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Abstract

We are concerned with conservation laws and integral relations associated with rational solutions
of the Boussinesq equation, a soliton equation solvable by inverse scattering which was first intro-
duced by Boussinesq in 1871. The rational solutions are logarithmic derivatives of a polynomial, are
algebraically decaying and have a similar appearance to rogue-wave solutions of the focusing nonlin-
ear Schrödinger equation. For these rational solutions the constants of motion associated with the
conserved quantities are zero and they have some interesting integral relations which depend on the
total degree of the associated polynomial.

This paper is dedicated to the memory of Professor David J. Benney

1 Introduction
In this paper we discuss conservation laws and integral relations associated with algebraically decay-
ing rational solutions u = u(x, t) of the Boussinesq equation

utt + uxx − (u2)xx − 1
3uxxxx = 0, (1.1)

where subscripts denote partial derivatives. Equation (1.1) was introduced by Boussinesq in 1871 to
describe the propagation of long waves in shallow water [15, 16]; see also [42, 43]. Benney and Luke
[11] showed that certain classical equations derived by mathematicians in the late 1800s, such as the
Boussinesq equation (1.1) and the Korteweg-de Vries equation

ut + 6uux + uxxx = 0, (1.2)

actually were generic approximations of weakly nonlinear-weakly dispersive wave phenomena. The
Boussinesq equation (1.1) is also a soliton equation solvable by inverse scattering [2, 14, 21, 46] which
arises in several other physical applications including one-dimensional nonlinear lattice-waves [41,
45], vibrations in a nonlinear string [46], and ion sound waves in a plasma [30, 37]. We remark that
equation (1.1) is sometimes referred to as the “bad” Boussinesq equation, i.e. when the ratio of the utt
and uxxxx terms is negative. If the sign of the uxxxx term is reversed in (1.1), then the equation is
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sometimes called the “good” Boussinesq equation. The coefficients of the uxx and (u2)xx terms can be
changed by scaling and translation of the dependent variable u. For example, letting u→ u+ 1 in (1.1)
gives

utt − uxx − (u2)xx − 1
3uxxxx = 0, (1.3)

which is the non-dimensionalised form of the equation originally written down by Boussinesq [15, 16].
Recently Clarkson and Dowie [18] studied rational solutions un(x, t) of the Boussinesq equation

(1.1). These rational solutions, which are algebraically decaying and can depend on two arbitrary
parameters, have the form

un(x, t;α, β) = 2
∂2

∂x2
lnFn(x, t;α, β), (1.4)

where Fn(x, t;α, β) is a polynomial of degree n(n + 1) in both x and t, with total degree n(n + 1), with
α and β parameters. The polynomial Fn(x, t;α, β) satisfies a fourth-order, bilinear equation – see (2.3)
below. These rational solutions have a similar appearance to rogue-wave solutions of the focusing
nonlinear Schrödinger (NLS) equation, cf. [5, 7, 8, 31, 32, 33]

iψt + ψxx + 1
2 |ψ|

2ψ = 0, (1.5)

which also is a soliton equation solvable by inverse scattering [47]. Benney and Newell [12] showed
that the NLS equation arises universally in diverse applications in nonlinear dispersive waves.

In §2, we review the results in [18] concerning algebraically decaying rational solutions un(x, t;α, β)
of the Boussinesq equation (1.1). In §3, we discuss conservation laws for the Boussinesq equation (1.1),
in particular showing that the constants of motion for the rational solutions un(x, t;α, β) given by (1.4)
are all zero. In §4, we discuss integral relations for these rational solutions of the Boussinesq equation
(1.1). Specifically we prove the following result:

Theorem 1.1. Suppose that un(x, t;α, β) is an algebraically decaying rational solution of the Boussi-
nesq equation (1.1) of the form (1.4), then

1

8π

∫ ∞
−∞

∫ ∞
−∞

u2n(x, t;α, β) dx dt = 1
2n(n+ 1), (1.6)

1

8π

∫ ∞
−∞

∫ ∞
−∞

u3n(x, t;α, β) dx dt = n(n+ 1). (1.7)

Theorem 1.1 shows a relationship between the integrals and the total degree of the polynomial
Fn(x, t;α, β) associated with the rational solution un(x, t;α, β). An analogous result to (1.6) has been
conjectured for rogue-wave solutions of the NLS equation (1.5) [6]. In §5 we discuss our results.

