
Batty, Mark (2017) Compositional relaxed concurrency. Philosophical Transactions
of the Royal Society A: Mathematical, Physical and Engineering Sciences,
375 (2104). ISSN 1364-503X.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/64300/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1098/rsta.2015.0406

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/64300/
https://doi.org/10.1098/rsta.2015.0406
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

rsta.royalsocietypublishing.org

Research

Article submitted to journal

Subject Areas:

Computer Science

Keywords:

Relaxed memory, verification,

semantics, concurrency,

heterogeneous systems, GPU

Author for correspondence:

Mark Batty

e-mail: mbatty@cantab.net

Compositional relaxed
concurrency
Mark Batty

University of Kent

There is a broad design space for concurrent computer
processors: they can be optimised for low power,
low latency or high throughput. This freedom to
tune each processor design to its niche has led to
an increasing diversity of machines, from powerful
pocketable devices, to those responsible for complex
and critical tasks, such as car guidance systems.

Given this context, academic concurrency research
sounds notes of both caution and optimism. Caution
because recent work has uncovered flaws in the
way we explain the subtle memory behaviour of
concurrent systems: specifications have been shown
to be incorrect, leading to bugs throughout the many
layers of the system. And optimism because our
tools and methods for verifying the correctness of
concurrent code – although built above an idealised
model of concurrency – are becoming more mature.

This paper looks at the way we specify the memory
behaviour of concurrent systems and suggests a new
direction. Currently there is a siloed approach, with
each processor and programming language specified
separately in an incomparable way. But this does not
match the structure of our programs, which may use
multiple processors and languages together. Instead
we propose a compositional approach, where program
components carry with them a description of the
sort of concurrency they rely on, and there is a
mechanism for composing these. This will not only
support components written for the multiple varied
processors found in a modern system, but also those
that use idealised models of concurrency, providing a
sound footing for mature verification techniques.

The advent of concurrency in computing has provided an
extraordinary level of performance, allowing computer
systems to pervade modern life, from personal computers
and mobile phones, to critical-infrastructure control
systems and even safety-critical automotive applications:
in every sense, our lives depend on these machines.

c© The Author(s) Published by the Royal Society. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsta.&domain=pdf&date_stamp=
mailto:mbatty@cantab.net

2

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..

For each niche that a particular computer occupies, we incorporate a processor whose
concurrency scheme is tuned to that niche: typical CPUs have few cores, each optimised for low
latency, whereas mobile-phone processors use a concurrency scheme tuned to low power usage,
and graphics processors (GPUs) feature a vast array of small cores, providing high throughput.
One element is common to the concurrency schemes of all mainstream processors: the cores of
the processor communicate with one another by writing to and reading from a shared memory.
Processor vendors avoid the cost of fully hiding microarchitectural details such as memory
caching, buffering and value speculation by permitting unintuitive program executions that
violate sequential consistency (SC), a model for the behaviour of memory where concurrent
accesses are simply interleaved [23]. We say that these non-SC systems exhibit relaxed memory
behaviour.

Despite their ubiquity, relaxed memory systems are extremely subtle and poorly understood.
The behaviour of a given processor is typically delineated by an English-prose specification
document, published by its vendor. Unfortunately, English prose is prone to ambiguity, omission
and error, leading to major bugs in programming language specifications [11,13], deployed
processors [3], compilers [25,32,37], and vendor-endorsed programming idioms [1] – it is clear
that current engineering practice is severely lacking. At the same time, without a precise definition
of the underlying concurrency scheme, rapidly maturing software verification techniques rely on
the idealised assumption of sequential consistency, limiting their applicability.

There has been a strong response to this problem from academia, providing mechanised
formal models that unambiguously specify relaxed memory behaviour, together with tools that
execute the models, and proofs that validate key design goals. Many of these models were
developed in close collaboration with the system designers [2,4,6,13,24,31,37] and some have
even led to alterations in industrial specifications [13,37]. Recent work provides formal models of
relaxed CPU concurrency [2,4,7,24,26,31], relaxed GPU concurrency [1,37], and the concurrency
schemes of various programming languages [10,13,37]. The techniques used to develop, refine
and validate these models are maturing, but most models are still in flux, with current work
tackling fundamental problems in relaxed programming language concurrency [11,19,20,27,28],
and separate work developing more accurate and complete processor models [16,17].

