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Abstract 22 

Neural oscillations are important for memory formation in the brain. The de-synchronisation of Alpha 23 

(10Hz) oscillations in the neo-cortex has been shown to predict successful memory encoding and 24 

retrieval. However, when engaging in learning, it has been found that the hippocampus synchronises 25 

in Theta (4Hz) oscillations, and that learning is dependent on the phase of Theta. This inconsistency as 26 

to whether synchronisation is ‘good’ for memory formation leads to confusion over which oscillations 27 

we should expect to see and where during learning paradigm experiments. This paper seeks to 28 

respond to this inconsistency by presenting a neural network model of how a well-functioning learning 29 

system could exhibit both of these phenomena, i.e. desynchronization of Alpha and synchronisation 30 

of Theta during successful memory encoding. 31 

We present a spiking neural network (the Sync/deSync model) of the neo-cortical and hippocampal 32 

system. The simulated hippocampus learns through an adapted spike-time dependent plasticity rule, 33 

in which weight change is modulated by the phase of an extrinsically generated Theta oscillation. 34 

Additionally, a global passive weight decay is incorporated, which is also modulated by Theta phase. 35 

In this way, the Sync/deSync model exhibits Theta phase-dependent long-term potentiation and long-36 

term depression. We simulated a learning paradigm experiment and compared the oscillatory 37 

dynamics of our model with those observed in single-cell and scalp-EEG studies of the medial temporal 38 

lobe. Our Sync/deSync model suggests that both the de-synchronisation of neo-cortical Alpha and the 39 

synchronisation of hippocampal Theta are necessary for successful memory encoding and retrieval. 40 

 41 

 42 

 43 

 44 

 45 
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Significance Statement  46 

A fundamental question is the role of rhythmic activation of neurons, i.e. how and why their firing 47 

oscillates between high and low rates. A particularly important question is how oscillatory dynamics 48 

between the neo-cortex and hippocampus support memory formation. We present a spiking neural-49 

network model of such memory formation, with the central ideas that 1) in neo-cortex, neurons 50 

need to break-out of an Alpha oscillation in order to represent a stimulus (i.e. Alpha desynchronises), 51 

while 2) in hippocampus, the firing of neurons at Theta facilitates formation of memories (i.e. Theta 52 

synchronises). Accordingly, successful memory formation is marked by reduced neo-cortical Alpha 53 

and increased hippocampal Theta. This pattern has been observed experimentally and gives our 54 

model its name – the Synch/deSynch model. 55 

 56 

 57 

 58 
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Introduction  67 

Brain oscillations, via their ability to synchronize and desynchronize neuronal populations, play a 68 

crucial role in the formation and retrieval of episodic memories. However, little is known about how 69 

oscillations implement the necessary mechanisms for encoding and retrieval of such memories. This 70 

knowledge gap is partly due to a lack of computational models simulating oscillatory behaviours as 71 

observed in human EEG/MEG recordings during memory tasks. The link between oscillations and 72 

memory is further complicated by empirical data, which has fuelled a conundrum as to how 73 

oscillations relate to memory. Specifically, hippocampal Theta (~3-8 Hz) and gamma (~40-80 Hz) 74 

synchronisation (Fell & Axmacher, 2011) and the de-synchronisation of Alpha and beta (8-30 Hz) in 75 

cortical regions (Hanslmayr, et al., 2012) have both been reported as important for memory encoding 76 

and retrieval. Classic computational models theorise that hippocampal and neo-cortical regions offer 77 

functionally distinct mechanisms to form episodic memory (O'Reilly, et al., 2014), where a sparsely 78 

connected hippocampus learns new information quickly and a dense neo-cortex incorporates this 79 

information slowly. Building on these complementary learning systems, we recently presented a 80 

potential solution to the synchronization/de-synchronization conundrum (Hanslmayr, et al., 2016), 81 

suggesting that hippocampal Theta synchronisation (~4Hz) mediates the binding of concepts, while 82 

neocortical Alpha de-synchronisation (~10Hz) is due to the representations of these concepts 83 

becoming active. We here present a first computational network model which implements these 84 

mechanisms and simulates the opposing synchronizing and desynchronizing behaviours in the 85 

hippocampus and neocortex during a typical episodic memory task. Our model, while being very 86 

simple, successfully simulates a number of empirical findings ranging from human single neuron 87 

recordings, intracranial EEG recordings, to non-invasive EEG/MEG recordings and therefore 88 

represents a useful theoretical link between different levels of human electrophysiological recordings. 89 

Theta oscillations in medial temporal lobe are assumed to play a key role in the formation of 90 

memories, where learning is dependent on the power of Theta oscillations and the timing of action 91 
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potentials in relation to the ongoing Theta cycle (Rutishauser, et al., 2010) (Backus, et al., 2016) 92 

(Staudigl & Hanslmayr, 2013) (Heusser, et al., 2016). Studies in rodents have provided a mechanism 93 

by which Theta oscillations exert their influence on memory in showing that Long-Term-Potentiation 94 

(LTP) and Long-Term-Depression (LTD) occur in specific phases of the Theta cycle (Huerta & Lisman, 95 

1995) (Pavlides, et al., 1988). Building on theories of synaptic plasticity, it has been postulated that 96 

LTD occurs whilst most neurons in region CA1/CA3 are active in the excitatory phase of Theta (as 97 

recorded from CA1/CA3 hippocampal regions), whereas LTP occurs in the inhibitory phase of Theta 98 

when most neurons are silent (Hasselmo, 2005). (We clarify how these inhibitory and excitatory 99 

phases map onto the trough and peak of Theta in subsection “Computational model”). The model we 100 

describe here shows that stimulated hippocampal cells demonstrate a phase shift forward in Theta, 101 

enabling LTP to occur in the inhibitory phase of Theta where other non-stimulated cells are silent.  102 

Concerning Alpha oscillations, it can be assumed that there is a negative relationship between Alpha 103 

power and discriminating neural activity (Haegens, et al., 2011), leading to the notion that Alpha 104 

provides functional inhibition (Klimesch, et al., 2007) (Jensen & Mazaheri, 2010). Supporting this 105 

notion, Alpha power decreases (i.e. desynchronizations) are often localized in cortical regions relevant 106 

for a given task, whereas Alpha power increases occur in competing areas that are being inhibited 107 

(Jokisch & Jensen, 2007) (Waldhauser, et al., 2012). These findings suggest that the de-synchronisation 108 

of Alpha represents the flow of information to a targeted group of neurons. Consistent with this 109 

general gating function of Alpha, power decreases are strongly evident in episodic memory tasks 110 

where cortical Alpha power decreases predict successful encoding (Hanslmayr, et al., 2012) and 111 

retrieval (Khader, et al., 2010) (Waldhauser, et al., 2016). In addition to the hippocampal Theta 112 

dynamics, our model also simulates such memory dependent Alpha power decreases in the neocortex 113 

during the encoding and retrieval of episodic memories. 114 

 115 

 116 
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Materials and methods 117 

