University of

"1l Kent Academic Repository

Seijas, Pablo Lamela, Thompson, Simon and Francisco, Miguel Angel (2018)
Model extraction and test generation from JUnit test suites. Software Quality
Journal, 26 . pp. 1519-1552. ISSN 0963-9314.

Downloaded from
https://kar.kent.ac.uk/66343/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/s11219-017-9399-x

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/66343/
https://doi.org/10.1007/s11219-017-9399-x
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Noname manuscript No.
(will be inserted by the editor)

Model extraction and test generation
from JUnit test suites

Pablo Lamela Seijas - Simon Thompson -
Miguel Angel Francisco

Received: date / Accepted: date

Abstract In this paper, we describe how to infer state machine models of
systems from legacy unit test suites, and how to generate new tests from those
models. The novelty of our approach is to combine control dependencies and
data dependencies in the same model, in contrast to most other work in this
area. Combining both kinds of dependencies helps us to build more expressive
models, which in turn allows us to produce smarter tests. We illustrate those
techniques with real examples produced by our implementation, the James
tool, designed to apply these techniques in practice to Java code and tests.

Keywords Model Inference - JUnit - Test Generation - Property Inference -
Web Services - Property-based testing - James - QuickCheck

1 Introduction

The effort required to improve the quality of any system — including any web
service — is often seen as difficult to justify, because it is not visible in the short
term. In the presence of deadlines, therefore, testing and documentation are
the phases of development that are the easiest to skip. Nevertheless, quality

Pablo Lamela Seijas
University of Kent
United Kingdom

E-mail: pl240@kent.ac.uk

Simon Thompson
University of Kent
United Kingdom
E-mail: sjt@kent.ac.uk

Miguel Angel Francisco

Interoud Innovation S.L.

Spain

E-mail: miguel.francisco@madsgroup.org

2 Pablo Lamela Seijas et al.

assurance is what ultimately makes systems reliable, and it can significantly
reduce the effort needed for maintaining a system in the long term. In cases of
critical systems, a failure could also produce huge economic losses, or worse.

Testing is the most commonly used approach to validating systems, both
when they are constructed and as they evolve. Testing is a costly process, and
at the same time necessarily partial, exploring the system only at the points
specified in the test suite.

Following Dijkstra’s famous dictum®, unit tests have a limited effectiveness.
They can only cover a finite and predefined set of scenarios, and they are also
costly to write. Recent research has delivered new techniques for testing (e.g:
property-based testing [2]) that have proved to be more powerful and effective.
Unfortunately, these approaches are not very popular because they are less
straightforward, and they do not take advantage of the information available
in legacy systems.

Property-based testing (PBT) is a technique that uses controlled ran-
domised input to check that the system under test (SUT) complies with a
set of expected properties [2]. By using a PBT tool, new tests can be gener-
ated automatically and, because of this, more scenarios can be tested with less
human effort than by using traditional unit test suites.

In this paper, we provide a mechanism to ease the transition from unit tests
to PBT, by studying how to automatically take advantage of legacy unit tests.
In particular, we show how existing unit tests can be leveraged to provide more
testing value through inferring a model for the SUT. We make four specific
contributions.

1. We define a new approach to inferring a state machine model for a sys-
tem from an existing test suite and an implementation of the system. The
state machine is inferred using a combination of data flow and control flow
information: existing approaches have tended to use just one of these.

2. We show how to automatically derive potential new test cases for the sys-
tem under test from this model. The new tests are generated from the
model using the QuickCheck [2] PBT tool, which exercises the model and
prints examples of sequences of calls and postconditions.

3. We give a mechanism by which approximate QuickCheck models for Java
systems can be inferred automatically thus allowing the rapid development
of PBT models from existing test suites.

4. We present a pilot study in which we apply our approach to generate new
tests for an existing industrial system.

Our work aims to extract models that represent both successful and failing
behaviours of a target Web Service. The behaviour described by the model
aims to be more general than the original unit tests. This generalisation allows
us to generate new tests simply by randomly traversing the model. In doing
this, we follow earlier work [3] for Erlang in which finite-state machine models
and properties were extracted from EUnit test suites.

1 “Testing shows the presence, not the absence of bugs.” [24]

Model extraction and test generation from JUnit test suites 3

However, as with any automatic generalisation, some aspects of the models
generated and, as a consequence, some of the tests generated, may not cor-
respond to the intended behaviour of the system. Tests generated may need
to be manually reviewed before they are added to a test suite, and models
generated may need to be manually corrected before being used in practice.
Nevertheless, adapting approximate models and tests is, in general, less costly
than writing them from scratch, and they may explore scenarios that humans
did not consider when doing the work manually.

The techniques described here have been implemented in a tool called
James. The source code of James is available?, and more technical details can
also be found3. This paper is an extended version of [19]; this version includes
more detailed explanations and discussions of the algorithm, more information
about the pilot study, and new statistics about the tests generated by James
for the system used in the pilot study.

The work described here and the implementation of James are both tar-
geted on Web Services, since they identify the interface by looking for HTTP
requests (see Section 4.3). Thus, it is a requirement that the target system is
a Web Service. However, the main ideas presented here should be straightfor-
ward to apply to other types of API (e.g. of a dynamic library) as long as the
SUT is tested like a black-box and has a clear interface.

The paper is structured as follows: after introducing property-based testing
(Section 2) and related work (Section 3), we motivate the approach taken (Sec-
tion 4). We then explain the architecture of our implementation (Section 5),
the model generation and interpretation (Sections 6 and 7), the test genera-
tion (Section 8), and the pilot study (Section 9). We discuss future work and
conclude in Section 10.

2 Property-based testing

Property-based testing (PBT) was first developed for Haskell [11], and has
been transferred to other programming languages. Quviq QuickCheck [2] (here-
after QuickCheck) supports random testing of Erlang (and C via a foreign
function interface).

Properties of programs are stated in a subset of first-order logic, embedded
in Erlang syntax. QuickCheck verifies these properties for collections of Erlang
data values generated randomly, with user guidance in defining the generators
where necessary. When a counterexample is found, QuickCheck tries to gener-
ate a simpler, more comprehensible, counterexample in a constructive manner;
this process is called shrinking.

When testing state-based systems it makes sense to build an abstract model
of the system, and to use this model to drive the testing of the real system.
The abstract state machine can be implemented as a client module of the
pre-defined QuickCheck behaviour egc_fsm. eqc_fsm state machines consist of

2 https://github.com/palas/james
3 http://www.prowessproject.eu/wp-content/uploads/2012/10/Prowess_D2-3.pdf

4 Pablo Lamela Seijas et al.

a finite set of (“control”) states, together with state data which is modified by
the transitions of the machine. These models are variants of extended finite-
state machines (EFSMs), and so more expressive than finite-state machines
(FSMs).

3 Related work

Previous approaches [25], [13], and [23], model the expected use of interfaces
by focusing on the order in which commands are usually executed (control
flow). One limitation of these approaches is that they do not usually infer
how to create the parameters that the commands require and they do not
take advantage of the dependency information provided by legacy unit tests.
On the other hand, these approaches have the advantage of being suitable for
black-box interfaces.

An important obstacle to finite-state machine inference is the state explo-
sion problem: the exponential increase in the size of a finite-state model as the
number of system components grows [12].

There are several approaches to addressing the state explosion problem.
Some (like ours) also combine data and control, but they often rely on data
representation, either for clustering [4], or by inferring invariants for parame-
ters and then using them to disambiguate commands in finite-state machines
[22,26].

It can be argued that the use of concrete data content in models can make
them easier to understand. But the use of invariants has limited effectiveness
when inferring complex properties, or arbitrary semi-structured data, and,
again, makes the generation of valid values for parameters challenging, since
it becomes a satisfiability problem (finding parameters that satisfy invariants
is non-trivial).

Our approach abstracts away from particular values of the data parame-
trized, relying instead on how the data is generated and used by actions within
the system: parameters are treated as black boxes. Thus, it can be applied to
parameters that cannot be serialised, or that have a representation that is too
lengthy. The approach presented in this paper also provides a mechanism for
generating input data explicitly, which makes it more convenient and efficient
for test generation purposes.

The work implemented on the Strawberry tool [5] is probably the most
similar approach to the one presented in this paper; it also models control
and data flow information for extracting specifications of web services, and
uses testing to verify conformance. However, in Strawberry, control dependen-
cies are inferred from data dependencies, whereas our approach extracts data
and control information simultaneously. Our approach can do this because it
takes examples of execution as input, whereas Strawberry takes a WSDL and
examples of input data.

There has also been some work on inference of richer models like Visibly
Pushdown Automata [16], extended finite-state machines [29,9], and context-

Model extraction and test generation from JUnit test suites 5

free grammars [30,17]; the most ambitious approaches often rely to certain
extent on general techniques like machine learning, evolutionary programming,
and SMT-solvers.