These memory models are limited in their coverage: they eschew as much detail as possible,
narrowly focusing on the memory behaviour of a monolithic program written for a single
processor architecture or programming language. But real programs are not monoliths, and nor
are they written for a lone processor or language. Instead, they are an aggregate of rather different
components, each written for one or another of the system’s processors, or within one of a host
of programming languages, each with its own concurrency rules. Moreover, each component is
the creation of a different team of people, and is refined in isolation of the rest of the aggregate,
both manually by its developer, but also automatically by optimising compilers. The disparate
components are cemented together, aided by a set of conventions that govern how they ought
to be combined, but each component is primarily understood in isolation. It is at the level of the
component that we write our code and attempt to verify its correctness, but our existing models of
concurrency, which can only judge the behaviour of a whole program, do not fit with this reality.

This document will suggest a new form for relaxed memory models. One that seeks to
accommodate the view of a concurrent program as an aggregate of varied components. This
model will ultimately form the basis of a reasoning principle which will enable verification above
the varied collection of relaxed CPUs and GPUs in a modern system. The same approach will
enable the separate verification of components using well-developed SC reasoning principles.

1. Relaxed concurrency
All mainstream processors use a shared memory for communication between cores,
allowing subtle and unintuitive relaxed behaviours in order to admit performance-enhancing
optimisations. Programming languages that compile down to these processors also allow relaxed

3

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..

behaviour to permit efficient compilation, but in addition they perform intricate compiler
optimisations that introduce yet more relaxed behaviour. This section will give a flavour of
the concurrency behaviour allowed by SC, a selection of mainstream processors, and the C++
language.

(a) Sequential consistency.
Advanced verification techniques typically adopt sequential consistency [23], an idealised model
of concurrency, free from the odd behaviours induced by optimisations. Here, the memory
accesses of each thread are interleaved, respecting the order that they appear in the thread, and
they act on a single shared memory with each read of a variable taking the value of the previous
write of that variable.

We will illustrate this model with a simple example program, called store buffering, listed below.
It comprises two threads executing in parallel, with one drawn above the other, separated by a
horizontal bar. We assume all variables start with value 0. The first thread stores 1 to x and then
reads from y, storing the result in r1, and the second stores 1 to y and then reads from x, storing
the result in r2. Here, x and y are variables in memory, and we highlight accesses of them by
using calls to load and store. In contrast, r1 and r2 represent thread-local variables, and we
do not consider their effect on memory.

Store buffering (SB)
store(x,1)

r1=load(y)

store(y,1)

r2=load(x)

Under sequential consistency, what outcomes are allowed? Variables x and y start with value
0 and there are only writes of value 1, so there are four possibilities to consider: 1/1, 1/0,
0/1 and 0/0. We can construct interleavings of the accesses that are consistent with the first
three outcomes. For example, the outcome 1/1 is produced by the interleaving: store(x,1),
store(y,1), r1=load(y), r2=load(x). Note that there is no interleaving – consistent with
the order of accesses in the program – that matches the outcome 0/0, so that behaviour is
forbidden by sequential consistency.

(b) Processor concurrency models
Processors exhibit more complex memory behaviour because they feature optimisations over
memory that are not hidden from the programmer.

x86 processors. Academic work on a formal model of the concurrency behaviour of x86
processors highlighted deficiencies in the processor architecture documentation [26,33]. Intel
released further documents that fixed the problems, bringing their descriptions in line with the
formal model. According to this model, each thread of an x86 processor has a buffer attached, and
when a thread stores a value, that store enters the buffer before being flushed to memory at any
later point. When a thread loads a value, it checks its local buffer first, and if there is no store of
the variable sought, only then does it load directly from memory.

Returning to the SB example above, note that any SC outcome can be witnessed in the x86
model by flushing stores immediately following buffering. The model is more relaxed than
SC however, because the outcome 0/0 is allowed by the following sequence of steps: buffer
store(x,1) on the first thread, buffer store(y,1) on the second, load(y) from memory,
load(x) from memory.

The store buffering test is a minimal example that illustrates a relaxed behaviour. We call such
examples litmus tests, and in future tests, we will use comments in the code to indicate the outcome
that corresponds to the relaxed behaviour (e.g. 0/0 here in SB).

4

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..

Power and ARM processors. The Power and ARM processors make many more optimisations
visible to programmers, and as a result exhibit far more relaxed behaviour. Their models are
similar and are too intricate to describe here, but one can get a flavour of them by considering the
message-passing litmus tests below.