Computational model 118 

Here we describe a simple computational neural network model, which takes inspiration from the 119 

complementary learning systems framework (CLS), and lends credence to the previously theorised 120 

notion that opposing oscillatory behaviour in cortical and Hippocampal regions both contribute to 121 

episodic memory formation (Hanslmayr, et al., 2016). We do not fully detail the different steps of how 122 

information enters and exits the hippocampus through different subregions, e.g. via the perforant 123 

pathway from entorhinal cortex. Importantly, Theta oscillations show a phase reversal between the 124 

two pathways from entorhinal cortex to CA1 (the monosynaptic perforant pathway and the tri-125 

synaptic pathway, via the schaffer collaterals), which is the focus of previous models describing the 126 

computational utility of Theta in providing discrete time windows for encoding and retrieval 127 

(Hasselmo et al., 2005) or error-driven learning (Ketz et al., 2013). Our model draws inspiration from 128 

these works, but focusses particularly on the dynamics in region CA1. The key functional property we 129 

have constructed our model upon is that Theta sets up an inhibitory phase at the soma of pyramidal 130 

cells, at which LTP occurs, and a facilitatory phase at the soma of such cells, at which LTD occurs. 131 

Neurophysiologically, this could arise from the coincidence of a trough of fissure Theta (which is 132 

known to coincide with LTP); a peak at stratum radiatum (input from schaffer collaterals to CA1); and 133 

a trough at stratum pyramidale (i.e. functional inhibition at the cell body). This pattern is justified in 134 

(Hasselmo et al., 2005, section “Induction of LTP”), and is consistent with (Hanslmayr, et al., 2016), 135 

which refers to the peak in stratum radiatum. To simplify presentation, through the main body of the 136 

paper, we use functional descriptors, i.e. we talk in terms of the inhibitory phase of Theta, meaning 137 

functional suppression at the pyramidal cell body, and the facilitatory phase of Theta, meaning 138 

functional facilitation at the pyramidal cell body. In these terms, we will model a simple mechanism 139 

to simulate a typical episodic memory paradigm where an association between stimuli has to be learnt 140 
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in one trial. A principle of our modelling endeavour has been to identify the simplest neural 141 

instantiation of our theory under an Ockham’s razor principle.  142 

Experimental paradigm 143 

We chose to compare our model to an experiment that recorded from medial-temporal-lobe (MTL) 144 

neurons within epilepsy patients (Ison, et al., 2015). As depicted in Figure 1A, the experimenters 145 

screened many images of people to each participant to find one that the neuron under observation 146 

responded to, denoted from here on as the preferred (P) image. A separate image of a location was 147 

chosen that the neuron did not respond to, denoted as the non-preferred (NP) image. The P image of 148 

the person was then digitally superimposed onto the NP image of the location (denoted here as the 149 

composite (C) image), before being presented to the participant in what is termed here as the learning 150 

phase. The experimenters then conducted the screening process again, presenting both the NP & P 151 

images, to assess the impact of learning on the activity of the Hippocampal neuron. Figure 1A shows 152 

how we simulated this paradigm, where there is a screening phase before and after the presentation 153 

of the composite stimulus.   154 

Neuron physiology  155 

Our model comprises two groups of neurons representing the neo-cortex (NC) and the hippocampus 156 

(Figure 1Ba), split again into two subgroups coding for the P and NP images (where the number of 157 

neurons in each group was ). All neurons are simulated using an Integrate-and-158 

Fire equation ( ). 159 

A spike event is sent to other downstream connected neurons if the membrane potential ( ) of a 160 

neuron surpasses the threshold for firing ( ). After a spike, the neuron enters a refractory period, 161 

where the membrane potential is clamped to the resting potential ( ) for a set period ( ). With 162 

this equation, the membrane potential of a neuron is constantly decaying to its resting potential ( ) 163 

at a rate dictated by the membrane time constant ( ). The sum of all inputs at t is divided by the 164 

capacitance ( ) of the membrane potential. Inputs originate from constant alternating currents 165 
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( ), the sum of excitatory-post-synaptic-potentials (EPSPs) from spikes at each input synapse 166 

( ) and an after-de-polarisation function ( ), which will be described in more detail later. 167 

 168 

Equation 1: The integrate-and-fire model 169 

An Alpha function ( ) was used to model EPSPs for incoming spike events, where  is equal 170 

to the current time (t) minus the time of the eliciting spike ( ). The higher the synaptic time 171 

constant , the larger the integral through time of the EPSP, ensuring that a spike has a more 172 

sustained effect on the receiving neuron’s membrane potential. All synapses within the NC integrated 173 

with a  of 1.5ms, whilst synapses within the Hippocampus  integrated with a slightly larger synaptic 174 

time constant ( ) to allow them to more easily interact with one another. Spikes originating 175 

from external noise generators had a synaptic time constant of   176 

 177 

Equation 2 : The Excitatory-Post-Synaptic-Potential (EPSP) 178 

Neocortical system 179 

Based on CLS, the NC system learns slowly from repeated presentations. As our model emphasises the 180 

effect of oscillations on a single learning event, we assumed the existence of two pre-established NC 181 

populations, one representing the P and the other the NP concept, where neurons within each 182 

population had a 25% chance of being connected and synaptic modification was not implemented due 183 

to an assumed slow cortical learning rate (Figure 1Bi). Each NC neuron received background noise, 184 

representing “chatter” from other brain regions, in the form of Poisson distributed spike-events (~42k 185 

spikes/s). We do not explicitly model a neural mechanism for oscillations, thus a cosine wave of 186 

frequency 10Hz (amplitude = 21pA) was fed into NC neurons via  to model ongoing Alpha. This 187 

approximates the dominance of Alpha oscillatory activity in the cortex, which arise via pacemaker 188 
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regions like the thalamus (Hughes, et al., 2004) or emerge via cortico-cortical top-down interactions 189 

(van Kerkoerle, et al., 2014). Two separately generated Poisson distributed spike-trains (~80k spikes/s) 190 

were then paired with each NC subgroup upon stimulus presentation, modelling the activation of the 191 

P and/or NP images from higher cortical and visual areas. Stimulus related spike-trains were multiplied 192 

by an Alpha function (equation 2,  = 250ms) to more realistically model the activation of many 193 

neurons at stimulus onset.  194 

 195 

Hippocampal system 196 

Hippocampal neurons were similarly organised into two subgroups (Figure 1Bi), where each neuron 197 

received background noise (~4k spikes/s) and a cosine wave of 4Hz (amplitude = 28pA) to model 198 

ongoing Theta. This ongoing Theta oscillation approximates input into the hippocampus from 199 

pacemaker regions like the septum (Petsche, et al., 1962), or interactions between different types of 200 

interneurons acting as local Theta generators (Rotstein, et al., 2005). Based on CLS, the Hippocampal 201 

system learns quickly from a single presentation.  Therefore, Hippocampal synaptic modification was 202 

enabled via an adapted Spike-Time-Dependent-Plasticity (STDP) learning rule (Song, et al., 2000). We 203 

adjusted this rule to relate to empirical evidence that Hippocampal learning is Theta phase dependent 204 

