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Abstract

We study rational solutions of the Boussinesq equation, which is a soliton equation solvable by the inverse scatter-
ing method. These rational solutions, which are algebraically decaying and depend on two arbitrary parameters, are
expressed in terms of special polynomials that are derived through a bilinear equation, have a similar appearance to
rogue-wave solutions of the focusing nonlinear Schrodinger (NLS) equation and have an interesting structure. Further
rational solutions of the Kadomtsev-Petviashvili I (KPI) equation are derived in two ways, from rational solutions of
the NLS equation and from rational solutions of the Boussinesq equation. It is shown that the two families of rational
solutions of the KPI equation are fundamentally different.

1 Introduction

“Rogue waves”, sometimes knows as “freak waves” or “monster waves”, are waves appearing as extremely large,
localized waves in the ocean which have been of considerable interest recently, cf. [83, 88]. The average height of
rogue waves is at least twice the height of the surrounding waves, are very unpredictable and so they can be quite
unexpected and mysterious. A feature of rogue waves is that they “come from nowhere and disappear with no trace”
[13, 14]. In recent years, the concept of rogue waves has been extended beyond oceanic waves: to pulses emerging
from optical fibres [38, 39, 73, 95]; waves in Bose-Einstein condensates [23]; in superfluids [61]; in optical cavities
[78], in the atmosphere [96]; and in finance [107, 108]. The most commonly used mathematical model for rogue
waves involves rational solutions of the focusing nonlinear Schrodinger (NLS) equation

Wy 4+ Vua + 51070 =0, (L.

where subscripts denote partial derivatives, with v the wave envelope, ¢ the temporal variable and x the spatial variable
in the frame moving with the wave, see §2.
In this paper we are concerned with rational solutions of the Boussinesq equation

Ut + Upg — (U'Q)xx - %uxaux =0, (1.2)

which are algebraically decaying have a similar appearance to rogue-wave solutions of the NLS equation (1.1).
Equation (1.2) was introduced by Boussinesq in 1871 to describe the propagation of long waves in shallow water
[24, 25]; see, also [102, 105]. The Boussinesq equation (1.2) is also a soliton equation solvable by inverse scattering
[4,5, 8,34, 111] which arises in several other physical applications including one-dimensional nonlinear lattice-waves
[99, 109]; vibrations in a nonlinear string [111]; and ion sound waves in a plasma [68, 92].

There has been considerable interest in partial differential equations solvable by inverse scattering, the soliton
equations, since the discovery in 1967 by Gardner, Greene, Kruskal and Miura [62] of the method for solving the
initial value problem for the Korteweg-de Vries (KdV) equation

up + 66Uty + Uprr = 0. (1.3)

During the past forty years or so there has been much interest in rational solutions of the soliton equations. For
some soliton equations, solitons are given by rational solutions, e.g. for the Benjamin-Ono equation [77, 91] Further
applications of rational solutions to soliton equations include: in the description of vortex dynamics [17-19]; vortex



solutions of the complex sine-Gordon equation [20, 82]; and in the transition behaviour for the semi-classical sine-
Gordon equation [26].

In §2, we discuss rational solutions of the focusing NLS equation (1.1), including some generalised rational solu-
tions which involve two arbitrary parameters. In §3, we discuss rational solutions of the Boussinesq equation (1.2),
also including some generalised rational solutions which involve two arbitrary parameters. In §4, we discuss rational
solutions of the Kadomtsev-Petviashvili I (KPI) equation

(vr + 6vve + 1}&5)& = 3upy, (1.4)

which are derived in two ways, first from rational solutions of the focusing NLS equation (1.1) and second from
rational solutions of the Boussinesq equation (1.2). In the simplest nontrivial case, it is shown that these two types
of rational solutions are different. Further we derive a more general rational solution which has those related to the
focusing NLS and Boussinesq equations as special cases. In §5 we discuss our results.

2 Rational solutions of the focusing nonlinear Schrodinger equation

The nonlinear Schrédinger (NLS) equation
Wy + Yuw + oY =0, o ==+, 2.1)

is one of the most important nonlinear partial differential equations. In 1972, Zakharov and Shabat [112] developed
the inverse scattering method of solution for it. Prior to the discovery that the NLS equation (2.1) was solvable by
inverse scattering, it had been considered by researchers in water waves [21, 22, 110] (see also [1, 7, 8]). In 1973,
Hasegawa and Tappert [66, 67] discussed the relevance of the NLS equation (2.1) in optical fibres and their associated
solitary wave solutions. Hasegawa and Tappert showed that optical fibres could sustain envelope solitons — both bright
and dark solitons. Bright solitons, which decay as |x| — oo, arise with anomalous (positive) dispersion for (2.1) with
o = 1, the focusing NLS equation. Dark solitons, which do not decay as |z| — oo, arise with normal (negative)
dispersion for (2.1) with ¢ = —1, the de-focusing NLS equation.
Rational solutions of the focusing NLS equation (1.1) have the general form

Un(,1) = {1 - 4G”(x’g;;g"(x’ ) } exp (Lit), 2.2)

where G,,(z,t) and H,,(z, t) are polynomials of degree 3(n + 2)(n — 1) in both 2% and ¢2, with total degree 1 (n +

2)(n — 1), and D,,(z, t) is a polynomial of degree $n2(n + 1) in both 2% and ¢, with total degree 2n(n + 1) and has

no real zeros. The polynomials D,,(x,t), Gy (z,t) and H, (x,t) satisfy the Hirota equations