Message passing (MP)
store(x,1)

store(y,1)

r1=load(y) //reads 1

r2=load(x) //reads 0

MP+sync+ctrl
store(x,1)

sync

store(y,1)

r1=load(y)

if(r1 == 1)

{r2=load(x)}

MP captures the following intuition: the first thread writes some data (represented by the write
to x), with the expectation that this may take some time. On completion, the same thread writes
to a flag variable y. The second thread reads the flag y. If it is set, then the data in x should be
ready to read, so the load of x should get value 1. If the indicated outcome 1/0 is permitted, then
this so-called message passing idiom breaks down: the second thread can read the data before it
is ready, despite being passed a message indicating readiness through the flag y. To see that the
outcome 1/0 is a relaxed behaviour, note that no interleaving of the memory accesses of x and y

leads to that outcome.
This behaviour is permitted by the architectural specifications of ARM and Power [16,31]. As

a result, ARM and Power microarchitectures are permitted to perform optimisations that give
rise to this outcome, e.g. by reordering the writing thread, reordering the reading thread, or by
propagating the writes from the first thread out of order to the second. Indeed, this behaviour can
be witnessed by empirically testing ARM and Power processors [5,16].

The programming idiom present in MP, of waiting for a flag to be set, is useful and the
relaxed behaviour breaks code that relies on it. Thankfully, processors provide fences, barriers
and dependencies that can be used to limit relaxed behaviours. The MP+sync+ctrl test above
includes these additions. Power’s sync instruction disables reordering of memory accesses
across it and ensures that prior writes are propagated before those that follow (ARM’s dmb is
similar). The if statement creates a so-called control dependency from the first load to the second,
disabling reordering. As a consequence of these additions, the relaxed behaviour is forbidden
in MP+sync+ctrl. Note that the addition of the sync and control dependency cuts relaxed
behaviour at the cost of disabling the processor’s reordering optimisations, and therefore reduces
performance.

(c) The C++ concurrency model.
Programming languages introduce a new layer of complexity: they can compile programs to be
run on one sort of processor or another, and so must contend with the possibility of a choice of
underlying memory models. In addition, they perform intricate optimisations that introduce yet
more relaxed behaviours.

C++ is a programming language with a particularly well-developed concurrency
specification [18] that has benefited from extremely close scrutiny from academia. The
specification was refined during development, as an effort to produce a matching formal
semantics exposed problems with it [8,13]. Subsequent work has identified further flaws [9,11,20,
35], and has even shown that these flaws make the model impossible to fix in its current form [11].
Several research groups are working on a replacement for the current model [11,19,20,27], but
none has been adopted, so far.

The C++ concurrency model has some interesting features that distinguish it from processor
models, and these will be of particular relevance in considering the question of compositional
models. The first peculiarity extends from the desire to introduce concurrency without changing

5

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..

the sequential fragment of the language: neither the sequential behaviour, nor the compilation of
sequential blocks of code should change.

Data races. The language separates memory accesses into those that may be used concurrently,
the atomics, and those that should behave sequentially, the non-atomics. The non-atomics come
with a convention over their use: programmers must ensure there are no variables with data
races – writes made concurrently with other accesses, with either the write or the access being
non-atomic. This convention provides the compiler with the assurance that no other thread will
concurrently measure or perturb a block of non-atomic code, and so it can be optimised as if it is
executed in a sequential setting. The penalty for violating the convention that outlaws data races
is severe: the entire program is given undefined behaviour, and can do anything.

Atomic accesses. The atomic accesses provide a facility to write concurrent code with well
defined behaviour. These accesses come in various different flavours. Among them, relaxed
atomics behave in ways that subsume all relaxed behaviours of the plain memory accesses on
the various target architectures (e.g. x86, Power, ARM), and release and acquire atomics provide
ordering that can be used in the MP idiom. This additional ordering forbids relaxed behaviour,
requiring the compiler to disable its own optimisations, as well as those of the target processor
by emitting barriers, fences and dependencies. As a result, atomics with more ordering at the
language level incur a greater performance penalty once compiled. Take MP+rel+acq below, the
message passing idiom as it might appear in C++:

MP+rel+acq
storerlx(x,1)

storerel(y,1)

r1=loadacq(y) //reads 1

r2=loadrlx(x) //reads 0

MP+syncs
store(x,1)

sync

store(y,1)

r1=load(y)

sync

{r2=load(x)}

The rules of the C++ memory model hinge on a partial order of memory accesses called
happens-before. Happens-before includes program order and store-release/load-acquire pairs
where the load reads from the store. In the execution of MP+rel+acq where the acquire load
reads 1, happens-before totally orders the accesses according to the sequence: storerlx(x,1),
storerel(y,1), loadacq(y), loadrlx(x). Loads cannot read from values that are stale in
happens-before, so loadrlx(x) must read value 1 from the most recent store, and the outcome
1/0 is forbidden.

