSen, the evidential import of the total available data is sensitive

to stopping rules. (From 1 & 2)

4. Stopping rules are obviously irrelevant to the evidential import of the prior data.

If they are relevant to the import of the total data at all, it must be because they

impact the import of the experimental data.

5. Hence, the evidential import of the experimental data is sensitive to stopping rules,

according to MaxSen. (From 3 & 4)
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6. The LP says: stopping rules are irrelevant to the evidential import of the experi-

mental data.

C. MaxSen violates the LP. (From 5 & 6)

In fact, though, MaxSen is perfectly consistent with the LP. The problem with this

argument: premise 1 is false. A rational agent’s prior credences reflect more than just the

evidential import of her prior data, and her posterior credences reflect more than just the

evidential import of her total data. A rational agent engages in inquiry to secure probabilis-

tic knowledge, according to the proponent of MaxSen. Her prior credences, then, must

also reflect the right sort of inductive strategy — the right sort of strategy for handling

new data — so that her posterior credences are eligible candidates for constituting such

knowledge. This means, inter alia, encoding an inductive strategy that grounds cognitive

skill or ability.

MaxSen does not render priors sensitive to stopping rules because the evidential im-

port of the experimental data is sensitive to stopping rules. It is not. Rather, it renders

priors sensitive to stopping rules because facts about which inductive strategy is best suited

to ground cognitive skill or ability are sensitive to stopping rules.

Compare: you are part of the engineering team designing the new Mars rover. You

want to know: Which landing strategy makes the rover’s chance of success (landing close

to the target) more or less invariant, regardless of whether it emerges from its initial (blind)

descent directly above the landing site, or 1/2 mile to the north, or 3/4 miles to the north-

east, etc.? Which strategy, as a result, makes the rover’s initial proximity to the landing

site (within reasonable bounds) more or less irrelevant for explaining its success? Clearly,

the answer depends on a host of variables, e.g., how much fuel will be available for maneu-

vering once the rover is finally descending at a safe speed. If quite a bit will be available,

e.g., 1000 lbs, then perhaps a long burn in the direction of the landing site, followed by a
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series of short burns would be best. If much less fuel will be available, e.g., 600 lbs, a long

burn might be out of the question.

Similarly, if you and your friend are going to flip a coin, in order to adjudicate be-

tween competing hypotheses about its bias, the right question to ask (if you hope to se-

cure probabilistic knowledge) is this: Which inductive strategy (prior credences) makes

your chance of success (posterior accuracy) more or less invariant, regardless of how close

the true bias happens to fall your prior estimate? Which strategy, as a result, makes for-

tuitous prior success (accuracy) more or less irrelevant for explaining posterior success

(accuracy)? The answer depends on various features of the experimental set-up — in par-

ticular, the stopping rule in play. The reason: the stopping rule determines how much data

will be available to ‘maneuver’ your credences toward the truth. And just as the best landing

strategies given 600 and 1000 lbs of total available fuel, respectively, might recommend

using the first 500 lbs differently, so too might the best inductive strategies in different

experimental contexts recommend using some initial bit of data differently, if there are

different total amounts of experimental data available in those contexts. If you are going

to flip the coin 8 times, and your friend is going to flip the coin 20 times — so that your

friend has more (weightier) data available to ‘maneuver’ her credences toward the truth

than you do — your best inductive strategies, respectively, might recommend using some

initial bit of data (e.g., the outcomes of the first 5 flips) differently (i.e., might recommend

drawing different inferences on the basis of this initial bit of data).

The moral: MaxSen is consistent with the LP, despite its sensitivity to stopping rules.

Stopping rules do determine certain features of the MaxSen prior. But this is not because

the evidential import of the experimental data is sensitive to stopping rules, according to

MaxSen. It is not. The reason, instead, is that which inductive strategy is best suited to

ground cognitive skill or ability in a given context of inquiry is partially determined by

which stopping rule is in play that context.
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9.2 Language Dependence

As frequentist statisticians and dyed-in-the-wool subjective Bayesians often note, MaxEnt

seems to yield inconsistent results in a range of cases, depending on how you describe

them. The following example, adapted from (Fisher, 1922, pp. 324-5), illustrates the

point. Imagine once more that you are handed a coin. You plan to flip it n times, in

order to adjudicate between competing hypotheses about its bias. You have no relevant

prior evidence. (Almost no prior evidence, anyway. Once again, to make it manageable

to compute the MaxSen prior, assume that your prior evidence rules out any credence

function that does not take the form of a beta distribution.)