4(tDy + 1)H, 0 D,y + D2D, 0 D,, —4D2D,, ¢ G,, = 0,
D;G,eD, +tD>H, eD, =0,
D2D, e D, =8G2 + 8t*H? — 4D,,G,,

with D, and D, the Hirota operators

o 9\“(o o\

DiD!F(z,t)e F(z,t) = || 5= — 5= | |5 — 5] Fla,t)F(@',¢ . 2.3
x 7t ($7 ) (LL', ) [(8$ (91") (875 6t’> (LL', ) (.’E ’ )‘| o ( )

The first two rational solutions of the focusing NLS equation (1.1) have the form [12, 15]

4(1 +it) 1
’l/}l([r,t) = {1 — :1:2”2—’_1} exp (§lt) 3 (2.4)
GQ(xat)+1tH2(xat) 1:
=<1-12 3 2.
Yo (x,t) { Da(e.1) exp (2125) , (2.5)
where

Ga(z,t) = 2* + 6(¢* + 1)2* + 5t* + 18t* — 3, (2.6a)
Hy(x,t) = * +2(t* — 3)z? + (t* + 5)(t* - 3), (2.6b)
Dy(z,t) = 28 + 3(2 + 1) + 3(t% — 3)%2? + 5 + 27t* + 991 + 9, (2.6¢)



The solution 1 (x, t) given by (2.4) is known as the “Peregrine solution” [89]. Further
82

| (2, 1) = 1+ 4—5In D, (z,1).

ox

Dubard et al. [35] show that the rational solutions of the focusing NLS equation (1.1) can be generalised to include
some arbitrary parameters. The first of these generalized solutions has the form

-~ éz(z,t;a,5)+iﬁ2(x,t;a,ﬂ) 1:
T, tia, ) =4q1—12 = exp (5it), 2.7
et - | A b (3 @
where
@2(.13, t;a, B) = Go(z,t) — 2at + 20, (2.8a)
ﬁg(x, t:a, B) = tHy(z,t) + a(x?® — t* + 1) + 28xt, (2.8b)
ﬁg(x,t; @, B) = Do(x,t) + 20t (32* — t* — 9) — 2Bz (2* — 3t* — 3) + o + 32, (2.8¢)

with « and §3 arbitrary constants, see also [36, 37, 71, 72]. These generalized solutions have now been expressed in
terms of Wrgnskians, see Gaillard [41-55, 58, 59], Guo, Ling and Liu [63], Ohta and Yang [81]. We note that the
polynomial Ds(x,t; o, 3) has the form

ﬁg(x, t;a, B) = Da(x,t) + 20t Py (2,t) + 28xQ1 (x,t) + o® + 32, 2.9

where P;(z,t) and Q1 (z,t) are linear functions of 22 and ¢2. In Figure 2.1, plots of the generalised rational solution

|’(ZJ\2 (z,t; «, B)| given by (2.7) of the focusing NLS equation for various values of the parameters e and 3. The solution
has a single peak when oo = 8 = 0, which splits into three peaks as || and || increase; this solution is called a “rogue
wave triplet” in [16, 71] and the “three sisters” in [41].

3 The Boussinesq equation

3.1 Introduction

Clarkson and Kruskal [32] showed that Boussinesq equation (1.2) has symmetry reductions to the first, second and
fourth Painlevé equations (P, P11, Prv)

’LUH — 6’(1}2 +z, (3.1)
w” = 2w + 2w + «, (3.2)
2
3
w// — (/l;juz 4 §w3 +42w2 +2(22 —O()w+ g’ (33)

with ’ = ddz, and «, 8 arbitrary constants. Vorob’ev [104] and Yablonskii [106] expressed the rational solutions of
P11 (3.2) in terms of polynomials, now known as the Yablonskii—Vorob’ev polynomials (see also [33]). Okamoto [80]
derived analogous polynomials, now known as the Okamoto polynomials, related to some of the rational solutions
of Pry (3.3). Subsequently Okamoto’s results were generalized by Noumi and Yamada [79] who showed that all
rational solutions of Pry can be expressed in terms of logarithmic derivatives of two sets of special polynomials,
called the generalized Hermite polynomials and the generalized Okamoto polynomials (see also [28]). Consequently
rational solutions of (1.2) can be obtained in terms the Yablonskii—Vorob’ev, generalized Hermite and generalized
Okamoto polynomials, cf. [31]. Some of the rational solutions that are expressed in terms of the generalized Okamoto
polynomials are generalized to give the rational solutions of the Boussinesq equation (1.2) obtained in [31, 60, 85],
which are analogs of the rational solutions of the KdV equation (1.3) [6, 10, 11, 27]. However none of these rational
solutions of the Boussinesq equation (1.2) are bounded for all real = and ¢, so are unlikely to have any physical
significance.

It is known that there are additional rational solutions of the Boussinesq equation (1.2) which don’t arise from the
above construction. For example, Ablowitz and Satsuma [6] derived the rational solution

0? 4(1 — 2% +t?)

_5 9" 2 2y _ Al -2+ 17)
u(w,t)—28x2 In(1 + 2= +¢t7) 02 ra)e 3.4
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Figure 2.1: Plots of the generalised rational solution |1Zg(x, t; a, B)| given by (2.7) of the focusing NLS equation for

various values of the parameters « and f3.

by taking a long-wave limit of the two-soliton solution, see also [97, 98]. This solution is bounded for real = and ¢,

and tends to zero algebraically as |z|, |t| — oo.
If in the Boussinesq equation (1.2), we make the transformation

62
U(JT, t) = 2? th(.T, t),

€T

then we obtain the bilinear equation
FFy— F} + FFyy — F? — & (FFuppe — 4Fy Fpuw + 3F2,) =0,

which can be written in the form
(D} + D2 — ID})FeF =0,

where D, and D, are Hirota operators (2.3).