(Huerta & Lisman, 1995), with LTP occurring in the functionally inhibitory phase and LTD in the 205 

functionally excitatory phase of Theta (Hasselmo, 2005). To this end, synaptic LTP was implemented 206 

by multiplying STDP weight modifications by the phase of the Theta cosine wave, with a value between 207 

0 and 1, with 0 on the excitatory “up” phase and 1 on the inhibitory “down” phase (Figure 1Bii).  208 

When a neuron spiked, a reward ( ) for contributing synapses was calculated as the product of a 209 

constant learning rate , Theta at time t  and the maximum 210 

weight , whilst punishments for competing synapses were calculated as  211 

. The greater strength for  compared to  reflected a preference for synaptic 212 

weakening in order to maintain a stable network. Whenever a spike event occurs, at unit  or , an 213 
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accumulated STDP update  for synapse  to  is calculated from its history of previous spiking (  214 

then  or  then ) . A function was then used to calculate the STDP acting on the synapse 215 

, where an exponential weighting of  was applied if the pre-synaptic spike occurred 216 

before the post-synaptic spike and of  if the post-synaptic spike occurred first. All Hippocampal 217 

weights were subject to STDP updates, along with an exponential passive decay, which was multiplied 218 

by the complement of the phase of Theta  ( ). The presence of this decay is 219 

consistent with the non-specific LTD that might occur during oscillatory spiking in the facilitatory phase 220 

of Theta (Hasselmo, 2005). This decay was larger for smaller weights, establishing a transition point 221 

whereby weakly interacting synapses were pruned ( ).  A piecewise linear bounding function 222 

was used to protect against sign reversal and run-away weights 223 

.  224 

225 

 226 

Equation 3 : Reward ( ) and punishment ( ) of synapses. 227 

 228 

Equation 4 : Function for STDP between pre and post-synaptic spikes (Song, et al., 2000), where  is 229 

always the difference between the time of a pre-synaptic and post-synaptic spike. 230 

 231 

 232 

 233 
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Equation 5 : SDTP synaptic modification at time for a network with node labels .  234 

is true if and only if  and  are connected.  indicates a spike event at the th neuron at time . 235 

 returns the set of all times before time , at which there was a spike at neuron . This is used 236 

to provide spike events paired, across synapse , , with the spike at time . In addition, we use auxiliary 237 

weight variables  and to enable application of a piecewise linear bounding function, see eqn 7. 238 

 239 

 240 

 241 

Equation 6 : Update of auxiliary weight variable and implementation of non-specific passive decay of 242 

synapses. 243 

 244 

Equation 7 : Piecewise linear bounding function 245 

Hippocampal neurons were interconnected with a probability of 40% to form a connection. 246 

Additionally, as it was assumed that both images were previously known to the participants but not 247 

associated, a random 50% of synapses within each subgroup had initial synaptic weights of  248 

whilst all others were set to 0. This ensured the random assignment of pre-established sets of winning 249 

and losing pathways within the subgroups coding for the P & NP image.  250 

Hippocampal neurons received additional input from an After-De-Polarisation (ADP) function (Jensen, 251 

et al., 1996) to control activation ( ). This provided 252 

exponentially ramping input, which was reset after each spike-event ( ). Evidence for an ADP 253 

function in hippocampal neurons has been found experimentally during cholinergic (Andrade, 1991) 254 
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(Caesar, et al., 1993) (Libri, et al., 1994) and serotonergic (Araneda & Andrade, 1991) modulation, and 255 

has the effect here of modelling an effectively inhibitory input for each Hippocampal neuron, which 256 

wanes the further one is from the eliciting spike. 257 

 258 

Equation 8 : After-De-Polarisation (ADP) function 259 

 260 

 261 

Local Field Potential (LFP) and Time Frequency Analysis (TFA) methods 262 

The LFP measures the activity of a group of neurons by first aggregating spikes through time. This was 263 

then filtered twice, first by using a Hanning filter with a 30ms window and then again with a sampling 264 

frequency between 2-6Hz or 8-12Hz dependent on whether we are filtering by Theta or Alpha, 265 

respectively. The LFP was analysed in time-frequency space using a Gabor filter with an upper and 266 

lower bound of 2-6Hz or 8-12Hz for Theta or Alpha analysis (γ = 0.5 for <30Hz or γ = π/2 for >30Hz). 267 

The absolute values were then taken and plotted in time-frequency space. 268 

Code Availability 269 

The Matlab code that was used to generate the results in reported in this manuscript can be 270 

downloaded at https://github.com/GP2789/Sync-deSync-model. 271 

 272 

Results  273 

Simulation procedure 274 
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We simulated our model based on a learning paradigm used in an MTL single cell recording experiment 275 

(Ison, et al., 2015). During the initial screening phase, both the P & NP images were presented 276 

individually. This was simulated by independently creating two Poisson distributed spike trains (~80k/s 277 

for 2 seconds) that fed into each respective P & NP subgroup of NC neurons (Figure 1A; P = blue, NP = 278 

magenta). An inter-stimulus interval of 2 seconds was used. Afterwards, we presented both images in 279 

a composite stimulus (green), where both subgroups of NC neurons concurrently received spike-280 

trains. Following this learning phase, we repeated the screening phase to assess the capability of the 281 

network to associate these stimuli together. The whole process was simulated 1000 times to assess 282 

the variability of the network, where for each simulation the Alpha and Theta cosine waves each began 283 

at a different random phase (choosing a random 30° angle between 0-360°, i.e. 284 

), new noisy spike trains were generated, and new initial patterns of connectivity 285 

were established. Thus, there was no carry-over of weight values between runs. The following results 286 

take an average over all simulations, where each simulation is treated as an individual trial with default 287 

initial parameters. 288 

Hippocampal weight change 289 

Maximal synaptic modification occurs between Hippocampal neurons that are stimulated to shift 290 

forward in phase and fire in the inhibitory cycle of an ongoing Theta oscillation (Hasselmo, 2005). Due 291 

to this, synaptic learning only occurs during the screening and learning phases of the simulation (Figure 292 

