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Abstract

Sensors are widely used in modern industrial systems as well as consumer devices,

such as food production, energy transportation and nuclear power plant. The

sensors of interest in this project from an engineering company are associated with

industrial control systems, where high precision is the dominant concern. Due

to manufacturing variation, sensors manufactured from the same production line

are non-identical. Therefore, each sensor needs to be characterised via parameter

estimation to achieve a high precision or accuracy before sending to the end

users. The classical linear regression model has been adopted in current industry

procedure, which requires a certain number of measurements per device to achieve

the required level of accuracy. The aim of the project is, under guarantee of

the required level of accuracy, to use the available information and advanced

statistical models to reduce the number of measurements needed per sensor, and

hence reduce both costs and time for the characterisation process.

To achieve this, a Bayesian linear model with Dirichlet process mixture prior

(BL-DPMP) is proposed, where the Bayesian linear regression presents the re-

lationship between the response variable and the covariates demonstrated to be

appropriate by the company, and the regression coefficients are modelled by a

Dirichlet process mixture (DPM) model. The idea here is to apply the DPM

model to the historical information from similar sensors to provide adequate

prior information to the linear regression model in order to compensate the cur-

rent characterising sensor with block missing measurements, at the same time to

maintain the required level of accuracy. The slice sampling scheme based on the

full conditional posteriors of hyperparameters is used to update the parameters in
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the DPM model. Also, a generalised Dirichlet process mixture regression model

is proposed with a data-driven prediction procedure to deal with the considered

situation.

By reducing the number of measurements required per sensor, we could dras-

tically reduce the characterisation period. However, two proposed approaches are

quite computationally intensive, which counteract the time saved from collecting

a fewer number of measurements. Hence, there is a clearly pressing need for

dramatically faster alternatives. A hybrid Variational Bayes (HVB) procedure

following a greedy searching scheme is proposed, which can dramatically reduce

the computational time, at the same time provide highly accurate approximations

of the exact posterior distributions.

The ultimate goal of this project is to implement the proposed advanced

statistical model in the production line, where the model can be executed within

seconds (online). An optimal permutation sequential (OPS) algorithm for the

DPM model is proposed, which differs from MCMC algorithms. The idea is

to draw approximate independent and identically distributed samples from the

posterior distribution of the latent allocations, and to draw samples from the

weights and locations conditional on the allocations. Hence, independent draws

are taken from the posterior distribution, which allow us to take independent

samples from the predictive distribution. The OPS algorithm requires only a

single run which the computational costs of a few seconds. We present examples

to show model performance on simulated and real datasets.

It is worth noting that the proposed Bayesian linear model with Dirichlet

process mixture prior together with the OPS algorithm is under the testing stage

of being implemented in our industrial partner’s production line. This research

acts as the underpinning work and contributes to a potential impact case for the

Research Excellence Framework (REF) 2021.
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Chapter 1

Introduction

A local engineering company manufacturing high precision sensors had accumu-

lated huge historical databases of information on sensors which have been tested.

The aim of this project is to use this historical data to reduce the number of

measurements needed per sensor and maintain the required level of accuracy.

In this thesis, we show how this can be achieved under a Bayesian framework,

and introduce the new ideas for linear regression models which demonstrate how

the reduction in individual sensor measurements can be achieved and how this

procedure can be carried out much faster online.

Sensors are widely used in industrial systems and in our daily lives, such as

monitoring ingredients in food during the production processes, controlling differ-

ent chemical materials in power stations and recording the energy consumption in

households. In this thesis, the sensors under study are mainly used to industrial

control systems, where high precision is the primary requirement. During the

manufacturing process, there are uncontrollable factors that could cause varia-

tions in the manufactured sensors. For example, these factor can be slight vari-

ations in the supplied material, changes in the environmental conditions during

production, and human errors. These can lead to products with varying quality.

Therefore, each sensor needs to be characterized or calibrated via parameter es-

timation to achieve a high precision before sending the sensors to the end users.

The classical linear regression model has been adopted in current industry pro-
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1.1 Outline of the Thesis

cedure, which requires a certain number of measurements per device to achieve

the required level of accuracy.

Historical data provides the results of the characterisation process, in the

form of parameter estimates. Eves et al. [2015] propose a Bayesian approach

and use the historical data, which in Bayesian terminology is known as the prior

information. This replaces information needed to be collected on the current

sensor without sacrificing the accuracy of the estimate. The proposed method

works well in certain cases. However, when we tried to apply this model to a

different sensor dataset, the proposed Bayesian method failed completely as the

parameter estimates exhibit the characteristics of multi-modality.

Recently, there has been a significant amount of research on Bayesian non-

parametric regression models. This has primarily focused on developing models

of the form

f(y|X) =
∞∑
j=1

ωj(X)f(y|X, θj(X)),

where y represents the response variable, X represents the covariate, f(y|X, θj(X))

is a parametric density function, and ωj(X) are the mixture weights that sum to

1 at every value of the covariate vector X. An intuitive approach to Bayesian

nonparametric regression has been proposed by Müller et al. [1996]. However, we

are interested in keeping the clear linear relationship of y and X, which has been

demonstrated to work well by the models used at the company and should form

the basis of our model. Specific proposals of Bayesian nonparametric mixture

models are discussed in this thesis.

1.1 Outline of the Thesis

The aim of the project is to use the available historical information and advanced

statistical models to reduce the number of measurements needed per sensor, at the

same time maintain the high level of accuracy. Moreover, the proposed procedure

for the characterisation is expected to be executed quickly.
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1.1 Outline of the Thesis

In Chapter 2, the essential concepts of Bayesian nonparametrics are reviewed.

We begin with the commonly used Dirichlet process (DP), and we give two useful

DP alternative representations, which are the Pólya urn scheme and the stick-

breaking process. We introduce the Dirichlet process mixture (DPM) model,

which is constructed by assigning the DP as a mixing measure. The flexibility of

the DPM model makes it suitable for density estimation problems. We introduce

the Markov Chain Monte Carlo (MCMC) sampling techniques to compute the

posterior distributions of the parameters. Two commonly used methods, the

Metropolis-Hastings sampler and the Gibbs sampler are discussed. In the last

section of Chapter 2, we provide details of the characterisation process in current

use where this actual industrial problem comes from. In order to characterise

the sensor to the required level of accuracy, a certain number of measurements

are collected under different conditions. We describe the measurement collection

process and demonstrate how we can achieve equivalent estimation accuracy while

reducing the number of measurements.

In Chapter 3, we focus on this problem type of sensors, where the multi-

modality is shown in the historical parameter estimates. In particular, we propose

two approaches to deal with this problem. The first proposed approach is a

Bayesian linear model with Dirichlet process mixture prior, where the Bayesian

linear regression presents the relationship between the response variable and the

covariates demonstrated to be appropriate by the company. In the mean time, the

regression coefficients are modelled by a Dirichlet process mixture (DPM) model,

which will provide adequate prior information to the linear regression model in

order to compensate for the information loss, at the same time capturing the

multi-modality shown in the data. The second proposed approach uses simple

local linear regression models as building blocks to represent the relationships

between the response variable and the covariates, where a data-driven prediction

procedure is added to enhance the prediction accuracy for characterising the

current sensor with reduced measurements. The slice sampler is applied for both

approaches. The performances of the two approaches are assessed using the real
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1.1 Outline of the Thesis

industrial dataset.

In Chapter 4, we propose a Variational Bayes (VB) type of approach, as a

fast alternative to MCMC, to estimate the mixture densities. In general, the

VB framework proposes a family of variational distributions to approximate the

exact posterior distributions instead of direct sampling from the true posterior

distribution. Thus, VB uses less computational effort to provide deterministic

approximations of the exact posterior distributions. In order to minimise the

possibility of trapping into a local maximum density estimate, we propose a

hybrid Variational Bayes (HVB) to be more likely to find a global maximum

of the mixture density estimations. As a result, the unknown structure can be

thoroughly described and the risk of becoming trapped in a local maximum is

reduced. The advantages of applying HVB to estimate the mixture density is

shown through both simulation study and the real dataset.

In Chapter 5, an optimal permutation sequential (OPS) algorithm is proposed

in order to accelerate the processing speed of the model proposed in Chapter 3.

In contrast to the batch learning algorithms such as MCMC approaches, where

all observations are available at the same time, the sequential approach is often

referred to as an online learning procedure, where each observation is proceeded as

it arrives. A maximisation strategy is proposed to find an optimal permutation of

data, which provides a way of dealing with the order-dependence of the sequential

updating procedure. The proposed OPS algorithm needs only a single run and

can be executed within a few seconds.

Finally, Chapter 6 shows a summary of the contributions made by this project

and outlines a few topics for future work which will be investigated later.
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Chapter 2

Literature Review

2.1 Dirichlet Process

As one of the most commonly used prior distributions in modern Bayesian statis-

tics, the Dirichlet Process (DP) introduced by Ferguson [1973] plays a crucial

role in the development of the Bayesian nonparametrics framework. He men-

tioned two desirable properties of the nonparametric prior distributions: one is

that such a prior must have large enough support; the other one is that the pos-

terior distribution given this prior should be in a closed form, which means that

it should be conjugate. The introduced Dirichlet process opened a new era of

Bayesian nonparametrics by fulfilling both desired properties.