In [7], the authors present an interactive system for inferring programs from
examples of their execution, but it depends on the details of the actual algo-
rithm to infer (users must specify the conditions considered when branching,
the organisation of the algorithm in functions, and recursive calls).

Another approach to reducing state-explosion and the amount of informa-
tion to process when reverse engineering is slicing. Our approach uses dynamic
program slicing since it discards traces that do not belong or do not satisfy
dependencies required by the JUnit tests used as input. Slicing has been used
in the past for model extraction [12,15]. The survey in [27] overviews differ-
ent existing approaches to program slicing, and [1] surveys the application of
slicing to state-based models.

In addition, the merging algorithm applied in this work is strongly influ-
enced by previous regular inference algorithms, in particular K-tails [6] and
QSM [14], and by the reverse engineering tool Statechum [8].

We have also used QSM as the core algorithm for our previous work in test
generation [3], but the work presented in this paper differs from it in that we
are now combining data dependencies on the model. This addition allows it
to convey aspects of the system under test that go beyond the ones learnable
by the pure regular inference.

Regarding finite-state machine inference (in addition to K-tails and QSM),
there has been considerable effort in finding increasingly efficient and accurate
state-merging algorithms, which motivates competitions like Abbadingo [20]
and Stamina [28].

4 Extraction of dependencies

We now give a rationale for the approach we have taken for extracting depen-
dency information from the existing artefacts.

4.1 Taking advantage of data reuse

Existing JUnit tests provide concrete examples of how data can be reused,
and how it can be generated. By modifying or generalising these procedures,
it is likely that we will find new valid input examples that have not been
generated before. Moreover, even if generated inputs are invalid, they may
be appropriate for negative test cases. Because invalid input generated this
way will be structurally similar to the valid input, it is foreseeable that it
will help us detect ‘corner case’ errors. We consider valid inputs to be the
ones that satisfy the preconditions (implicit or explicit) required by the SUT.
Ideally, invalid inputs will simply cause an exception in the SUT, often an error
message will be returned, but the system will remain unaffected (its internal

6 Pablo Lamela Seijas et al.

state will mostly remain unchanged). But some invalid inputs may cause the
system to halt or to behave in unexpected ways, and this kind of behaviour is
the one we want to avoid, since it can often be translated into a DoS (denial of
service) vulnerability that a malicious user could exploit and, in turn, prevent
other users from using the system normally.

An example of how almost valid input can be useful would be if, when
serialising a request, the unit tests explicitly add quotes surrounding a value,
then the generalisation of the request may add quotes in places were they
should not occur. This kind of test case would help us detect problems like
SQL injection, which, in time, can enforce security.

4.2 Approaches to instrumentation

Most research that presents techniques to extract information from existing
software falls into one or both of two categories, namely static and dynamic. In
this section, we assess the advantages and disadvantages of these approaches
for our work, and explain our preferred approach.

Static approaches An approach is considered to be static if it analyses the
software without executing it. Static approaches do not require the code to
be run and usually work directly on source code but may analyse bytecode or
even machine code.

In the particular case of source code analysis, a static approach can poten-
tially analyse the artefacts used by the developers, which may indicate high
level intentions.

Unfortunately, the number of mature libraries that are available for Java
source manipulation and support the whole language is small, the most popular
ones focus on bytecode, which already omits some of the abstraction.

Dynamic approaches Dynamic approaches analyse the way in which a work-
ing piece of software executes by instrumenting it prior to its execution. This
has the advantage of acquiring real values that are known to work, and to
produce complete traces of actual valid executions. In the case of unit tests,
which are usually deterministic, a single execution will reveal all the scenarios
that are being tested.

One disadvantage of this approach is that it requires a working implemen-
tation, which limits its applicability to test-driven development.

Java Virtual Machine Tool Interface For this work, we have chosen a
mainly dynamic approach through using the JVM Tool Interface (or JVMTI?).
JVMTT is a standard interface that allows external tools to analyse and control
the state of applications that run in a JVM (Java Virtual Machine).

This is done through the creation of a dynamic library or JVMTI agent
that can be passed as a parameter to the JVM, or by setting the environment
variable _JAVA_OPTIONS

4 http://docs.oracle.com/javase/7/docs/platform/jvmti/jvmti.html

Model extraction and test generation from JUnit test suites 7

JVMTTI agents can request to be notified whenever a set of events occur
during the execution of a Java program, such as when a method is entered
or exited, or when the garbage collector is called. The Java Native Interface
(JNI) can be used to call arbitrary Java methods from within the JVMTI
callbacks, which allows the use of reflection, and could also be used to alter
the behaviour of the target program.

The agent acts as a debugger, and should not modify the results of the tests
and work seamlessly regardless of the framework, configuration, or JVM used
for executing them (assuming that there are no bugs in the implementation of
James and the JVM, and that the tests do not rely on timing or other unusual
kinds of context information).

4.3 Data and control dependencies

James extracts and combines into a single model both data and control de-
pendency flow information.

Extraction of data dependencies Data dependencies represent the flow of
information in the tests. In our experiments we register data dependencies by
tracking all the objects in the system, and registering the methods or functions
that take them as parameters or produce them as a result. This way we obtain
information about the way in which requests are constructed.

Most of the time, requests are composed out of small pieces of information,
like numeric values or dates, which are composed into bigger structures and
then serialised, or appended inside of a string template.

In the same way, responses to requests may be unmarshalled, and the
small pieces that compose them are usually checked for correctness through
the xUnit assert functions.

Extraction of control dependencies In addition to data flow, we track
and model the control flow of methods that produce HTTP requests. Nodes
that represent these methods are linked in execution order, and the links are
preserved during the merging process.

James records the order in which these particular methods are executed
because they are the ones that may cause the state of the server to change.
We explain how these methods are identified in Section 5.3 below.

5 Architecture of the implementation

In Figure 1, we show the architecture of the tool that we have designed and
implemented.

James instruments the JUnit test by attaching to the JVM during their
execution. The JVM is observed through a JVMTI agent written in C++ that
listens to every method entry and method exit event, and reports it to an
Erlang server through a socket. In practice, method entries correspond to

8 Pablo Lamela Seijas et al.

TARGET WEB SERVICE .dot
GraphViz
: graph
JAMES | |
JIVM-Tl e
FSM
E TEST
JUNIT M Jrini w SERVER —j> MODEL
Erlang
INI 4,/" source

QuickCheck

Fig. 1 The architecture of James

method calls, and method exits allow us to track the result of the method
executions.

This process produces a long list of method calls, most of which do not
belong to the tests themselves, but to frameworks (such as the Apache Ant
library) or to the JVM itself.

The Erlang server filters most of the calls that do not belong to the tests.
We do this by checking for annotations using Java’s reflection API, which is
accessed from the JVMTTI through the Java Native Interface (JNI).

However, using reflection for each call traced introduces an overhead that
makes the whole test suite run unreasonably slowly. To alleviate this problem,
James stores, in a cache at the JVMTI agent level, all the classes that are found
not to be annotated as JUnit tests, and this way we only use reflection for non-
JUnit classes once per class. After this optimisation the instrumentation still
impacts the execution time, but to a much lesser extent.

This procedure is also used to distinguish the set-up and clean-up pro-
cedures and the actual test body, since they have different annotations (i.e:
@Before, @After, @Test).

Calls that produce objects that are used within the tests, even when these
are not part of the tests themselves, must be tracked too, otherwise James will
not know how to create those objects when the new tests are generated.

Once filtered, the Erlang server creates a model (see Section 6) that can
be serialised as either a dot graph that can be rendered with the GraphViz
tool, or as a QuickCheck finite-state machine model that can be executed with
QuickCheck to generate new JUnit tests (see Section 8).

Model extraction and test generation from JUnit test suites 9

5.1 Technical limitations

There are some limitations to our approach. James can track objects, but
not every variable in Java is an object. Some variables have primitive types
(e.g: int, char, boolean) which cannot be tracked by JVMTI directly. Some
operators like + or && are also treated differently from methods.

Our current implementation tracks primitives by identifying repeated val-
ues; but this produces inaccuracies when dealing with frequently used primi-
tives like false and O.

Both these issues could be circumvented by using dynamic bytecode mod-
ification to replace the primitives and operators with objects and functions
respectively, or by using static analysis to detect the data flow of primitive
values. But because James was built as a prototype we bypassed the problem
by replacing primitives manually.

In addition, some artefacts used in Java code are translated into compiler-
generated methods, and some methods are implemented natively. The JVMTI
does not always provide information like local variables for these methods.

Even for normal methods, the amount of information that can be retrieved
by JVMTI depends on whether the code was compiled with debug information.
In our aim to get a more usable system, we chose to use ways of extracting
information that rely on JVMTI methods that also work on Java code that
was not compiled with debug information.

5.2 Conceptual limitations

One conceptual limitation is that, in our approach, control dependencies are
only tracked for methods that issue HT'TP requests (see Section 4.3). This
means that the model will not consider the consequences of side-effects that
are produced by the rest of methods. In the future, this approach could be
extended to cover other methods too.

