
Gomes, Nathan J., Sehier, Philippe, Thomas, Howard, Chanclou, Philippe, 
Li, Bomin, Munch, Daniel, Assimakopoulos, Philippos, Dixit, Sudhir and 
Jungnickel, Volker (2018) Boosting 5G Through Ethernet: How Evolved 
Fronthaul Can Take Next-Generation Mobile to the Next Level.  IEEE Vehicular 
Technology Magazine, 13 (1). pp. 74-84. ISSN 1556-6072. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/66347/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1109/MVT.2017.2782358

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/66347/
https://doi.org/10.1109/MVT.2017.2782358
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


Ethernet-Based Evolved Fronthaul for Next-Generation Mobile 

Networks 

Nathan J. Gomes, Philippe Sehier, Howard Thomas, Philippe Chanclou, Bomin Li, Daniel Münch, 

Philippos Assimakopoulos, Sudhir Dixit and Volker Jungnickel 

Abstract: 

Current approaches to the fronthaul for centralized- or Cloud-Radio Access Networks (C-RANs) need 

to be revised to meet the requirements of next-generation mobile networks. There are two major 

challenges: first, fronthaul signals need to be transported over public fixed access networks, such as 

passive optical networks (PONs), typically sharing them with other services; second, higher data rates 

must be catered for due to larger radio bandwidths and greater use of multi-antenna techniques, 

such as massive MIMO.  Using Ethernet as a new transport protocol for the fronthaul allows 

statistical multiplexing and enables convergence between fixed and mobile services. This new 

approach more easily benefits from common developments being made for service level 

agreements, functional virtualization and software-defined networking. Higher data rates will be 

supported by the move to new, and possibly flexible, functional split points inside the radio access 

network (RAN) protocol stack of the processing located in the central and distributed units, as is 

being investigated by a number of bodies. However, there are technical challenges with regard to 

latency and packet delay variation.  This article summarizes the benefits of an Ethernet-based 

fronthaul for the next generation of mobile networks, its main challenges and how these may be 

overcome. 

 

1. Introduction 

The 5th generation of mobile networks (5G) targets the rollout of new, customized and highly 

differentiated services, together with the associated business models for different vertical markets, 

having rather diverse sets of requirements. The key idea is to support these multiple services in 

parallel as “tenants” in a single network infrastructure, something also denoted as network slicing. 

Multiple such slices, one for each service, can be implemented in parallel as virtual networks in the 

same physical transport network. In this way, next generation mobile networks will achieve the 

required scalability, flexibility, CAPEX reduction, openness and portability [1].  

In the radio access network (RAN), there is a need to support critical new technologies, such as small 

cells and the use of new spectrum with higher bandwidth in the mm-wave region [2].  New 

techniques such as massive multiple-input multiple-output (MIMO) and coordinated multipoint 

(CoMP) and new inter-cell interference management functions enable a higher spectral efficiency [3]. 

In general, these techniques require a higher degree of coordination in the next generation of mobile 

networks, and the so-called centralized Cloud-Radio Acccess network (C-RAN) is a favored approach 

to reach these goals while keeping complexity, energy consumption and costs low [4].  



In a C-RAN, the functionality of a base station is split into a baseband unit (BBU) and remote radio 

heads (RRHs), with the transport between them denoted as the fronthaul (as opposed to the 

backhaul link between the RAN and the core network of the mobile operator). Until now, C-RANs 

have re-used equipment from traditional RANs with separated BBUs and RRHs, and stacked the BBUs 

at a central location. Sampled radio waveforms are transported over this fronthaul. There is a 

potential “pooling gain” through flexible interconnection of the stacked BBUs and the distributed 

RRHs. For instance, the same BBUs could be used for RRHs deployed in industrial and home areas 

during work and leisure times, respectively. Accordingly, the BBUs have been increasingly considered 

a pooled processing entity to which an increased amount of network virtualization can be applied, 

leading to the notion of the virtualized RAN (vRAN). The vRAN will enable new RAN techniques such 

as CoMP/MIMO and intercell interference management, that are applied on a per-user basis, to be 

incorporated into the end-to-end network slicing. 