3.2 Rational solutions of the Boussinesq equation

Since the Boussinesq equation (1.2) has the rational solution (3.4) then we seek solutions in the form
82
un(z,t) = 2— In F, (2, 1), n>1,
x
where F), (z,t) is a polynomial of degree 2n(n + 1) in 22 and ¢?, with total degree $n(n + 1), of the form

n(n+1)/2 m

Z Za p242m=1),

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)



with a; ,,, constants which are determined by equating powers of = and ¢. Using this procedure we obtain the following
polynomials

Fi(x,t) = 2® +t2 +1, (3.10a)
Fy(z,t) = 2% + (36> + ) a* 4 (3t* 4 30¢% — 135) ® 4+ 0 + L1t 4 41342 4 28 (3.10b)
Fy(z,t) = 2™ + (67 + ) 2" 4 (15t" + 230" + 235) 2® + (20¢° + 1310¢4* 4 1802042 4 78460} 4,6

+ (15t8 4 %1@ + 37350t4 + 24300t2 _ 5131275) 1,4

+ (6t10 4 190t8 + 35;320256 _ 499&1%4 + 18§$50t2 + 159;38550) $2

12 58410 144548 798980 46 16391725 44 300896750 12 878826025
+1 +?t + 3 "+ 81 "+ 243 t+ 729 "+ 6561

(3.10¢)

and the polynomials F(z,t) and F5(x,t) are given in the Appendix. We note that these polynomials have the follow-
ing form

Fn((E, t) _ (LtQ + tz)n(n+1)/2 i Gn(x, t),
where G, (z,t) is a polynomial of degree 3 (n + 2)(n — 1) in both 2% and ¢2. We remark that the polynomials F,, (x, t)
which arise in the rational solutions of the focusing NLS equation (1.1) have a similar structure, see for example
(2.6¢), though the coefficients in the polynomials G,,(x, t) are different. The polynomials F}(z,t), for j = 2,3,4, in
scaled variables, are given by Pelinovsky and Stepanyants [86] — see their equations (6)—(8). However whilst they state
that the polynomials are associated with solutions of their equation (2), which is a scaled variant of the Boussinesq
equation (1.2), Pelinovsky and Stepanyants don’t mention, or reference, the Boussinesq equation.

Figure 3.1: Plots of the rational solutions ., (x,t), forn = 1,2, ..., 6, of the Boussinesq equation.

In Figure 3.1, plots of the rational solutions u,,(z,t), forn = 1,2, ..., 6, of the Boussinesq equation. These show
that the maxima of the solutions all lie on the line ¢t = 0, with n local maxima for the rational solution w,, (, t).

In Figure 3.2, plots of the complex roots of F,,(x,t), for 3,4,5, fort =0and t = 3n,ie.t =9 forn =3,t = 12
forn = 4 and ¢t = 15 for n = 5, are given. These show a “triangular” structure for both ¢t = 0 and ¢ = 3n, though
with a different orientation.
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Figure 3.2: Plots of the complex roots of the polynomials F,,(x,t), for 3,4, 5, for t = 0 (red) and ¢t = 3n (blue), i.e.
t=9forn=3,t=12forn =4andt = 15 forn = 5.
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Figure 3.3: Plots of the loci of the complex roots of F},(z,t), for 3,4, 5, as t varies, with ¢ = 0 (red) and ¢ = 3n (blue),
ie.t=9forn=3,t=12forn =4andt = 15 forn = 5.

In Figure 3.3, plots of the loci of the complex roots of F,(x,t), for 3,4,5, as ¢ varies, between between the
“triangular” structures for ¢ = 0 and ¢ = 3n are given. These show that as ¢ increases the roots move away from the

real axes.
In Figure 3.4, plots of the loci of the complex roots of F,,(x, t) with the solution w,, (x, t) superimposed, for 3, 4, 5,
as t varies are given. These show that as the roots move away from the real axes, the solution decays to zero.

3.3 Generalised rational solutions of the Boussinesq equation

Since the focusing NLS equation (1.1) has generalised rational solutions, see (2.7), then a natural question is whether
the Boussinesq equation (1.2) also has generalised rational solutions. To investigate this, we are concerned with the
following theorem.

Theorem 3.1. The Boussinesq equation (1.2) has generalised rational solutions in the form

2

Un(x,t; 0, B) = 2a—2 lnﬁn(x,t; a, f), (3.11)
or
forn > 1, where
ﬁnﬂ(m,t; a,B) = Fryi(z,t) + 2at P, (z,t) + 2682Q, (x,t) + (a2 + ﬂz)Fn,l(x,t), (3.12)
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Figure 3.4: Plots of the loci of the complex roots of F,,(x, t) with the solution w,, (x, t) superimposed (blue), for 3,4, 5,
as t varies.

where F,,(z,t) is given by (3.10), P,,(x,t) and Qy(x,t) are polynomials of degree in(n+1) in 2 and t*, and o and
3 are arbitrary constants.