Given your dearth of evidence, MaxEnt recommends adopting uniform prior cre-

dences u over hypotheses about the bias B of the coin. It recommends spreading your

credence evenly over all of those hypotheses. But, Fisher points out, you “might never

have happened to direct [your] attention to the particular quantity” B (Fisher, 1922, p.

325). You might have focused, instead, on the quantity θ =
p

B (or any number of other

quantities). “The quantity, θ,” Fisher says, “measures the degree of probability, just as

well as [B], and is even, for some purposes, the more suitable variable” (ibid). To put the

point slightly differently, you might have described your inference problem in different

terms. not as a problem that requires sorting out which of the various hypotheses about

the coin’s bias B is true, but rather, as one that requires sorting out which hypothesis

about the square root of its bias is true (what the true value of θ =
p

B is), or the cosine of

its bias (δ = cos B), etc.

These redescriptions of your inference problem are equivalent, in a sense. The hy-

potheses that they employ (about the bias of the coin, about the square root of its bias,

etc.) divide up logical space in exactly the same way (they partition the space W of pos-
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sible worlds into exactly the same sets).71 And there is no obvious epistemic reason to

Figure 13: Non-uniform prior b ∗ over hy-

potheses about the value of B , which is

equivalent to the uniform prior u∗ over hy-

potheses about the value of θ.

prefer one way of describing your inference

problem over any other. Yet MaxEnt’s rec-

ommendation differs, depending on which

description you choose. For example, if you

had focused on the square root of the coin’s

bias θ =
p

B , rather than its bias B — if

you had framed your inference problem as

one that requires sorting out the true value

of θ, rather than B — then MaxEnt would

have recommended spreading your credence

evenly over hypotheses about the value of θ.

It would have recommended adopting uni-

form prior credences u∗ over hypotheses about the square root of the coin’s bias, which

is equivalent to adopting a non-uniform prior b ∗ over hypotheses about its bias, as figure

13 shows.72

So MaxEnt recommends different prior credences, depending on how you describe

your inference problem. As a result, it recommends making different (inconsistent) judg-

ments, in those different cases. For example, if you adopt the MaxEnt (uniform) prior u

over hypotheses about the coin’s bias, B , and then observe two heads in a row, your new

best estimate of that bias is 0.75. In contrast, if you adopt the MaxEnt (uniform) prior u∗

71For example, for any hypotheses B = x about the bias of the coin, the set of worlds that make the
hypothesis B = x true is exactly the set of worlds that makes θ=

p
x true (the square root of the coin’s bias isp

x). So the partition {{w ∈W |B=x is true at w}|x ∈ [0,1]} of W is equal to {{w ∈W |θ=y is true at w}|y ∈
[0,1]}.

72The uniform prior over hypotheses of the form θ = x is equivalent to the non-uniform prior over
hypotheses of the form B = x, defined by the probability density f (x) = 1/(2

p
x) (figure 13).
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Figure 14: MaxSen prior s for B .

over hypotheses about the square root of the

coin’s bias, θ, and observe two heads, your

best estimate is 0.71.

One might suspect that the MaxSen

method is subject to a similar sort of lan-

guage or description dependence. And it is.

But MaxSen also furnishes a clear rationale

for favoring one description of your inference

problem over others. So it is not inconsistent, in the way MaxEnt seems to be. It does not

leave you in the precarious position of yielding different prescriptions relative to different

ways of describing your inference problem, with no good reason to choose between them.

Figure 15: MaxSen prior s ∗ for θ.

Suppose that you plan to flip the coin

of unknown bias 5 times. The MaxSen

prior over hypotheses about the coin’s

bias, B , is the beta distribution s with α=

β ≈ 1.2 (figure 14). If, in contrast, you

use MaxSen to determine prior credences

over hypotheses about the square root of

the coin’s bias, θ, you will arrive at the

distribution s ∗ with α ≈ 0.9 and β ≈ 1.5

(figure 15). And s ∗ is not equivalent to s . Adopting the prior credence function s ∗ over

hypotheses about the square root of the coin’s bias, θ, is equivalent to adopting a rather

concentrated, resilient prior c∗ over hypotheses about its bias, B ; one which favors hy-

potheses according to which the coin’s bias is close to 0 (figure 16).73

73The MaxSen prior over hypotheses of the form θ = x is equivalent to the non-symmetric prior over
hypotheses of the form B = x, defined by the probability density g (x) = 0.65581

p

1−
p

x/x0.55 (figure 16).
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Figure 16: The biased prior c∗ over hypothe-

ses about the value of B , which is equiva-

lent to the MaxSen prior s ∗ over hypotheses

about the value of θ.