Increasingly centralized processing in operators’ networks will result in the fronthaul being part of a 

public network infrastructure, typically shared with other services, including fixed access, and open 

to other operators in some countries, due to telecommunications deregulation. The evolution of 4th 

generation (4G) and advent of 5G networks, with ever higher data rates, realized with higher 

bandwidths and more antennas, has led to the common understanding that the transport of sampled 

radio waveforms between the central site and the RRHs will no longer be feasible, as it would require 

extremely high data rates over this shared network infrastructure.  To avoid sampled radio waveform 

transport, new split points for the partition of the RAN protocol functions between the central unit 

(CU) and distributed units (DUs) are now widely discussed [5]-[8].  

Ethernet is a prime candidate for this evolved fronthaul, due to its flexibility and ubiquity/cost-

effectiveness [7]. It allows sharing of the network infrastructure through standardized virtualization 

techniques and, through its packet-switched operation, the realization of statistical multiplexing and 

aforementioned pooling gains.   

In this article, we report on the current state of standardization towards an Ethernet-based next-

generation fronthaul interface within IEEE 1914.  While the use of Ethernet in the fronthaul for a 

software-defined RAN or vRAN has been considered in previous work such as [9], we extend the 

analysis of the benefits provided by Ethernet of through its provision of not only transport but also 

standardized network control and management that can be employed for network optimization.  The 

overview of the most interesting functional splits and their benefits and requirements is also given in 

the context of 3GPP standardization [6].  Further, in addition to highlighting fronthaul timing and 

synchronization requirements, an overview of techniques that can enable meeting such 

requirements in Ethernet networks is presented. Finally, as bandwidth requirements will continue to 

remain significant, we provide an overview of the optical fiber technologies, such as passive optical 

networks (PONs), which will enable the next generation fronthaul. 

2. Consideration of Ethernet in the IEEE 1914 working group 

 

The IEEE 1914 working group [7], Next Generation Fronthaul Interface (NGFI), founded in 2016, has 

been motivated by the flexibility of Ethernet. There are two ongoing projects, P1914.1 and P1914.3. 



The P1914.1 project focuses on defining the architecture for the fronthaul transport networks while 

the P1914.3 project specifies the packetization of radio traffic over Ethernet. 

The scope of the P1914.1 project is to specify: 1) An Ethernet-based architecture for the transport of 

mobile fronthaul traffic, including user data traffic, and management and control plane traffic; 2) 

Requirements and definitions for fronthaul networks, including data rates, timing / synchronization, 

and quality of service. It focuses on specifications from the fronthaul transport networks’ 

perspective. The definition of new functional splits between CU and DUs is out of the scope of IEEE 

P1914.1; rather, proposed splits in other standardization groups, such as various options in the 3rd 

Generation Partnership Project (3GPP) [6], see section 3, Small Cell Forum (SCF) [5] and eCPRI in the 

CPRI group [8] will be considered.  

Three general service classes are considered as the baselines for the fronthaul transport network 

requirements: Control & Management, Transport Network Control & Management (related to 

fronthaul transport, e.g. control of delay), and Data plane. Figure 1 illustrates the future fronthaul 

architecture: in the uplink direction, data flows from DUs to CU (which can comprise the BBU pools) 

are encapsulated into Ethernet frames before being transported. Radio over Ethernet (RoE) specifies 

how to encapsulate CPRI frames from 2G/3G/4G RRHs into Ethernet frames. Data flows from 5G DUs 

and enterprise services are encapsulated into Ethernet format based on example NGFI 1 and NGFI 2 

specifications.  All service classes will be specified for each NGFI, but the requirements differ. The CU 

supports processing of Ethernet frames in all of these formats. In the downlink direction, the CU 

sends Ethernet frames in the formats required by the destinations. RoE frames are de-encapsulated 

into CPRI frames before being transmitted to 2G/3G/4G RRHs. Ethernet frames sent to 5G DUs and 

enterprise services are de-encapsulated based on NGFI 1 and NGFI 2 specifications. 

 

Figure 1  The flexible Future Fronthaul Network 

 

The IEEE P1914.3 project is at its final review stage and aims for a first release by the end of 2017. By 

using a common header format for both data and control packets, RoE level sequencing, 

synchronization and multiplexing is supported. Two mappers are defined in the standard to support 

transporting existing radio transport protocols over Ethernet: structure-agnostic mapper and 

structure-aware mapper. The structure-agnostic mapper has minimal knowledge of the framing 

protocol it transports while the structure-aware mapper breaks a CPRI stream into antenna-carrier 

and control-data component streams to enable more efficient transportation and switching. 