Since the generalised polynomial 52 (z,t; a, B) for the focusing NLS equation has the structure given by (2.9),
we suppose that the Boussinesq equation (1.2) has a solution in the form (3.11), with F},(x, t) given by (3.10) and the
polynomials P, (x,t) and Q,(z,t), which are of degree 3n(n + 1) in 22 and ¢2, have the form

n(n+1)/2 m n(n+1)/2 m
SN bjma¥?T Qumt) = YD ejma® 2, (3.13)
m=0 j=0 m=0 j=0

where the coefficients b; ,,, and c; ,, are to be determined. Substituting (3.12) into the bilinear equation (3.6) with
Fy(z,t), Fy(x,t), F5(x,t) and Fy(x,t) given by (3.10), P,(x,t) and Q,(x,t) in the form (3.13), then by equating
powers of x and ¢ we find that

Pi(z,t) =32" —t* + 2, (3.14a)
Qi(z,t) =2® —3t> — 1 (3.14b)
Py(x,t) = 5a® — (5% — 35) a* — (9t* + 13047 + 682) 2 + 10 — T4t — 28547 4 18865, (3.14¢)
Qa(w,t) = 2% — (97 — ) — (5t* + 204% + 238) 2% 4 5¢0 + 15¢* + 53547 4 12005 (3.14d)

with « and f3 arbitrary constants; the polynomials Ps(x,t), Qs(x,t), Py(x,t) and Q4(x, t) are given in the Appendix.
The first two generalised rational solutions are

Us(z, t;, B) = 288 In Fy(z, t; o, B), (3.15)

2 ~
’ljg(l',t;a,ﬂ):2%1HF3(SC,t;Oé7ﬂ), (316)
X
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Figure 3.5: Plots of the generalised rational solution us(z, t; «, 3) of the Boussinesq equation for various values of the
parameters « and .

where
ﬁg(x,t; o, B) = Fy(x,t) + 20t Py (x,t) + 282Q1 (z,t) + a® + 5>
=2+ (3> + B) o' + (3t* 4 3067 — 122) 2 40 4 4" + 4547 4 020
+ 20t (327 — 2 + 3) + 2Bz (2® — 3t* — L) + o + 7, 3.17)
and

Fs(z,t; o, B) = F3(x,t) + 20t Py(z, t) + 282Qa(x, 1) + (o + ) Fy(z, 1)
— x12 4 (6t2 + 9738) 1,10 + (15t4 + 230t2 + %) CCS + (20t6 + %tll + 18820t2 + 7584160) .CL'G

8 1460 46 37450 44 24500 42 5187875 4
+ (15¢° + 130040 4 3735044 4 2450042 _ SIST8T5) o

3
10 8 35420 46 4900 44 188650 42 159786550 2
+ (6810 + 190¢° + 3552046 — 490044 4 18865042 4 159T80550)) 5
12 58,10 144548 798980 46 16391725 44 300896750 42 878826025
+1 Jr?t + 3 £+ 81 U+ 243 t+ 729 o+ 6561

+2at {t® — (92 + 7)t* — (52 + 1902> + 245)t* + 52 + 1052 — 665> + 185655}
+ 2Bz {z® — (9t* — 13)a" — (5t* + 230t + 245)2® + 5t° + 45" + 535¢% + 12008}
+ (@ + ) + 12 + 1), (3.18)

with « and 8 arbitrary constants. Plots of the solutions us(z, t; «, 8), us(x,t; a, §) and Uy (x, t; a, B) of the Boussi-
nesq equation for various values of the parameters « and [ are given in Figures 3.5, 3.6 and 3.7, respectively. Figure
3.5 shows that the solution us(z, t; @, 3) has two peaks when o = 5 = 0, then as |« and | 3| increase a third peak
appears, creating a triangular structure. Numerical evidence suggests that as || and | 3] increase then the three peaks
all tend to the same height max(us) = 4. Figure 3.6 shows that the solution @s(z, ¢; «v, 3) has three peaks when
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Figure 3.6: Plots of the generalised rational solution u3(x, t; v, 3) of the Boussinesq equation for various values of the
parameters « and .

a = 8 =0, then as |«| and || increase three more peaks appear, for o and 3 sufficiently large with one central peak
and five in a ring around it. Again, numerical evidence suggests that as || and | 3| increase then the three peaks all tend
to the same height max(t3) = 4. Figure 3.7 shows that the solution w4(x, t; v, ) has four peaks when o = 8 = 0,
then as |«| and | 8| increase five more peaks appear, with for a and § sufficiently large with two central peaks and seven
in a ring around it. As for us(z,t; o, 8) and u3(z,t; o, §), numerical evidence suggests that as || and | /3| increase
then the three peaks all tend to the same height max(u4) = 4.

Remark 3.2. Ohta and Yang [81, Figure 1] show that for focusing NLS equation (1.1), the generalised rational solution
Yo(z, t; e, B) (2.7) has a single peak when o = 8 = 0, and three peaks otherwise. Ohta and Yang [81, Figure 2] also
show that the generalised rational solution ¢3(x, t; c, 8) has a single peak when unperturbed, and six peaks otherwise.

Define the polynomials O (z,t), for n € N, by
Of (x,t) = P, (z,t) +itQ, (x, ), (3.19)

with P, (z,t) and Q. (x, t) the polynomials in the generalised rational solution (3.12). Then for P, (z,t) and Q,,(z,t)
given by (3.14), it is easily verified that @f(ax, t), forn = 1,2,3,4, satisfy the bilinear equation (3.6). Hence in the
general case we have the following conjecture.