So depending on how you describe

your inference problem, MaxSen recom-

mends different prior credences. But this

does not amount to inconsistency, because

MaxSen furnishes a clear rationale for fram-

ing your inference problem as one about B ,

rather than θ (or any other quantity). It

furnishes a clear rationale for describing it

as a problem that requires sorting out the

coin’s true bias, rather than the square root

of its bias is true, or the cosine of its bias,

etc.

Rational agents engage in inquiry, the thought goes, with the aim of securing prob-

abilistic knowledge not simply about theoretical hypotheses (hypotheses about a virus’ in-

fection mechanism, about the causal underpinnings of the climate system, etc.), but also

about non-theoretical propositions (whether a patient’s cancer will remain in remission,

whether atmospheric CO2 levels will double by 2050, etc.).74 In our example, you aim to

not only secure probabilistic knowledge about bias of the coin, or equivalently, the chance

of heads, but also about whether the coin will in fact come up heads on the next toss.

Imagine that you adopt the MaxSen prior s over hypotheses about the bias of the

coin, B . Your friend adopts the MaxSen prior s ∗ over hypotheses about the square root

of the coin’s bias, θ. You observe some data D and update. Then, if MaxSen lives up

to its billing, the accuracy of your posterior credences about B are, to the greatest extent

possible, the product of cognitive ability. Those credences, then, are good candidates for

74Non-theoretical propositions, for our purposes, are just the propositions to which theoretical hypothe-
ses (chance hypotheses, causal models, etc.) assign probabilities.
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probabilistic knowledge.

Figure 17: The biased prior c over hy-

potheses about the value of θ, which is

equivalent to the MaxSen prior s over hy-

potheses about the value of B .

Not so, however, for your credences

about θ. Adopting the MaxSen prior s over

hypotheses about B is equivalent to adopting

a rather concentrated, resilient prior c over

hypotheses about θ; one which favors hy-

potheses according to which θ is close 1 (fig-

ure 17).75 And the objective expected pos-

terior accuracy of c varies fairly significantly

across hypotheses about the square root of

the coin’s bias. So the accuracy (or inac-

curacy) of your actual posterior credences

about θ is explained to a much greater extent

by their fortuitous prior accuracy (or inaccuracy), and hence is to a much lesser extent the

product of cognitive ability. Similar remarks apply to your friend’s credences about B and

θ (mutatis mutandis).

Both of you seem on par, then. After all, probabilistic knowledge about the chance of

heads (which you plausibly have, and your friend lacks) is no more intrinsically epistem-

ically valuable than probabilistic knowledge about the square root of the chance of heads

(which you lack, and your friend has). But there is an important difference between you.

Given that you both satisfy the Principal Principle, your credence that the coin will in fact

come up heads on the next toss — call this proposition ‘HEADS’ — is also the product of

cognitive ability, as we will see. Hers is less so. If this is right, then there is good epistemic

reason to describe your inference problem in terms of B (i.e., as a problem of adjudicating

75The MaxSen prior s over hypotheses of the form B = x is equivalent to the non-symmetric prior over
hypotheses of the form θ= x, defined by the probability density h(x) = 2.9469x(x2− x4)0.2(figure 17).
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between hypotheses about the coin’s bias, or chance of HEADS), rather than θ = 2pB , or

any other quantity. Describing your inference problem in this way does the most to help

you secure probabilistic knowledge about whether the coin will in fact come up heads on

the next toss.

It is not too hard to see why. Your credence for HEADS is tied to your credences about

the coin’s bias, or the chance of HEADS, if you are rational, in a way that it is not tied

to your credences about the square root of its bias (or any other quantity). Minimally

rational credence functions satisfy the Principal Principle. And given that your credence

function satisfies the Principal Principal, you estimate the truth-value of HEADS by es-

timating its chance. Your credence (truth-value estimate) for HEADS just is your best

estimate (expectation) of the chance of HEADS. Your credence for HEADS is not, in con-

trast, determined by your best estimate (expectation) of θ= 2pB , δ = cos B, or any other

function of the coin’s bias B . It is a well-known fact that one’s expected value for B is not

a function of one’s expected value for θ, or δ, etc. (see, e.g., Pettigrew (2012)).76 Best esti-

mates (expectations) are simply not cleanly related in this way. So neither is your credence

for HEADS a function of your best estimate (expectation) of θ, δ, etc.