2; NP stimulus-magenta; P stimulus-blue; C stimulus-green) and not during the inter-stimulus 293 

intervals. Weight change after stimulus onset follows the Alpha function shape of the activation fed 294 

into these neurons. Due to the maximisation of a random 50% of synapses within each P & NP 295 

subgroup, the average weights of these groups begin at  (Figure 2A). Throughout the entire 296 

simulation, there is weight change within each subgroup (P-blue line; NP-magenta dash) when the 297 

respective image they are coding for is presented. With the competitive STDP rule, winning and losing 298 

weights are pushed towards  or  respectively, causing a capping effect where a weight in 299 
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one direction can still change whilst its competitor is capped. Here, this means that the average weight 300 

of each subgroup rises a small amount to stabilise just above  every time the respective image 301 

is presented.  302 

When the composite stimulus is presented (green), there is only marked synaptic change between 303 

both subgroups (Figure 2B; P->NP-blue line; NP->P-magenta dash). Here, weights go up bi-directionally 304 

as both subgroups of neurons are concurrently stimulated to become active during the inhibitory 305 

phase of Theta. In this phase, there are short term increases and decreases in weights, as paths are 306 

found between subgroups. As indicated by figure 2B, DL period, sustained changes are positive. When 307 

the screening phase is repeated after the learning phase, weights fluctuate and eventually settle with 308 

an increase in the direction from the active population to the non-active population. Before learning, 309 

concepts are only strengthened when the relevant image is presented. After learning, both concepts 310 

are reinforced upon the presentation of either image, indicating how previously associated but non-311 

present concepts can remain strong over time.  312 

Weights passively decay very slowly according to an exponential pattern to model the effect of a large 313 

population of neurons spiking during the facilitatory phase of Theta, where LTD has been found to 314 

occur (Hasselmo, 2005). As LTP occurs over a spectrum of 1 to 0, small weight increases occur as 315 

neurons spike on either side of the point at which Theta maximally inhibits. The passive decay 316 

implemented here is stronger for smaller weights (equation 6), to mitigate these gradual weight 317 

increases and prune irrelevant synapses. This can be seen most prominently in Figure 2B during the 318 

initial screening phase (2-4 & 6-8 seconds), where small weight increases to stimulated neurons decay 319 

quickly. LTD weight decay is also prominent in the inter-stimulus periods, where all weights slowly 320 

reduce over time.  321 

Hippocampal activity 322 

Activity is measured as the sum of spikes within bins of a 20ms width throughout the length of a 323 

simulation, taking an average of 1000 simulations with varying random phases for Alpha and Theta 324 
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oscillations, where the mean firing rate is shown with bootstrapped confidence intervals (Figure 3A). 325 

As we have access to data from both preferred (P) and non-preferred (NP) neurons, we can capture 326 

the network’s capability of recognition, where P & NP units respond to their own stimulus, and cued 327 

recall, where P & NP units respond to the opposite stimulus. During the initial screening phase before 328 

learning (BL), we see that neurons respond to their relevant images (Figure 3A), where activation at 329 

stimulus onset seems to cause a phase reset. This generates a high-frequency damped oscillation that 330 

is phase consistent across replications, and rides on top of a much lower frequency evoked transient, 331 

which plays out over a second or more. 332 

When the C image is presented during learning (Figure 3Ci), activity increases dramatically. Figure 3Cii 333 

shows the cause of this increase by breaking down the average input coming into neurons during 334 

learning, where the sum of all input sources follows the grey area (I). Here, we see an external force 335 

(Iext) drive the hippocampus at stimulus onset, which then causes the ADP current (IADP) to reset before 336 

it can reach maximum conductance (Equation 8; AADP), thus reducing its effect. The relative increase 337 

in activation is due to substantial weight change, and resulting additional input, between subgroups 338 

(IH<>H). Activation then feeds back into each subgroup dependent on how weights develop. 339 

When the screening phase is repeated after learning, the network successfully performs cued recall 340 

(Figure 3Bii) due to the aforementioned weight change, showing that our model efficiently learns 341 

associations between two arbitrary stimuli in one short presentation, a crucial requirement for a 342 

model of episodic memory. Similarly, random reciprocal feedback of activity between subgroups 343 

causes a relative increase in activation (Figure 3Bi). 344 

Raster plots show the activation of a single random P and NP neuron, as they respond to presentations 345 

of the P stimulus through a randomly chosen trial, where each line corresponds to a spike event (Figure 346 

3Aiii, Biii & Ciii). These are colour co-ordinated with the relevant activation plots seen above.  347 

We compare the results of our simulation to those from experimental evidence from a recent human 348 

single unit learning paradigm (Ison, et al., 2015). Figure 3Di-ii shows smoothed curves (smoothing 349 
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spline; -7) following simulated recognition and cued recall performance before and after 350 

learning, compared to experimental evidence of the same data in Figure 3Diii. Despite some overlap 351 

of confidence intervals, Figures 3Di-ii suggest that there is an increase in pre-stimulus activation after 352 

learning for recognition and recall in both sets of data. Raster plots show that this could be caused by 353 

occasional double spike events during the excitatory phase of Theta, due to increased weights 354 

between neurons (Figure 3Biii; -500 to 0ms). Both the model and experimental data indicate 355 

successful cued recall after learning (Figure 3Dii/iii; green), however, recognition after learning varies 356 

(Figure 3Di/iii; red). The experimental finding is that encoding neurons become less active with 357 

successive presentations of the same stimulus (Ison, et al., 2015), perhaps due to a repetition 358 

suppression effect (Pedreira, et al., 2010). In our model, an increase in recognition activation after 359 

learning is caused by the overall increase in synaptic efficacies both between and within subgroups. 360 

This could be countered by implementing a habituation mechanism that lies outside of the scope of 361 

this model. Such a mechanism could involve the re-balancing of weights or the storing of short-term-362 

memory in a higher brain structure.  363 

Theta phase 364 

Figure 4 shows Theta phase for the cued recall condition during the 3 stages of the simulation. The 365 

red and green halves of the polar distribution represent the excitatory and inhibitory phases of the 4 366 

Hz cosine wave used to model Theta, where π/2 is maximum excitation and -π/2 is maximum 367 

inhibition. The total number of spikes occurring within each phase quadrant of Theta was recorded 368 

(Figure 4Ai, Bi & Ci), as well as the first spike of each neuron after maximum inhibition (>-π/2) (Figure 369 

4Aii, Bii & Cii). The latter analysis was performed to show how Hippocampal neurons shift forward in 370 

Theta phase once stimulated. Spike numbers were normalised over 1000 simulations.   371 

Before learning, neurons are un-responsive to the image they do not encode for and oscillate at Theta, 372 

where all spikes occur during the excitatory phase (Figure 4Ai 0 to π/2 to π), with the first spikes 373 

generally occurring just before maximum excitation (Figure 4Aii; 0 to π/2). When the C image is 374 
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presented during the learning phase, both subgroups become active across all phases of Theta (Figure 375 

4Bi). Importantly, in order for activation to overcome inhibition, more activity will occur during the 376 

inhibitory phase of Theta. Neurons also exclusively spiked first immediately after the inhibitory 377 

maximum (Figure 4Bii; -π/2 to 0), indicating that all neurons in the P subgroup successfully phase-378 

shifted forward once stimulated during learning.  379 

When the screening phase occurs again after learning, neurons now respond to the opposite image. 380 