A generic problem with dynamic approaches — already reported in previous
research [21] — is the large number of traces produced by the instrumentation
of Java programs, which causes the analysis of relatively small test suites to
require a substantial amount of memory and slows down the process consid-
erably. This problem is mitigated by a careful early filtering of the traces
collected, as described earlier.

A limitation of the application of model inference to test generation is
that the inference algorithm cannot guess what the original intention of the
developers was and generate correct tests accordingly. The reason is that the
model is a simplified description of the actual behaviour of the system, the
implementation of the system is typically more intricate and, presumably,
closer to the intention of the developers than the model.

As a consequence, postconditions in the tests will often fail due to false
positives. But tests generated often explore behaviours that were not consid-
ered before, and they provide executable examples of command sequences and

10 Pablo Lamela Seijas et al.

postconditions that could be incorporated to the original test suite after some
manual refinement.

Classifying tests into passing and failing can be done just by running them.
In fact, James can be connected to the SUT for automatically commenting out
the lines of the tests generated that produce exceptions (while they are being
generated) so that all tests generated are guaranteed to pass. At the time of
writing, this can be done by manually connecting the generated tests to the
Erlang version of the Java Erlang Bridge (JEB [18]) and the Java version of
the interface JEB to the test suite in the SUT.

Of course, forcing James to generate tests that pass will prevent it from
finding any bugs by itself, but it could still be useful as a means of increasing
the number of scenarios exercised by a test suite. For example, this would
help us increase our confidence in that a refactoring does not alter the be-
haviour of the system. We can automatically generate tests that pass before
the refactoring and then check that they still pass in the refactored version.

5.3 Control tracking workaround

The task of identifying methods that issue HT'TP requests could be carried out
by ensuring that all traffic goes through a proxy, and connecting the proxy to
the JVMTTI agent. Nevertheless, this approach would require a context change
between the JVMTI agent and the proxy for each method call, and this would
introduce a delay that would slow down the whole process and increase its
complexity.

Instead, we track the Java methods that produce HTTP requests. In our
case the methods used were openConnection and setRequestMethod from
the class HttpURLConnection. Other programs could use different methods
but James could be adjusted easily to detect those instead.

6 Model generation

Once we have retrieved the dependency information we may use it to generate
a model. When displayed as diagrams, models can highlight issues in our test
suite, and could ultimately be used as documentation. In Section 7 we study
an example of one of these diagrams in detail.

6.1 Common dependency graph

Initially, James generates a graph where every call to a method executed di-
rectly from the tests is represented as a square-boxed node.

Because we are mainly interested in the level of abstraction expressed by
the tests, we only incorporate in the model the calls that are executed di-
rectly from the tests. But we still include calls necessary to satisfy the data
dependencies of other calls already included.

Model extraction and test generation from JUnit test suites 11

allocateFrequency

/ ol
| ¥
|
© ;
| |
©
getFrequencyAllocated
|
|
| ©
|
Y ¥

deallocateFrequency

Fig. 2 Small example of control and data dependencies combined

For data dependencies, gray arrows (in this paper also marked with a “D”
in a circle) connect the methods that produce a result with those that take that
result as a parameter, or those that use the result as a base object, i.e: those
methods that are called “on the object returned”. The latter are represented
with dashed arrows.

For control dependencies, brown arrows (in this paper also marked with
a “C” in a circle) connect methods that issued HTTP requests, in order of
execution.

In Figure 2, we can see a small example extracted from a bigger model
where both control and data dependencies are present.

6.2 Merging process

A graph generated by following only the steps described so far would generally
be too dense to understand, i.e: it would have too many nodes and arrows.
The merging process tries to generalise and simplify the graph while keeping
the important information by joining paths with the same topology, similarly
to the K-Tails algorithm [6].

James searches every subtree in the graph, alternately following the arrows
directly, and in reverse. Then it merges subtrees that contain pairs of methods
with the same name and signature, and that are connected with the same
topology of dependencies both in data and in control.

Longest subtrees are merged first, down to a minimum length K. All tails
of the graph (leaf and root nodes) are allowed a lower K; because if a pair of
longest matching subtrees is delimited by the end of the graph (has leaf or

12 Pablo Lamela Seijas et al.

root nodes) it may be that the lack of commonalities between both matching
subtrees is due to their small sizes, not to their differences.

The usage of a constant K is inspired by the K-Tails algorithm [6]. If we
imagine all the possible executions of a system as a tree, in which each possible
input is a different branch, and where each node represents a different state of
the system, we can consider two states to be equivalent (i.e: the same state)
in the tree if their subtrees are isomorphic, in other words, if the possible
executions of the system starting in both states are the same. In practice, it
is not feasible to explore all possible executions of a system every time we
want to decide whether we want to merge two nodes; it is also impossible if
the number of possible executions is infinite. The constant K is a parameter
of the algorithm that decides how far in the search space we will check before
concluding that two states are equivalent. If we set K to zero, every node will
be merged; the bigger K is, the more conservative the merging process is.

Our merging algorithm uses the idea of K to decide which nodes to merge
too; but there are three main differences with the original K-Tails algorithm.
First, we do not start with a tree but with a graph, we have more than one
“root node”; in our early experiments, we found that comparing only the
descendants of each node did not produce good results, thus, our algorithm
checks the equality of descendants and ascendants alternately. Second, we do
not have only control flow, but also data flow, and we use the same K to limit
the exploration of both. Lastly, our nodes have labels, they do not represent
states but “method calls”, thus, even for a K of 0, two nodes will never be
merged if they have labels (e.g: they call a method with a different signature).
The default values for K in James (at the time of writing) are: 4 for the bigger
K, and 1 for the lower K.

In Figures 3, 4, 5, and 6, we present an approximate pseudocode description
of the merging algorithm.

The merging algorithm function in Figure 3 shows how we first search
for pairs of subtrees longer than upper K, and if we fail we search for sub-
trees longer than lower K but with the requirement that both subtrees in the
pair must be maximal (represented by the boolean taken as last parameter by
find best_pair and find best_pair_rec). The actual merging of isomorphic
subtrees (carried out in the pseudo-code by the function merge_pair) is basi-
cally done by taking each pair of one node in one side of the isomorphism and
its image, moving all the incoming and outgoing arrows from one of the nodes
to the other and deleting the orphan node. Nevertheless, one0f nodes may
have to be created to group the data or control flow arrows corresponding to
the different parameters, as described in the legend for one0f nodes in Table 1
(on page 35).

In Figure 5, we present a possible way of storing the abstract data type
tree. The data type tree represents a subtree in the model graph that we
explore by using breath first search; because the graph may have loops, we
will not explore those nodes that are already in a higher (closer to the root)
level of the subtree. Each subtree also has a direction (either “upwards” or
“downwards”, which specifies whether they will follow the arrows directly or

Model extraction and test generation from JUnit test suites 13

void merging_algorithm(Int bigK, Int smallK, Graph model) {
while (true) {
Maybe <Pair<Tree, Tree>> best_pair :=
find_best_pair(bigK, model, false)

if (best_pair == Nothing) {
best_pair := find_best_pair(smallK, model, true)
if (best_pair == Nothing) {
return
} else {
model .merge_pair (best_pair.getContents ())
}
} else {
model .merge_pair (best_pair.getContents ())
}

Fig. 3 Merging algorithm base function pseudo-code

inversely when expanded). Expanding a subtree will take all the leaf nodes
(the ones in the last level) and follow the arrows that are incoming or outgoing
(depending on the direction), the nodes at the other end of the arrows will
become the new last level of the subtree (except those that are in the subtree
already).

The find best_pair function in Figure 4 implements the initialisation
phase of the algorithm for finding candidate trees to merge. First, it creates
two singleton subtrees for every node (one with direction “upwards” and one
with direction “downwards”). Then we search for the longest pair of equivalent
subtrees and (if they are at least min_tree_depth deep) we return them for
the merging _algorithm function to merge them.

The find best_pair_rec function in Figure 6 implements the algorithm
that finds the best candidates to merge. It iteratively expands the subtrees and
filters the unique ones, until there are no more subtrees. When this happens
we recover the last batch of surviving subtrees and choose one of the deepest.
When in strict_mode we also need to ensure that the remaining subtrees are
maximal.

In addition to that, methods that issue HT'TP requests are classified into
“normal” and “erroneous” (coloured in pink and, in this paper, also marked
with an “N” in a circle, see Figure 7) according to whether they have dependent
nodes that represent method calls whose name contains the keywords error
or fail.

To make the diagram clearer we also group methods that issue the same
kind of HTTP request (i.e: a request to the same URL and with the same
HTTP method) into the same subgraph (which is marked with a black rect-
angle that has the URL and HTTP method in the title, see Figure 7).