This tells us something about how to explain the accuracy of your posterior credence

for HEADS. Given that you satisfy the Principal Principal, and so estimate truth-values by

estimating chances, two facts explain its accuracy: (i) how close your posterior chance es-

timate was to the true chance of heads (how accurate your posterior chance estimate was),

and (ii) whether events went as expected; whether the truth-value of HEADS happened to

fall close to (or far from) from its chance.

This in turn tells us something about how your evidence might explain the accuracy of

your posterior credence for HEADS. The character of your evidence (about the 5 initial

76To see this, consider a concrete example. Suppose you adopt the MaxSen prior over hypotheses about
the coin’s bias, B , viz., the beta distribution s with α = β ≈ 1.2. Then your expected value for B is 0.5,
while the square of your expected value for θ is approximately 0.453.
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flips) does not explain the latter fact, viz., why the truth-value of HEADS happened, on

this occasion, to fall close to (far from) from its chance. It has no bearing on the world’s

falling in line with chance or not. So it must explain the former fact, if it is to be relevant

to the accuracy of your posterior credence at all. That is, it must explain the accuracy of

your posterior chance estimate if it is to explain the accuracy of your posterior credence for

HEADS. And it must do this last bit, if that credence is to count as skillfully produced,

and hence be a candidate for constituting probabilistic knowledge.

At bottom, this is why describing your inference problem in terms of B — framing

it as a problem that requires sorting out the true bias, or chance of HEADS — rather

than θ = 2pB (or any other quantity) helps you secure probabilistic knowledge about

whether the coin will in fact come up heads on the next toss. For your posterior cre-

dence in HEADS to constitute probabilistic knowledge, your evidence must explain its

accuracy to the greatest degree possible. And it must do so by explaining the accuracy of

the underlying chance estimate that determines it. Now recall that our summary statistic

— variance in objective expected posterior accuracy — tracks the extent to which one’s

evidence explains one’s posterior accuracy (and, in turn, the extent to which one’s pos-

terior accuracy is the product of cognitive ability). The smaller that statistic, the greater

the extent to which the character of the evidence explains that accuracy. So the objec-

tive expected posterior accuracy of the chance estimate that determines your credence in

HEADS must vary minimally across chance hypotheses. Finally — and this is the crucial

point — this happens exactly when you describe your inference problem in terms of the

bias of the coin, B .

To see this, measure the inaccuracy of your posterior chance estimate — i.e., the ex-

pected value of the coin’s bias B determined by your posterior credence function c ′:

Expc ′(B) — by one particularly attractive scoring rule, viz., the Brier score (§5.2). And
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Figure 18: var(Expc ′(B)) for beta priors c

with 0≤ α,β≤ 2, given n=5.

measure variance in objective expected pos-

terior accuracy across chance hypotheses,

var(Expc ′(B)), in the usual way (by the differ-

ence in its maximum and minimum expected

inaccuracies). Now note that var(Expc ′(B))

takes a unique minimum when your prior cre-

dences over hypotheses about the coin’s bias,

B , are given by the beta distribution s with

α = β ≈ 1.2 (figure 18). And MaxSen deliv-

ers s as your prior exactly when you describe

your inference problem in terms of B , rather than θ= 2pB , or any other quantity.77

The moral: MaxSen is language or description dependent, like MaxEnt. But it also fur-

nishes a clear rationale for favoring one way of describing your inference problem over

others. The rationale: there is a single description that does the most to help secure prob-

abilistic knowledge not simply about theoretical hypotheses (e.g., hypotheses about the

chances), but also about non-theoretical propositions (e.g., whether the coin will in fact

come up heads). So MaxSen is not inconsistent, in the way MaxEnt seems to be. It does

not yield different prescriptions relative to different ways of describing your inference

problem while staying silent about how to choose between them.

10 Appendix B: Outstanding Issues

This paper outlines one kind of formal tool — the maximum sensitivity principle, or

MaxSen — for securing skillfully produced credences. But it does not provide a full ex-

plication (or defense) of MaxSen. For example, we restricted our attention to inference

77While var(Expc ′(B)) takes a minimum at c = s in this particular inference problem, it is an open question
whether this is true more generally.
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problems involving simple theoretical hypotheses about the bias of a coin and binomial

data, i.e., data that comes in the form of a sequence of ‘successes’ (heads) and ‘failures’

(tails), and is generated by a fixed number of identical and independent trials of an exper-

iment (I.I.D. trials).