Spikes occur in most phase quadrants of Theta (Figure 4Ci), but in the main during the excitatory 381 

phase. However, inhibition can now be overcome, allowing spikes to first occur during the negative 382 

phase of Theta (Figure 4Cii) and demonstrating a phase shift forward in Theta. This shift in phase is an 383 

index of successful learning and has been well documented in rodents for neurons encoding a 384 

particular place when the rodent approaches that place (Huxter, et al., 2003). Our model shows a 385 

similar behaviour and predicts that this shift in phase is responsible for associative memory formation. 386 

Importantly, this phase shift is most evident when analysing only the first spike within a Theta cycle, 387 

starting at the Theta trough (i.e. where inhibition is maximal). This prediction can be tested in studies 388 

recording single units and local field potentials in human epilepsy patients (Ison, et al., 2015).  389 

Alpha De-Synchronisation 390 

Figure 5A shows time-frequency power spectra (8-12Hz) of the LFP of the NC neurons for the recall, 391 

recognition and learning phases. A thick band at 10Hz during the recall condition before learning 392 

shows non-stimulated neurons oscillating at Alpha (Figure 5Ai), as they do not respond to an image at 393 

this time. When neurons are responsive to the image they encode for in recognition and learning 394 

conditions, a strong de-synchronisation of Alpha is exhibited (Figure 5Aii/iii/v; 0 to 1s), simulating the 395 

well-documented effect of Alpha suppression upon visual stimulation (Berger, 1929). A similar, but 396 

weaker effect can be seen in the cued recall condition after learning (Figure 5Aiv; 0 to 1s). This de-397 

synchronisation is due to learning driven activation of Hippocampal neurons caused by the association 398 

between the P and NP stimuli. This low-frequency drive (from Hippocampus to Neo-cortex) de-399 
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synchronises Alpha by causing substantial activation in the inhibitory phase. The effect can be more 400 

clearly seen in Figure 5Bii, where a 20% relative decrease in Alpha power from pre to post stimulus is 401 

exhibited (Figure 5Bii; 0 to 1s), consistent with the findings that memory retrieval can be predicted by 402 

this same Alpha de-synchronisation (Hanslmayr, et al., 2012). Pre stimulus Alpha power is also slightly 403 

stronger (Figure 5Bi; -1 to 0s), indicating that pre-stimulus Alpha/beta power can be used to predict 404 

memory formation (Salari & Rose, 2016). This is due to stronger weights within Hippocampal 405 

subgroups causing knock-on activation during the excitatory phase of Alpha. This activation feeds back 406 

into Hippocampal units to cause an even more pronounced increase in pre-stimulus Alpha after 407 

learning (Figure 5Ci), where after stimulus onset Alpha also significantly decreases in these 408 

hippocampal units (Figure 5Cii), which is consistent with a previous study (Staresina, et al., 2016).   409 

This behaviour of our model mimics several findings in the literature showing memory dependent 410 

Alpha power decreases during the reinstatement of episodic memories (Khader, et al., 2010) 411 

(Waldhauser, et al., 2016) (Michelmann, et al., 2016). Here, the de-synchronisation of Alpha 412 

represents the flow of information in the NC caused by activation of relevant stimuli (Jensen & 413 

Mazaheri, 2010), (Klimesch, et al., 2007).  414 

Theta Synchronisation 415 

Figure 6Ai-v shows time-frequency power spectra (2-4Hz) of the LFP of Hippocampal neurons for the 416 

recall, recognition and learning conditions. In the recall condition before learning, neurons do not 417 

respond to any image and oscillate at Theta (Figure 6Ai). An increase in Theta power accompanies 418 

increased activation, as neurons respond to the image they encode for before and during learning 419 

(Figure 6Aii-iii). Theta synchronisation is stronger during learning, consistent with experimental 420 

evidence (Backus, et al., 2016) (Lega, et al., 2012) (Staudigl & Hanslmayr, 2013). This is due to the rapid 421 

increase in synaptic weights during this period (Figure 2B; 10 to 12s) causing feedback activation, 422 

which, in turn, causes more neurons to fire above threshold, but according to the Theta rhythm. 423 
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After the learning phase, neurons are also responsive to the opposite image, where a synchronisation 424 

of Theta occurs due to an increase in activity post stimulus (Figure 6Aiv). This can be seen more clearly 425 

in Figure 6Bii, where there is up to a 60% increase in Theta power relative to the pre-stimulus period. 426 

Due to stronger weights between the P & NP cluster, there is increased feedback activity during the 427 

normal oscillatory rhythm. This activity is amplified by a higher synaptic time constant (τs = 5ms for 428 

hippocampal neurons), causing an increase in pre-stimulus Theta power (Figure 6Bi; -1 to 0s). The 429 

same changes in Theta power are passed through to the NC (Figure 6Ci-ii), which is consistent with 430 

experimental evidence of increases of Theta in NC areas after learning paradigm experiments (Burke, 431 

et al., 2014) (Klimesch, et al., 2005). 432 

Varying Stimulus Strength 433 

We next varied how strongly our simulated participant perceived the P & NP images during the 434 

encoding and recall after learning conditions, allowing us to explore the sync/de-sync of Hippocampal 435 

Theta and NC Alpha over time at different strengths. This is achieved by varying stimulus strength, i.e. 436 

the rate of spikes per second being fed into NC neurons at stimulus onset, and taking the average 437 

power during the post-stimulus period across frequencies (0-30Hz). This information is displayed as 438 

heatmaps of frequency vs stimulus strength (Figure 7Ai-ii & Di-ii), where stimulus strength is shown 439 

on a logarithmic scale from 100 to 106. We can extract from this information to show the evolution of 440 

NC Alpha (Figure 7B; Red, 8-12Hz) and Hippocampal Theta (Blue, 3-5Hz) as neurons are driven more. 441 

It can be shown that for weakly perceived stimuli, the NC actually synchronises in Alpha within the 442 

model (see around 103 strength). This is due to input activity being too weak to overcome the trough 443 

of the 10Hz cosine input, but strong enough to cause more spiking in the peak. As stimulus strength 444 

increases, a de-synchronisation of Alpha is obtained as neurons overcome inhibition to spike across 445 

all phases of Alpha (see around 105 strength). In contrast, the Hippocampus exhibits a strong 446 

synchronisation of 4Hz (Figure 7B) with increasing stimulus strength. This is due to the ADP function 447 

preventing neurons recovering quickly after a spike event. This then is an important difference 448 



 