Now let us consider the implication of this semantics on the compilation of MP+rel+acq.
For the moment, we shall ignore compiler optimisation, and consider only what instructions
should be emitted to attain the correct behaviour on the Power architecture. If relaxed, release
and acquire accesses all map to bare Power accesses, and we compile MP+rel+acq to MP over
Power, then the outcome 1/0 is erroneously allowed. To fix this, we must forbid out-of-order
propagation of the writes and reordering on each thread. This can be achieved by mapping release
and acquire accesses to sequences of Power instructions that include syncs or dependencies,
to enforce ordering. The MP+syncs test above is the result of compiling storerel(y,1) to
sync;store(y,1) and loadacq(y) to load(y);sync. There are more efficient compilation
schemes that use a cheaper form of sync and dependencies to implement acquire loads, but this
scheme is sufficient to correctly implement release and acquire atomics, forbidding the outcome
1/0.

Both LLVM and GCC feature mappings from atomics to the instructions of their target
architectures. There has been much work seeking to verify these mappings [12,16,30], including
the mechanical verification of the x86 and POWER mappings [13,22].

6

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..

Optimisations. The MP test, implemented entirely with C++ relaxed accesses, would compile to
unadorned MP on Power, allowing the outcome 1/0. And as one might expect, the C++ semantics
allows the same outcome of relaxed MP. If we now consider what compiler optimisations would
be valid for relaxed MP, it is clear that reordering of either thread’s accesses is permitted, as it does
not introduce any new behaviour. Contrast this with MP+rel+acq, where the semantics forbids the
outcome 1/0: the compiler is not at liberty to reorder the operations in this test. This is just one
way that compiler optimisations are intertwined with the memory model.

Dependencies. Both Power’s sync and C++11’s release and acquire have an associated cost.
In some instances where ordering is required, there is a cheaper alternative: one can use the
dependencies inherent in the program to create order, as in the following examples:

MP + sync + ctrl
store(x,1)

sync

store(y,1)

r1=load(y)

if(r1 == 1)

r2=load(x)

MP + sync + false ctrl
store(x,1)

sync

store(y,1)

r1=load(y)

if(r1 == 1)

r2=load(x)

else

r2=load(x)

In the two programs above, the reading thread’s sync has been replaced with a conditional
statement between the reads. In the first example, whether the second load is performed depends
on the value read from x, and in the second example it does not. We call dependencies of
the second form false because although the operations necessary to create a dependency are
present, in practice there is none. The treatment of dependencies differs substantially between
processor and programming-language memory models. Processor models provide ordering to all
dependencies, real or false, and as a consequence, they are used as a cheap way to create ordering.
On the other hand, programming-language models seek to admit optmisations that remove false
dependencies, so they must not recognise them as a legitimate way to create ordering. In C++, no
dependencies create order. This permits optimisations, but also leaves the model fundamentally
flawed [11]. Defining a memory model that provides ordering to real dependencies and not false
ones is an open research problem with much recent progress [11,19,20,27,28].

2. Verification of program transformations
Recent work verifying program transformations under a C++-like memory model [14] provides
the kernel for our vision of a compositional approach to memory models.

The work considers peep-hole optimisations, where a block of code is transformed in isolation,
leaving the rest of the program untouched. The optimisation will be considered sound if the
properties of the original code hold over the transformed code – we call this observational
refinement.

The reasoning principle is based on a limited form of composition: an optimisation that takes a
block of code P1 and transforms it to P2 is considered in an arbitrary context with a block-shaped
hole, C(−), and we write C(P1) for the composition of C(−) with P1. If in every possible context,
C(−), C(P2) is an observational refinement of C(P1), then the optimisation P1 P2 is sound.

Take for example P1, P2 and C below. The optimisation P1 P2, called redundant read
elimination, has been shown to be sound in C++ [14,35]. The context C is a variant of the
MP test, with a block-shaped hole, {-}, in place of the usual load of the flag variable y. By
composing the context with each block, we can form two whole programs: C(P1) and C(P2).
In C(P1), the relaxed outcome 1/0 is forbidden. Soundness of the optimisation ensures that
1/0 is forbidden in C(P2) as well. In both cases the store-release/load-acquire pattern creates
happens-before ordering that forbids loadrlx(x) from reading the stale value of x. Indeed, it

7

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..

load(y,1)

load(y,1)

hb

hb

hb

ret

call

store(y,1)

rf, hb

rf, hb

ret

call

store(y,1)

hb

Figure 1. Left: Execution of block P1. Right: corresponding history.

would not be sound to optimise P2 further to P3 = {r1=loadrlx(y)} as this would break the
store-release/load-acquire pattern and allow the outcome 1/0.

Block P1

r1=loadacq(y)

r1=loadacq(y)

Block P2

r1=loadacq(y)

Context C
storerlx(x,1)

storerel(y,1)

{-}

if(r1 == 1)

r2=loadrlx(x)

In order to compare two blocks of code, a denotation of a code block, written J−K, is defined.
The denotation works by calculating the executions of the code block under a limited set of
representative contexts. Each execution is masked to exclude memory interactions that occur
entirely within the block or entirely within the context, leaving only the interactions between
the two. These masked executions are called histories, and together they form the denotation.