As it turns out, we can lift this restriction. MaxSen generalizes straightforwardly to in-

ference problems involving more complicated theoretical hypotheses and data, e.g., multi-

nomial chance hypotheses — hypotheses about the chance of not only two possible out-

comes (e.g., heads or tails), but more generally, any finite number of possible outcomes —

and multinomial data — sequences of such outcomes generated by a fixed number I.I.D

trials. (Indeed, MaxSen generalizes straightforwardly to inference problems involving any

parametric family of chance hypotheses, i.e., hypotheses about chance distributions that

can be described by a finite number of parameters.) And quite a few inference problems

in the sciences, engineering, etc., are like this. They involve performing a fixed number

of identical and independent trials of an experiment with only finitely many possible out-

comes, in order to adjudicate between competing theoretical hypotheses, which specify

the respective chances of those outcomes. Any problem of this sort can be thought of as

sampling from a multinomial chance distribution (cf. Walley (1996)). Here, for example,

are two paradigmatic instances:

• An aerospace engineering company tests a number of nearly identical rocket proto-

types, and records which of the (finitely many) components fail in any unsuccessful

run, in order to adjudicate between competing hypotheses about the chance of such

a rocket failing in one way or another.

• A pharmacology lab runs a double-blind, randomized, controlled study of a new

drug, and records any of the (finitely many) possible side-effects, in order to adju-

dicate between competing hypotheses about the drug’s impact on one’s chances of
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suffering such side-effects.

Of course, many inference problems are not like this. Microbiologists, for example,

design and perform experiments aimed at adjudicating between even more complex theo-

retical hypotheses than those discussed above, e.g., Hidden Markov models that describe

the various networks (protein-protein interaction networks, etc.) that give rise to cell be-

havior (cf. Barabasi and Oltvai (2004)). In inference problems of this sort, prior credences

will turn out to be enormously complex (nonparametric priors).78 A fuller explication of

MaxSen would illustrate how inference techniques familiar from nonparametric Bayesian

statistics and machine learning (e.g., Markov Chain Monte Carlo) can be used to deter-

mine a MaxSen prior in such problems, and to compute its posterior.79

In addition, in some contexts of inquiry, we simply do not know enough about the

data-generating process to know which data items our experiment might produce (what

statisticians call the sample space of the experiment). For example, while you might know

enough about drug A to know what its possible side-effects are (because it is relevantly

similar to other well-studied drugs), you might have no idea what the possible side-effects

of drug B are. And in still other contexts of inquiry, new scientific data is simply not

generated by running I.I.D. trials of an experiment, or anything of the sort, e.g., in pale-

ontology, geology, etc. In such contexts, it is not obvious how to generalize MaxSen to

help secure probabilistic knowledge.

Examining the boundaries of the class of contexts in which MaxSen is applicable, and

responding in full to language dependence concerns are tasks that require separate inves-

tigation. Our aim here was simply to illustrate, in broad strokes, one kind of formal

tool for delivering skillfully produced credences, and in doing so, to provide a framework

for theorizing about how to secure probabilistic knowledge. I conclude by raising a few
78Nonparametric priors specify a joint distribution over an infinite number of parameters, e.g., each of

the uncountably many values of a probability density function.
79See Orbanz and Teh (2010) for an overview of nonparametric Bayesian statistics.
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additional questions to be addressed in future research.

• We specified the MaxSen prior using one particular proper scoring rule, or inac-

curacy measure, viz., the continuous ranked probability score. How robust are

our results across other proper scoring rules, e.g., the energy score (Gneiting and

Raftery (2007, p. 367))?

• MaxSen minimizes the explanatory relevance of one particular non-evidential fac-

tor, viz., prior accuracy. Are there any other sorts of non-evidential factors whose

explanatory relevance we might mitigate by savvy prior construction? What sorts

of hurdles might we face when handling multiple factors at once? What sorts of

compromises might we be forced to strike?

• The MaxSen prior outperforms alternative precise priors, including the MaxEnt

prior, vis-à-vis delivering skillfully produced posteriors. But we have not compared

the MaxSen prior to imprecise priors, or sets of probability functions. Is there good

epistemic reason to prefer the MaxSen prior to alternative imprecise priors, at least

in certain contexts of inquiry?∗
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