Conjecture 3.3. The polynomials ©F (x,t) given by (3.19) satisfy the bilinear equation (3.6).
Consequently, from this and Theorem 3.12 we have the following result.

Lemma 3.4. Let OF (x,t) be given by (3.19), then the polynomial ﬁm—l (z,t; o, B) given by (3.12) can be written as
Fopi(z,t;0, 8) = Fopr(2,t) + (@ +18)0 (2, 1) + (a — 18)O; (x,1) + (o + ) i (2, 1), (3.20)

which is a linear combination of four solutions F, 1 (x,t), ©F (x,t) and F,,_(z,t) of the bilinear equation (3.6).



a=p3=10° a=p=10" a=p3=10°%

Figure 3.7: Plots of the generalised rational solution w4 (x, t; v, 3) of the Boussinesq equation for various values of the
parameters « and .

4 Rational solutions of the Kadomtsev-Petviashvili I equation

4.1 Introduction

The Kadomtsev-Petviashvili (KP) equation
(vr + 6VVe + Vege)e + 302y, = 0, o? = +1, 4.1)

which is known as KPI if 02 = —1, i.e. (1.4), and KPIL if o2 = 1, was derived by Kadomtsev and Petviashvili [70] to
model ion-acoustic waves of small amplitude propagating in plasmas and is a two-dimensional generalisation of the
KdV equation (1.3). The KP equation arises in many physical applications including weakly two-dimensional long
waves in shallow water [7, 93], where the sign of o depends upon the relevant magnitudes of gravity and surface
tension, in nonlinear optics [87], ion-acoustic waves in plasmas [68], two-dimensional matter-wave pulses in Bose-
Einstein condensates [100], and as a model for sound waves in ferromagnetic media [101]. The KP equation (4.1) is
also a completely integrable soliton equation solvable by inverse scattering and again the sign of o2 is critical since if
02 = —1, then the inverse scattering problem is formulated in terms of a Riemann-Hilbert problem [40, 75], whereas
for 02 = 1, it is formulated in terms of a & (“DBAR”) problem [2].
The first rational solution of the KPI equation (1.4), is the so-called “lump solution”

N: o, =321
U(§7’r]a7) - 28752 hl[(g - 37—)2 + 772 + 1] - _4[(6 . 37_)2 + 772 + 1]27

4.2)

which was found by Manakov et al. [76]. Subsequent studies of rational solutions of the KPI equation (1.4) include
Ablowitz et al. [3], Ablowitz and Villarroel [9, 103], Dubard and Matveev [36, 37], Gaillard [56, 57], Johnson and
Thompson [69], Ma [74], Pelinovsky [84, 85], Pelinovsky and Stepanyants [86], Satsuma and Ablowitz [90], and
Singh and Stepanyants [94].

10



We remark that the KP equation (4.1) is invariant under the Galilean transformation
(&n,7v) = (E4+6An, 7,0+ N), (4.3)
with A an arbitrary constant. In fact the rational solutions of the KPI equation (1.4) derived by Dubard and Matveev
[36, 37] and Gaillard [56, 57] are equivalent under the Galilean transformation (4.3).

4.2 Rational solutions related to the focusing NLS equation

Dubard and Matveev [36, 37] derive rational solutions of the KPI equation (1.4) from the generalised rational solution

122 (z,t; a, B) (2.7) of the focusing NLS equation (1.1); see also [35, 56, 57]. Specifically Dubard and Matveev [36, 37]
show that

9% = ~
€,,7) = 25 10 D€ = 350, —487) = § (el 60, O 1) (44)

:1::5737',15:7],5:7487’
is a solution of the KPI equation (1.4). If we define F}5(¢,n,7;a) = D (€ — 37,1; a, —487), then
F(€,m0) = €0 = 187€° + 3 (457% 4+ 1° + 1) €' — 12 (4577 4 3" — 5) 7
+ {3n" + 18 (97°— 1) n* + 12157 — 7027> + 27}¢*
— {187n" + 36 (97% + 5) n* + 14587° — 22687° + 4507 }£
+0° 427 (72 4+ 1) gt + 9 (277 + 7877 + 11) ” + 72970 23497% + 341177 + 9. (4.5)

The polynomial F3'(¢, 7; «) satisfies
(D¢ + D¢D, — 3D7) Fre F =0, (4.6)

which is the bilinear form of the KPI equation (1.4), and so

. 2 .
V8 (€, Tia) = 28—52 In F3S(¢,m, 73 a), 4.7)

is a rational solution of the KPI equation (1.4).

4.3 Rational solutions related to the Boussinesq equation

The Boussinesq equation (1.2) is a symmetry reduction of the KPI equation (1.4) and so the generalised rational
solutions ., (x, t; o, 8) given by (3.11) of the Boussinesq equation can be used to generate rational solutions of the
KPI equation. If in the KPI equation (1.4) we make the travelling wave reduction

0(5777,7):“(%@, r=¢§— 3T, t=m,
then u(z, t) satisfies the Boussinesq equation (1.2). Consequently given a solution of the Boussinesq equation (1.2),
then we can derive a solution of the KPI equation (1.4). In particular, if
32
u(x,t) = 2—5 In F(x,1),
x

for some known F'(z,t), is a solution of the Boussinesq equation (1.2), then

82
U(fa’]ﬂ') = 28762 th(g - 37-7 77)’

is a solution of the KPI equation (1.4). For example the choice F(z,t) = 2% + t? + 1 gives the lump solution (4.2) of
KPIL