Nodes that hang from these nodes, and are not a dependency for other
nodes that produce a different HTTP request, are also included in the same
subgraph. We add these nodes to the subgraphs too because, in our experience,

14 Pablo Lamela Seijas et al.

Maybe <Pair<Tree, Tree>> find_best_pair(Int min_tree_depth,
Graph model,
Boolean strict_mode) {

List<Node> node_list := model.get_nodes ()

List<Tree> tree_list := [];

for each node in node_list {
tree_list.add(create_tree_starting_in(node, "upwards"))
tree_list.add(create_tree_starting_in(node, "downwards"))

}

Maybe <Pair<Tree, Tree>> best_pair :=
find_best_pair_rec(tree_list, model, strict_mode)
if (best_pair == Nothing) {
return best_pair
} else if (best_pair.getContents().first().tree_depth
>= min_tree_depth) {
return best_pair
} else {
return Nothing
}
}

Fig. 4 Equivalent subtree initialisation pseudo-code

struct Tree {
Node [][] nodes_in_each_level, // except loops

Node nodes_reached, // union of nodes_in_each_level
Int tree_depth, // number of levels of the tree
Direction direction // one of "upwards" or "downwards"

Fig. 5 Example subtree data type pseudo-code

they tend to be related to the HTTP request (they are the ones that unmarshall
the result or check that the results are correct).

“Normal” nodes are never merged with “erroneous” nodes, and data arrows
are never merged with control arrows or with arrows that provide dependencies
for a different parameter.

When two executions of a method get merged, we may get new alternative
paths for satisfying data dependencies of methods. Alternatives for the same
parameter are grouped together with a diamond node one0f (see Figure 8).

Since we merge only subtrees of a minimum depth, it is likely that all the
sequences merged have the same or a similar semantics. This way we get new
connections and loops both in the dependency and control flow (see Figure 9).
James highlights loops in diagrams by making all arrows that are part of a
loop thicker than arrows that are not.

A legend with examples of the ways in which information is presented in
the generated diagrams can be found in Table 1 (on page 35), and information
about the meaning of the different colors in the outlines of nodes can be found
in Table 2 (on page 36).

Model extraction and test generation from JUnit test suites 15

Maybe <Pair<Tree, Tree>>
find_best_pair_rec(List<Tree> tree_candidates,
Graph model,
Boolean strict_mode) {

List<List<Tree>> grouped_tree_list :=
group_isomorphic_trees(tree_candidates);
List<List<Tree>> repeated_tree_list :=
filter_out_unique_trees (grouped_tree_list);
if (repeated_tree_list IS EMPTY) {
return Nothing
} else {
List<Pair<Tree, Tree>> next_level = [];
for each tree_list in repeated_tree_list {
List<Tree> tree_list_copy = clone(tree_list)
for each tree in tree_list_copy {
expandTree (tree)
}
Maybe<Pair<Tree, Tree>> best_pair :=
find_best_pair_rec(tree_list_copy, model, strict_mode)
if (best_pair != Nothing) {
next_level.add(best_pair.getContents())
}
}
if (next_level IS EMPTY) {
if (strict_mode) {
// We remove those trees that can be expanded
remove_trees_not_maximal (repeated_tree_list)
}
if (repeated_tree_list IS EMPTY) {
return Nothing
} else {
return Something(get_first_pair_of_trees(
get_sublist_with_deepest_trees(
repeated_tree_list)))
} else {
return maybe_deepest_tree_pair(next_level)
}
}

Fig. 6 Equivalent subtree search pseudo-code

7 Detailed example

In this section, we discuss in detail the result of applying our model extraction
methodology by running our James tool on a frequency server example, as
also used in our original work on model extraction for Erlang/EUnit [3]. The
fully extracted machine is presented in Figure 10.

16 Pablo Lamela Seijas et al.

© ©®
seryer/Dealloca reqw L
e .

deallocateFrequency

deallocateFrequency

deallocateFrequency

/ » N Y N
£ checkNotAllocatedError checkNotRunningError

Java Interactions
Fig. 7 Small example of “normal” and “erroneous” method calls

checkNoErrors

" {string."NOT_ALLOCATED"} _

N KR X
assertErrorResponse | | assertNormalRes

Fig. 8 Small example of one-of diamond

7.1 Frequency Server example

Frequency Server is a Web Service written using Java that is inspired by the
example in the book “Erlang Programming” [10]. It simulates a “spectrum
management” system that allows clients to allocate and deallocate frequencies
while ensuring that each frequency is allocated by at most one client at a time.
In [3], we already used the original version of this example for illustrating the
tool for transforming EUnit tests into PBT models.

The API provides four commands: startServer, stopServer, allocate-
Frequency, and deallocateFrequency.

Figure 10 illustrates the behaviour of the Frequency Server as inferred by
the James tool from a set of unit tests.

7.2 Testing the Frequency Server

A test suite has been provided by an independent party (the company Interoud
Innovation) and is available®; the implementation of the SUT used is also

5 https://github.com/palas/freq_server_test_ma

Model extraction and test generation from JUnit test suites 17

C \
c ® © c
X L X
oneOf hasNext next oneOf

C
o ® ¢
cyAC D
'/ﬁeq_s}yirmeall(;cyéfreqw
N Y
deallocateFrequency deallocateFrequency deallocateFre

@ 000 o |

Fig. 9 Small example of loop in control flow

accessible in the same link. By using the models generated by James we can
generate new tests that have a similar structure to the ones provided but still
explore possibilities that were missing in the original tests. For example, in our
particular implementation there is a limit on the number of frequencies that
can be allocated, but this limit was not explored by the existing unit tests.

Nevertheless, a random test generator (see Section 8) that would randomly
traverse the control flow of our model (see Figure 10) could try to allocate
enough frequencies to do so, since there is a control loop around the allocation
command. At some point the server will return an error.

Even though in this case the limit in the number of frequencies is an ex-
pected functionality, in a bigger example it could be due to a bug, not revealed
by legacy unit tests.

7.3 Interaction of the different features

Looking simultaneously at both control and data flow, we can get a better
picture of what the system is expected to do. For example, if we look at the
piece of diagram highlighted on Figure 11, we can see that it is possible to
extract the result of the call allocateFrequency, and reuse it later when
calling deallocateFrequency. The first call to deallocateFrequency should
be valid.

But if, after doing this, we call deallocateFrequency a second time, as
shown in the same diagram (Figure 11), we will produce an error, as indicated
by the pink background and (in this paper) an “N” in a circle in the right
deallocateFrequency node. We could also obtain an error result by using
the integer 0 as argument, instead of the result of allocateFrequency (we
know this is true because the implementation of the Frequency Server used in
our experiments starts allocating the frequencies from 10).

Pablo Lamela Seijas et al.

18

J0LIFFUIIUNYIONOYD

SougoNpa> E

@ O
®

W
@

JOLIPAURISAPEI[YIONN YD

(A[renuewr poappe s[oqe[9]2110) I9AIog Aousnbalg o) Wolj soure Aq pajdeRIIXd

SIOLIFONYOYD

JOLIZPAIEIO[VIONDOYD
N

@m?_:::muozv_ou:u
N

JOduo

JOdu0

nsoy1e8 SIOLFONYOIYD

&m—wn_ﬁ_:ms JNRRELE]
N

Kouanbaz gayesofe

Kouanbaigaresoe

ureigerq QT “S1q

E
E
/@
\
101819

|

\

®
o

"eaRl mau

Model extraction and test generation from JUnit test suites 19

allocateFrequency

y A 4
getFrequencyAllocated

new java.lang.Integer

deallocateFrequency

N
deallocateFrequelg.‘

Fig. 11 Detail displaying exceptional behaviour

8 Generating new tests

Using the approach presented in Section 6, we are able to build a compre-
hensive overview of a system from a set of JUnit tests. Assuming that the
tests make a sensible exploration of the SUT, then it is possible, not only to
construct a graphical model of the system (as shown), but also to construct
a QuickCheck finite-state machine model for the SUT that will generate new
tests when executed. We outline how this is done here, building on the ap-
proach first presented in [3].

8.1 Building a state machine

A state machine (namely, a QuickCheck state machine) can be built by trans-
lating the different elements of the diagram.

1. State transitions can be defined to match the control flow (including loop-
ing behaviour) given by the brown links in the visualisations. This proceeds
according to the mechanism outlined in [3].

2. The data flow dependencies for parameters give an indication of how gen-
erators for parameters must call each other recursively and how the values
produced by these generators can satisfy the data dependencies for each
call in the control flow.

3. The combination of data flow and control flow gives an indication of the
values that need to be stored as part of the state data of the extended finite-
state machine (EFSM). Figure 11 shows how the result of allocateFrequency
must be stored in order to be used as a parameter for deallocateFrequency.

20 Pablo Lamela Seijas et al.

4. Similarly to the way data flow dependencies are satisfied, we include gen-
erators for inverse data dependencies within each subgraph. These will
produce the postconditions in terms of the result of the method execution.