2 Rational solutions of the Boussinesq equation
Clarkson and Kruskal [19] showed that Boussinesq equation (1.1) has symmetry reductions to the
first, second and fourth Painlevé equations (PI, PII, PIV). Since PII and PIV themselves have rational
solutions, symmetry reductions were used in [17] to derive rational solutions of the Boussinesq equa-
tion (1.1). Further more general rational solutions of (1.1) are also given in [17]. Unfortunately none
of these rational solutions are bounded for all real x and t, and so it is unlikely that they will have any
physical significance.

However it is known that there are additional rational solutions of the Boussinesq equation (1.1)
which do not arise from the above construction. For example, Ablowitz and Satsuma [3] derived the
rational solution

u(x, t) = 2
∂2

∂x2
ln(1 + x2 + t2) =

4(1− x2 + t2)

(1 + x2 + t2)2
, (2.1)

by taking a long-wave limit of the two-soliton solution, see also [39, 40]. This solution is bounded for
real x and t, and tends to zero algebraically as |x| → ∞ and |t| → ∞.

If in the Boussinesq equation (1.1), we make the transformation

u(x, t) = 2
∂2

∂x2
lnF (x, t), (2.2)
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then we obtain the bilinear equation [28, 29]

FFtt − F 2
t + FFxx − F 2

x − 1
3

(
FFxxxx − 4FxFxxx + 3F 2

xx

)
= 0, (2.3)

which can be written in the form
(D2

t + D2
x − 1

3D4
x)F •F = 0, (2.4)

where Dx and Dt are Hirota operators

Dm
x Dn

t F (x, t) •F (x, t) =

[(
∂

∂x
− ∂

∂x′

)m(
∂

∂t
− ∂

∂t′

)n
F (x, t)F (x′, t′)

]
x′=x,t′=t

. (2.5)

α = β = 100 α = 100, β = 0 α = 0, β = 100

α = 100, β = −100 α = 100, β = 10 α = 10, β = 100

Figure 2.1: Plots of the solution u2(x, t;α, β) for various choices of α and β.

Since the Boussinesq equation (1.1) admits the rational solution (2.1), Clarkson and Dowie [18]
sought solutions in the form

un(x, t) = 2
∂2

∂x2
ln fn(x, t), n ≥ 1, (2.6)

where Fn(x, t) is a polynomial of degree n(n+ 1) in x and t, with total degree n(n+ 1). In particular

fn(x, t) =

n(n+1)/2∑
m=0

m∑
j=0

aj,mx
2jt2(m−j), (2.7)

with aj,m constants, which are determined using (2.3) and equating powers of x and t. Using this

3



α = β = 104 α = 104, β = 0 α = 0, β = 104

α = 104, β = −104 α = 104, β = 102 α = 102, β = 104

Figure 2.2: Plots of the solution u3(x, t;α, β) for various choices of α and β.

ansatz the following polynomials were obtained:

f1(x, t) = x2 + t2 + 1, (2.8a)

f2(x, t) = x6 +
(
3t2 + 25

3

)
x4 +

(
3t4 + 30t2 − 125

9

)
x2 + t6 + 17

3 t
4 + 475

9 t2 + 625
9 , (2.8b)

f3(x, t) = x12 +
(
6t2 + 98

3

)
x10 +

(
15t4 + 230t2 + 245

3

)
x8 +

(
20t6 + 1540

3 t4 + 18620
9 t2 + 75460

81

)
x6

+
(
15t8 + 1460

3 t6 + 37450
9 t4 + 24500

3 t2 − 5187875
243

)
x4

+
(
6t10 + 190t8 + 35420

9 t6 − 4900
9 t4 + 188650

27 t2 + 159786550
729

)
x2

+ t12 + 58
3 t

10 + 1445
3 t8 + 798980

81 t6 + 16391725
243 t4 + 300896750

729 t2 + 878826025
6561 . (2.8c)

(The lengthy polynomials f4(x, t) and f5(x, t) are also given in [18].)
Clarkson and Dowie [18] further showed that the Boussinesq equation (1.1) possesses generalised

rational solutions of the form

un(x, t;α, β) = 2
∂2

∂x2
lnFn(x, t;α, β), (2.9)

for n ≥ 1, with α and β arbitrary constants, where

Fn+1(x, t;α, β) = fn+1(x, t) + 2αtPn(x, t) + 2βxQn(x, t) +
(
α2 + β2

)
fn−1(x, t), (2.10)

with fn(x, t) given by (2.8), and Pn(x, t) and Qn(x, t) polynomials of degree n(n+ 1) in x and t. Specifi-
cally