Using the generalised rational solution us(z, ¢; r, 3) (3.15) of the Boussinesq equation (1.2) we obtain the rational
solution of the KPI equation (1.4) given by

62
v(&,n, 50, B) = 23?2 In Fy4(¢,n, 75, B), (4.8)
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where Fy(€,n, 710, f) = Fy(w, 80, ). ie.
Fyi(&,m,mya, B) = €5 —187€° + 3 (4577 + 1% + 2) ¢* — 12 (4572 + 3 + L) 73
+ {30 + 18 (97 + 3) n® + 12157 4+ 4507° — 125 1¢2
— {185* +36 (97 + 5) n® + 14587" + 9007° + 230} 7¢
+0° 427 (7P + §) 't +9 (277 + 3077 + )
+ 72975 + 6757% — 12572 + 625 4 20 {367 — 18 —  + (2777 + §) )}
+28{€ — 9% — (3 — 212 + V)¢ 217 + 9rP + T} 40P+ 2. (49)

We remark that this polynomial, in scaled coordinates, is given by Gorshkov, Pelinovsky and Stepanyants [64], see
their equation (4.2), though the authors don’t mention the Boussinesq equation.

4.4 A more general rational solution

If we compare the polynomials F2'5(¢, 7, 7; ) and F2]D (&, n, 7; a, B), respectively given by (4.5) and (4.9), then we
see that they are fundamentally different. As we shall now demonstrate, they are special cases of a more general
polynomial. Consider the polynomial F» (&, n, 7; i, v, 3), with parameters p, o and 3, given by

Fo(&m, i o, B) = €8 — 187€% + (30 + 13572 — 64 + 9)&* — {36n> + 54077 — 12(64° + 6 — 7) } 7&°
+ {3n" +18(97% — 2 + 1)n* + 12157* — 54(6p> + 124 — 5)77
+9u(p+2) (0 —2u+2)} 6
— {18n* +36(97% + 5)n? + 14587* — 324(2u* + 6 — 1)72
+ 180 (3p® + 12p% — 2u + 12)} 7€ + 15 + (2772 + 6 + 120 + 9)n*
+ {2437% + 54(6p + )72 + 9(p* + 4p® + 6p° — dp+4) }
+ 7297% — 81(p? + 24p — )74 +9(9u* + 7213 + 15042 + 1324 + 16)72
+9(u? = 20 +2)% + 20 {30 — 1870 — n® + 3972 — p(p +2)] n}
+2B8{¢ - 97 —6(n> — 9% + p?*)E + 9t — 277° + 3(3p® + 12u+ 4)7}
+a? + 2 (4.10)

This polynomial has both the polynomials F'*(¢, 7, 7; ) and F2b (&, n, 75« B) as special cases, specifically

FyS(&,m,ma) = Fa(ém,731,0,0), FyEn,ia,8) = Fal&on, 73— 5, B).

Furthermore )

0
v(gana’r;ﬂaaaﬂ):28762111;2(5777;7_;#3046)7 4.11)

with F2(&,n, 75 u, v, B) given by (4.10), is a solution of the KPI equation (1.4), which includes as special cases the
solutions (4.7), when ;4 = 1 and 8 = 0, and (4.8), when y = —%, as is easily shown.

In Figure 4.1, the initial solution v(&,n, 0; 1,0, 0) given by (4.11) is plotted for various choices of the parameter
. When p = 1, then this arises from the solution (4.7) derived from the focusing NLS equation (1.1) whilst when
w= f%, then this arises from the solution (4.8) derived from the Boussinesq equation (1.2). From Figure 4.1 we can
see that for u < p*, the solution v(&, n, 0; u, 0,0) has two peaks on the line 7 = 0, which coalesce when p = p* to
form one peak at ¢ = n = 0. By considering when

2

0
87521)(53 07 0; 12 Oa 0)

then p* is the real positive root of

‘ _ 8(3pt + 124 +16p% —6) 0
£=0 (M2 —2p+ 2)2 ’

Bt 120 + 1647 = 6 = 3 [u2 + 201 = 3vVB)u+2 = VB| [1® + 201+ 5VB)u + 2+ V6] =0,

ie.put=—-1+ %\/6+ %\/ —3 436 =~ 0.5115960325. For p > p*, it can be shown that

Ap(p +2)

v(0,0,0; 14,0,0) = 22,12

increases until it reaches a maximum height of 4(2 + /5) when p = $(1 + V/5), which is the golden mean!
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5 Discussion

In this paper we have derived a sequence of algebraically decaying rational solutions of the Boussinesq equation (1.2)
which depend on two arbitrary parameters, have an interesting structure and have a similar appearance to rogue-wave
solutions in the sense that they have isolated “lumps”. The associated special polynomial, which has equal weight in
z and t, satisfies a bilinear equation of Hirota type and comprises of a linear combination of four independent of the
bilinear equation, something remarkable for a solutions of a bilinear equation. The derivation of a representation of
these special polynomials as determinants is currently under investigation and we do not pursue this further here.