Packetization of in-phase and quadrature (I/Q) samples in both time domain and frequency domain 

will be defined in the standard. Future amendments can add support to radio data of other formats. 

 

3. Split functionality in the RAN 

Alternative function splits in next generation RAN architectures have gained significant interest in 

vendor ecosystems, as well as in 3GPP and other fora.  A number of possible split points have been 

identified by 3GPP [6], see Fig.2, and analyzed. Variants have been identified for some split points. 
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Figure 2: Functional split between central and remote units (reproduced with permission from [6]) 

The main criteria for analyzing these split points are: (1) data rate; (2) uniformity of the data rate 

depending on cell load (e.g. data pattern burstiness); (3) techno-economic scalability of the 

throughput (e.g. per number of antennas or layers?); (4) latency and jitter requirements; (5) 

synchronization requirements; (6) flexibility to support advanced features;  (7) support of error 

detection/correction; (8) implementation complexity (e.g., required buffer sizes for link layer 

control); (9) compatibility with packet-optical transport networks. 

The split points can be classified in two main categories: 

 Low Layer Splits (LLS):  those requiring a very low latency transport, typically below 250 µs as 

the split is within the real time functions of the RAN. These are splits 4 to 8 in Fig.2. 

 High Layer Split (HLS): those having less stringent requirements on latency, and therefore 

compatible with most existing transport networks. These are typically splits between the real 

and non-real time functions of the RAN, splits 1 to 3 in Fig.2 (including the traditional 

backhaul profile). 

There is now a consensus in 3GPP on the main characteristics and merits of these split points and 

related transport profiles, summarized in Table 1. 

 

 

 

 



 1 2 3-2 3-1 5 6 7-2 7-1 8 

Baseline 
available 

No 
Yes 
(DC) 

No 
Yes 

(CPRI) 

Traffic 
Aggregation 

No Yes 

ARQ location Remote unit Central unit 

Resource 
pooling in 

CU 
Lowest Increasing  Highest 

Latency 
requirement 

Loose FFS Tight 

Transport 
NW Peak 

BW 
requirement 

N/A Lowest Increasing  Highest 

No UP 
req. 

baseband bits IQ (f) IQ (t) 

- Scales with traffic load 
Scales with 
antennas 

Multi-
cell/freq. 

coordination 

multiple schedulers 
 (independent per remote unit) 

centralized scheduler 
 (can be common per central unit) 

UL Adv. Rx FFS Yes 
Table 1: Summary of characteristics of different central-remote unit split options (simplified from [6]). Note (definition of 
sub-options): Option 3.1: L-RLC: segmentation and concatenation functions, and High RLC: ARQ and re-ordering functions; 
Option 3.2: L-RLC: TX RLC and H-RLC: RX RLC; Option 7.1: Low-PHY: FFT (UL), iFFT (DL); Option 7.2: Low-PHY: option 7.1 plus, 
resource de-mapping and pre-filtering 

3GPP is moving towards specifying only 2 split points, one LLS and one HLS, considering that no more 

splits are needed to fulfill all deployment and use case requirements. Although there is not yet a 

complete consensus at the time of writing of this article, it seems that 3GPP will focus its efforts for 

transport profiles on option 2 for the HLS, and on sub-options of option 7 for the LLS, as new 

additions to the traditional backhaul and IQ fronthaul (CPRI, option 8). An overview on implications 

of the different split options is given in Table 1. 

HLSs have less stringent latency requirements, and their throughput needs are just 10-20% above 

those of traditional backhaul. This makes the transport profile of a HLS compatible with most existing 

packet-optical transport networks. Most or all functions above the split points can be virtualized and 

when located in the first or second aggregation point in the fixed access network, they can offer 

large-scale pooling (cloudification) gains. A HLS, being less tied to 5G New Radio (NR) waveforms, is 

inherently more future-proof with respect to L1 evolution than a LLS option. The downside is the 

limitation on supporting advanced cooperative features, and hence limited performance of the radio 

link, and the greater specialization (complexity) of the DUs. 