Pn(x, t) =

n(n+1)/2∑
m=0

m∑
j=0

bj,mx
2jt2(m−j), Qn(x, t) =

n(n+1)/2∑
m=0

m∑
j=0

cj,mx
2jt2(m−j), (2.11)
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with the constants bj,m and cj,m determined by equating powers of x and t. By substituting (2.10) into
the bilinear equation (2.3) with fj(x, t), for j = 1, 2, . . . , 5, given by (2.8), then it is shown in [18] that

P1(x, t) = 3x2 − t2 + 5
3 , (2.12a)

Q1(x, t) = x2 − 3t2 − 1
3 , (2.12b)

P2(x, t) = 5x6 −
(
5t2 − 35

)
x4 −

(
9t4 + 190

3 t2 + 665
9

)
x2 + t6 − 7

3 t
4 − 245

9 t2 + 18865
81 , (2.12c)

Q2(x, t) = x6 −
(
9t2 − 13

3

)
x4 −

(
5t4 + 230

3 t2 + 245
9

)
x2 + 5t6 + 15t4 + 535

9 t2 + 12005
81 , (2.12d)

with α and β arbitrary constants; the polynomials P3(x, t), Q3(x, t), P4(x, t) and Q4(x, t) are given in
[18]. The polynomials have the form

Fn(x, t;α, β) =
(
x2 + t2

)n(n+1)/2
+Gn(x, t;α, β), (2.13)

where Gn(x, t;α, β) is a polynomial of degree (n+ 2)(n− 1) in both x and t. In Figures 2.1 and 2.2, plots
of u2(x, t;α, β) and u3(x, t;α, β) are given for various choices of α and β, respectively.

3 Conservation laws
A conservation law is an equation of the form

∂T

∂t
+
∂X

∂x
= 0, (3.1)

where T (x, t) is the conserved density and X(x, t) the associated flux. The integral∫ ∞
−∞

T (x, t) dx = c, (3.2)

with c a constant, is called a constant of motion, with t interpreted as a timelike variable. It follows
that ∫ ∞

−∞
X(x, t) dt = k, (3.3)

with k also a constant.
In order to study conservation laws for the Boussinesq equation (1.1) we cast it as the system

ut + vx = 0, (3.4a)

vt + (u2)x − ux + 1
3uxxx = 0. (3.4b)

If u(x, t) has the form u(x, t) = 2[lnF (x, t)]xx, where F (x, t) satisfies the bilinear equation (2.3) then
equation (3.4a), shows that

v(x, t) = −2
∂2

∂x∂t
lnF (x, t). (3.5)

The first few conserved densities Tj(x, t) and associated fluxes Xj(x, t) for the system (3.4) are

T1(x, t) = u, X1(x, t) = v,

T2(x, t) = v, X2(x, t) = u2 − u+ 1
3uxx,

T3(x, t) = uv, X3(x, t) = 2
3u

3 + 1
2v

2 − 1
2u

2 − 1
6u

2
x + 1

3uuxx,

T4(x, t) = 2
3u

3 + v2 − u2 − 1
3u

2
x, X4(x, t) = 2u2v − 2uv + 2

3vuxx −
2
3uxvx;

see Hereman et al. [27] for details. Hence the first few constants of the motion for the system (3.4) are∫ ∞
−∞

u(x, t) dx = c1, (3.6a)∫ ∞
−∞

v(x, t) dx = c2, (3.6b)∫ ∞
−∞

u(x, t)v(x, t) dx = c3, (3.6c)∫ ∞
−∞

(
2
3u

3 + v2 − u2 − 1
3u

2
x

)
dx = c4, (3.6d)
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where c1, c2, c3 and c4 are constants. The integral (3.6c) corresponds to the conservation of momentum
and (3.6d) to the conservation of energy. Further from the associated fluxes we have∫ ∞

−∞
v(x, t) dt = k1, (3.7a)∫ ∞

−∞

(
u2 − u+ 1

3uxx
)

dt = k2, (3.7b)∫ ∞
−∞

(
2
3u

3 + 1
2v

2 − 1
2u

2 − 1
6u

2
x + 1

3uuxx
)

dt = k3, (3.7c)∫ ∞
−∞

(
2u2v − 2uv + 2

3vuxx −
2
3uxvx

)
dt = k4, (3.7d)

where k1, k2, k3 and k4 are constants.
It is easily shown that for the algebraically decaying rational solutions of the Boussinesq equation

(1.1) described in §2, then cj = 0 and kj = 0, for j = 1, . . . , 4.