Using our rational solutions of the Boussinesq equation (1.2), we derived rational solutions of the the KPI equation
(1.4) and compared them to those obtained from rational solutions of the focusing NLS equation (1.1) by Dubard and
Matveev [36, 37]. It was shown that the two sets of solutions are fundamentally different and both are special cases
of a more general rational solution. We remark that Ablowitz et al. [3, 9, 103] derived a hierarchy of algebraically
decaying rational solutions of the KPI equation (1.4) which have the form

2

0
vm(§,m,T) = 2—a s InG(&,n,7), 5.1
T

where G, (€, 7, 7) is a polynomial of degree 2m in &, ny and 7. This is a fundamentally different hierarchy of solutions
of the KPI equation (1.4) compared to hose discussed in §4, not least because it involves polynomials of all even
degrees, not just of degree n(n + 1), withn € N.
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Appendix
Fy(z,t) = 2*° + (10> 4+ 90) 2'® + (45t* + 1010£> + 1845) z'°

120¢° + 4600t 4 30600¢* + 13000) '

210¢% + 11480¢° + 151900t* + 393400t — 2097550)) ;12

+(
+(
+(
+ (252t + 17500t% + 367640¢° + 2095800¢* + 1194830042 | 232696100)) ;10
+(
+(

210t12 + 16940t10 + 501550t8 + 5010600t6 + 397032250t4 + 180487500t2 _ 6596%%2250) x8

120t +10360t"? + 400120¢'% + 5601400¢° +- 14165900046 4 23569000

19319573000 ,2 |, 86014747000 ..6
- 27 =+ 27 )x

4 (45t16 4 3800t14 4 179900t12 + 3504200t10 + 987936250t8 4 16754957000t6

15031607500 44 |, 4109446250002 |, 2352823598125 , .4
- 27 t+ 27 =+ 81 )x

+ (10t18 4 730t16 + 39400t14 + 1320200t12 74612300t10 + 11658939500t8

73409791000 4,6 |, 1122199715000,4 , 10744980496250,2 8594611821250 .2
+ 27 t+ 27 t+ 81 t 243 )x

+ tQO + 50t18 + 2565t16 + 122200t14 40078850t12 + 2423;$0900t10 + 4447721705750t8

5 6 4 2 5
4 17777u9871000t 4 430473881108125t 4 4289522z93813700t 4 73004270209480625
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Fy(z,t) = 2 + (1562 + 53%) 2 + (105¢* + 3290t> 4 12705) 2 + (455¢° + T5T0¢* 4 220572642 4 20939875 ) ;24
8 309260 46 17897950 44 26849900 ,2 374564575 22
+ (1365¢° - 30920046 4 1789795044 4 2084990042 4 STASELT0) o

4 (3003t10 4 298375t8 + 792098990t6 4 725413150t4 + 13279947775t2 + 45146222275) I20

9 729
4 (5005t12 4 184?)610t10 + 749336225t8 + 3025683187700t6 + 416682149367625t4 + 10628;2;189750t2

_29949453408875) 1,18
6561
4 (6435t14 T 929005t12 4 145837805#0 4 94444940425t8 T 71670615256251;/6 T 4765331;69125t4

_16069741485875t2 + 1572487588700875) 1,16
729 6561

4 (6435t16 4 1049400t14 4 2017395007512 4 17384833800t10 4 679842?19750t8 4 29329223493247000t6

_,’_56763015732500 t4 + 877079786275000t2 _ 145319532381244375) 3?14
729 729 19683

4 (5005t18 + 888965t16 4 2011g7900t14 4 72685396300t12 4 3973439633750t10 + 3094793221750t8

_|_877248309206500 tﬁ + 7522818112617500 t4 _ 338877246089256875 t2 _ 1153508042510140625) .le
729 2187 6561 177147

+ (3003t20 =+ 168:23450t18 + 1444§8885t16 4 18942877000t14 + 49769993350t12 + wtlo
+2217737551163750 t8 + 9963380300797000 t6 _ 1297656625261390625 t4

729 729 6561
+4533029626565151250 t2 + 4174111038326870361875) xlO
19683 531441

4 (1365t22 + 258335t20 4 735239225t18 + 11361306425t16 4 976843(;757507514 + 1775213?295250]512

+ 3658725849605750t10 + 3515840993183750 t8 _ 195785332934489375 t6
729 243 729

+24978207925819946875t4 4 1159166663661630903125t2 + 4904143764303914178125) 1,8
6561 19683 531441

4 (455t24 4 2513020t22 4 766597070t20 + 4128984123700t18 + 136283811787625t16 4 98913221463479000t14

+4366923310634500t12 + 14325694558021000t10 + 164980602695610625t8 + 38543006652688037500t6
729 729 729 2187

+12142620899858806568750 t4 + 84368406785489229287500 t2 + 1033632925475218502809375) :176
59049 177147 4782969

4 (105t26 + 53375t24 + 169195150t22 4 11715987550t20 + 12292;31;896252518 + 32275321453890125t16

+2128271542512500t14 + 110365606933697500t12 4 6125181130562869375t10
729 2187 6561
_|_184494438219511371875t8 4 1882955442893218491875()t6 + 30319()73658670395156250t4
6561 59049 19683

+ 767901026020862022953125 t2 _ 37763631956445485447328125) 1,'4
531441 14348907

5 5
4 (15t28 4 2170t26 4 204312ot24 4 1631’;7700t22 4 86319985775t20 4 17793371239441700t18

+584377965527125t16 4 7043820768985000t14 + 6235281337588043125t12
729 243 6561
+437562641832806971250th 4 5034320101951909278125t8 + 296816181647178511587500tG
19683 19683 177147
_ 305501861525583991296875 t4 + 139014074702059270656250 t2 T 634083161524687235258734375) J)Q
531441 531441 43046721
+t30 4 %IQS 4 10185t26 + 715217751524 4 1629;14711233375t22 4 29348?2285675t20 4 1145782?211618125&8