The main objective of the LLSs is to exploit the entirety of the radio information of any given DU at 

the CU so as to improve radio performance (taking into account the severe interference-limited 

conditions in a cellular RAN). LLSs make it possible to use CoMP and distributed massive MIMO, as 

well as other advanced receiver techniques. LLSs are from this respect the most future-proof split 

option. The main drawbacks of LLSs are their stringent latency requirements and the higher bit-rates 

in the cases of options 7 (in particular for uplink) and 8 (for both link directions). Typical deployment 

scenarios of LLS profiles would be fiber-rich access environments where suitable transport can be 

established, most likely in rather local footprints to form cooperating clusters of DUs.  



Moreover, there are techno-economic challenges for LLS option 7.1 as requirements scale with the 

number of antennas, making it unattractive, especially for massive MIMO. Option 7.2 introduces the 

possibility of doing part of the MIMO processing in the DU, at the cell premises [6] or directly in the 

neighborhood. As resource de-mapping can be performed at DUs only allocated resources are 

transmitted on the interface, offering traffic aggregation advantages when several cells are 

multiplexed. 

5G networks will typically comprise several network aggregation points: for example, there may be a 

DU, an edge cloud and a central cloud. DUs may be limited to RF functions (conventional RRH), or 

include all or part of the RAN stack, or be a formed from a combination, e.g. in the case of multi-RAT 

sites. The general principle is illustrated in Fig. 3. The placement of RAN functions clearly depends on 

(i) transport network capabilities, (ii) service requirements (access to edge or centralized services, 

necessary response times) and (iii) load and availability.  

Several split points could ideally be used at the same time in the same network. One intuitive 

example is of CoMP, requiring a LLS, which is significant for users at the cell edge, whereas single-cell 

processing may be sufficient for users near a DU, and a HLS would be adequate. By using a mix of 

split points, transport capacity could be minimized while network performance is maximized.  

However, the dynamic re-allocation of functions between physically separated aggregation points is 

complex and currently considered only as a possible evolution. Similarly, mixing several processing 

levels on a UE or service flow basis requires the simultaneous support of several split points and 

transport network profiles. Thus, dynamic reconfiguration is not in the current scope of 3GPP 

specifications, but rather within other standardization bodies, such as ETSI NFV. 

 

Figure 3: Hybrid 5G RAN architecture 

 

4. Time-Synchronous Networking  

 

DUs will require frequency synchronization to meet radio transmission requirements (center 

frequency of local oscillators, sampling frequencies of the waveform) and time-alignment between 

radio bursts transmitted [3]. Frequency synchronization has been inherently available with CPRI, as 



the constant bit-rate is locked to a frequency reference. However, for packet-based NGFI solutions, 

mechanisms for frequency synchronization and time of day (TOD) alignment are now required.  IEEE 

1588-2008 Precision Time Protocol (PTP) is the likely choice for the latter.  PTP assumes symmetrical 

delay in the forward and reverse directions; hence, one-way-delay measurement and link assignment 

may be required to minimize asymmetry.  Clock frequency offset results in timing error, which may 

be minimized by exploiting frequency synchronization between master and slave. It is assumed that 

Synchronous Ethernet (SyncE) will be used for this. Thus, PTP traffic and SyncE are considered 

alongside any Ethernet-based fronthaul protocol. 

As stated in Section 3, while LLS offers increased opportunity for advanced network performance, 

latency and packet delay variation are major concerns. This section presents a number of methods 

targeting time sensitive networking over a bridged Ethernet-based fronthaul network, in an 

ascending order of design complexity.  

The IEEE P802.1CM standards group (Time-Sensitive Networks for Fronthaul) is in the process of 

compiling profiles on time-sensitive networking mechanisms which address the stringent 

requirements in fronthaul networks [10]. Among other requirements, the standard classifies four 

categories for time synchronization (A+, A, B and C). For example, category A+ has an absolute time 

error of 12.5 ns, by far the most stringent requirement, and is applied for MIMO applications. 

Category C defines a maximum absolute time error in the order of 1.3 µs, a requirement for time 

division duplex based operations. Currently, the main focus is on transporting CPRI traffic over 

Ethernet which is termed as Class 1. Class 1 consists of two profiles (Profile A and Profile B) 

addressing different requirements. 