5. In order to guarantee termination of the generators, we must bind their
recursion with a strictly decreasing number. This can be done by computing
for each node, the minimum depth (distance to the top of the graph), and
ensuring that we eventually force the dependency resolution to follow a
path with a strictly decreasing depth. In methods with several parameters
the depth must include the minimum depths for all parameters.

8.2 Generation of new tests

The QuickCheck models generated as described in Section 8.1 are analogous to
the diagrams that we can visualise. In Figure 12, we can see the representation
of part of the internal structure used to generate a QuickCheck FSM model
for the Frequency Server, and overlayed in black (arrow marked with the letter
“B” in a circle) we see the traversal QuickCheck did to generate the test in
Figure 13 (the tests generated by James have full package qualifiers for every
class, we have removed some of them manually for clarity).
Roughly the following steps are followed:

1. The graph is traversed randomly through the control path (from the entry
star through the brown arrows, marked with a “C” in a circle), with op-
tional looping behaviour. Each node in this path (hereafter step) represents
a call to the APIL.

2. For each step, we generate the parameters required by following data de-
pendencies upwards (possibly reusing values from previous steps) as shown
by the green arrows (marked with the letter “G” in a circle).

3. Optionally, for each step, we generate the postconditions by traversing the
data dependencies downwards within the subgraph.

Given the nature of Web Services, the tests are not supposed to raise any
(intended) exceptions. Instead, the results returned by the Web Service can
be classified as positive or negative depending on whether they represent an
error or a normal result.

Once the new test is suitably classified then it is possible to rerun the ex-
traction process and, thus, potentially generate a refined model of the system.

Generated state machines, when run, print new JUnit test cases that can,
after manual inspection, be added to the original suite.

Unfortunately, tests generated may not necessarily be correct. That is also
the case of the example provided in Figure 13. Some of the postconditions,
e.g:

this.checkNotRunningError (varl7);

will fail, and this issue needs to be solved manually. The difficulty in solving
the errors in tests is not getting them to pass (this can be done automatically

21

Model extraction and test generation from JUnit test suites

SUOHOBION] BAR[

wrelderp oY) Ul sowre Aq pajerausd 9s9], T 'Siq

~
SIOLIFONYYD - L1T ; @%28226%_35 - 95T
N

|

@mwséészﬁoﬁ -pIg

€ dajs

g

KouanbaiJoreso]ye:

s[enba - Op |

TIMNIONHISSE - O€ |

€

Kouonbaia1e00][e y@

@m:auimauo:m - 081 ;
N
{,Kouanbaz mou?

z dois/

I0LFSUIUUNYIONDIOYP - €}

@muuzaum>vauk_<uo2xoo=g -€1 ;
N

19A108d0)s - O ;
N—Z

Joaragdors - /¢

{Pa108d0rg /104108 bayy/, sod}

22 Pablo Lamela Seijas et al.

FreqServerResponse varl = this.startServer ();
FreqServerResponse var2 = this.allocateFrequency();

// Postcondition: 1

this.checkNoErrors (var2);

// Postcondition: 2

Result var4 = var2.getResult ();

java.lang.Integer var5 = var4.getFrequencyAllocated();
Result var6 = var2.getResult ();

java.lang.Integer var7 = var6.getFrequencyAllocated();
boolean var8 = varb5.equals(var7);

// Postcondition: 3

Result var9 = var2.getResult ();

java.lang.Integer varl0 = var9.getFrequencyAllocated ();
junit.framework.Assert.assertNotNull(var10);

// End of postconditions

java.lang.Integer varl2 = var6.getFrequencyAllocated();
FreqServerResponse varl3 = this.deallocateFrequency(varil2);
// Postcondition: 1

this.checkNoErrors (vari3);

// End of postconditions

int varlb = 0;
java.lang.Integer varl6 = new java.lang.Integer(varil5);
FreqServerResponse varl7 = this.deallocateFrequency(varil6);

// Postcondition: 1
this.checkNotAllocatedError (vari7);
// Postcondition: 2
this.checkNotRunningError (varl?7);
// End of postconditions

Fig. 13 Example of test generated by James after removing some package qualifiers

by commenting out the postconditions that fail when running the tests), but in
making sure that it is the test what is wrong and not the system. Alternatively,
the tests can be fixed by replacing wrong postconditions with appropriate ones.
We say appropriate ones because it is also trivial to replace invalid postcon-
ditions with valid ones by negating them, for example: replacing assertTrue
with assertFalse, or assertEqual with assertNotEqual.

9 Pilot study

As part of this work we have carried out a pilot study using part of VoDKATV
as system under test. VODKATYV is a middleware that provides end users with
access to different services on a TV screen, e.g: watching Internet TV chan-
nels, accessing paid video-on-demand services, browsing the Internet, playing
games, etc. VODKATYV is the system that connects all the media streams and
provides the contents to the user. VoODKATYV supports different types of de-
vices to access the system, like set-top-boxes, PCs, smartphones, or tablets; in
order to provide end-users with a real multi-screen experience.

Model extraction and test generation from JUnit test suites 23

In this section, we present the results of the pilot study; a more detailed
report can be found®.

9.1 VoDKATV

The architecture of the VODKATYV system is depicted in Figure 14, in which we
represent the main components of the implementation and their interactions.
The VoDKATV-server component is the core component of the VoDKATV
system. This component stores information about the users that can access
the system, their access rights, resource consumption, preferences, etc. This
component provides different integration APIs to access the user information.

VoDKATV-server offers an HTTP /XML integration API so that admin-
istration applications can access and modify the data stored on the system.
Thus, this API is used by system administrators to create new users in the
system, manage channels, permissions, etc.

Prior to the study, there were some JUnit test cases for the HT'TP /XML
API, written manually by the company Interoud Innovation. These test cases
were implemented using JUnit and XPath expressions to check that the XML
files returned by VoDKATYV contain the expected information.

The HTTP /XML API contains 186 operations, with 256 JUnit tests cases
in total. For the pilot study we considered a subset of 28 JUnit tests that
target 20 operations related to rooms and devices. We chose the subset of
tests related to rooms and set-top-boxes because it was both simple enough
to be easy to understand, and complex enough to produce interesting results
and exploit the potential of James (for example, the models obtained have
loops). We could have chosen other parts of the API, but they were either
too simple (like API operations to configure key-value parameters), or they
had many dependencies with other parts (for example, the API part related
to users depends on the rooms part).

We tried combining tests for different modules of the system, but the com-
bined models often had independent “islands” in the model. Due to the mech-
anism used for test generation, we know that methods that are in separate
islands (methods that have no connection in the control or the data flow) will
not produce any tests that combine the methods in those islands. Thus, it is
not beneficial to try to simultaneously model test that have no commonalities
(which is often the case with unitary tests, since they are targeted at individ-
ual units or components of the system). On the other hand, modelling tests for
several components simultaneously, increases the complexity and memory nec-
essary to run the inference algorithm, this (together with the need for human
effort) justifies the application of the method to subsystems.

By using the selected subset of JUnit tests as input, James was used to
generate a model. New test cases were generated automatically from that
model, and these new tests allowed a developer of the platform to find a
previously unknown bug in the implementation.

6 http://www.prowessproject.eu/wp-content/uploads/2012/10/D6.5_final.pdf

24 Pablo Lamela Seijas et al.

ADMIN CORE BACKEND

f JDBC1

I 1 1 v
[]
L

DB
-

Fig. 14 VoDKATYV (target of the pilot study in red and marked with an “X” in a circle)

The entity “room” can represent different things depending on the environ-
ment where VoODKATYV is installed; for instance, it represents a physical room
when VoDKATYV is installed in a hotel, or a household in a telco deployment.

In addition, a VoODKATYV “room” can contain several “devices”, usually,
set-top-boxes, which are identified by their MAC address. Rooms and devices
can have additional attributes, such as a description or a label.

The operations selected for the pilot study allow to create, modify, delete
and search for, using different criteria, rooms and devices. For example, the
names of some operations as they appear in the WSDL specification are:
CreateRoom, FindAllRooms, DeleteRoom, CreateDevice, FindDeviceBylId,
FindDevices, FindDevicesByRoom, UpdateDevice, DeleteDevice, etc.

9.2 Research Questions

The pilot study allowed us to evaluate James using a real software system. In
order to guide the pilot study, we aimed to answer a series of four research
questions that tried to evaluate the usefulness of James in the real world:

— A: Is it technically feasible to augment Java test suites by inferring new
tests from existing test suites?

— B: Is the process of inferring new tests from Java test suites feasible from
a business point of view: can the process be accomplished at a cost appro-
priate to the improvement in tests?

— C: Do the inferred tests effectively augment the existing tests? Can this be
shown by discovering new faults in the system under test?

— D: Is the method assessed as accurate, quality enhancing, and useful, by
the developer involved in the pilot study?

Model extraction and test generation from JUnit test suites 25

9.3 Experiments

In order to answer the research questions, during the pilot study, we measured
the following data:

— Number of tests in a unit test suite needed for automatic extraction of
useful test models (answers question A).