4 Integral relations of rational solutions
In this section we examine Theorem 1.1. The results hold for the generalised rational solutions
un(x, t;α, β) given by (2.9), though in this section we will suppress the explicit dependence of the pa-
rameters α and β.

4.1 Integral of u2
n(x, t).

First we shall consider the integral of u2n(x, t), i.e. result (1.6). Setting u = Uxx in the Boussinesq equa-
tion (1.1) and then integrating twice w.r.t. x, assuming that u and its derivatives vanish sufficiently
rapidly as |x| → ∞, yields

u2 = Utt + Uxx − 1
3Uxxxx. (4.1)

We integrate (4.1) w.r.t. x and t, for −R < x < R and −R < t < R, with R large, but finite, with a view
to later letting R→∞. This gives∫ R

−R

∫ R

−R
u2(x, t) dxdt =

∫ R

−R

∫ R

−R

{
Utt(x, t) + Uxx(x, t)− 1

3Uxxxx(x, t)
}

dxdt.

The rationale for considering (x, t) ∈ [−R,R] × [−R,R], for R large but finite, rather than considering
(x, t) ∈ R2 from the outset is that for the rational solutions given in §2, Uxx(x, t) 6∈ L1(R2) and Utt(x, t) 6∈
L1(R2), though Uxx(x, t) + Utt(x, t) ∈ L1(R2).

For the rational solutions described in §2, U(x, t) = 2 lnFn(x, t), where

Fn(x, t) = (x2 + t2)n(n+1)/2 +Gn(x, t), (4.2)

with Gn(x, t) a polynomial of degree (n+ 2)(n− 1) in both x and t. Therefore

1

8π

∫ R

−R

∫ R

−R
{Uxx + Utt} dxdt =

1

4π

∫ R

−R

∫ R

−R

{(
Fn,x(x, t)

Fn(x, t)

)
x

+

(
Fn,t(x, t)

Fn(x, t)

)
t

}
dxdt

=
1

4π

∫ R

−R

{
Fn,x(R, t)

Fn(R, t)
− Fn,t(−R, t)

Fn(−R, t)

}
dt

+
1

4π

∫ R

−R

{
Fn,x(x,R)

Fn(x,R)
− Fn,t(x,−R)

Fn(x,−R)

}
dx,

where the order of integration has been reversed for the second integral. Next consider

Fn,x(R, t)

Fn(R, t)
=
n(n+ 1)R(R2 + t2)n(n+1)/2−1 +Gn,x(R, t)

(R2 + t2)n(n+1)/2 +Gn(R, t)

=
n(n+ 1)R

R2 + t2

{
1 +

Gn,x(R, t)

(R2 + t2)n(n+1)/2

}−1
+

Gn,x(R, t)

(R2 + t2)n(n+1)/2 +Gn(R, t)
,

6



u2(x, t; 0, 0) u3(x, t; 0, 0) u4(x, t; 0, 0)

u22(x, t; 0, 0) u23(x, t; 0, 0) u24(x, t; 0, 0)

v2(x, t; 0, 0) v3(x, t; 0, 0) v4(x, t; 0, 0)

v22(x, t; 0, 0) v23(x, t; 0, 0) v24(x, t; 0, 0)

Figure 4.1: Plots of the solutions uj(x, t; 0, 0), u2j (x, t; 0, 0), vj(x, t; 0, 0) and v2j (x, t; 0, 0) for j = 2, 3, 4.
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then letting t = τR gives

1

4π

∫ R

−R

{
Fn,x(R, t)

Fn(R, t)
− Fn,x(−R, t)

Fn(−R, t)

}
dt =

R

4π

∫ 1

−1

{
Fn,x(R,Rτ)

Fn(R,Rτ)
− Fn,x(−R,Rτ)

Fn(−R,Rτ)

}
dτ

=
n(n+ 1)

2π

∫ 1

−1

1

1 + τ2
{

1 +O
(
R−2

)}
dτ

= 1
4n(n+ 1)

{
1 +O

(
R−2

)}
,

since ∫ 1

−1

d τ

1 + τ2
=
[

arctan(τ)
]1
−1 = 1

2π.