20 
 

between the neo-cortical and hippocampal systems, which underlies why (apart from with very strong 449 

inputs) the hippocampus synchronises rather than desynchronises – essentially the ADP function 450 

prevents the hippocampus from desynchronising. Weight change between P & NP units also increases 451 

monotonically with stimulus strength, plateauing at the same level that Theta and Alpha maximally 452 

synch/de-sync, respectively. This indicates why Alpha de-synchronisation and Theta synchronisation 453 

are both markers of successful memory encoding (Backus, et al., 2016) (Lega, et al., 2012) (Staudigl & 454 

Hanslmayr, 2013) (Hanslmayr, et al., 2012). Hippocampal Theta synchronisation can also be seen to 455 

bleed into NC neurons as stimulus strength increases (Figure 7Ai; 104 to 106 strength), corroborating 456 

experimental evidence (Burke, et al., 2014) (Klimesch, et al., 2005).  457 

When we push the model past normal levels of activation (the model’s default is ~8x104), Hippocampal 458 

Theta eventually de-synchronises, indicating that although the ADP function essentially acts as a break 459 

on Hippocampal units, it can eventually be overcome. Weight change remains high as units are spiking 460 

across all phases of Theta. This gives a possible explanation for why some experimental evidence also 461 

finds a positive correlation with successful memory encoding and hippocampal Theta de-462 

synchronisation (Fellner, et al., 2016) (Crespo-Garcia, et al., 2016) (Greenberg, et al., 2015). 463 

We also choose three important points from Figure 7B that best convey the model’s sync/de-sync 464 

characteristics, indicated by vertical green lines during first normal oscillatory behaviour, second, 465 

Alpha sync and third, maximal Theta sync and Alpha de-sync. The corresponding LFPs (indicated by 466 

the same symbol) are shown for these three points for NC (Figure 7Ci) and Hippocampal units (7Cii). 467 

NC Alpha LFPs show how power can increase when more spikes during the excitatory phase cause 468 

larger amplitudes of activity (Ci; cross), and how power decreases when activation occurs throughout 469 

an oscillation (Ci; triangle). Similarly, Hippocampal Theta LFPs show how power can increase with 470 

increased activation in the peaks, despite the low-level activation in the trough (Cii; triangle) that is 471 

responsible for learning.  472 
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The same analysis has been performed for the recall condition after learning, with similar results. 473 

Importantly, the method of de-synchronisation is different in this condition. As Figure 7Di shows, in 474 

the NC an Alpha de-sync at recall is accompanied by a Theta sync, indicating that Alpha is de-synced 475 

by Theta as activation feeds into the Hippocampus, which in turn feeds activation back to the NC. This 476 

ensures we do not see a small synchronisation of Alpha with low levels of stimulus strength as we saw 477 

in the encoding condition. As Theta and Alpha phases are rarely aligned (as seen by comparing LFP 478 

plots in Figures 7Fi-ii), maximal Theta excitability is just as likely to de-synchronise by occurring during 479 

an Alpha inhibitory phase as it is to be facilitated by aligning with an Alpha excitatory phase. As 480 

stimulus strength increases, one observes both Hippocampal Theta synchronisation and NC Alpha 481 

desynchronisation accordingly, indicating that both are important for successful memory retrieval. 482 

Figures 7E shows that the model is able to exhibit re-instantiation of a memory’s content. That is, neo-483 

cortical Alpha desynchronizes during recall for the stimulus cued, but not presented. This represents 484 

a purely endogenous activation of rich content. 485 

Synch/De-Synch Predicts Learning 486 

Having demonstrated that our model mimics the described behaviour of Alpha power decreases in 487 

the NC, and Theta power increases and phase dynamics in the Hippocampus, we now link these 488 

contrasting synchronisation behaviours with learning (see Figure 8). By varying the learning rate of 489 

STDP weight change (ε) between 0-1, it was possible to assess how the model behaves with different 490 

learning outcomes. The average of all bi-directional Hippocampal weights between subgroups P & NP 491 

increased with ε (Figure 8C),   which is used here to assess learning, i.e. the stronger the weight change 492 

the better the memory. We then calculate the effectiveness of recall (P response to NP + NP response 493 

to P) as a percent change in power at a particular frequency from before learning to after learning, 494 

effectively allowing us to isolate the effect of learning on power. A bootstrap procedure then provided 495 

the confidence intervals (shaded area) around a mean (solid line) of recall power for incremental 496 

values of ε for pre-stimulus (black) and post-stimulus (red) periods.  497 
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From this we can use power at a particular frequency to predict whether learning has successfully 498 

occurred in our model, and vice versa. In respect of the sync/de-sync theory (Hanslmayr, et al., 2016), 499 

the model indicates that both a de-synchronisation of Alpha in NC areas (Figure 8Ai) and a 500 

synchronisation of Theta in Hippocampal areas (Figure 8Bi) during recall can predict successful 501 

memory retrieval.   502 

Interestingly, one could also look at pre-stimulus Theta and Alpha power in the Hippocampus to 503 

predict whether learning has occurred (Figure 8Bi-ii ; black), where both increase by 30-40% due to 504 

stronger weights within the Hippocampus and reciprocal connectivity between the Hippocampus and 505 

NC. This is consistent with evidence that reports the importance of pre-stimulus Theta for learning 506 

(Gyderian, et al., 2009) (Fell, et al., 2011). The effect of feedback activity plays a smaller role in NC 507 

areas, where a small increase (<5%) in pre-stimulus Alpha power (Figure 8Ai; black) and an increase 508 

(<20%) in pre-stimulus Theta power (Figure 8Aii; black) can also predict learning (Salari & Rose, 2016). 509 

Importantly, there is a large synchronisation of Theta (<70%) at recall (Figure 8Bii; red) in NC areas, 510 

consistent with experimental findings (Burke, et al., 2014) (Klimesch, et al., 2005). 511 

Discussion  512 

We have presented a relatively simple spiking neural network model, which captures the complex 513 

synchronizing and desynchronizing behaviours of hippocampus and neocortex during encoding and 514 

retrieval in a typical memory task. This model, which we term the Sync/deSync (SdS) model, simulates 515 

hippocampal Theta synchronization and neocortical Alpha desynchronization in the service of 516 

encoding and retrieving novel stimulus associations – a key requirement of episodic memory. 517 

Consistent with the notion that one-shot learning occurs in the hippocampus, but not in the neocortex 518 

(O'Reilly, et al., 2014), our model only implements synaptic modifications in the hippocampus. This 519 

hippocampal learning uses two well-described synaptic modification mechanisms. The first is spike-520 

timing-dependent-plasticity (Song, et al., 2000), where synaptic modifications increase exponentially 521 

with decreasing time lag between the firing of pre and post-synaptic neurons. The second mechanism 522 
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is Theta phase-dependent plasticity, where synapses between neurons firing in the inhibitory phase 523 

of Theta are strengthened, whereas synaptic connections between neurons firing in the excitatory 524 

phase are weakened (Hasselmo, 2005). In the model neo-cortex, neurons fire phase-locked to an 525 