— Number of additional (i.e: previously non-existent) test cases needed for the
automatic extraction of useful models, i.e: manually added by a developer
so that the extraction process can generate a useful test model (answers
questions A and B).

— Number of new test cases added to test suite by means of the extracted
models, i.e: automatic test suite enhancement (answers question A).

— Number of bugs revealed by means of the extracted models (answers ques-
tion C).

— Time and computational resources needed to infer and generate the models,
i.e: scalability (answers question B).

— Developer’s rating (0-10) of accuracy, quality and usefulness of the ex-
tracted models, compared to previously existing unit test suites (answers
question D).

9.4 Results

Using the 28 existing tests of VoODKATYV, we applied James to generate a
model which is too big to include in this paper (it consists of 163 nodes, 311
arrows, and 12 subgraphs), and we generated a series of tests that were used
to answer the questions of the pilot study.

For this extended version of the paper, we have run James on the same
28 tests a second time for gathering extra information, with the aim of giving
a better sense on the quality of the tests generated by James. In this second
run of James, we have generated 10,000 random tests of which 3,206 were
unique. By using the JEB interface [18], James ran the tests as they were
generated and commented out the instructions that caused exceptions. Using
this information we obtained the following results.

In Table 3 (on page 36), we show the distribution of postconditions gener-
ated in tests and the amount of passing postcondtions in each case. Cells with
gray background indicate tests that pass directly, without commenting out
any instruction, 88 in total. In our experiments, except for the postconditions
(assertions or calls to methods that execute one or more assertions), none of
the normal instructions in the tests generated raised any exceptions; thus, all
generated failing tests were due to failing postconditions.

In Table 4 (on page 36), we show how many methods in each test issue
HTTP requests in the tests generated, and the average number of methods,
postconditions, and instructions per test.

26 Pablo Lamela Seijas et al.

In Table 5 (on page 37), we show the results of manually classifying the
first 30 tests generated during the second run. The manual classification was
carried out by a member of Interoud Innovation by using the following criteria:

— Interesting parts of a test are those that have postconditions that check
what they do.

— Uninteresting parts of a test are those that do things but do not check the
result (or not correctly).

— A test with both means that it has both interesting and uninteresting parts.

— A test with none means that the test does nothing to the SUT.

All this is done while ignoring those postconditions that produce exceptions
and, thus, if we consider that the SUT is correct, they all represent wrong post-
conditions. The proportion of these failing postconditions is already detailed
in Table 3 (on page 36).

In Table 6 (on page 37), we show the manual classification of the tests that
had at least one interesting part, according to the following categories:

— Positive tests: e.g, a room is created and the postcondition checks that the
creation was successful, or a room is deleted and the postcondition checks
that the deletion was successful.

— Negative tests: e.g, an attempt is done to delete a non-existent device or to
create a room with incorrect data, and the postcondition checks that the
result is an error.

Number of tests in a unit test suite needed for automatic extraction
of useful test models. During the pilot study, James was able to generate
new tests even from a single one, even if the tests generated are not very
diverse in that case.

From a single test that creates and deletes a room, and checks whether the
room was created and deleted correctly, new test cases have been generated
by James. For example, James generated a test case that tries to delete a non-
existing room. The following is an excerpt of that test in which the package
qualifiers and some irrelevant instructions have been manually removed. It can
be seen which instructions were removed from the excerpt because the variable
names contain the instruction number on which they were originally assigned;
for example, var9 was assigned on the ninth instruction of the original test
as generated by James, this tells us that, between the places where var5 and
var9 were assigned, two instructions were removed.

QTest

public void testGenerated2() throws Exception {
String varl getRandomStrId ();
String var2 "sample description";
Object var3 null;
String var4 this.generateRoomXML(varl, var2, var3);
String varb this.createRoom(var4d);
this.checkThatRoomWasCreated (var4d, varl, var2, var3, varb);

String var9 = getRandomStrId();
String varl0 = this.deleteRooms(var9);

Model extraction and test generation from JUnit test suites 27

this.checkThatRoomWasDeleted (varl, varil0);

This test case fails, because the result returned by the operation deleteRooms
is an error that shows that the room with the identifier stored in the variable
var9 (generated using the function getRandomStrId, which generates a unique
string) cannot be deleted because it does not exist in the VoODKATV system,
since it has not been created before. In this case, the tester must fix the test
by removing the call to the function checkThatRoomWasDeleted, and checking
that VoODKATYV returns a not_found error.

Number of additional test cases needed for the automatic extraction
of useful models. The initial set of 28 tests available during the pilot study
was enough to produce a useful model for the 20 target operations tested, and
so no tests needed to be added. Therefore, it was not necessary to include
additional test cases in the original test suite to generate useful JUnit test
cases automatically. Nevertheless, it was necessary to adapt the exiting JUnit
suite in order for James to produce a clear model. In particular:

— Some functions were encapsulated, i.e: making the tests more high level.

— Some methods were rewritten to avoid side effects, i.e: rewriting some parts
to use a pure functional style.

— One aspect of the set-up was unfolded into the tests so that generated tests
were more accurate.

The effort required for this adaptation depends on the original structure
and functionalities of Java required by the tests used as input. In the case
of this pilot study, the rewriting was carried out by a single person and took
approximately one day of work.

For example, the following code in one of the tests:

Map<String, String[]> deleteParams =
new HashMap<String, Stringl[]l>();
deleteParams.put (API.CONFIGURATION_DELETEDEVICE_PARAM_DEVICEID,
new String[] {deviceIdl, deviceId2});
logger.info("deleteParams: {}",
HTTPFacade.paramsToString(deleteParams));
String resultDelete =
HTTPFacade.doGet (API.CONFIGURATION_DELETEDEVICE,
deleteParams);
logger.info("resultDelete: {}", resultDelete);
assertFalse(resultDelete.isEmpty ());

assertXpathNotExists ("/devices/errors", resultDelete);

assertXpathExists("/devices/device/id[.="" + deviceIdl + "’]",
resultDelete);

assertXpathExists("/devices/device/id[.="" + deviceId2 + "’]",

resultDelete);

Was rewritten to:

List<String> devicelds = new ArrayList<String>();
addString (deviceIdl, devicelds);
addString(deviceId2, devicelds);

String resultDelete = deleteDevices(devicelds);
checkThatDeviceWasDeleted (deviceIds, resultDelete);

28 Pablo Lamela Seijas et al.

This avoids the use of constructors with templates and arrays (which are
not supported by the current version of James), and allows James to gen-
eralise the test to any number of devices easily, since it only needs to add
more invocations of the method addString and the rest of the code can stay
unaltered.

Number of new test cases added to test suite by means of the ex-
tracted models. During the pilot, James was able to generate thousands of
JUnit test cases.

Some tests were generated that explore aspects that were not considered
in the original JUnit test suite, for example:

— Deleting existing and non-existing rooms in the same call to deleteRooms.
— Deleting duplicated rooms in the same call.

— Trying to update rooms that do not exist.

— Trying to create a device in a room that does not exist.

— Trying to create two devices with the same MAC.

Other tests were replicated, i.e: James generated several test cases that
were equivalent to other of the tests generated or to the ones used as input.
The problem with tests generated several times can be solved by modifying the
generated model to use the QuickCheck macro ?ONCEONLY; of course, this does
not prevent QuickCheck from generating tests that are semantically equivalent.
Detecting that two tests are equivalent is undecidable in the general case.

Additionally, some of the tests generated by James make no sense, for
example, the following test case, generated automatically by James (after re-
moving some irrelevant instructions and package qualifiers):

QTest

public void testGenerated3() throws Exception {
String varl getRandomStrId();
String var2 "sample description 1";
String var4 this.generateRoomXML (varl, var2, null);
String varb this.createRoom(var4d);
String varé6 "sample description";
this.checkThatRoomWasCreated (var4d, varl, var6, null, var5);
String var9 = getRandomStrId();
java.util.ArrayList varl0 = new java.util.ArrayList();
java.util.List varll = this.addString(var9, varil0);
String varl2 = this.deleteRooms(varill);
this.checkThatRoomWasDeleted (varl, varil2);

This test case creates a new room in the VoODKATYV system using the op-
eration called createRoom. The room is created with a random (and unique)
identifier, stored in the variable var1, and with the description “sample de-
scription 1”7 (stored in the variable var2). After that, it checks that the room
has been created by using the method checkThatRoomWasCreated, which re-
ceives the XML used as the input for the VoODKATYV system as the first pa-
rameter, the room identifier as the second parameter, the room description as
the third parameter, a label associated to the room as the fourth parameter,
and the XML returned by the VODKATYV system as the fifth parameter.

Model extraction and test generation from JUnit test suites 29

The invocation to this method is checking that the newly created room
returned by the VoDKATYV system has the identifier stored in the variable
varl, which is correct. However, it is also checking that the description of the
room is the one stored in var6 (“sample description”), which is not correct.