Similarly

Fn,t(x,R)

Fn(x,R)
=
n(n+ 1)R

x2 +R2

{
1 +

Gn,t(x,R)

(x2 +R2)n(n+1)/2

}−1
+

Gn,t(x,R)

(x2 +R2)n(n+1)/2 +Gn(x,R)

and letting x = ξR gives

1

4π

∫ R

−R

{
Fn,t(x,R)

Fn(x,R)
− Fn,t(x,−R)

Fn(x,−R)

}
dx =

n(n+ 1)

2π

∫ 1

−1

1

1 + ξ2
{

1 +O
(
R−2

)}
dξ

= 1
4n(n+ 1)

{
1 +O

(
R−2

)}
Hence we have shown that

1

8π

∫ R

−R

∫ R

−R

{
u2(x, t) + 1

3Uxxxx(x, t)
}

dxdt = 1
2n(n+ 1)

{
1 +O

(
R−2

)}
,

We note that

lim
R→∞

∫ R

−R

∫ R

−R
Uxxxx(x, t) dx dt = 0,

since lim|R|→∞ Uxxx(R, t) = 0, and so in the limit as R→∞ we obtain the following result.

Theorem 4.1. If un(x, t) is an algebraically decaying rational solution of the Boussinesq equation (1.1)
given by (2.9), then

1

8π

∫ ∞
−∞

∫ ∞
−∞

u2n(x, t) dxdt = 1
2n(n+ 1). (4.3)

For n = 2, the result (4.3) equals the number of peaks, i.e. 3, as shown in Figure 2.1, and for n = 3,
it equals the number of peaks, i.e. 6, as shown in Figure 2.2.

In Figure 4.1, plots are given of the solutions uj(x, t), u2j (x, t), vj(x, t) and v2j (x, t) for j = 2, 3, 4, with
α = β = 0.

4.2 Integral of u3
n(x, t).

Now we shall consider the integral of u3n(x, t), i.e. result (1.7). From the third conservation law

(uv)t +
(
2
3u

3 + 1
2v

2 − 1
2u

2 − 1
6u

2
x + 1

3uuxx
)
x

= 0, (4.4)

we have ∫ ∞
−∞

(
2
3u

3 + 1
2v

2 − 1
2u

2 − 1
6u

2
x + 1

3uuxx
)

dt = 0;

recall (3.7c) with k3 = 0. Integrating this result w.r.t. x and interchanging the order of integration
gives ∫ ∞

−∞

∫ ∞
−∞

u3 dxdt =

∫ ∞
−∞

∫ ∞
−∞

(
3
4u

2 − 3
4v

2 + 1
4u

2
x − 1

2uuxx
)

dx dt.

8



One integration by parts yields∫ ∞
−∞

∫ ∞
−∞

u3 dxdt = 3
4

∫ ∞
−∞

∫ ∞
−∞

(
u2 − v2 + u2x

)
dxdt. (4.5)

From the fourth conservation law(
2
3u

3 + v2 − u2 − 1
3u

2
x

)
t

+
(
2u2v − 2uv + 2

3vuxx −
2
3uxvx

)
x

= 0, (4.6)

we have ∫ ∞
−∞

(
2
3u

3 + v2 − u2 − 1
3u

2
x

)
dx = 0;

recall (3.6d) with c4 = 0. Integrating this w.r.t. t gives∫ ∞
−∞

∫ ∞
−∞

u3 dxdt =

∫ ∞
−∞

∫ ∞
−∞

(
3
2u

2 − 3
2v

2 + 1
2u

2
x

)
dxdt. (4.7)

Therefore equations (4.5) and (4.7) give∫ ∞
−∞

∫ ∞
−∞

u3(x, t) dxdt =

∫ ∞
−∞

∫ ∞
−∞

u2x(x, t) dx dt, (4.8a)

and ∫ ∞
−∞

∫ ∞
−∞

u3(x, t) dx dt = 3

∫ ∞
−∞

∫ ∞
−∞

{
u2(x, t)− v2(x, t)

}
dxdt. (4.8b)

From the Boussinesq equation (1.1), we have

u2 = u+ Utt − 1
3uxx,

where u = Uxx, so ∫ ∞
−∞

∫ ∞
−∞

u3 dxdt =

∫ ∞
−∞

∫ ∞
−∞

(
u2 + uUtt − 1

3uuxx
)

dxdt.