In real world applications, the true data structure is always hidden to us.

By fitting data in a parametric Bayesian model, we usually assume the prior

distribution to follow a family of specific distributions with known density. For

example, we can estimate the mean and variance parameters by fitting a uni-

variate Normal distribution N (µ, σ2) to the data. However, the risk also exists

of assuming the wrong or inappropriate distribution family. On the other hand,

Bayesian nonparametric models do not require any assumptions of the prior dis-

tributions, which means the model structure is shaped completely by the data

itself. Therefore, the risk of picking an inappropriate family of parametric priors

can be reduced.
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2.1 Dirichlet Process

The main hurdle of building up a nonparametric prior is that the support of

all possible prior distributions is too large to define a suitable topology directly.

In the parametric case, suppose all Normal distributions are collected in a set A ,

we know that every pair of mean and variance variables can uniquely determine a

Normal distribution. Hence, every element of a N (µ, σ) in A is mapped with its

corresponding location specified by (µ, σ) in the 2-dimensional Euclidean space.

Whereas in the nonparametric setting, A must include all probability measures,

which are defined as continuous, right monotonic functions on the interval (0, 1].

In this section, we introduce the key concept called the Dirichlet process (DP)

prior which has large enough support, and it is also a conjugate prior for the

likelihood that is a multinomial distribution. A DP can be viewed as an infi-

nite dimensional generalization of the Dirichlet distribution. First, we review

some properties of the Dirichlet distribution which are needed for constructing a

Dirichlet process.

2.1.1 Dirichlet Distribution

To construct a Dirichlet distribution, we start with a Gamma distribution denoted

by G(y|α, β) with a probability density function:

f(y|α, β) =
βα

Γ(α)
e−βyyα−1,

where α > 0 represents the shape parameter, β > 0 represents the scale parameter

and Γ(·) represents the gamma function, Γ(x) =
∫∞

0
tx−1e−tdt. Let y1, y2, . . . , yn

be independent random variables generated by Gamma distribution with the

same scale parameter β = 1, thus yi ∼ G(αi, 1), where αi > 0 for all i = 1, . . . , n

and αi > 0 for some i.
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2.1 Dirichlet Process

The joint distribution of p(y1, y2, . . . , yn) can be written as

p(y1, y2, . . . , yn) =
n∏
i=1

p(yi)

=
n∏
i=1

1

Γ(αi)
e−yiyαi−1

i .

Then, we define the random variables xi as,

xi =
yi∑n
i=1 yi

,

for i = 1, . . . , n and denote x = {xi}ni=1. Applying the change of variables formula

to the jointing distribution, we obtain

p(ẏ,x) = p (T (ẏ,x)) |J(T )|.

First we need to define ẏ =
∑n

i=1 yi, hence yi = ẏxi for i = 1, . . . , n − 1 and

yn = ẋ(1−
∑n−1

i=1 xi). The transformation T is given as

(y1, . . . , yn) = T (ẏ, x1, . . . , xn−1) =

(
ẏx1, . . . , ẏxn−1, ẏ(1−

n−1∑
i=1

xi)

)
.

The corresponding Jacobian matrix of this transformation is stated as

J(T ) =



x1 ẏ 0 0 · · · 0

x2 0 ẏ 0 · · · 0

x3 0 0 ẏ · · · 0

...
...

...
...

. . . 0

xn−1 0 0 0 · · · ẏ

1−
∑n−1

i=1 xi −ẏ −ẏ −ẏ · · · −ẏ


,

with determinant |J(T )| = ẏn−1. Therefore, we can equally write the joint dis-

7



2.1 Dirichlet Process

tribution as

p(ẏ, x1, . . . , xn−1)

=p

(
ẏx1, . . . , ẏxn−1, ẏ(1−

n−1∑
i=1

xi)

)

=

(
n−1∏
i=1

1

Γ(αi)
e−ẏxi(ẏxi)

αi−1

) 1

Γ(αn)

(
ẏ(1−

n−1∑
i=1

xi)

)αn−1

e−ẏ(1−
∑n−1
i=1 xi)

 ẏn−1

=
1∏n

i=1 Γ(αi)

(
n−1∏
i=1

xαi−1
i

)(
1−

n−1∑
i=1

xi

)αn−1

ẏ(
∑n
i=1 αi)−1e−ẏ

The re-arranged expression of the joint distribution clearly shows that the part

ẏ(
∑n
i=1 αi)−1e−ẏ is the kernel of a Gamma distribution G(

∑n
i=1 αi, 1). Hence, we

can derive the (n− 1)-dimensional distribution of (x1, . . . , xn−1) by integrating ẏ

out,

p(x1, . . . , xn−1|α1, . . . , αn) =

∫
ẏ

p(ẏ, x1, . . . , xn−1) dẏ

=
Γ(
∑n

i=1 αi)∏n
i=1 Γ(αi)

(
n−1∏
i=1

xαi−1
i

)(
1−

n−1∑
i=1

xi

)αn−1

.

Given parameters (α1, . . . , αn), this expression is known as the Dirichlet distri-

bution denoted by D(α1, . . . , αn). When n = 2, the Dirichlet distribution can be

simplified to the Beta distribution. Hence, a Dirichlet distribution can be also

treated as an infinite-dimensional extension of a Beta distribution.

One of the well-known property of Gamma distributions is the additive prop-

erty. If y1 ∼ G(α1, 1) and y2 ∼ G(α2, 1) are independent, then y1 + y2 ∼

G(α1 + α2, 1). It is trivial to show that Dirichlet distributions also have the

additive property, which is stated as

If (x1, . . . , xn) ∼ D(α1, . . . , αn) and r1, . . . , rn are integers such that 0 < r1 <

r2 < · · · < rl = n, then (
∑r1

1 xi, . . . ,
∑rl

rl−1+1 xi) ∼ D(
∑r1

1 αi, . . . ,
∑rl

rl−1+1 αi).

Since a Dirichlet distribution is a conjugate prior to a multinomial distribution,

the posterior of a Dirichlet distribution can be derived as

8



2.1 Dirichlet Process

Given prior distribution of (x1, . . . , xn) ∼ D(α1, . . . , αn), with observations z fol-

lows a multinomial distribution P(z = j|x1, . . . , xn) = xi for j = 1, . . . , n. Then

the posterior distribution of (x1, . . . , xn) given z = j is D(α
(j)
1 , . . . , α

(j)
n ), where

α
(j)
i = αi if i 6= j and α

(j)
i = αi + 1 if i = j.

2.1.2 Dirichlet Process

As mentioned in the beginning of this chapter, an appropriate nonparametric

prior distribution is desired to have support on the spaces of all probability dis-

tributions, denoted by A . In this section, we introduce the Dirichlet process

(DP) prior distributions which is commonly applied in Bayesian nonparametric.

By assuming A to be separable, there exists small subsets A′ which contain

countable infinity number of elements. We can construct such a dense subset A′

in A , which means that for any element in A we can always find the element

in A′ or arbitrarily close to an element in A′. Therefore, the basis of A′ can be

the basis of A , where every element in A can be linearly spanned by the basis

in A′. Since the elements in A′ is countable infinity, the summation of basis set

in A is countable infinity and can be viewed as a infinite-dimensional linear Eu-

clidean space. Then, we are allowed to use the definitions and operations on the

Euclidean space.

Suppose a space can be partitioned into

A = A1 ∪ A2 ∪ · · · ∪ Ak, and Ai ∩ Aj = ∅, for i 6= j.

We can calculate the probabilities of unknown distribution on each partition,

then use this probability distribution to approximate the unknown distribution.

In this sense, each possible distribution in A can be mapped to a k-dimensional

vector.

G→ (G(A1), G(A2), . . . , G(Ak)).

Since the probability of each partition G(Ai) must be positive and the summation

9



2.1 Dirichlet Process

of them must be one. The Dirichlet distribution is an obvious choice for the prior

distribution.

(G(A1), G(A2), . . . , G(Ak)) ∼ D(α(A1), . . . , α(Ak))),

where α(·) denotes the distribution which is specified on the corresponding par-

tition.

In order to provide an arbitrary accurate approximation to any probability

distribution in the space A , we would like the number of partition k to tend

to infinity. Moreover, for a given value of k, there are an infinite number of

possible partitions and each partition has its corresponding distribution. Hence,

the Dirichlet process is defined as the infinite-dimensional generalisation of the

Dirichlet distribution, and it was firstly introduced by Ferguson [1973].

Definition 2.1. Let α be a non-null finite measure on the Borel space (Θ,A ).

We say G is a Dirichlet Process on (Θ,A ) with parameter α and base distri-

bution G0, written as G ∼ DP(α,G0), if for every k = 1, 2, . . . , and measur-

able partition (A1, . . . , Ak) of Θ, the distribution of (G(A1), G(A2), . . . , G(Ak)) is

DP(αG0(A1), . . . , αG0(Ak)).