For our example blocks P1 and P2 above, the context C generates a set of executions whose
histories are included in the denotation. The execution of block P1 with outcome 1/1 is drawn
in Figure 1 together with the corresponding history. Each is a trace of memory accesses, with call
and ret bounding the part that arises from the block, and tracking the values of local variables,
e.g. r1. The execution includes rf edges indicating which store a given load reads from, and hb

edges where internal load-acquire accesses pair with the store-release in the context to create
happens-before ordering. This ordering is captured in the history as a happens-before edge from
the context store to the block return (this edge is missing from the corresponding history of P3).
In the history, all of the internal structure of the block is erased, including the fact that there are
two loads in P1.

A pair of denotations, JP1K and JP2K, can be compared with an abstraction relation, written
JP2K v JP1K. The abstraction relation ensures that the histories of JP2K are a subset of those in
JP1K, so P1 can interact with its context in at least as many ways as P2, as is the case for our
example above. The paper provides a proof that abstraction implies observational refinement,
so to validate the optimisation P1 P2, one only need show that JP2K v JP1K, and this can be
checked automatically with a tool.

The notions of denotation and abstraction will turn out to be central in our vision of a
compositional approach to relaxed memory.

8

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..

3. Compositional relaxed memory
The current crop of relaxed memory models can only be used to calculate the behaviour of a whole
program written under a single memory model. Instead, we would like to consider a program as
an aggregate of components over different models, composed together.

Composing a block P with a context C(−) is only one sort of composition – there are a variety
of others: e.g. sequential composition, parallel composition, and composition through function
calls. A compositional semantics will have to describe all of the various ways in which code can
be composed. Let us capture the gamut of syntactic composition with a new operator ·. If P · C
represents a whole program, then we can use existing models to calculate its behaviour under
memory model M , writing this as JP · CKM .

In developing this compositional model of relaxed memory, we will need a denotation that
captures the interaction between a component and its context in a way that is sensitive to the
memory model used within the component, and agnostic to those models used in the context. We
shall write JP KM for the denotation of a component of code, P , under memory model M .

These denotations will be combined using an operator, •, that produces a new denotation
representing the behaviour of the two components combined: e.g. JP1KM1

• JP2KM2
.

Denotations will be compared with an abstraction relation, v. Given a pair of denotations,
JP1KM1

and JP2KM2
, if JP1KM1

v JP2KM2
, then the first is an observational refinement of the

second and P1 can substitute P2 in any context without introducing new behaviour.

(a) Memory-model aware denotation
Let us explore the shape of the memory-model aware denotation. The denotation must distill
the ways in which a component interacts with its surrounding code. In reviewing SC, processor
models and the C++ model, we saw some of the diversity that we must cover and several ways
in which code might interact. Here, we list aspects of the execution that make up the interface
between components, and therefore must be tracked.

Values read. Even in a sequential setting, the values that are read from a component form part of
the interaction with its context, and so the denotation will have to track the relationship between
the value of variables in the context and those written by the component, and vice versa. The call
and return of the block history of Figure 1 serve this purpose, and may be reused.

Ordering. Consider two components executing under the C++ model: P1 = loadacq(y) and
P2 = loadrlx(y). Take C(−) to be the context such that C · P1 is the MP+rel+acq litmus test. If
we were to replace P1 with P2, then the litmus test would admit a new outcome – the relaxed
behaviour 1/0. This means that P2 does not observationally refine P1, and the denotations of the
two components must differ. The difference between the relaxed load and the acquire load is that
the acquire load creates ordering. It is clear then that our denotation will have to be sensitive to
ordering.

Again, the history in Figure 1 contains this information by tracking happens-before between
the block and memory accesses from the context. This is a good starting point for a compositional
denotation, but happens-before is specific to the C++ memory model, and other models define
ordering differently. When components written under different models are composed, e.g.
JP1KM1

• JP2KM2
, it will be necessary to capture the ordering provided by P2 in terms that fit with

M1 and vice versa. This might be achieved by including a pairwise translation between models
M1 and M2 in the definition of the composition operator •, or the denotation of each model might
be defined in an overarching model that reifies the guarantees provided by each component.

Dependencies. Recall that dependencies are a cheap way to reliably create ordering on
hardware models. On language models, dependencies may or may not create ordering. If a

9

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..

language model does provide ordering to dependencies, one must take care not to rely on false
dependencies that might be optimised away.