Another reason why postconditions generated may fail is because any of
the instructions in a sequence fails for some reason and the final result is not
as expected by the test. For example, the first test of the second run of James
tries to delete a device that it previously tried to create:

Object varll = null;
String varl2 = getRandomMACAddress();

String varl3 = "hed3_webkit";
Object varl4 = null;
String varl5 = "Random Device";

Long varl6 = getRootTagldInTagsTree();
String varl7 = this.generateDeviceXML (
(java.lang.String) varll, varl2, varil3,
(java.lang.String) varl4, varl5, varl6);
String var18 = this.createDevice(varl7);
String varl9 = this.getDeviceId(vari8);
String var20 = this.deleteDevicesS(var19);
this.checkThatDeviceWasDeleted (varl19, var20);

Nevertheless, the creation of device createDevice fails because the input
values are wrong. In particular, var14, used as identifier for the room to which
the device is associated is null. Thus, the deletion of the device fails, since
it has not been created. The way of fixing the test would be to create a valid
room to which the device can be associated by, for example, using the following
instructions:

String varl = getRandomStrId();

String var2 = "sample description 1";

Long var3 = getRootTagIdInTagsTree ();

String var4 = this.generateRoomXML(varl, var2, var3);
String varb = this.createRoom(var4d);

And by using the new varl instead of var14.

Finally, a postcondition may try to use parameters that are not appro-
priate. For example, the twentieth test generated in the second run of James
creates a room with a set of values, and later checks whether the room was
created by using a different set of values:

String varl = getRandomStrId();

String var2 = "sample description 1";

Long var3 = getRootTagIdInTagsTree ();

String var4 = this.generateRoomXML(varl, var2, var3);
String varb = this.createRoom(var4d);

String var6 = "sample description 2";

this.checkRoomCreateOrUpdate (var4, varl, var6, var3, var5);

We can fix this test by ensuring that the creation and check are done using
the same values.

String varl = getRandomStrId();
String var2 = "sample description 1";

30 Pablo Lamela Seijas et al.

Long var3 = getRootTagIdInTagsTree ();

String var4 = this.generateRoomXML(varl, var2, var3);
String varb = this.createRoom(var4d);
String var6 = "sample description 1";

this.checkRoomCreateOrUpdate (var4, varl, var6, var3, var5);

Number of bugs revealed by means of the extracted models. James
helped a developer find one wrong behaviour. When the operation that deletes
a device was invoked with an empty device identifier it produced an uncon-
trolled internal error caused by a NullPointerException in the Java code,
instead of returning a “required field” error as expected.

The error generated the following XML response:

<devices>
<errors>
<error>
<code>internal_error </code>
<description>Internal error, check VoDKA.TV logs
</description>
</error>
</errors>
</devices>

This is the new test case that causes this behaviour (after some manual
cleanup):
QTest

public void generatedTest47 () throws Exception {
String varl = getRandomMACAddress();

String var2 = "IPHONE";

String var3 = getRandomStrId();

String var4 = "Random Device";

Long varb5 = null;

Long var6 = getRootTagIdInTagsTree ();

String var7 = this.generateDeviceToCreateXML(varl, var2, var3,
var4d, varb);

String var8 = this.createDevice(var7);

String var9 = this.getDevicelId(var8);

String varl0 = this.deleteDevices(var9);

this.checkThatDeviceWasDeleted (var9, vari10);

The use of an empty identifier to invoke the operation to delete a device in
this test case is just a coincidence. The reason is that the operation to create
a device is invoked with a room that does not exist and, therefore, the device
is not created. However, the result is not checked, so the test case continues
running. The result of this operation is used to get the device identifier of
the new device created, by using the operation getDeviceId, which is empty
because no device has been created. The obtained device identifier is the string
used as a parameter for the operation deleteDevices. Nevertheless, in order
for the test to pass, it needs to be fixed, because it checks that the device was
deleted successfully, but this is not true.

This bug has been fixed and the new implementation returns a “required
field” error instead.

Model extraction and test generation from JUnit test suites 31

Time and computational resources needed to infer and generate
the models. The original suite took between 2.8 and 3.5 seconds to execute,
whereas the instrumented test suite took between 70 and 100 seconds. The
generation of the model took James an additional 20 to 25 seconds to complete.

Developer’s rating of accuracy, quality and usefulness of the ex-
tracted models, compared to previously existing unit test suites.
The developer of the tests was asked to comment and rate James on a scale
from 0 to 10 for accuracy, quality, and usefulness. Their assessment for this
part was:

— Accuracy: 4. “The current version of James generates thousands of new
JUnit test cases, some of them test aspects that are not taken into account
in the ortginal JUnit test suite. However, there are many other test cases
that are wrong because they try to test something in a wrong way (they make
no sense and they fail even though the implementation of the SUT behaves
as expected for the tested scenario), and test cases that have been already
included in the original test suite (or in the new test cases). In addition, in
the first version of James, used to carry out this pilot, some test cases do
not compile. These compilation errors can be fized automatically by well
known IDEs like Eclipse, and in the end this wrong behaviour was fized
in James and all the generated test cases do compile. Even so, substantial
manual work to examine and analyse all the generated JUnit test cases is
necessary to filter out incorrect and duplicated test cases.”

— Quality: 7. “The new test cases generated by James follow the same style
and guidelines used in the original Java code, as they use the same methods
defined in the original test suite in the same way. Therefore, the source code
of the new test cases can be understood by any person who also understands
the code of the original JUnit test suite. Hence we consider that the quality
of the new test cases in terms of source code quality is similar to the original
test suite. However, there is a possible enhancement that would considerably
improve the readability of the new test cases: the variable names used in
the new test cases are called varl, var2, var3, etc. which makes the new
test cases harder to read. One lesson learned is that we might improve this
with more meaningful names for the variables, for example, if a variable is
going to store the result of the method getDeviceId(), that variable could
be called deviceId (or deviceldl, devcield2, deviceId3, etc. if there
are several invocations to that method).”

— Usefulness: 8. “Using James with an existing JUnit test suite helped to
identify some situations that had not been tested before. In addition, the
new JUnit test suite detected an unknown wrong behaviour in the system.
The reason why we do not give the maximal rating here is that the structure
of the original JUnit test suite had to be modified slightly so that James
could work appropriately.”

32 Pablo Lamela Seijas et al.

9.5 Result discussion

In the previous section, we have presented the results of some experiments that
test the applicability of James to industrial systems. However, the sample size
of the experiments carried out was small, thus, further validation would be
required in order to obtain conclusions that are valid for the general case.

Nevertheless, in this section, we interpret the results to try to answer the
research questions presented in Section 9.2; to obtain some preliminary insight
about the effectiveness of the approach, and to guide future research:

A: Is it technically feasible to augment Java test suites by inferring
new tests from existing test suites?

We can conclude that it is indeed feasible to augment existing Java test
suites automatically by using James, even if there are no many tests. But the
results may benefit from some manual refinement of the input test suite.

B: Is the process of inferring new tests from Java test suites feasible
from a business point of view: can the process be accomplished at a
cost appropriate to the improvement in tests?

Our experiments show that, at least for small systems (or parts of systems),
it is indeed feasible. The instrumentation increases the cost of execution and
may require some manual work, but only to a certain extent. The main limita-
tion for scalability to big systems would probably be the memory consumption
required for trace collection and, for this particular implementation, the re-
quirement of human effort both to adapt the existing tests and to validate the
tests generated.

C: Do the inferred tests effectively augment the existing tests? Can
this be shown by discovering new faults in the system under test?

The bug detected thanks to the new tests shows that indeed the generated
tests help discovering new faults in the system.

D: Is the method assessed as accurate, quality enhancing, and useful,
by the developer involved in the pilot study?

The method has been assessed as useful and its output has been evaluated
as having similar quality to the input. But there is concern about the accuracy
of the tests generated since a big part of them tends to exercise uninteresting
aspects of the system and because many postconditions generated do not pass.

10 Conclusion

This paper presents a set of techniques to generate models that combine infor-
mation from both data and control flow, and for using this model to generate
new tests. These techniques have been tested and illustrated with examples
extracted from executions of the James tool, and it has been tested in a pilot
study involving an industrial Web Service.

Model extraction and test generation from JUnit test suites 33

We have shown how to extract both control-flow and data-flow information
from a JUnit test suite, and implemented that extraction, visualisation of the
results, and automatic test generation in the James tool.

For the future, another line of research would be to build on another aspect
of [3] and to construct a model from a JUnit test suite without the need of an
implementation of the system. Future work could also aim to improve the ac-
curacy and expressiveness of generated models by applying existing techniques
like active learning and invariant inference.

Acknowledgements The authors would like to thank the European Commission for their
support of this work through the project PROWESS, http://www.prowess-project.eu/,
grant number 317820.

References

1. K. Androutsopoulos, D. Clark, M. Harman, J. Krinke, and L. Tratt. State-based model
slicing: A survey. ACM Computing Surveys (CSUR), 45(4):53, 2013.