The definition of DP provides a construction of each and every partition of A ,

instead of directly defining a prior distribution on A with large support. A DP is

usually described as a distribution over distributions. Ferguson [1973] made use

of Kolmogorov’s consistency theorem to show that a distribution over functions

from the measurable subsets of Θ to [0, 1] exists satisfying Definition 2.1 for all

finite measurable partitions of Θ.

Let G ∼ DP(α,G0), since G itself is a randomly drawn distribution from DP,

we can independently draw samples θ1, . . . , θn from G. Let A1, . . . , Ak be a finite

measurable partition of probability space Θ, and let nj =
∑n

i=1 δθi(Aj) be the

number of observed values in Aj for j = 1, . . . , k, where δx gives mass one to

the point x. Based on the conjugacy between the Dirichlet and the multinomial
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2.1 Dirichlet Process

distribution, we have

(G(A1), . . . , G(Ak)|θ1, . . . , θn) ∼ D(αG0(A1) + n1, . . . , αG0(Ak) + nk). (2.1.1)

This shows that the concentration parameter α can be updated to α + nj and

the base distribution G0 is updated to (αG0 +
∑n

i=1 δθi(Aj))/(α + n) for each

partition {Aj}kj=1, where δ is the Dirac delta measure,

δθ(A) =

 1, if θ ∈ A

0, if θ /∈ A.

Since the expression in (2.1.1) is true for all finite measurable partitions, the

posterior distribution of G must be again a DP, and it can be written as

G|θ1, . . . , θn ∼ DP

(
α + n,

α

α + n
G0 +

∑n
i=1 δθi(Aj)

α + n

)
.

The probability distribution space A is partitioned by an infinite number of

Ak as k = 1, 2, . . . . Hence, as k →∞ δAi we have

DP(θ) = p1δθ1(θ) + p2δθ2(x) + · · ·+ piδθi(x) + · · · ,

where θi represents a point randomly drawn from the sample space. For such

an infinite-dimensional vector, the Dirichlet distribution is no longer valid, thus

it is difficult to describe the distribution for p1, p2, . . . , pi, . . . . Ferguson [1973]

obtained the distribution of p1, p2, . . . , pi, . . . , by constructing a Gamma process.

Based on this representation, one of the important property of DP is that the

probability distribution sampled from DP are discrete with probability one. The

discreteness is important since it implies that the potential draws from DP can

take the same values. During the sampling process, DP actually induces a cluster-

ing process. For continuous distributions, the probability of two samples sharing

the same value is zero. Also we notice that DP has no limit for the base measure
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2.1 Dirichlet Process

G0. However, choosing the base measure G0 to be continuous, the DP can draw

discrete samples almost surely.

2.1.3 Blackwell-MacQueen Urn Scheme

From the infinite sum construction of DP above, we conclude that samples drawn

from DP are discrete almost surely. As the number of samples n→∞, the sam-

ple can be arbitrarily close to any continuous distribution. Following the nota-

tions used in previous sections, we suppose G ∼ DP(α,G0), and i.i.d. sequences

θ1, θ2, . . . are drawn from G. For a measurable A ⊂ Θ, the predictive distribution

for θn+1 given previous n observations θ1, θ2, . . . , θn is given by

P (θn+1 ∈ A|θ1, . . . , θn) =
1

α + n

(
αG0(A) +

n∑
i=1

δθi(A)

)
(2.1.2)

which is called a Pólya representation with parameter α. Notice that expression

(2.1.2) is identical to the expectation E[G(A)|θ1, . . . , θn] of the posterior distribu-

tion G(A) given the observations θ1, . . . , θn. Hence, the predictive distribution of

θn+1 is derived by integrating out G:

θn+1|θ1, . . . , θn ∼
1

α + n

(
αG0 +

n∑
i=1

δθi

)
. (2.1.3)

Therefore, the posterior base distribution given θ1, . . . , θn is also shown to be the

predictive distribution of θn+1.

Blackwell and MacQueen [1973] provided an alternative approach by exploit-

ing the connection between DP and the generalized Pólya urn schemes. They

visualised the conceptional DP by describing a ball-drawn process. For finite Θ,

the sequence {θi}ni=1 represents the results of successive draws from an urn where

initially the urn has α(θ) number of balls with colour θ. In each step of draw, a

ball is randomly picked from the urn. Then, we identify the colour α(θi), put the

drawn ball back and add a ball with the same colour to the urn. Blackwell and

MacQueen [1973] proved such a generalised Pólya urn scheme is equivalent to the
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2.1 Dirichlet Process

DP. Therefore the distribution of θn+1 given {θi}ni=1 can be described as duplicat-

ing any previous θi with probability 1/(α + n − 1) and will obtain a fresh draw

from G0 with probability α/(α+n−1). Since there exists balls which are expected

to share the same colour θ∗j , the conditional draw can be characterized by setting

it equals to θ∗j with probability nj/(α + n − 1), where θ∗j represents the distinct

values found in {xi}ni=1 with frequencies nj =
∑n

i=1 δθ∗j (θi) for j = 1, . . . , k. Thus,

the predictive distribution (2.1.3) can be expressed as

θn+1|θ1, . . . , θn =

 δθj∗ , for j = 1, . . . , k

G0, for j = k + 1,
(2.1.4)

where k is the number of distinct values.

The predictive probability function in Equation (2.1.3) implies a probability

model of the joint density for (k,n),

p(k, n1, . . . , nk) =
Γ(α)

Γ(α + n)
αk

k∏
j=1

Γ(nj),

where n = (n1, . . . , nk)
′ represents the cluster sizes of n observations. According

to Antoniak [1974], we can obtain the probability mass function for the number

of component kn,

p(kn) = Sn,kn!αkn
Γ(α)

Γ(α + n)
,

where Sn,k is the absolute value of the Stirling number of the first kind. Therefore,

the expectation of k is given by

E[k|α, n] =
n∑
i=1

α

α + i− 1
≈ α log

(
α + n

α

)
,

which grows with n roughly at the rate of O(log(n)).

The validity of the Pólya urn scheme can be shown by using the proof of

the existence of DP through the de Finetti’s theorem. The theorem is applied

to exchangeable observations, such as the samples θ1, . . . , θn from the Pólya urn
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scheme.

Definition 2.2. (Exchangeability of random sequences). A random process

(θ1, θ2, . . . ) is called infinitely exchangeable if for any n ∈ N and any permutation

η on 1, . . . , n, the probability of generating (θ1, . . . , θn) is equal to the probability

of drawing them in a different order (θη(1), . . . , θη(n)):

p(θ1, . . . , θn) = p(θη(1), . . . , θη(n)).

Therefore, we can construct a distribution over the sequence θ1, . . . , θn by itera-

tively drawing θi given θ−i = {θl}{l 6=i}. For n ≥ 1 the joint distribution over the

first n observations can be written as

p(θ1, . . . , θn) =
n∏
i=1

p(θi|{θl}{l 6=i}),

where each conditional distributions p(θi| · · · ) follows the predictive distribution

described by Equation (2.1.4). It is straightforward to verify that this random

sequence is infinitely exchangeable.

If there are k colours, which implies the action of picking a new colour from

G0 occurred k times, and nj balls have been drawn for each colour θ∗j , j =

1, . . . , k, then, the statistics {nj}kj=1 do not change with different permutations

of (θ1, . . . , θn). The joint distribution p(θ1, . . . , θn) depends only on {nj}kj=1 by

p(θ1, . . . , θn) =
αk
∏k

j=1 G0(θ∗j )(nj − 1)

(α + n− 1)(α + n− 2) · · ·α
,

where n =
∑k

j=1 nj. The de Finetti’s theorem states that there exists a prior over

the random distribution P (G). This P (G) matches exactly the Dirichlet process

DP(α,G0).

This exchangeable property is turned out to play a crucial role in the devel-

opment of Markov chain Monte Carlo (MCMC) algorithms for latent variables

sampled from a Dirichlet process, which will be discussed in Section 2.2 and
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Section 2.3. We emphasise the discreteness property here. For a long enough se-

quence of draws from G, the value of any draw will be repeated by another draw.

It means that G is composed only of a weighted sum of point masses, therefore

G is a discrete distribution.

2.1.4 Stick-breaking Process

There is another remarkable presentation of the DP(α,G0) known as the stick-

breaking representation. Proposed by Sethuraman [1994], the constructive defi-

nition of the DP is given as

G =
∞∑
j=1

ωjδθj ,

where

ω1 =v1,

ωj =vj
∏
l<j

(1− vj) for j > 1,

vj ∼Beta(vj|1, α),

(2.1.5)

and θj ∼ G0 is independent of vj.

The construction of the weights ωj can be viewed as the result of breaking a

stick of unit length randomly in infinite fragments. For j = 1, we first break the

stick at v1 ∼ Beta(v1|1, α) and assign the mass v1 to a random point θ1 ∼ G0.

Then, the remaining mass (1− ν1) is split in a proportion v2 ∼ Beta(v2|1, α) and

the mass (1 − ν1)ν2 is assigned to a random point θ2 ∼ G0. Keep breaking the

stick until the assignment of the whole mass is completed by countably infinite

number of points.