Let the component P1 be the second thread of the MP+sync+ctrl litmus test, and let P2 be
its false-dependency counterpart. Because language models ignore the false dependency and
provide ordering to the real one, in composition with the first thread of the MP+sync+ctrl litmus
test, P1 and P2 exhibit different behaviours. This means that their denotations must differ, and
that dependencies must be tracked.

The history of Figure 1 is built above a model that cannot correctly distinguish real and fake
dependencies [11], and as a consequence it does not either. Several new models of concurrency
that deal correctly with dependencies [11,19,20,27] might support an improved denotation.

Conventions. In some memory models, a requirement is placed on the programmer obliging
them to avoid writing certain sorts of code. This is known as a catch-fire semantics, because if the
requirement is violated, then the model no longer constrains the behaviour of the program, and
it can do anything including going up in flames.

A catch-fire semantics is useful for enforcing conventions on the programmer. One might
imagine a convention capturing a global invariant, or a protocol for the use of a library. If the
programmer obeys the convention, then they get a predictable semantics. If not, then all bets are
off. This means that the convention can be assumed to hold, and used as an invariant during
reasoning and compilation. If the assumption is violated then the program can do anything, and
there is no need to compile it correctly.

C++ makes use of this mechanism, forbidding races to establish an invariant that permits
sequential optimisation. Suppose we have two components, say P1 and P2, where separately
neither violates the convention of race freedom. Internally, these components write to the
same variable non-atomically, so when they are composed in parallel, they form a race. In
order to provide observational refinement, our abstraction relation will have to be sensitive to
conventions, and our denotations must track enough information to check them.

4. Goals of the approach
With a denotation, composition operator and abstraction relation, it will be possible to start
considering the properties of code made up of varied components. This will enable compositional
verification: verification of program components without the need to consider a concrete context,
verification above the varied CPU/GPU systems that we use today, and the application of mature
SC verification techniques in the relaxed setting. To make this more concrete, we propose three
verification goals – built upon our hypothetical definitions – that cannot be addressed with the
current approach to memory models.

Denotational C++. The first goal is a denotational relaxed memory model for C++. In this
model, the semantics of one’s program would be built from the ground up by composing the
denotations of smaller components. To ensure soundness and completeness, one must show that
denotational composition is equivalent to syntactic composition, i.e. where = is the symmetric
closure of v:

JP1 · P2KC++ = JP1KC++ • JP2KC++

Heterogeneous hardware semantics. The second goal is to reason about programs that are the
composition of components with differing memory models. One property to target might be
compilation soundness for the heterogeneous language OpenCL. OpenCL can target both the
CPU and the GPU of a system. In the following example, we consider the compilation of OpenCL
component P to two components: one part to be executed on the x86 CPU, P x86, and the other,
P PTX, to be executed under the Nvidia PTX memory model on the GPU. We would like to know

10

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..

that the composition of these two compiled components is an observational refinement of the
original code:

JP x86Kx86 • JP PTXKPTX v JP KOpenCL

Support SC verification techniques over SC components. One of the central design goals of
C++ concurrency is to support a property called DRF-SC. The property states that if a whole
program P · C is data-race free and uses a restricted set of the concurrency primitives, it will
behave as if it is sequentially consistent, i.e. JP · CKC++ v JP · CKSC. At first, this seems like
a valuable property that might support SC verification techniques in real-world C++ code.
Unfortunately, the whole-program nature of the property makes sure that it is unlikely to apply
in practice: the restrictions on the use of concurrency primitives apply not only to P , but to C too.

With the approach imagined here, we can state a much more usable property, composing
race-free and concurrency-feature-restricted component P with a context that is not restricted, C,
while maintaining the ability to reason about P using SC verification tools. We call this property
component SC:

JP · CKC++ v JP KSC • JCKC++

Component SC strengthens the memory model that underlies P , so that with some adaptation
we may now use SC logics like CoLoSL [29] for validating properties of P . In fact, there is a
range of state-of-the-art concurrent logics with weaker underlying memory models (OGRA [21],
RSL [36], FSL [15], GPS [34]). Our imagined denotational approach allows one to choose the ideal
model for each component: strong enough to use a less intricate logic, yet weak enough to admit
a high-performance implementation.

5. Conclusion
Recent work has made tremendous strides in understanding the exotic behaviours exhibited
by mainstream concurrent systems. A robust method for measuring, modelling and verifying
the goals of each concurrency design has emerged, and techniques developed in academia
are having strong impacts on industrial practice. The result is a series of rapidly improving
models of the concurrency of individual processors and programming languages. This relaxed
memory research is matched by an equally dynamic and industrially-relevant development of SC
verification techniques.

Unfortunately, each of these strains of research has a mismatch that limits its applicability:
relaxed models are non-compositional, applying only to whole programs written in a single
paradigm, and SC verification techniques maintain the idealised assumption of SC.