Using integration by parts gives∫ ∞
−∞

∫ ∞
−∞

u3 dx dt =

∫ ∞
−∞

∫ ∞
−∞

(
u2 + uUtt + 1

3u
2
x

)
dxdt, (4.9)

and so from (4.8) we obtain∫ ∞
−∞

∫ ∞
−∞

u3 dxdt = 3
2

∫ ∞
−∞

∫ ∞
−∞

(
u2 + uUtt

)
dxdt, (4.10a)

and ∫ ∞
−∞

∫ ∞
−∞

u3 dxdt = 3

∫ ∞
−∞

∫ ∞
−∞

(
v2 + uUtt

)
dxdt. (4.10b)

Consequently, we see that ∫ ∞
−∞

∫ ∞
−∞

u2 dxdt =

∫ ∞
−∞

∫ ∞
−∞

(
2v2 + uUtt

)
dxdt. (4.11)

Lemma 4.2. Suppose that u(x, t) and v(x, t) are solutions of the system (3.4), and u(x, t) = Uxx(x, t)
with

lim
|x|→∞

Ux(x, t) = 0, lim
|t|→∞

Ux(x, t) = 0,

then ∫ ∞
−∞

∫ ∞
−∞

v2(x, t) dxdt =

∫ ∞
−∞

∫ ∞
−∞

u(x, t)Utt(x, t) dx dt. (4.12)
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Proof. Since u = Uxx and v = −Uxt then∫ ∞
−∞

∫ ∞
−∞

v2(x, t) dxdt =

∫ ∞
−∞

(∫ ∞
−∞

U2
xt dt

)
dx = −

∫ ∞
−∞

(∫ ∞
−∞

UxUxtt dt

)
dx,

and ∫ ∞
−∞

∫ ∞
−∞

u(x, t)Utt(x, t) dx dt =

∫ ∞
−∞

(∫ ∞
−∞

Uxx Utt dx

)
dt = −

∫ ∞
−∞

(∫ ∞
−∞

UxUxtt dx

)
dt,

so the result follows, since the order of integration can be switched.

Consequently we have the following result.

Theorem 4.3. If un(x, t) is an algebraically decaying rational solution of the Boussinesq equation (1.1)
given by (2.9), then

1

8π

∫ ∞
−∞

∫ ∞
−∞

u3n(x, t) dx dt = n(n+ 1). (4.13)

Proof. From equation (4.11) and Lemma 4.2 we see that∫ ∞
−∞

∫ ∞
−∞

u2 dxdt =

∫ ∞
−∞

∫ ∞
−∞

(
2v2 + uUtt

)
dxdt = 3

∫ ∞
−∞

∫ ∞
−∞

v2 dxdt. (4.14)

Then from equations (4.8b) and (4.14) we have∫ ∞
−∞

∫ ∞
−∞

u3 dx dt = 2

∫ ∞
−∞

∫ ∞
−∞

u2 dxdt, (4.15)

and so using Theorem 4.1 we obtain the result.

Corollary 4.4. If vn(x, t) is an algebraically decaying rational solution of the system (3.4), then

1

8π

∫ ∞
−∞

∫ ∞
−∞

v2n(x, t) dxdt = 1
6n(n+ 1). (4.16)

Proof. The result follows immediately from equation (4.14) and Theorem 4.1.

4.3 Integrals of um
1 (x, t).

Finally we consider the integral of um1 (x, t), for m ≥ 2.

Theorem 4.5. Consider the rational solution of the Boussinesq equation given by

u1(x, t) = 2
∂2

∂x2
ln(x2 + t2 + 1) =

4(1− x2 + t2)

(1 + x2 + t2)2
. (4.17)

Then
1

8π

∫ ∞
−∞

∫ ∞
−∞

um1 (x, t) dxdt =
m!

(2m− 1)!

bm/2c∑
`=0

(2`)!(2m− 2`− 2)!

22`−2m−3(`!)2(m− 2`)!
, (4.18)

where bxc is the largest integer less than or equal to x, for m an integer with m ≥ 2.

Proof. We need to evaluate∫ ∞
−∞

∫ ∞
−∞

um1 (x, t) dxdt = 22m
∫ ∞
−∞

∫ ∞
−∞

(1− x2 + t2)m

(1 + x2 + t2)2m
dxdt,

for all integers m ≥ 2. If we make the transformation x =
√
ρ cosϕ, t =

√
ρ sinϕ then∫ ∞

−∞

∫ ∞
−∞

um1 (x, t) dxdt = 22m−1
∫ ∞
0

∫ 2π

0

m∑
k=0

(−1)k
(
m

k

)
ρk cosk(2ϕ)

(1 + ρ)2m
dϕdρ.
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Elementary results give that∫ 2π

0

cos2`(2ϕ) dϕ =
2
√
π Γ(`+ 1

2 )

Γ(`+ 1)
≡ π

22`−1
(2`)!