Sethuraman [1994] proves that the resulting process is actually a DP(α,G0).

Such an infinite sequence of weights ω = {ωj}∞j=1 is referred to be distributed

according to a GEM process, ω ∼ GEM(α) with concentration parameter α,

where the name stands for Griffiths, Engen and McCloskey. It is clear that the

weights tend to zero as j → +∞. The concentration parameter α determines
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the distribution of the weights ω. For a small value of α only the first couple of

segments have significant impacts, while the remaining sticks have little influence.

On the other hand, the stick lengths will tend to be more uniform as the value

of α gets large.

One of the main differences between the stick-breaking construction and the

Pólya urn representation is that, for each group j, there is a proportion ωj of

points falling into group j. Therefore, instead of running the Pólya urn scheme to

figure out these proportions, the stick-breaking process provides a way to sample

them directly. Ishwaran and James [2001] extended the stick-breaking process to

a more general setting by allowing vj ∼ Beta(vj|M1,M2) with constants M1 and

M2. They showed that the sum of weights equals to 1 almost surely, when

∞∑
j=1

log(1 +M1/M2) =∞.

The stick-breaking representation of the DP reveals a significant way of trun-

cating the infinite number of elements {ωj}∞j=1 to a finite set. As mentioned

earlier, the sampled weights are decreasing to zero as the number of breaks tends

to infinity. As the process continues to a large number of breaks, the remaining

length of the stick will be too short. Thus, the weights generated from that length

are negligible. In this sense, the stick-breaking process allows us to approximate a

Dirichlet process with an appropriate finite truncation. This process is especially

useful when applying MCMC techniques on sampling from intractable posterior

distributions.

2.1.5 Dirichlet Process Mixtures

For continuous density estimation problems, DP is not suitable since it assigns

probability one to the space of discrete probability measures. Lo [1984] proposed

a class of priors that chooses Dirichlet process as the mixing distribution. Related

to the infinity sum representation of Dirichlet process, the continuity of density
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is translated to mixture models with a countably infinite number of components.

This scenario is called a Dirichlet process mixtures (DPM), which can be treated

as a nonparametrically mixture model with parametric components.

Suppose observations x = {x1, . . . , xn} are generated from a mixture of kernel

densities, the DPM model is stated as

xi|θi ∼ f(·|θi), for i = 1, . . . , n

θ1, . . . , θn|G ∼ G

G|α,G0 ∼ DP(α,G0).

(2.1.6)

Since the discreteness of the distribution G, the i.i.d. drawn latent parameter θi

can share the same value. Observations xi with the same value θi can be clustered

in the same component.

This DPM model can also be constructed by a stick-breaking process men-

tioned in Section 2.1.4. Define variable γi = j to indicate the cluster assignment

for observation xi to the jth component for i = 1, . . . , n and j = 1, . . . , k. Then

DPM model stated in (2.1.6) can be equally written as

ω|α ∼ GEM(α)

γi|ω ∼ Multinomial(ω)

θ1, . . . , θk|G0 ∼ G0

xi|γi, θ1, . . . , θk ∼ F (θγi), for i = 1, . . . , n.

In this model setting, the sampled distribution G =
∑∞

j=1 ωjδθj , with ωj repre-

senting the mixing proportion of components, θj are cluster-specific parameters,

f(xi|θj) the density of observations, and G0 the prior distribution of the cluster-

specific parameters.

The Dirichlet Process Mixture model is a mixture with a countably infinite

number of clusters, which gives great flexibility to model fitting. From the defi-

nition of stick-breaking process, the weight parameter ω decreases exponentially
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quickly. Hence, only a relative small number of clusters will be involved in model

fitting. In fact, the expected number of components is proportional to the log-

arithmic of the number of observations. Such a way of deciding the number of

component in DPM is extremely useful in Bayesian model for density estimation.

Since the number of component is completely inferred from the data, the risk of

mis-specification present in parametric model is eliminated.

The DPM models have largely dominated the Bayesian nonparametric litera-

ture recently as a consequence of the realization that full posterior computation

is feasible by using simulation methods. We apply the DPM models to capture

the unknown structure of data in Chapter 3.

2.1.6 Mixture of Dirichlet Process

The widely applied DP prior has large enough support and closed form under

posterior distribution. Meanwhile DP also has many other properties such as

discreteness, tail-freeness and so on, which are proved to be very useful in Bayesian

analysis. However, there are situations where the Dirichlet Process is inadequate.

For example, given DP as prior distribution on the bio-assay problem mentioned

in Antoniak [1974], the posterior distribution is not the Dirichlet Process but a

mixture of Dirichlet processes (MDP) instead.

In practice, it is natural to propose a parametric family with unknown param-

eters. A mixture of Dirichlet processes is a Dirichlet process where the parameter

α is itself treated as random variable having a certain distribution. Hence the

MDP is a parametric mixture of nonparametric priors. The most important prop-

erty is that the posterior distribution based on a MDP prior is again a MDP. The

MDP also has similar properties to the DP such as samples from an MDP are

discrete almost surely, and so on. On the other hand, the self-similarity and

tail-freeness properties no longer hold for the MDP.
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2.1.7 Hierarchical Dirichlet Processes

The Dirichlet process mixtures (DPM), as one of the most commonly applied

nonparametric prior, can also be viewed as a simple version of the hierarchical

Dirichlet processes (HDP) proposed by Teh et al. [2006]. Assume observations

xij comes from unknown distributions Fi, and the distributions F1, . . . , Fk are

obtained by randomly sampled i.i.d. from a Dirichlet process whose centre mea-

sure G is itself again randomly sampled from a Dirichlet process. Since Dirichlet

samples are discrete with probability one, the discreteness of G forces F1, . . . , Fk

to share their atoms. Hence dependence will be observed in the values of x

across different components. This feature is often desirable in machine learning

applications. For example, in multi-task settings each task might be associated

with a probability measure with dependence across the tasks implemented using

a hierarchical Bayesian model.

The adaptation to the nonparametric model with infinite-dimensional param-

eters was undertaken in Teh et al. [2006], where they discuss details of Dirichlet

processes and indicate their extensions to other priors. In this model, data is

distinguished into different group and each group is associated with a mixture

model.

2.2 Markov chain Monte Carlo

In early sections, we have described a Bayesian nonparametric model with large

support. From the Bayesian perspective, the inference about unknowns can be

updated through Bayes’ theorem by observing new evidence. Let x denotes the

observed data, and θ denotes the model parameters. In general, the inference

requires setting up a joint probability distribution p(x, θ) = L(x|θ)f0(θ), which

includes a prior distribution f0(θ) and a likelihood function L(x|θ). Prior distri-

butions represent the belief about the unknown parameters θ before observing

any evidence, which could be based on subjective facts, previous experiences or
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personal opinions. Meanwhile, the information contained in the observations is

reflected by the likelihood function. Therefore, Bayes’ theorem provides a way of

calibrating personal beliefs by updating evidence through probabilities

p(θ|X) =
L(X|θ)π0(θ)∫
L(X|θ)π0(θ) dθ

.

Having observed x, Bayes’ theorem is used to determine the distribution of θ

conditionally on x, which is known as the posterior distribution of θ. Then, the

expectation of the parameter θ can be derived as

E[f(θ)|x] =

∫
f(θ)L(x|θ)f0(θ) dθ∫

L(x|θ)f0(θ) dθ
.

The integrations involved in the expectation usually cause practical difficulties in

Bayesian inference. In most applications, the analytic evaluation of E[f(θ)|x)] is

not available. Alternative approaches including numerical evaluation or analytic

approximation can provide good results for low dimensional models. Beyond that,

these methods can be very complex when dealing with high dimensional models.

In this section, we introduce the Monte Carlo techniques to draw inference from

models with large dimensions.

2.2.1 Monte Carlo Integration

To evaluate the integration of the posterior distribution in Bayesian inference,

we introduce the Monte Carlo integration which evaluates E[f(θ)] by drawing

samples {θi}ni=1 from posterior distribution p(θ|x), then approximating

E [f(θ)] ≈ Î1 =
1

n

n∑
i=1

f(θi).

The population mean of f(θ) is estimated by a sample mean, which is also called

the simple Monte Carlo (MC) estimator. A simple MC estimator of this density is

obtained by sampling θi from f(θi|θ−i) given {θ−l}{l 6=i}, and it is computationally
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expensive in general. Simple Monte Carlo methods must be extended by the use

of draws from auxiliary (importance) densities. Notice that the estimator Î1 is

an unbiased estimators since Eq[Î1] = I. More importantly, the central limit

theorems reveals that

√
n
Îk − I
σk

d→ N (0, 1) as n→∞, (2.2.1)

where σk denotes standard deviation of Îi. Meanwhile, following the laws of large

numbers these two estimators are strongly consistent estimators of I since

Îk
a.s.→ I as n→∞,

for both k = 1, 2.