2. T. Arts, J. Hughes, J. Johansson, and U. T. Wiger. Testing telecoms software with
Quviq QuickCheck. In Erlang Workshop, pages 2—10. ACM, 2006.

3. T. Arts, P. Lamela Seijas, and S. J. Thompson. Extracting QuickCheck specifications
from EUnit test cases. In Erlang Workshop, pages 62-71. ACM, 2011.

4. T. Berg, B. Jonsson, and H. Raffelt. Regular inference for state machines with parame-
ters. In International Conference on Fundamental Approaches to Software Engineering,
pages 107-121. Springer, 2006.

5. A. Bertolino, P. Inverardi, P. Pelliccione, and M. Tivoli. Automatic synthesis of behavior
protocols for composable web-services. In FEuropean Software Engineering Conference
and ACM SIGSOFT Symposium on the Foundations of Software Engineering, pages
141-150. ACM, 2009.

6. A. W. Biermann and J. A. Feldman. On the Synthesis of Finite-State Machines from
Samples of Their Behavior. IEEE Transactions on Computers, 21(6):592-597, 1972.

7. A. W. Biermann and R. Krishnaswamy. Constructing programs from example compu-
tations. IEEE Transactions on Software Engineering, (3):141-153, 1976.

8. K. Bogdanov, N. Walkinshaw, and R. Taylor. StateChum. http://statechum.
sourceforge.net/ [last accessed 25-01-2016].

9. S. Cassel, F. Howar, B. Jonsson, and B. Steffen. Active learning for extended finite
state machines. Formal Aspects of Computing, 28(2):233-263, 2016.

10. F. Cesarini and S. Thompson. Erlang Programming - A Concurrent Approach to Soft-
ware Development. O’Reilly, 2009.

11. K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random testing of Haskell
programs. In International Conference on Functional Programming, pages 268-279,
2000.

12. J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, H. Zheng, et al.
Bandera: Extracting finite-state models from java source code. In Software Engineering,
2000. Proceedings of the 2000 International Conference on, pages 439-448. IEEE, 2000.

13. V. Dallmeier, C. Lindig, A. Wasylkowski, and A. Zeller. Mining object behavior with
ADABU. In International Workshop on Dynamic Systems Analysis, pages 17-24. ACM,
2006.

14. P. Dupont, B. Lambeau, C. Damas, and A. V. Lamsweerde. The QSM algorithm and
its application to software behavior model induction. Applied Artificial Intelligence, 22,
2008.

15. J. Hatcliff, M. B. Dwyer, and H. Zheng. Slicing software for model construction. Higher-
order and symbolic computation, 13(4):315-353, 2000.

16. M. Isberner. Foundations of active automata learning: an algorithmic perspective. PhD
thesis, 2015.

34

Pablo Lamela Seijas et al.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

. F. Javed, B. R. Bryant, M. Crepinsek, M. Mernik, and A. Sprague. Context-free gram-

mar induction using genetic programming. In 42nd annual Southeast regional confer-
ence, pages 404-405. ACM, 2004.

P. Lamela Seijas. Java Erlang Bridge. https://github.com/palas/jeb [last accessed
29th June 2017].

P. Lamela Seijas, S. Thompson, and M. A. Francisco. Model extraction and test gen-
eration from JUnit test suites. In International Workshop on Automation of Software
Test, pages 8-14. ACM, 2016.

K. J. Lang, B. A. Pearlmutter, and A. Rodney. Results of the abbadingo one dfa
learning competition and new evidence driven state merging algorithm. In ICGI’98:
The 4th International Colloguium on Grammatical Inference.

D. Lo, S.-C. Khoo, J. Han, and C. Liu. Mining Software Specifications: Methodologies
and Applications. CRC Press, 2011.

D. Lorenzoli, L. Mariani, and M. Pezze. Inferring state-based behavior models. In
Proceedings of the 2006 international workshop on Dynamic systems analysis, pages
25-32. ACM, 2006.

A. Marchetto, P. Tonella, and F. Ricca. State-Based Testing of Ajax Web Applications.
In IEEE International Conference on Software Testing Verification and Validation,
pages 121-130. IEEE Computer Society, 2008.

P. Naur and B. Randell. Software Engineering: Report on a conference sponsored by
the NATO SCIENCE COMMITTEE. Nato, 1969.

M. Pradel and T. R. Gross. Automatic Generation of Object Usage Specifications from
Large Method Traces. In International Conference on Automated Software Engineering,
pages 371-382. IEEE Computer Society, 2009.

M. Shahbaz, K. Li, and R. Groz. Learning and integration of parameterized components
through testing. In Testing of Software and Communicating Systems, pages 319-334.
Springer, 2007.

F. Tip. A survey of program slicing techniques. http://www.franktip.org/pubs/
jpl1995.pdf, 1994.

N. Walkinshaw, B. Lambeau, C. Damas, K. Bogdanov, and P. Dupont. Stamina: a
competition to encourage the development and assessment of software model inference
techniques. Empirical software engineering, 18(4):791-824, 2013.

N. Walkinshaw, R. Taylor, and J. Derrick. Inferring extended finite state machine models
from software executions. Empirical Software Engineering, 21(3):811-853, 2016.

P. Wyard. Context free grammar induction using genetic algorithms. In Grammatical
Inference: Theory, Applications and Alternatives, IEE Colloquium on, pages 514-518.
IET, 1993.

Model extraction and test generation from JUnit test suites

35

checkNotRunningError

Negative instance classes

Calls with keywords like “error” or “fail”, and their dependencies
are considered negative tests, and marked in pink. In this paper,
they are also marked with the letter “N” in a circle.

7

Methods @Test, @Before, and @After

The colour of the outline represents the places where the com-
mand was found, see Table 2 (on page 36).

Arrows

Data dependencies are represented with grey arrows (marked
with a “D”). Arrows connect the methods that produce an object
as result, with methods that take it as a parameter.

1\@\
PO

Dashed arrows

When an object produced as the result of a method is used as
target of another method (i.e: the this object of the method),
the dependency relationship is represented with a dashed grey
arrow (marked with a “D”).

o

%

Brown arrows

Control dependencies are represented through brown arrows
(marked with a “C”). These are created following the order in
which the methods were originally executed in the unit tests.

%}%k/

Loop highlighting

Loops in control dependencies are represented with thicker ar-
rOWS.

<>,

one0f diamonds

We depict only as many continuous grey arrows ending in each
node as parameters it takes. To achieve this, James groups arrows
by using the one0f diamond nodes.

HTTP request grouping (subgraphs)

|
‘ {post,"/freq_server/Sto
’J_‘ —

Methods that are inferred to be related to a HTTP request to
the same URL are grouped in subgraphs surrounded by a black
rectangle. The tuple in the rectangle denotes the method and
URL used.

y

rtNotNull

Double outline

Static methods are denoted with double outline. Methods double
outline must not have an incoming dashed arrow.

Table 1 Diagram symbol legend

36 Pablo Lamela Seijas et al.

[@Before [Q@Test [QAfter [Outline colour [Circle label]

No No No Grey [l -
Yes No No Green [l @
No Yes No Blue |l no label
No No Yes Red D)
Yes Yes No Teal [l -
No Yes Yes Purple |l -
Yes No Yes Yellow [l -
Yes Yes Yes Black || -
Table 2 Outline colour legend for methods
Postconditions TOTAL
Al that pass 0 1 2 3 TRSTS
postconditions
0 3 0 0 0 3
1 151 25 0 0 176
2 720 591 29 0 1340
3 157 584 161 31 933
4 0 0 18 16 34
5 0 0 251 244 495
6 0 0 118 | 107 225
TOTAL TESTS 1031 | 1200 | 577 | 398 3206
Table 3 Distribution of postconditions in tests generated.
Average Average Average
HTI\'IIl‘l[r)nEfertﬁ(f) ds Number | number of numbe%r f)f .numbelf of
per test of tests methods postconditions | instructions
per test per test per test
0 3 1.0000 0.0000 1.0000
1 126 6.7143 1.6349 11.3571
2 568 9.8380 1.9701 14.8908
3 1417 12.8574 3.2519 19.8483
4 717 17.0181 3.3710 26.8745
5 263 21.5247 3.4144 34.2167
6 80 25.7375 3.3375 41.4625
7 31 30.2903 3.1613 48.9032
9 1 33.0000 3.0000 48.0000
[TOTAL 3206 14.2077] 2.9994 [221978

Table 4 Distribution of methods that produce HTTP requests in tests generated.

Model extraction and test generation from JUnit test suites

[Classification [Matching tests
1 interesting part 10
2 interesting parts 2
Both interesting and not 8
Only non-interesting parts 9
[TOTAL [30

Table 5 Manual evaluation of interest for first 30 tests.

[Classification [Matching tests
Negative tests 13
Positive tests 5

Both positive and negative 3
Non-interesting tests 9
[TOTAL 30

Table 6 Manual evaluation of positive or negative testing for interesting tests.