This paper has suggested a path forward, by developing a compositional form of memory
model that matches the way we really think about programs: as aggregates of varied components.
It has provided some insights about how this model might look, introducing the concepts of
denotation, composition and abstraction. And it has posed some concrete goals for the approach:
a denotational semantics for C++, the verification of compilation of a heterogeneous language,
and the application of advanced SC reasoning techniques in the relaxed setting.

Competing Interests. ’The author declares that he has no competing interests’.

Acknowledgements. I am grateful to Mike Dodds and John Wickerson for discussing the ideas presented
here.

Funding. This work is supported by the Royal Academy of Engineering and the Lloyd’s Register
Foundation.

11

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..

References
1. Jade Alglave, Mark Batty, Alastair F. Donaldson, Ganesh Gopalakrishnan, Jeroen Ketema,

Daniel Poetzl, Tyler Sorensen, and John Wickerson.
GPU concurrency: Weak behaviours and programming assumptions.
In Proceedings of the Twentieth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’15, Istanbul, Turkey, March 14-18, 2015, pages 577–
591, 2015.

2. Jade Alglave, Anthony C. J. Fox, Samin Ishtiaq, Magnus O. Myreen, Susmit Sarkar, Peter
Sewell, and Francesco Zappa Nardelli.
The semantics of power and ARM multiprocessor machine code.
In Proceedings of the POPL 2009 Workshop on Declarative Aspects of Multicore Programming,
DAMP 2009, Savannah, GA, USA, January 20, 2009, pages 13–24, 2009.

3. Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell.
Fences in weak memory models.
In Proceedings of the 22nd international conference on Computer Aided Verification, CAV’10, pages
258–272, Berlin, Heidelberg, 2010. Springer-Verlag.

4. Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell.
Litmus: Running tests against hardware.
In Tools and Algorithms for the Construction and Analysis of Systems - 17th International Conference,
TACAS 2011, Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2011, Saarbrücken, Germany, March 26-April 3, 2011. Proceedings, pages 41–44, 2011.

5. Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell.
Litmus: Running tests against hardware.
In Proceedings of the 17th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems: Part of the Joint European Conferences on Theory and Practice of Software,
TACAS’11/ETAPS’11, pages 41–44, Berlin, Heidelberg, 2011. Springer-Verlag.

6. Jade Alglave, Luc Maranget, and Michael Tautschnig.
Herding cats: Modelling, simulation, testing, and data mining for weak memory.
ACM Trans. Program. Lang. Syst. (TOPLAS), 36(2):7:1–7:74, 2014.

7. Jade Alglave, Luc Maranget, and Michael Tautschnig.
Herding cats: modelling, simulation, testing, and data-mining for weak memory.
TOPLAS, 2014.

8. Mark Batty.
The C11 and C++11 Concurrency Model.
PhD thesis, University of Cambridge, 2014.

9. Mark Batty, Mike Dodds, and Alexey Gotsman.
Library abstraction for C/C++ concurrency.
In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’13, pages 235–248, New York, NY, USA, 2013. ACM.

10. Mark Batty, Alastair F. Donaldson, and John Wickerson.
Overhauling SC atomics in c11 and opencl.
In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pages
634–648, 2016.

11. Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-Pharabod, and Peter Sewell.
The problem of programming language concurrency semantics.
In Programming Languages and Systems - 24th European Symposium on Programming, ESOP 2015,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015,
London, UK, April 11-18, 2015. Proceedings, pages 283–307, 2015.

12. Mark Batty, Kayvan Memarian, Scott Owens, Susmit Sarkar, and Peter Sewell.
Clarifying and compiling C/C++ concurrency: from C++11 to POWER.
In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012, pages 509–520,
2012.

13. Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber.
Mathematizing C++ concurrency.
In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011, pages 55–66, 2011.

12

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..

14. Mike Dodds, Mark Batty, and Alexey Gotsman.
Compositional verification of relaxed-memory program transformations.
2017.
under submission.

15. Marko Doko and Viktor Vafeiadis.
A program logic for C11 memory fences.
In Proceedings of the 17th International Conference on Verification, Model Checking, and Abstract
Interpretation - Volume 9583, VMCAI 2016, pages 413–430, New York, NY, USA, 2016. Springer-
Verlag New York, Inc.

16. Shaked Flur, Kathryn E. Gray, Christopher Pulte, Susmit Sarkar, Ali Sezgin, Luc Maranget,
Will Deacon, and Peter Sewell.
Modelling the armv8 architecture, operationally: concurrency and ISA.
In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pages
608–621, 2016.