In general, drawing samples {θi}ni=1 independently from f(·) is not feasible

when f(·) appears to be non-standard. However, the {θi}ni=1 do not necessarily

need to be independent. Observations {xi}ni=1 can be generated by any process

which draws samples through the support of f(·) in the correct proportions.

One way of doing so is through a Markov chain having f(·) as its stationary

distribution. This is then the well-known Markov chain Monte Carlo (MCMC)

approach.

2.2.2 Markov Chain Monte Carlo

A Markov chain is a discrete time stochastic process with the property that the

distribution of θt given all previous values of the process, θ0, θ1, . . . , θt−1 only

depends upon θt−1. For any set A, the memoryless property can be expressed as

P (θt ∈ A|θ0, θ1, . . . , θt−1) = P (θt ∈ A|θt−1) ,

where P(·|·) denotes a conditional probability. For a discrete state-space, define

the transition probabilities Pij(t) = P(θt = j|θ0 = i) as the probability of moving
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2.2 Markov chain Monte Carlo

from state i to state j in t steps.

The asymptotic behaviour of the Markov chain is one of our priory interests in

the context of simulation when the number of iterations goes to infinity n→∞.

A key concept called stationary distribution π is defined as

∑
θ∈S

π(θ)P (θ|ψ) = π(ψ), ∀ψ ∈ S, (2.2.2)

where S denotes the state space. Equation (2.2.2) can also be written in matrix

notation as π = πP . The stationary distribution plays an important role in the

convergence of the Markov chain. If the marginal distribution at any given step

n is π, then the distribution at the next step is πP = π. Therefore, once the

chain reaches a stage with stationary distribution π, the chain retains this distri-

bution for all subsequent stages. This distribution is also known as the limiting

distribution. If the stationary distribution π exists and limn→∞ P
n(θ, ψ) = π(ψ),

then π(n) will approach π as n → ∞ independently of the initial distribution of

the chain.

For the distribution of θt to converge to a stationary distribution, the Markov

chains are desired to satisfy three properties at least. First, it has to be irre-

ducible, which says the Markov chain can reach any non-null set with positive

probability from all possible starting points after some countable number of iter-

ations. Second, the Markov chain needs to be aperiodic. We consider a Markov

chains which contains only two states {0, 1} and let the transient probability to

be P =

1 0

0 1

. It is clear that the chain will just oscillate between two states

as t tends to infinity, but will never converge. Such a chain is obviously irre-

ducible, hence we have to prevent this phenomenon by constructing the chain to

be aperiodic.

The last property of Markov chains is that the chain must be positive recurrent.

When started at state i, the positive recurrent assures that the time of the first

return to state i, denoted by τii = min{t > 0 : θt = i|θ0 = i}, is finite almost
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2.2 Markov chain Monte Carlo

surely and the expectation of this τii is finite. The last property can be expressed

in terms of the existence of a stationary distribution π(·). If the initial value θ0

is sampled from a stationary distribution π(·), then all subsequent iterates will

also be distributed according to π(·). Here, mathematical definitions for these

properties are presented as follows,

Definition 2.3.

(i). X is called irreducible of for all i, j, there exists a t > 0 such that Pi,j > 0.

(ii). An irreducible chain X is recurrent if P(τii < ∞) = 1 for some (and

hence for all) i. Otherwise, X is transient. Another equivalent condition for

recurrence is ∑
i

Pij(t) =∞

for all i, j.

(iii). An irreducible recurrent chain X is called positive recurrent if E[τii] <∞

for some (and hence for all) i. Otherwise, it is called null-recurrent. Another

equivalent condition for positive recurrence is the existence of a stationary prob-

ability distribution for X, that is there exists π(·) such that

∑
i

π(θi)Pij(t) = π(θj)

for all j and t > 0.

(iv). An irreducible recurrent chain X is called aperiodic if for some (and

hence for all) i,

gcd{t > 0 : Pii(t) > 0} = 1.

A state is called ergodic if it is aperiodic and positive recurrent. Then a

chain is ergodic if all its states are ergodic. As we have mentioned earlier, the

stationary distribution from an aperiodic positive recurrent Markov chain is also

the limiting distribution of successive iterates from the chain. Then, we define
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2.2 Markov chain Monte Carlo

the ergodic averages as

f̄N =

∑N
t=1 f(θt)

N
,

which converges to their expectations under the stationary distribution.

Theorem 2.1. If X is positive recurrent and aperiodic then its stationary dis-

tribution π(·) is the unique probability distribution satisfying Equation (2.2.2). If

X is ergodic, the following consequences hold:

(i). Pij(t)→ π(θj) as t→∞ for all i, j.

(ii). (The Ergodic theorem) If Eπ[|f(θ)|] <∞, then

P
(
f̄N → Eπ[f(θ)]

)
= 1,

where Eπ[f(θ)] =
∑

i f(θi)π(θi), the expectation of f(θ) with respect to π(·).

The ergodic theorem is the Markov chain analogue to the strong law of large

numbers (SLLN) in part (ii) of Theorem 2.1. It states that averaged chain values

can also provide strongly consistent estimates of parameters from the limiting

distribution π despite their dependence. For discrete state spaces, the ergodic

averages are simply counting the relative frequency of x values in the realisations

of the chain. Then, this relative frequency converges almost surely to the average

frequency of visiting the state x. It allows one to ignore the dependence between

draws of the Markov chain when we calculate quantities of interest from the

draws. The central limit theorem mentioned in (2.2.1) for Markov chains also

holds.

Therefore the MCMC is a class of methods in which we can simulate draws

that are slight dependent from a posterior distribution. We then take those draws

and calculate quantities of interest for the posterior distribution. In next sections,

we introduce the two commonly used MCMC algorithms: the Metropolis-Hastings

sampler and the Gibbs sampler.
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2.2 Markov chain Monte Carlo

2.2.3 Metropolis-Hastings Sampler

As the properties of MCMC are introduced, a natural step forward is to construct

a Markov chain such that its stationary distribution π(·) is precisely our distri-

bution of interest f(·). The name of Metropolis-Hastings stems from papers by

Metropolis et al. [1953] and Hastings [1970]. The original paper by Metropolis

et al. [1953] deals with the calculation of properties of chemical substances. Hast-

ings [1970] made a significant contribution in terms of inference by providing the

generalisation of the Metropolis samplers. As a result, the Metropolis-Hastings

algorithm has become one of the most widely applied MCMC samplers.

At each time t in a Markov chain, the Metropolis-Hastings algorithm chooses

the next state θ(t+1) by first sampling a candidate point θ∗ from a proposal dis-

tribution q(·|θ(t)). The candidate point θ∗ is then accepted with probability

α(θ(t), θ∗) where

α(θ(t), θ∗) = min

{
1,

π(θ∗)q(θ(t)|θ∗)
π(θ(t))q(θ∗|θ(t))

}
.

Compare the value of α to an independent randomly generated quantity u from

a Uniform distribution in a closed interval [0, 1]. If u ≤ α, the candidate point is

accepted, the next state becomes θ(t+1) = θ∗. Otherwise, if u > α, the candidate

is rejected, the chain does not move, then θ(t+1) = θ(t).

Remarkably, the proposal distribution q(·) can have any form and the sta-

tionary distribution of the chain will be π(·). When the candidate is accepted

θ(t+1) = θ∗, the transition P (θ(t+1)|θ(t)) can be expressed as

P (θ(t+1) = θ∗|θ(t)) = q(θ(t+1)|θ(t))α(θ(t), θ(t+1)).

A density P (·|θ(t)) is defined for every possible value of the parameter different

from θ(t). Consequently, there is a positive probability left for the chain to remain
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2.2 Markov chain Monte Carlo

at θ(t) given by

P (θ(t+1) = θ(t)|θ(t)) = 1{θ(t+1)=θ(t)}

(
1−

∫
q(θ∗|θ(t))α(θ(t), θ∗)dθ∗

)
.

where 1 denotes the indicator function (taking the value 1 when its argument is

true, and 0 otherwise). Thus, the transition kernel for the Metropolis-Hastings

algorithm is

P (θ(t+1)|θ(t))

=q(θ(t+1)|θ(t))α(θ(t), θ(t+1)) + 1{θ(t+1)=θ(t)}

(
1−

∫
q(θ∗|θ(t))α(θ(t), θ∗)dθ∗

)
.

Using the fact that

π(θ(t))q(θ∗|θ(t))α(θ(t), θ∗) = π(θ∗)q(θ(t)|θ∗)α(θ∗, θ(t)),

the detailed balance equation is obtained as

π(θ(t))P (θ(t+1)|θ(t)) = π(θ(t+1))P (θ(t)|θ(t+1)). (2.2.3)

By integrating both sides of Equation (2.2.3) with respect to θ(t), we have

∫
π(θ(t))p(θ(t+1)|θ(t))dθ(t) = π(θ(t+1)). (2.2.4)

The left-hand side gives the marginal distribution of θ(t+1) under the assump-

tion that θ(t) is sampled from the stationary distribution π(·). Hence Equation

(2.2.4) represents the fact that if θ(t) is following the stationary distribution π(·),

then θ(t+1) will be as well, which means that once a sample from the stationary

distribution has been obtained, all subsequent samples will be from that distri-

bution. The Metropolis-Hastings algorithm is such that P (t)(θ(t)|θ0) converges to

the stationary distribution, see Gilks et al. [1996] for further details.
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2.2.4 Gibbs Sampler

In this section, we introduce one of the most commonly applied MCMC algorithm,

called the Gibbs sampler, which is commonly recognised as the first significant

impact of MCMC made in statistics. The original work is presented by Geman

and Geman [1984], which deals with sampling the posterior of interest from a

Gibbs distribution in the context of image processing. Their sampling scheme

explored the conditional structure implied by the local specification. Even though

it was a well known and influential paper in the area, their work was introduced

to the main statistical community via the paper written by Gelfand and Smith

[1990]. Nowadays, most statistical applications of MCMC have used the Gibbs

sampling.