(`!)2
,

∫ 2π

0

cos2`+1(2ϕ) dϕ = 0,

for integer `, which, when combined with the knowledge that∫ ∞
0

ρk

(1 + ρ)2m
dρ =

Γ(k + 1) Γ(2m− k − 1)

Γ(2m)
≡ k!(2m− k − 2)!

(2m− 1)!
, if k < 2m− 1,

leads to the desired result (4.18).

Remark 4.6. We note that for the rational solution u1(x, t)

1

8π

∫ ∞
−∞

u1(x, t) dx =
1

2π

∫ ∞
−∞

1− x2 + t2

(1 + x2 + t2)2
dx = 0,

and therefore
1

8π

∫ ∞
−∞

(∫ ∞
−∞

u1(x, t) dx

)
dt = 0.

On the other hand

1

8π

∫ ∞
−∞

u1(x, t) dt =
1

2π

∫ ∞
−∞

1− x2 + t2

(1 + x2 + t2)2
dt =

1

2(x2 + 1)3/2
,

and then
1

8π

∫ ∞
−∞

(∫ ∞
−∞

u1(x, t) dt

)
dx = 1.

So for u1(x, t) the order of integration is important since u1(x, t) 6∈ L1(R2). In fact more generally
un(x, t) 6∈ L1(R2).

5 Discussion
Amongst his extensive contributions to fluid mechanics, David Benney conducted many studies of
nonlinear wave equations. Long waves were the topic of interest in [9, 10, 13, 44] while lump solutions
of the modified Zakharov-Kuznetsov equation are studied in [38]. A recurring theme in Benney’s
work was that of conservation laws and in this spirit here we have been concerned with conservation
laws and integral relations associated with algebraically decaying rational solution of the Boussinesq
equation (1.1) given by (2.9). In addition to the results discussed above, we have performed numerical
investigations of higher integral relations, i.e.

1

8π

∫ ∞
−∞

∫ ∞
−∞

umn (x, t;α, β) dxdt,

for m ≥ 4, where un(x, t;α, β) is an algebraically decaying rational solution of the Boussinesq equation
given by (2.9), with n ≥ 2. However for m ≥ 4 there appears to be no pattern analogous to the results
for m = 2 and m = 3 given in Theorem 1.1.

It is interesting to compare the results described here with analogous conservation laws and inte-
gral relations for rogue wave solutions of the NLS equation (1.5). It is straightforward to show that the
first few constants of motion and associated fluxes for rogue wave solutions of NLS equation (1.5) are
zero, which was the case for the Boussinesq equation (1.1); the first few rogue wave solutions and con-
servation laws for the NLS equation (1.5) are given in Appendix A below. Ankiewicz and Akhmediev
[6] conjectured that the number of components in any NLS rogue wave is a triangle number which can
be calculated as the integral of the squared deviation from the background level across the space-time
plane.

Conjecture 5.1. Suppose that ψn(x, t) is a rogue wave solution of the focusing NLS equation (1.5) then

Qn =
1

32π

∫ ∞
−∞

∫ ∞
−∞

[
|ψn(x, t)|2 − 1

]2
dxdt = 1

2n(n+ 1). (5.1)
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u2(x, t; 0, 104) u3(x, t; 0, 107)

Figure 5.1: Contour plots of the solutions u2(x, t; 0, 104) and u3(x, t; 0, 107) of the Boussinesq equation.

v2(x, t; 0, 104) v3(x, t; 0, 107)

Figure 5.2: Contour plots of the solutions v2(x, t; 0, 104) and v3(x, t; 0, 107) of the Boussinesq system.
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This conjecture is the analogue of (1.6); the factor of 4 is due to the fact that Ankiewicz and Akhme-
diev [6] consider an NLS equation which is obtained from (1.5) by letting t→ 1

2x and x→ 1
2 t.

We note that if the parameters α and β sufficiently large, then the rational solution u2(x, t;α, β) has
three lumps which are essentially copies of the lowest-order solution, of approximately the same height
and equally spaced on a circle. An analogous situation arises for the second generalised rational solu-
tion of the NLS equation [32]. Further, for α and β sufficiently large, the rational solution u3(x, t;α, β)
has six lumps, again essentially copies of the lowest-order solution, which are of approximately the
same height and with five of these equally spaced on a circle. Again an analogous situation arises for
the third generalised rational solution of the NLS equation [31]. For both cases we conjecture that the
radius of the circle is equal to (α2 + β2)1/h, for some h which depends on n, as appears to be the case
for the NLS equation [31, 32], though we shall not investigate this further here. Contour plots of the
solutions u2(x, t; 0, β) and u3(x, t; 0, β), for β = 104 and β = 107 respectively, of the Boussinesq equation
(1.1) illustrating this behaviour are given in Figure 5.1. Contour plots of v2(x, t; 0, β) and v3(x, t; 0, β),
for β = 104 and β = 107 respectively, where

vn(x, t;α, β) = −2
∂2

∂x∂t
lnFn(x, t;α, β),

with Fn(x, t;α, β) given by (2.10) are given in Figure 5.2.
Rogue wave solutions have also been derived for (2 + 1)-dimensional equations such as the Benney-