17. Shaked Flur, Susmit Sarkar, Christopher Pulte, Kyndylan Nienhuis, Luc Maranget, Kathryn E.
Gray, Ali Sezgin, Mark Batty, and Peter Sewell.
Mixed-size concurrency: Arm, power, c/c++11, and SC.
In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017, pages 429–442, 2017.

18. ISO/IEC.
Programming Languages – C++, 14882:2011.

19. Alan Jeffrey and James Riely.
On thin air reads towards an event structures model of relaxed memory.
In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’16,
New York, NY, USA, July 5-8, 2016, pages 759–767, 2016.

20. Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer.
A promising semantics for relaxed-memory concurrency.
In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017, pages 175–189, 2017.

21. Ori Lahav and Viktor Vafeiadis.
Owicki-gries reasoning for weak memory models.
In Proceedings, Part II, of the 42Nd International Colloquium on Automata, Languages, and
Programming - Volume 9135, ICALP 2015, pages 311–323, New York, NY, USA, 2015. Springer-
Verlag New York, Inc.

22. Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer.
Repairing sequential consistency in C/C++11.
In PLDI ’17: Proceedings of the 2017 ACM SIGPLAN conference on Programming language design
and implementation, 2017.

23. Leslie Lamport.
How to make a correct multiprocess program execute correctly on a multiprocessor,.
Computers, IEEE Transactions on, 46(7):779–782, 1997.

24. Sela Mador-Haim, Rajeev Alur, and Milo M. K. Martin.
Generating litmus tests for contrasting memory consistency models.
In Computer Aided Verification, 22nd International Conference, CAV 2010, Edinburgh, UK, July 15-
19, 2010. Proceedings, pages 273–287, 2010.

25. Robin Morisset, Pankaj Pawan, and Francesco Zappa Nardelli.
Compiler testing via a theory of sound optimisations in the C11/C++11 memory model.
In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’13, pages 187–196, New York, NY, USA, 2013. ACM.

26. Scott Owens, Susmit Sarkar, and Peter Sewell.
A better x86 memory model: x86-tso.
In Theorem Proving in Higher Order Logics, 22nd International Conference, TPHOLs 2009, Munich,
Germany, August 17-20, 2009. Proceedings, pages 391–407, 2009.

27. Jean Pichon-Pharabod and Peter Sewell.
A concurrency semantics for relaxed atomics that permits optimisation and avoids thin-air
executions.
In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of

13

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..

Programming Languages, POPL ’16, pages 622–633, New York, NY, USA, 2016. ACM.
28. Anton Podkopaev, Ilya Sergey, and Aleksandar Nanevski.

Operational aspects of C/C++ concurrency.
CoRR, abs/1606.01400, 2016.

29. Azalea Raad, Jules Villard, and Philippa Gardner.
CoLoSL: Concurrent Local Subjective Logic.
In Proceedings of the 24th European Symposium on Programming (ESOP), pages 710–735, 2015.

30. Susmit Sarkar, Kayvan Memarian, Scott Owens, Mark Batty, Peter Sewell, Luc Maranget, Jade
Alglave, and Derek Williams.
Synchronising C/C++ and POWER.
In ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’12,
Beijing, China - June 11 - 16, 2012, pages 311–322, 2012.

31. Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams.
Understanding POWER multiprocessors.
In Proceedings of the 32Nd ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’11, pages 175–186, New York, NY, USA, 2011. ACM.

32. Jaroslav Ševčík and David Aspinall.
On validity of program transformations in the java memory model.
In ECOOP 2008 - Object-Oriented Programming, 22nd European Conference, Paphos, Cyprus, July
7-11, 2008, Proceedings, pages 27–51, 2008.

33. Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O. Myreen.
X86-TSO: A rigorous and usable programmer’s model for x86 multiprocessors.
CACM, pages 89–97, 2010.

34. Aaron Turon, Viktor Vafeiadis, and Derek Dreyer.
GPS: Navigating weak memory with ghosts, protocols, and separation.
pages 691–707, 2014.

35. Viktor Vafeiadis, Thibaut Balabonski, Soham Chakraborty, Robin Morisset, and
Francesco Zappa Nardelli.
Common compiler optimisations are invalid in the C11 memory model and what we can do
about it.
In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015, pages 209–220, 2015.

36. Viktor Vafeiadis and Chinmay Narayan.
Relaxed separation logic: A program logic for C11 concurrency.
In Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA ’13, pages 867–884, New York,
NY, USA, 2013. ACM.

37. John Wickerson, Mark Batty, Bradford M. Beckmann, and Alastair F. Donaldson.
Remote-scope promotion: clarified, rectified, and verified.
In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2015, part of SPLASH 2015,
Pittsburgh, PA, USA, October 25-30, 2015, pages 731–747, 2015.