The Gibbs sampler is a MCMC scheme where the transition kernel is formed

by the full conditional distributions. Assume as before the posterior distribution

of interest is π(θ) where θ = {θi}ni=1. Let θ−i comprises all of θ except θi, hence

θ−i = {θl}{l 6=i}. Define the full conditional distribution π(θi|θ−i) as the distribu-

tion of the ith component of θ conditioning on all the remaining components,

π(θi|θ−i) =
π(θ)∫

θi
π(θ)dθi

,

where θ has distribution π(·). Consider the full conditional distributions are

available, which means that they are completely known and can be sampled

from. Gibbs sampling provides a scheme based on successive generations from

the full conditional distributions as follows.

1. Initialise the iteration counter of the chain j = 1 and set initial values θ(0) =

(θ
(0)
1 , . . . , θ

(0)
n )′;

2. Obtain a new value θ(j) = (θ
(j)
1 , . . . , θ

(j)
n )′ from θ(j−1) through successive gen-
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2.3 MCMC for Dirichlet Process Mixture of Normals

eration of values

θ
(j)
1 ∼ π(θ1| θ(j−1)

2 , . . . , θ(j−1)
n )

θ
(j)
2 ∼ π(θ2| θ(j−1)

1 , θ
(j−1)
3 , . . . , θ(j−1)

n )

...

θ(j)
n ∼ π(θn| θ(j−1)

1 , θ
(j−1)
3 , . . . , θ

(j−1)
n−1 )

3. Change counter j to j + 1 and return to step 2 until convergence is reached.

When convergence is reached, the resulting value θ(j) is a draw from π. As

the number of iteration increases, the chain approaches its equilibrium condition.

Convergence is then assumed to hold approximately.

2.3 MCMC for Dirichlet Process Mixture of

Normals

As introduced in previous Section 3.1 and Section 3.2, a construction of Bayesian

nonparametric prior called the Dirichlet process mixtures (DPM) is illustrated

and two fundamental MCMC strategies, Metropolis-Hastings and Gibbs sam-

plers, are described. In this section, we introduce several MCMC algorithms for

Bayesian inference on DPM of Normal distributions.

Recall the Dirichlet process mixtures model introduced by Lo [1984] in Section

2.1.5, we are interested in a special case when Normal density is used for the

Dirichlet base measure.

xi|θi ∼ N (xi|θi), for i = 1, . . . , n

θ1, . . . , θn|G ∼ G

G|α,G0 ∼ DP(α,G0).

(2.3.1)

The first level of hierarchy represents the observed data xi following a continuous
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2.3 MCMC for Dirichlet Process Mixture of Normals

distribution with Normal densityN (xi|θi) with component-specific parameters θi.

At the second hierarchical level, θi are independently drawn from some random

distribution G. Such an unknown distribution G is generated from the Dirichlet

process prior with precision parameter α > 0 and base measure G0. The precision

parameter α is often assumed to be fixed and it plays a crucial role. The larger

the value of α, the less the generated distribution G will concentrate on the base

G0.

The first attempt to tackle the intractable Dirichlet process mixture of Normal

distributions by applying MCMC methodology is proposed by Escobar [1994]. He

formalised his ideas as part of his PhD thesis and subsequent published on the de-

velopment of a Bayesian nonparametric estimate of a vector of Normal means. In

the next year, Escobar and West [1995] applied the direct extension of the method

on density estimation using Normal mixtures of Dirichlet processes. In a more

general framework, they provided a computational method that allows evaluation

of posterior distributions of all parameters and the predictive distributions.

The Normal mixture model is one of the commonly applied parametric models

in Bayesian density estimation. Following the DPM model, we can extend a finite

Normal mixture models to an infinite mixture model. Suppose the data x =

{xi}ni=1 are conditionally independent and normally distributed xi|θi ∼ N (xi|θi),

with mean and variance parameters θi = {(µi, σ2
i )}ni=1. In particular, suppose

that G ∼ DP(α,G0) and G0 is a specified bivariate distribution function over

R× R+. Then G0 is the prior expectation of G such that E[G(θ)] = G0(θ).

The major problem of a hierarchical model is to move from prior to posterior

through the randomly generated distribution G from the Dirichlet process. This

is not considered to be easy as G has an infinite number of atoms. Escobar and

West [1995] solved this issue by involving the Pólya urn representation. As intro-

duced by Blackwell and MacQueen [1973], the Pólya urn scheme circumvents the

problem of generating G from DP and provides an expression with G integrated

out. Then, we can draw θ based on its conditional distribution iteratively as
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follows,

for i = 1, θ1 ∼ G0,

for i = 2, θ2|θ1 ∼
αG0 + δθ1
α + 1

,

...

for i = n, θn|θ1, . . . , θn−1 ∼
αG0 +

∑n−1
i=1 δθi

α + n− 1
,

where δθ(·) is the distribution concentrated at location θ. Hence, the general form

of these successive conditional distributions is given by

θi|θ1, . . . θi−1 ∼
α

α + i− 1
G0(θi) +

1

α + i− 1

∑
j=1, j 6=i

δθj(θi). (2.3.2)

The predictive distribution of θn+1 conditional to θ1, . . . , θn is given in Equation

(2.1.6) with similar expression.

According to Equation (2.3.2), we notice that both G0 and
∑i−1

j=1 δθj(·) have

the same form. Thus, sampling from them will be straightforward. By simulat-

ing a Markov chain which has this posterior as its stationary distribution, we can

sample from the posterior distribution of θ = {θi}ni=1. Conditioned on exchange-

able random variables {θi}ni=1, the full conditional distribution for θi for each i

can be derived as follows

p(θi|θ−i,x) ∼ q0Gi(θi) +
n∑

j=1, j 6=i

qjδθj(θi)

∝ K(yi|θi)

{
αf0(θi) +

∑
j 6=i

δθj(θi)

}
,

where θ−i = {θ1, . . . , θi−1, θi+1, . . . , θn}, f0(·) denotes the prior density and K(·)

represents the kernel function. The full conditional is proportional to

p(θi|θ−i,x) ∝ α

∫
f0(θi)K(xi|θi)dθi

(
f0(θi)K(xi|θi)∫
f0(θi)K(xi|θi)dθi

)
+
∑
j 6=i

K(xi|θi)δθj(θi).

(2.3.3)
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The normalizing constant is given as

c = α

∫
f0(θi)K(xi|θi)dθi +

∑
j 6=i

K(xi|θj).

The first part on the right hand side of the equation (2.3.3) is the density of a

new drawn θi with observation xi assigned into it, thus

fi(θi) =

(
f0(θi)K(xi|θi)∫
f0(θi)K(xi|θi)dθi

)
.

The second term is a summation of point masses at the previously drawn com-

ponents. Therefore, given other θ−i, the θi can be drawn from

θi

 = θj, with probability
K(xi|θj)

c

∼ g0(θi), with probability
α
∫
f0(θi)K(xi|θi)dθi

c
.

The most direct approach of sampling from model (2.3.1) is to repeatedly draw

values for each θi from its conditional distribution conditioned on the data x and

θ−i. The conditional distribution is obtained by combining the prior distribu-

tion with the likelihood for θi that results from xi having a Normal distribution

K(xi|θi). One benefit of the Normal DPM model is that if f0(·) and K(·) are

conjugate, the posterior distribution of θ is available in closed form. Therefore,

given the sampled values of θ(t) = (θ
(t)
1 , . . . , θ

(t)
n ) at the tth iteration, the predictive

distribution for a new observation xn+1 can be estimated as

p(xn+1|x1, . . . , xn) ≈ 1

T

T∑
t=1

K(xn+1|θ(t)
n+1) for t = 1, . . . , T,

where T is the total number of iterations and θ
(t)
i is drawn from

θ
(t)
i ∼

α

α + n
G0 +

1

n+ α

n∑
i=1

δ
θ
(t)
j
.

Escobar and West [1995] proposed an algorithm which repeatedly draws new
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samples from θi|θ−i,x as defined by Equation (2.3.3), for i = 1, . . . , n. Such a

Gibbs sampler can be extended by involving hyper-parameters and convergence

properties. However, this sampler is not very efficient since the convergence to

the posterior distribution is rather slow. The clustering property of DP implies

there exists positive probabilities that observations are associated with the same

component parameter denoted by θ∗j . The proposed algorithm by Escobar and

West [1995] can not change the allocation of θ for more than one observation

simultaneously, and the frequency of such a change is rare. This is due to that

the required moving through a low probability intermediate state in which obser-

vations in the group do not have the same θ value.