Alpha oscillation when they receive no input (Jensen & Mazaheri, 2010) (Klimesch, et al., 2007). When 526 

these neurons are driven by a stimulus, they increase their firing rate and gradually desynchronize 527 

from the ongoing Alpha, especially when the input is strong enough to overcome maximum inhibition. 528 

Therefore, Alpha power decrease is negatively related to the neural firing rate (apart from the small 529 

power increase at low stimulus intensities), thereby mimicking the well-known negative relationship 530 

between Alpha and neural firing (Haegens, et al., 2011). 531 

The Sync/deSync model draws inspiration from and resonates with a number of previous models that 532 

incorporate oscillations into the complementary learning systems framework. In particular, the 533 

concept of Theta phase-dependent plasticity in the Hippocampus has inspired aspects of a number of 534 

influential neural models (Hasselmo, et al., 2002) (Ketz, et al., 2013) (Norman, et al., 2005). An 535 

important component in two of these models (Hasselmo at al., 2005; Ketz et al., 2013) is a phase 536 

reversal between the two pathways from entorhinal cortex to CA1 (the monosynaptic performant 537 

pathway and the tri-synaptic pathway, via the schaffer collaterals), which could provide a powerful 538 

mechanism in terms of separating encoding from retrieval cycles. We chose not to fully model this 539 

aspect in detail, but focused particularly on the dynamics in area CA1 in order to keep the model as 540 

simple as possible. Norman et al. (2005) present an important refinement of the basic complementary 541 

learning systems model, in which the strength of k Winner-Take-All (kWTA) inhibition is varied across 542 

Theta phases. This modulation of inhibition provides a Theta-phase dependent learning, with parallels 543 

to the Sync/deSync model. That is, in the Norman et al. (2005) model, the high inhibition phase of 544 

Theta generates selective activation, restricting above-threshold activation to strongly responding 545 

units. LTP is then applied just to the active units, enabling selective weight update. This has similarities 546 

to the Sync/deSync idea that strongly active units move their spiking forward in the phase of Theta, 547 

enabling LTP (which only obtains in the inhibitory phase) to be selectively applied. 548 
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The match between the Norman et al and Sync/deSync models for the low inhibition phase of Theta 549 

is a little weaker than for the high inhibition phase, but there are still parallels. Specifically, both 550 

models exhibit activation of a broader profile of units in the low inhibition phase. In the Norman et al 551 

model, this enables LTD to be applied to competitor units (that are not strongly tuned to the memory 552 

being encoded). Sync/deSync similarly applies LTD in this low inhibition phase, however, it is a non-553 

specific, passive, decay. 554 

Our use of an ADP function to reduce the capacity for units to spike multiple times in quick succession 555 

is inherited from the Jensen & Lisman (2005) model. Additionally, while advancing the phase of Theta 556 

at which a unit spikes plays a key role in the Sync/deSync model, it is somewhat different to precession 557 

in the Jensen & Lisman model, where it encodes serial order. 558 

The Sync/deSync model is also able to capture a number of human electrophysiological findings. 559 

Human single neuron recordings revealed that hippocampal neurons can change their tuning, by 560 

showing an increase in firing rate to a non-preferred stimulus after this stimulus has been associated 561 

with a preferred stimulus (Ison, et al., 2015). Furthermore, Rutishauser et al. (2010) showed that a 562 

significant portion of neurons in the MTL are phase-locked to the ongoing Theta rhythm during 563 

memory encoding, with an increase in Theta phase-locking predicting later memory performance. Our 564 

model is consistent with these findings in showing an increase in activation for newly associated 565 

neurons, these responses being Theta phase-locked, and increased Theta synchronicity to be related 566 

to later memory performance. However, Sync/deSync also suggests that responsive neurons during 567 

learning are less locked to the ongoing Theta phase (Figure 4A and B), which seems at odds with 568 

Rutishauser et al. (2010). This decrease in Theta phase-locking is present for responsive neurons only, 569 

occurring since these units overcome maximum inhibition and thus fire at the LTP phase of Theta. 570 

Importantly, Rutishauser et al. (2010) did not separate neurons into stimulus responsive (i.e. showing 571 

an increase in firing rate) or not, therefore these findings cannot be directly linked to our model. 572 

However, an interesting prediction that arises from the model is that the preferred phase of firing 573 
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differs between responsive and non-responsive neurons, and that this phase difference is related to 574 

later memory performance. Indeed, Rutishauser et al. (2010) found that different neurons were 575 

locked to different phases of ongoing Theta. In our model, this difference is most prominent when 576 

only the first spike occurring after maximum inhibition is considered, a specific prediction that can be 577 

tested in future experiments.  578 

Inherent to the SdS model is that the same neurons can be either synchronised or de-synchronised 579 

depending upon the strength of driving input. By gradually increasing stimulus strength, a population 580 

with more inhibition/slower integration can exhibit a synchronisation at stimulus strengths when 581 

faster spiking populations exhibit a de-synchronisation (Figure 7B; ~105strength). This provides a neat 582 

explanation for the Sync/deSync conundrum, suggesting that it reflects the point where active 583 

neurons in different brain regions are on their trajectory towards a ceiling firing rate.  We show in 584 

Figure 7B that the slower spiking hippocampal population synchronises with normal levels of input 585 

(~105, but will eventually de-synchronise (~106). In fact, non-invasive studies in humans have linked 586 

successful encoding of stimulus associations in the MTL with both Theta power increases (Kaplan, et 587 

al., 2012) (Staudigl & Hanslmayr, 2013) (Backus, et al., 2016), and decreases (Fellner, et al., 2016) 588 

(Crespo-Garcia, et al., 2016) (Greenberg, et al., 2015). SdS indicates that both eventualities could yield 589 

successful memory encoding (Figure 7B; black line & blue line, which is trending negative at the top 590 

range of stimulus strengths). 591 

With respect to Alpha, many studies have shown that a decrease in Alpha power coincides with 592 

successful encoding and retrieval of episodic memories (see Hanslmayr et al., 2012; Hanslmayr & 593 

Staudigl, 2014 for reviews). In most previous studies, these effects extend also to beta. For this reason, 594 

and to ensure model simplicity, we have assumed only one cortical Alpha rhythm, we, though, see no 595 

reason why the same principles would not also apply to beta. During successful encoding of episodic 596 

memories, Alpha/beta power decreases have been found in left frontal areas for verbal material 597 

(Hanslmayr, et al., 2009) (Hanslmayr, et al., 2011) (Meeuwissen, et al., 2011) and occipital for visual 598 
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material (Noh, et al., 2014). During retrieval, Alpha/beta power decreases indicate the areas that are 599 

being reactivated, i.e. house the memory representation (Waldhauser, et al., 2016) (Michelmann, et 600 

al., 2016) (Khader & Rosler, 2011). This targeted Alpha/beta power decrease is exactly what is 601 

modelled here, with only neural assemblies that actively process the stimulus during encoding or 602 

retrieval showing power decreases, and the degree of this power decrease predicting memory 603 

performance. A key element of formal modelling is the identification of predictions that give the 604 

opportunity for the model to be falsified. The key predictions that SdS makes are presented in figure 605 