Profile A comes with the lowest design complexity: it employs no advanced means for time-sensitive 

networking and employs just strict priority (SP) scheduling for the different transported traffic 

classes, using an increasing priority from background data, control and management data, I/Q user 

data to synchronization data. Frame delay variation (FDV) or packet delay variation is caused by 

queuing (introduced by aggregation and/or by blocking of higher priority (HP) traffic by lower priority 

(LP) traffic) and the number of hops or switches and frame sizes. Simulation results [11] show that 

Profile A can meet Category C requirements for very low aggregation levels and small frame sizes. SP 

is an improvement over no priority-based scheduling or other schedulers such as WRR (Weighted 

Round Robin). SP can reduce FDV on average, but not the peak delay variation [12].  

FUSION, a promising approach presented in [13], combines packet and circuit switching to multiplex 

HP traffic streams (the circuit switched part) with LP statistically multiplexed streams (the packet 

switched part) over an Ethernet network. The main idea is to exploit the inter-packet gaps between 

HP frames to transmit the LP streams (see Fig. 4). As a result, the FDV is significantly reduced and can 

potentially meet Category B requirements. Furthermore, this approach achieves a significantly 

improved utilization compared to a fully provisioned circuit switched network and does not require 

an additional (out-of-band) form of synchronization. 



 

 

Figure 4: FUSION: Exploiting the inter-packet gaps between HP frames to transmit LP frames 

Profile B employs frame pre-emption based on P802.1Qbu [14], where a HP frame can pre-empt a LP 

one (see Fig. 5). However, pre-emption is not instantaneous and introduces further delay. The worst 

case of this delay is 124 ns for 10 Gb/s Ethernet (equivalent to the processing time of a 155-octet 

packet). The advantage of pre-emption is a reduction in the end-to-end latency (compared to profile 

A and the FUSION approach) for the same number of hops. This leads to an increased reach. But the 

advantage depends on the traffic mix at each aggregation point. If the traffic is mainly of the same 

priority, the benefit will be low. With a small frame size (e.g. 300 bytes), frame pre-emption can meet 

Category C requirements [11]. 

 

 

Figure 5: Frame pre-emption: HP frame can pre-empt a LP frame 

 

Time-aware scheduling based on IEEE P802.1Qbv [15] separates traffic into uncontended window 

sections to reduce FDV further. HP traffic is assigned a HP window section (the protected section) 

while LP traffic is assigned a best effort section. Transmission through a window is determined by the 



scheduler. Simulation results for fronthaul with CPRI [16] and a new functional split [17] show that 

such a scheduler can completely remove FDV. The complexity of time-aware scheduling increases 

with the network size.  A global scheduler is required to ensure that intra-window contention does 

not take place within the various network nodes. Further, guard periods are required so that LP 

traffic does not overrun into the protected section [16], [17]. A combination of time aware-

scheduling and pre-emption can be used to reduce the size of required guard periods. 

 

5. Network optimization 

 

Variable split options could facilitate scalable, cost-effective deployments and real-time optimization 

[3] trading fronthaul resource consumption against radio performance, and serving a fluctuating user 

demand while meeting Quality of Service (QoS) needs. A Service Level Agreement (SLA) between an 

operator and the user will define metrics by which a fronthaul service is measured, the methodology 

by which the metric is verified and penalties if the agreed-upon QoS parameters should not be 

achieved. SLAs should explicitly consider the new fronthaul configurations, and their reconfiguration 

and failure modes arising from the introduction of Ethernet-based transport and traffic aggregation. 

The life-cycle of a service is usually split into three phases: (1) provisioning and turn-up to verify the 

SLA, (2) performance management (checking that the service meets the SLA), and (3), fault 

management (sectionalizing the problem, escalating, and correcting it).  Existing, standardized 

Operations, Administration and Maintenance (OAM) addresses the protocol layering in Ethernet-

based networks, with IEEE 802.3ah used for link, IEEE 802.3ag for connection and ITU Y.1731 for 

service layers [18]. This framework may need to be supplemented to address the challenges 

presented by the new fronthaul. 