According to the discreteness of G(·) under the Dirichlet process, there exist

k distinct values among the n elements θ as θ∗j = (µ∗j , σ
2
j
∗
). Then, the conditional

posterior distribution in Equation (2.3.2) can be equally written as

θi|θ1, . . . θi−1 ∼
α

α + i− 1
G0(θi) +

1

α + i− 1

k∑
j=1

njδθ∗j (θi). (2.3.4)

In this way, the efficiency can be improved by taking a finite number of mixture

models. Therefore, an additional hierarchy level is required to identifying the

clusters classes in the Bayesian hierarchical structure mentioned in the model

(2.3.1).

Marginal Conjugate Algorithms with Latent Class.

One of the algorithms that deals with such hierarchical model was intro-

duced by MacEachern [1994]. Similar to the model (2.3.1), MacEachern [1994]

constructs a hierarchical model by inserting a latent class associating with obser-

32



2.3 MCMC for Dirichlet Process Mixture of Normals

vations under Normal conjugacy,

xi|γi,θ ∼ N (xi|θγi), i = 1, . . . , n

θγ1 , . . . , θγn ∼ G

G ∼ DP(α,G0)

γ1, . . . , γn|ω ∼ Discrete(ω1, . . . , ωk)

ω ∼ DP(α/k, . . . , α/k).

(2.3.5)

For each latent class in the middle hierarchy level γi, the parameter θγi determines

the distribution of observations from that class. The collection of all such distinct

θγi is denoted by θ. The mixing proportions for the classes, ω = (ω1, . . . , ωk), are

given a symmetric Dirichlet prior with concentration parameter α/k. As k goes

to infinity, the concentration parameter approaches zero.

By integrating over the mixing proportions ω, the prior for γi can be expressed

as the product of conditional probabilities as,

P (γi = j|γ1, . . . , γi−1) =
P (γ1, . . . , γi−1, γi = j)

P (γ1, . . . , γi−1)

=

∫
ωγ1 · · ·ωγi−1

ωγiΓ(α)Γ(α/k)−kω
(α/k)−1
1 · · ·ω(α/k)−1

k dω∫
ωγ1 · · ·ωγi−1

Γ(α)Γ(α/k)−kω
(α/k)−1
1 · · ·ω(α/k)−1

k dω

=
nj + α/k

i− 1 + α

(2.3.6)

where nj is the number of γi = j for j = 1, . . . , k. Notice that as k goes to infinity,

the conditional probabilities in Equation (2.3.6) reach the following limits,

P(γi = j|γ1, . . . , γi−1)→ nj
i− 1 + α

P(γi = k + 1 for j = 1, . . . , k|γ1, . . . , γi−1)→ α

i− 1 + α
,

(2.3.7)

see Neal [2000] for more details. Notice that when k tends to infinity, the model

(2.3.5) is equivalent to the Dirichlet process mixture model in (2.3.1) due to the

correspondence between the conditional probabilities of θi in Equation (2.3.4)
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and those implied by Equations (2.3.7).

The infinite number of θ∗ = {θ∗j}kj=1 cannot be explicitly represented when k

goes to infinity. Instead, we only represent those θ∗j that are currently associated

with some observations. The Gibbs sampling for allocation γi is based on the

following conditional probabilities

P (γi = j|γi−1, xi,θ
∗) = c

nj
n− 1 + α

f(xi|θ∗j )

P (γi = k + 1 for j = 1, . . . , k|γi−1, xi,θ
∗) = c

α

n− 1 + α

∫
f(xi|θ)df0(θ),

(2.3.8)

where c is the normalising constant that makes the above probabilities sum to

one. In a Normal conjugate context, we can eliminate θ∗j by integrating it out.

The state of the Markov chain then consists only by γi, which can be updated by

Gibbs sampling using the following conditional probabilities:

θi|θ−i, γ−i, xi ∼ c
α

α + n− 1

∫
f(xi|θ) df0(θ)+c

nj
α + n− 1

∫
f(xi|θ∗j )df−i,γi=j(θ∗j )

where f−i,γi=j(θ) denotes the posterior distribution of θ based on the prior G0 and

all the observations except xi and γi = j. Eventually, the algorithm proposed by

MacEachern [1994] repeatly samples a new value from γi|γ−i, xi for i = 1, . . . , n.

According to Equations (2.3.8), the numerical value of the γi is arbitrary. The

γi determines what has been called the configuration in which the data items are

grouped in accordance with shared values for θ∗j . The value of γi may therefore

be chosen to facilitate the display of mixture components in some desired order.

When Gibbs sampling for γi chooses a value not equal to any other gammaj, a

value for θγi is chosen from G0, the posterior distribution based on the prior G0

and the single observation xi. The algorithm proposed by Bush and MacEachern

[1996] is stated as follows.

Let the state of the Markov chain consist of γ = {γ1, . . . , γn} and θ = (θγ : γ ∈
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{γ1, . . . , γn}). Repeatedly sample as follows:

• For i = 1, . . . , n: If the present value of γi is associated with no other observation

(i.e., n−i,γi = 0), remove θdi from the state. Draw a new value for γi from

γi|γ−i, xi,θ as defined by Equation (2.3.8). If the new γi is not associated with

any other observation, draw a value for θγi from G0 and add it to the state.

• For all γi ∈ {γ1, . . . , γn}: Draw a new value from θγi |x1, . . . , xn for which γi = j

that is, from the posterior distribution based on the prior G0 and all the data

points currently associated with latent class γi = j.

As was the case for the first Gibbs sampling method, this approach is feasible

if we can compute
∫
f(yi, θ)dG0(θ) and sample from G0, as will generally be the

case when G0 is the conjugate prior.

Slice sampler

For a DPM model, the sampling issue is the countably infinitness of the discrete

masses from the random distribution functions generated from the DP prior.

Walker [2007] proposed a slice sampling scheme to deal with the infiniteness. An

extra latent variable U is introduced to truncate the infinite number of mixing

components to a finite number. Moreover, all the conditional distributions can

be sampled directed given conjugate priors.

As we have introduced in Section 2.1.2, a random probability measure G can

be generated from a DP(α,G0). The infinite expression of G is then given by

G =
∞∑
j=1

ωjδθj , (2.3.9)

where {ωj}∞j=1 are mixing weights, δθ denotes the measure with a point mass of

1 at θ. The weights are generated from the stick-breaking process introduced in

Section 2.1.4,

ω1 = v1 and ωj = vj
∏
l<j

(1− vj) for j > 1.
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Meanwhile, we assume {θj}∞i=1 are independent and identically distributed from

the base distribution G0. Consider the random density function

fG(y) =

∫
N (y|θ)dG(θ),

whereN (y|θ) denotes the Normal distribution with parameters θ = (µ, σ2). Using

the form for G in Equation (2.3.9), we have

fω,θ(y) =
∞∑
j=1

ωjN (y|θj).

The proposed slice sampler attempts to estimate the model by introducing a

latent variable U , such that the joint density of (y, u) is given by

fω,θ(y, u) =
∞∑
j=1

1(u < ωj)N (y|θj). (2.3.10)

It is obvious that the desired density yω,θ(y) can be returned by integrating over

u. Equivalently, Equation (2.3.10) can be written as

fω,θ(y, u) =
∞∑
j=1

ωjUnif(u|0, ωj)N (y|θj),

where Unif(·) denotes the Uniform distribution. Then, the marginal density for

u is given by

fω(u) =
∞∑
j=1

ωjUnif(u|0, ωj).

Therefore, we are able to define a finite collection, such as,

Aω(u) = {j : ωj > u}.

Hence, the joint density of (y, u) in Equation (2.3.10) can also be stated as

fω,θ(y, u) =
∑

j∈Aω(u)

N (y|θj).
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The conditional density of y given u is given by

fω,θ(y|u) =
1

fω(u)

∑
j∈Aω(u)

N (y|θj),

where fω(u) denotes the marginal density for u, and it is defined on (0,max(ωj)].

At this stage, the infinite mixture model in Equation (2.3.9) is truncated to

a finite mixture density. Next, an indicator latent variable γ can be introduced

to identify the component of the mixture from which y is to be taken, as men-

tioned earlier in Section 2.3. Therefore, the full likelihood function of observations

{yi}ni=1 can be expressed as

lω,θ({yi, ui, γi = j}ni=1) =
n∏
i=1

N (yi|θγi)1(ui < ωγi).

Given conjugated priors of parameters vj and θj, we can follow a Gibbs sampling

scheme to estimate the mixture densities. Further details are given in Section

3.3.

2.4 Industrial Application

In Chapter 1 we mentioned that sensors play an important role for a wide range

of scientific experiments and industrial applications. The accuracy of output

variables from sensing devices is one of the primary concerns. Due to inevitable

issues taking place on the production line, no sensor can be guaranteed to be

identical to others. Thus, the sensor’s output variable could be deviated from the

true value more or less. To minimise the inaccuracy caused by the manufacturing

process, individual characterisation is crucial for each sensor.