Roskes equation [13], also known as the Davey-Stewartson equation [20] (see also [1, 4])

iqt = qxx + σ2qyy + (ε|q|2 − 2φ)q, (5.2a)

φxx − σ2φyy = ε(|q|2)xx, (5.2b)

where σ2 = ±1 and ε = ±1, independently; see [35, 36] for details of rogue wave solutions of (5.2).
It would be interesting to see if there are analogous results to those given in this paper for (2 + 1)-
dimensional equations such as equation (5.2).

Acknowledgments
AA acknowledges the support of the Australian Research Council (Discovery Project number DP140100265)
and the Volkswagen Stiftung. PAC and ED thank the School of Mathematics & Physics at the Univer-
sity of Tasmania, Hobart, Australia, for their hospitality during their visit when some of this research
was done.

A Rational solutions and conservation laws for the focusing
NLS equation

Rational solutions of the focusing NLS equation (1.5) have the general form

ψn(x, t) =

{
1− 4

Gn(x, t) + itHn(x, t)

Dn(x, t)

}
exp

(
1
2 it
)
, (A.1)

where Gn(x, t) and Hn(x, t) are polynomials of degree (n + 2)(n − 1) in both x and t, with total degree
(n+ 2)(n− 1), and Dn(x, t) is a polynomial of degree n(n+ 1) in both x and t, with total degree n(n+ 1)
and has no real zeros. The first two rational solutions of the focusing NLS equation (1.5) have the form
[5, 7]

ψ1(x, t) =

{
1− 4(1 + it)

x2 + t2 + 1

}
exp

(
1
2 it
)
, (A.2)

ψ2(x, t) =

{
1− 12

G2(x, t) + itH2(x, t)

D2(x, t)

}
exp

(
1
2 it
)
, (A.3)

where

G2(x, t) = x4 + 6(t2 + 1)x2 + 5t4 + 18t2 − 3,

H2(x, t) = x4 + 2(t2 − 3)x2 + (t2 + 5)(t2 − 3),

D2(x, t) = x6 + 3(t2 + 1)x4 + 3(t2 − 3)2x2 + t6 + 27t4 + 99t2 + 9.
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Further

|ψn(x, t)|2 = 1 + 4
∂2

∂x2
lnDn(x, t). (A.4)

Dubard et al. [22] show that the rational solutions of the focusing NLS equation (1.5) can be gener-
alised to include some arbitrary parameters. The first of these generalized solutions has the form

ψ̂2(x, t;α, β) =

{
1− 12

Ĝ2(x, t;α, β) + iĤ2(x, t;α, β)

D̂2(x, t;α, β)

}
exp

(
1
2 it
)
, (A.5)

where

Ĝ2(x, t;α, β) = G2(x, t)− 2αt+ 2βx,

Ĥ2(x, t;α, β) = tH2(x, t) + α(x2 − t2 + 1) + 2βxt,

D̂2(x, t;α, β) = D2(x, t) + 2αt(3x2 − t2 − 9)− 2βx(x2 − 3t2 − 3) + α2 + β2,

with α and β arbitrary constants, see also [8, 23, 24, 25, 26, 31, 32, 33, 34].
The first few conservation laws for the focusing NLS equation (1.5) are

(|ψ|2 − 1)t + i(ψψ∗x − ψ∗ψx)x = 0, (A.6a)

(ψψ∗x − ψ∗ψx)t + i
(
(ψ∗ψxx + ψψ∗xx) + 1

2 |ψ|
4 − 2ψxψ

∗
x

)
x

= 0, (A.6b)(
4ψxψ

∗
x − |ψ|4 + 1

)
t

+ 2i
(
|ψ|2(ψ∗ψx − ψψ∗x) + 2(ψxψ

∗
xx − ψ∗xψxx)

)
x

= 0. (A.6c)

We remark that the conserved quantities in (A.6) appear in [44], see equations (4.21)–(4.23) in that
papers.
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