+ 44166106891704875 th + 4108707388089775625 t14 4 774149365283245634375t12
6561 19683 177147
+ 24580063449195140376875th + 266920437967411700828125tS + 18940589955229082293759375t6
531441 531441 4782969
=+ 196432003698991651589796875t4 + 1654599020642266683930859375t2 4 293277952222570147203765625
14348907 43046721 43046721

Py(x,t) = 7z'? — (1447 — 210) 2™ — (63t* + 630t — 515) 2® — (36t° + 2044¢* 4 1610042 _ 16100 46
8 6 39550 14 917002 1066975 4
25t° 4 260¢° — 3935044 — 9170042 _ 1068970 ) 4

10 131048 261406 146300 14 1835050 42 32655350
(18410 4 13304° 4 2634040 4 1630044 4 185505042 4 52675550
t

1'2

12 %tlo + 25t8 _ 19300t6 _ 1230775t4 _ 2073250t2 + 3263(1)375

+
+

9
Qs(x,t) = a'? — (1817 — ) 210 — (25¢* + 187042 4 218 48 4 (3610 — 580¢" — 850042 4 4700) 46
8 6 2450 44 3710042 247625 4
+ (63t® +1820¢0 — 24004% — 3710042 _ 247625 5
4 (141510 4 630t8 4 49;00t6 4 48300t4 4 1875750t2 4 2893350) x2

12 10 507548 6 2108225 44 43900150 42 4998175
— 712 — 9g¢10 — 507548 _ 9370f0 — 210822541 _ 4390015042 _ 4998
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Py(z,t) = 92°° — (30t — 770) 2'® — (243t* + 3390t — 14245) 2'® — (360t° + 24360¢* + 107800¢> — 754600 14

9

130t8 _ 23720t6 _ 227§220t4 _ 4412800t2 _ 5122?850) .'1712

9 81
690t12 + 58700t10 4 391;450t8 + 798499000 t6 _ 1064623?9750 t4 _ 5795227)7500t2 _ 13676??;34750)

.
(7801510 4 94§20t8 _ 7593640t6 _ 8251012044 | 1672390%2 4 5563180700) 210
( a®
(152t14+ 65§OOt12 i 119896520t10 " 12023}5000]58 i 8625é§5800t6 i 6975322140%4
1077743975000,2 | 55941010279000 .6
+ 243 =+ 2187 )x
16 |, 10360414 | 66500412 _ 69057800410 _ 2099661025048 _ 275830555000 46
- (75t +Tt + 79 = 9 = 243 " = 243 t
_ 5620866905500 44 | 984382076500042 _ 404610075244375) o
729 729 2187
_ (30t18 1179016 4 8039320t14 v 288699400t12 i 147323630%10 n 62947782492650()t8
11032069279000 46 |, 133702667483000 4,4 , 112127684226250,2 |, 5297582110686250 ,.2
+ 729 t+ 729 t+ 243 "+ 19683 )x
20 |, 70,18 |, 1855,16 , 1899800,14 , 43809535012 , 88186059500,10 , 14094153477250 ,8
+1 —|-3t —|-73t + =5 "+ 513 t° + 739 t + 6561 t
| 138847640239000,6 _ 823906531765625 ;4 _ 20487539830546250,2 | 266883842659905625
6561 19683 177147 531441

Qu(z,t) = 220 _ (3042 — %) 218 (75t4 4283012 — %) 216 4 (152t6 _ 18g80t4 _ 6159640t2 + 237160) 4

81

8 63560 16 1276100 14 1832600 12 60772250 12
690t° + 0330040 _ 127010044 _ 183260042 _ S0TE2250)) o

+
+ (780t10 + 62860t8 + 8213240'66 _ 586600t4 + 11682071300t2 + 8356925500) .'1710
+

729

12 117700410 4962650 48 1352661800 46 179352250 44 _ 117373448500,2 _ 2249680490750 8
13067 + 3 t+ 3 "+ 81 "+ 243 t 729 t 6561 )x

_ 360t14 T 15400t12 _ 128g600t10 _ 829493000t8 _ 88975114001;/6 _ 65163229000t4

—3029653781000t2 _ 31684368485000) .’EG
729 6561

_ (243t16 4 19560t14 4 2322260t12 4 292890440t1() 4 594’27?750t8 _ 6102;1235400#3

320631426500 44 | 37020326189000 42 _ 425463980932375 ,.4
+ 729 t+ 729 t 19683 )x
18 16 14 | 23204600,12 , 250152350010 , 347754715008
— (30t +2910¢'% + 191800¢1* + 23251600412 4 2501323500410 4. SATTHRTAS00¢
1233890119000 4,6 |, 9121143955000 ,4 | 114976450146250,2 |, 15307611409956250 .2
+ 81 "+ 81 t+ 243 "+ 177147 )x
20 18 16 | 5192600,14 , 47503295012 |, 35488950700,10 , 6433079133250 ,8
+ 9120 4 37011 4 15325¢10 4 219260014 475032950412 | 35488950700410 1 6433079133250
| 23440849932500046 | 315145011904375 44 | 4908421805113750,2 | 140208620844930625
2187 2187 19683 531441
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Figure 4.1: The initial solution v(&, 7, 0; u,0,0) given by (4.11) is plotted for various choices of the parameter p.
When p = —% the initial solution corresponds to that arising from the Boussinesq equation (1.2) and when . = 1 to

the initial solution from the focusing NLS equation (1.1).
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