7B, which shows that as driving stimulus strength increases, neo-cortical Alpha goes through an initial 606 

phase, (strength around 103), of Alpha power increase (i.e. synchronisation), followed by a much more 607 

marked Alpha power decrease (i.e. desynchronisation), which is maximal just below a strength of 105. 608 

This pattern could be argued to be inherent to the way synchronisation and desynchronization are 609 

modelled, i.e. a small increase in drive will generate more spikes at an oscillation’s peak, and power 610 

will increase, while a large drive will cause spiking during the trough of the oscillation and power will 611 

go down. This pattern is our main prediction. 612 

A further prediction is that the degree of Alpha power decrease should correlate with the degree of 613 

hippocampal Theta power increase, and the degree of phase precession of responsive neurons in the 614 

hippocampus. This prediction can be tested in intracranial EEG, which often records simultaneously 615 

from the neocortex and the hippocampus.  616 
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 762 

Figure Legends 763 

Figure 1: Experimental paradigm (A). A non-preferred (NP) and preferred (P) image are found that the 764 

neuron does not and does respond to. These are then combined and presented in a composite (C) 765 

stimulus. Both P and NP images are presented again after this learning phase. Network connectivity 766 

(B). The architecture of the network (Bi) shows how a group of neo-cortical (NC) neurons and a group 767 

of Hippocampal neurons receive input from a 10Hz and 4Hz tonic wave, respectively, and both groups 768 

receive (background) noise from Poisson distributed spikes. Two subgroups of NC neurons receive 769 

input from higher level areas that represent the P and NP image. Each subgroup of NC and Hip neurons 770 

have reciprocal connectivity between themselves, 25% for NC and 40% for Hip. Hippocampal neurons 771 

also receive an after-de-polarisation (ADP) function. Hippocampal neurons are interconnected (i.e. 772 
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not just within subgroups), again with 40% connectivity, and spike-time-dependent-plasticity (STDP) 773 

is enabled with a Theta phase dependent learning rate (Bii). 774 

Figure 2: Hippocampal weight change throughout the simulation both within (A) and between 775 

subgroups (B) that code for the P and NP stimulus. Weights within each subgroup increase when the 776 

relevant image is presented (A), where the magenta and blue periods indicate the presentation of the 777 

NP and P images, respectively, and the green period indicates the presentation of both images 778 

combined into a composite image. During this learning period, weights from the NP to the P subgroup 779 

(magenta dashed) and vice-versa (blue solid) increase (B). Outgoing weights then increase upon the 780 

presentation of the relevant stimulus after learning (AL). Incoming weights also increase a small 781 

amount before learning (BL), then decay back to zero.  782 

Figure 3: Activity of Hippocampal neurons. Recognition reflects neurons responding to their own 783 

stimulus, i.e. P units activating for the P stimulus. Cued recall reflects neurons responding to the 784 

opposite stimulus, i.e. P units activating for the NP stimulus. Here, activation from before learning (BL) 785 

(A), after learning (AL) (B) and during learning (DL) (C) is shown. Raster plots show the activity of a 786 

single P and NP neuron during presentations of the P stimulus BL (Aiii), AL (Biii) and DL (Ciii). The 787 

average input into both P and NP neurons across all trials is shown in Cii, where coincidental external 788 

drive (Iext) during stimulus onset counteracts the effect of the ADP function (IADP). Additional activation 789 

causes an increase in input from other neurons within the group (IH) and also from the opposite group 790 

(IH<>H) as weights increase during learning. Smoothed activation data at recognition (Di) and recall (Dii) 791 

is then compared to data reported in a MTL neuron study (Diii).  792 

Figure 4: Polar histograms for the recall condition of all spikes before (Ai), during (Bi) and after learning 793 

(Ci), and of first spikes after -π/2 before (Aii), during (Bii) and after learning (Cii). D shows the 794 

distinction between the excitatory (red) and inhibitory (green) phases of Theta, where LTD and LTP 795 

occur, respectively. 796 
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Figure 5: Time-frequency-analysis (TFA) of Neo-Cortical Alpha for the recall and recognition conditions 797 

before and after learning (Ai-ii, Aiv-v), as well as during learning (Aiii). A time-course of Alpha power 798 

is shown for the colour-coded boxes around the recall condition before (Ai) and after (Aiv) learning, 799 

where pure power (Bi) and percent change in pre-post stimulus power (Bii) are shown. The same 800 

analysis can be seen for Hippocampal Alpha, where pure power (Ci) and relative power change (Cii) 801 

are shown.  802 

Figure 6: Time-frequency-analysis (TFA) of Hippocampal Theta for the recall and recognition 803 

conditions before and after learning (Ai-ii, Aiv-v), as well as for during learning (Aiii). . A time-course 804 

of Theta power is shown (B) for the colour-coded highlighted boxes (Ai, Aiv), where pure power (Bi) 805 

and percent change in pre-post stimulus power (Bii) are shown. The same analysis is shown for neo-806 

cortical Theta power during the same time periods (Ci-ii). 807 

Figure 7: Increasing stimulus strength (number of spikes being fed into NC neurons) during the 808 

encoding (DL) and recall after learning conditions, where stimulus strength is depicted on a logarithmic 809 

scale. During the encoding stage (A-C), frequency by strength heatmaps of NC (Ai) and Hippocampus 810 

(Aii) are shown. From this data, relative changes in NC Alpha (B; red, 8-12Hz) and Hippocampal Theta 811 

power (B; blue, 3-5Hz) are plotted, as well as weight change between P and NP Hippocampal 812 

subgroups (B; black). From this plot, three different stimulus strength values are chosen: normal 813 

oscillatory activity (~101 strength), small Alpha power increases (~103 strength) and maximal Theta 814 

power increases (~105 strength). At these points, Local-field-potentials (LFPs) are calculated using 815 

specific 2-6 or 8-12Hz filters for Hippocampal Theta (Cii) & NC Alpha (Ci), respectively, where blue and 816 

red highlighted regions indicate the possible stimulus onset area due to re-aligning phases across 817 

multiple trials. The same symbols indicate at which point an LFP represents. The same format is 818 

applied for the recall after learning condition (D-F).  819 

Figure 8: The effect of increasing the learning rate , and therefore synaptic efficacy between P and 820 

NP subgroups, on NC Alpha power (Ai), Hippocampal Theta power (Bi), NC Theta power (Aii) and 821 
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Hippocampal Alpha power (Bii). C plots the mean and variance of P<->NP weights from 1000 822 

simulations, where the learning rate  was incremented gradually from 0 to 1.  823 


