Key Performance Indicators (KPIs) for a typical radio service are: availability/downtime, packet delay 

(latency), packet delay variation (jitter), loss and throughput.  Measurements for delay and jitter are 

of the order of millisecond accuracy based on pings, which is clearly insufficient for the LLSs, as 

discussed in Section 3.  Hence, high-resolution timestamping becomes essential. Historically, vendors 

have resisted the use of 3rd party probes in favor of “own-brand” devices, but their capability is not 

always sufficient. Consequently, operators are requesting an open approach that allows the use of 3rd 

party probes. The new performance metric measurements associated with the fronthaul, together 

with other data such as RF signal quality and application performance, feed to the SON (self-

organizing / self-optimizing network) algorithm that determines the network configuration and 

associated parameter settings. Fig. 6 illustrates such a SON-controlled system that creates network 

slices using virtualized network functions (VNFs) and configures the fronthaul based on subscriber 

service and location. Performance metrics are processed by an analytics service, which feeds to an 

optimization engine that determines the appropriate network configuration and an orchestration 

engine that effects network changes through, for example, a software-defined network (SDN) 

controller and a RAN manager/controller. 



 

Figure 6 : SON in a 5G network, including orchestration of the RAN 

 

6. Interoperability with PONs 

 

Optical access systems have seen a widespread deployment over a decade or more. Besides active 

Ethernet, Gigabit-capable Passive Optical Network (G-PON) was introduced in the field by several 

operators, initially aimed at providing up to 100 Mbit/s rate to multiple end customers connected 

simultaneously to the same optical fiber. Currently, commercial offers with more than 100 Mbit/s are 

possible on G-PON and even 1 Gbit/s commercial offers are available. After G-PON, XGS-PON (a PON 

operating at 10Gbit/s downstream, and 2.5 or 10 Gbit/s upstream) is recognized as the next 

deployable solution. Following XGS-PON, present standardization is working on 25 Gbit/s line rates as 

an add-on solution for the deployed Optical Distribution Network (ODN). All of these solutions are 

based on a wavelength channel pair for the up- and down-streams that coexist on the same ODN. 

TDM (Time Division Multiplexing) and TDMA (Time Division Multiple Access) are used for sharing the 

trunk part of the ODN and a single interface at the central office. Since 2015, multi-wavelength PON 

solutions have been standardized combining time and wavelength (TWDM PON) or only multi-

wavelength (WDM PtP PON) approaches.  

5G aims at fiber-like experience for mobile users. Undoubtedly, fiber will be the dominant technology 

solution for backhaul. Optical access systems, particularly for PONs must obviously meet the 

requirements of both fronthaul and backhaul, and support the different split options. Fig. 7 shows 

how the existing access solutions can collect Ethernet traffic in two RAN scenarios: 

a) backhaul where CU functions and DUs are co-located at the antenna site 
b) Ethernet-based evolved fronthaul (e-fronthaul) with evolved Ethernet-DUs (DUs with a new 

RAN function split) localized at the antenna site and virtualized CUs located at a master 
central office (operator point of presence node). 
 



 

Figure 7.  Optical access solutions (PtP, T(W)DM POn and WDM PtP PON) for a) backhaul and b) e-fronthaul 

 

The support of low latency and synchronization by T(W)DM or PtP WDM PONs will be the major 

differentiators from a residential (fixed) optical access system for the e-fronthaul. Here, different 



flavors of dynamic bandwidth allocation (DBA) based on time allocation for TDM/TDMA or through 

combination with wavelength allocation for TWDM could be proposed to accommodate the required 

timing performance. Coordination between OLT and virtualized CU could be also proposed due to the 

fact that the virtual CU knows, in advance, the desired time allocation of the radio signal for each DU. 

 

7. Conclusion 

 

The evolution towards the next generation mobile network requires a new, converged radio and 

fixed access network infrastructure. New functional split options are required between centralized 

and distributed units in the next generation radio access network to enable more centralized 

deployment in which radio signals are transported over public, rather than private networks, so that 

more feasible bit-rates in the fronthaul are required. Transport of the new fronthaul has different 

requirements for data rates, delay and jitter, compared to the existing fronthaul, and depends on the 

split option chosen for a particular service. The use of Ethernet as a new transport protocol for the 

fronthaul is attractive from multiple perspectives:  cost, standardized network control and 

management functions, software-defined networking and extending existing means of network 

monitoring and tools for optimization. However, new methods and tools for controlling delay and 

packet jitter will be required to serve the advanced lower-layer split options that are the most 

promising for improving radio network performance. Finally, compatibility with existing and new 

optical access technologies needs further research to ensure a future-proof deployment in the face 

of increasingly demanding radio network requirements. 
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