In general, characterisation is implemented by comparing sensor’s readings

with the true values under different conditions. A sensor generates outputs of

the liquid flowing through, each output is computed as a combination of the

collected several elementary physical signals with pre-determined weights. Mean-
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while, the corresponding true value are considered as known under a specified

environmental condition. Therefore, the aim of characterisation is to minimise

the deviation between the sensor’s outputs and the true values by finding an op-

timal set of weights. To have a better understanding of the proposed statistical

models and related algorithms in later chapters, we introduce the background

of our considered industrial application and fundamental principles behind the

sensor technology.

2.4.1 Background

The resonator sensor under study is an in-line device that measures the density of

flowing liquid. One common way of measuring the density of liquid ρ is to collect

liquid mass m and corresponding volume V , and the density is given by ρ = m/V .

However, the sensors in the considered situation are used to measure densities of

the flowing liquids, which can be determined by the following equation,

ρ =
C2

1

f 2
× TC(∆P,∆T )− C2, (2.4.1)

where f denotes the resonance frequency. Constants C1 and C2 can be determined

at a known condition when pressure changes ∆P = 0 and temperature changes

∆T = 0. The term TC(∆P,∆T ) is called the temperature compensation (TC)

dependent on ∆P and ∆T .

Based on the resonance phenomenon, the pipe inside the sensor will vibrate

when there is liquid passing through. The frequency of resonance can be detected

and collected by a transducer installed inside of the sensor. Also, the experimental

conditions ∆P and ∆T are varied during the characterisation process.
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Figure 2.1: Sensor calibration rig.

According to Figure 2.1, when water is pumped through the sensor under test,

demanded physical factors {f,∆P,∆T} are detected inside of the sensor. In order

to measure liquid density ρ, the value of TC(∆P,∆T ) needs to be estimated by

varying the sensing conditions for a fluid with well-known density characteristics.

Given a specified condition with ∆P and ∆T , the temperature compensations

can be determined through the following linear model,

TC(∆P,∆T ) = β1 + β2∆P + β3∆T + β4∆P∆T + β5(∆T )2, (2.4.2)

where β = {β1, β2, β3, β4, β5}T is a 5-dimensional critical parameter. The rea-

sons of using such a polynomial regression model to determine the temperature

compensations are given by Bayliss and Downes [2003].

The aim for characterisation is to find an optimal value of β, which obviously

plays a critical role for the accuracy of liquid density estimates. Therefore, we

need to find the true values of temperature compensation under certain envi-

ronmental conditions specified by ∆P and ∆T . During characterisation process,

water was used due to its availability and its well-studied density characteristics.

Hence, the value of temperature compensation can be determined by rearranging

Equation (2.4.1)

TC(∆P,∆T ) =
ρw + C1

C2
2

× f 2, (2.4.3)

where ρw represents the true density of water, which is known as a constant under
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a certain environmental condition. Therefore, with collected elementary physical

variables {f,∆P,∆T} and true values of TC(∆P,∆T ), a unique value of β can

be estimated by using regression techniques.

To make sure that the characterised sensor can consistently provide accurate

estimates of liquid densities under various conditions, different combinations of

∆P and ∆T are set during the characterisation process. Here, we briefly il-

lustrate the data collection procedure to elaborate the characterisation process.

Water is pumped through a sensor with three different temperature levels: low,

medium and high. For each temperature level, measurements are recorded under

three different pressure levels: low, medium and high. Hence, there are totally

9 combinations of pressure and temperature levels. During the characterisation

process, the temperature of water follows a sequence: low temperature, followed

by medium, then high temperature, followed by medium and back to low temper-

ature. Within each temperature bands, measurements are collected twice under

each pressure levels for repeatability. The measured temperature pattern is illus-

trated in Figure 2.2.

Figure 2.2: Data collection procedure with the temperature pattern: low, medium, high,
medium and low.
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The x-axis represents the number of measurements including 12 measurements

from cold temperatures, 14 measurements from warm temperatures and 6 mea-

surements from hot temperatures. Thus, totally 32 measurements are collected

during characterisation. On the y-axis, the values of ∆T are determined by tak-

ing the differences between the temperatures of water passing through the sensor

and the recorded room temperature.

Let p denotes the number of collected measurements and y = (y1, y2, . . . , yp)
T

denotes the values of temperature compensation. By using Equation (2.4.3), y

can be determined by frequencies f = (f1, f2, . . . , fp)
T and constants C1 and C2.

Meanwhile, a p × 5 matrix X = (X1, X2, . . . , X5) is formed by vectors Xj =

(xj,1, . . . , xj,p)
T for j = 1, . . . , 5. Vector X1 contains regression intercepts, X2,

X3, X4 and X5 are pressure changes ∆P , temperature changes ∆T , interactions

∆P∆T and temperature changes squared (∆T )2, respectively.

The value of β is estimated by the ordinary least squares (OLS) method,

which is easy to implement and fast to execute. The linear relationship described

in Equation (2.4.2) can be simplified to

y = Xβ + ε, (2.4.4)

where ε represents a p× 1 error vector. Then, the OLS estimate of β is achieved

by minimising the sum of error squared,

β̂ = (XTX)−1XTy.

Then, the characterisation errors can be calculated by

ε̂ = y − ŷ = y −Xβ̂.

A sensor is considered to be well characterised only if the magnitude of all errors

ε̂ lie within a prescribed range. Company’s quality specifications are various

depending on different types of sensors.
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The total time of a complete characterisation process takes 7 hours includ-

ing installing and removing sensors from the testing facility. In order to collect

measurements of ∆T , we have to wait approximately 2 hours for the whole char-

acterisation system reaching a stable temperature status. The actual shape and

the size of the sensor also affect the characterisation time.

2.4.2 Bayesian Linear Approach

A Bayesian linear regression is proposed by Eves et al. [2015] to reduce the number

of measurements required. The historical information is used to replace parts of

the measurements needed to be collected for the current sensor without affecting

the accuracy of liquid density estimation. Using the accumulated dataset which

contains a large number of previously characterised products, the characterisation

time could be remarkably reduced by taking a fewer number of measurements per

sensor.

The measurements at mid-range temperatures are targeted to be removed

from the current sensor characterisation. Similar to the linear relationship stated

in Equation (2.4.4), the values of temperature compensation y− given reduced

measurements X− follows a Normal distribution,

f(y−|X−, β) ∼ N (X−β, σ2Ip−), (2.4.5)

where σ2 is fixed as a extreme small constant (of the order ×10−7) and Ip−

represents a p− × p− identity matrix. Rather than assigning a Gamma prior

on σ2, it is reasonable to fix the value of σ2, as it is estimated with very high

precision.

A key step of the proposed Bayesian approach is to extract information of the

critical parameter β from the historical dataset of the same type of sensors. By

treating OLS estimates {β̂i}ni=1 of n previously characterised sensors as observa-
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tions, we can constructed a multivariate Normal distribution,

β ∼ N (µ0,Σ0) , (2.4.6)

where µ0 and Σ0 are the mean and the variance-covariance matrix with µ0 =

n−1
∑n

i=1 β̂i and Σ0 = diag(σ2
j ), and σ2

j = (n − 1)−1
∑n

i=1(β̂ij − µ0j)
2 for each

dimension j = 1, . . . , 5 of each observation i = 1, . . . , n.

Then, using the estimated Normal distribution as prior, we can draw the

posterior inference of β for the current sensor with reduced measurements through

a linear regression model. The posterior of β given (y−, X−, σ2, µ0,Σ0) follows a

5-dimensional multivariate Normal distribution of parameter β,

β ∼ N
(
µ̃, Σ̃β

)
,

where

µ̃ =

(
Σ−1

0 +
1

σ2
X−

T
X−
)−1(

Σ−1
0 µ0 +

1

σ2
X−

T
y−
)
, Σ̃β =

(
Σ−1

0 +
1

σ2
X−

T
X−
)−1

.

The posterior inference of β is basically derived by combining prior distribution

in Equation (2.4.6) constructed from historical dataset with full measurements

and likelihood function in Equation (2.4.5) from the current sensor with reduced

measurements.

As demonstrated by Eves et al. [2015], the proposed Bayesian linear approach

using reduced measurements can successfully characterise current sensors by in-

corporating historical information with full measurements from the same type.

Since measurements at mid range temperatures are no longer required, the char-

acterisation time using the proposed Bayesian approach can be reduced from 7

hours to 5 hours.

As we have mentioned earlier, with 7 hours as a typical time for processing a

single sensor by the OLS method, there are only two runs of calibration can be
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completed per day. For example, an operator starts at 6 AM to start the test,

and the test cycle will finish at 1 PM. Thus, only two batches of sensors can be

tested per day. The project we considered in this thesis is aimed at increasing the

manufacturing capacity, by reducing the calibration time per sensor. Hence, the

costs will also be significantly reduced. Since the goal of the proposed Bayesian

method is to eliminate one temperature level, the calibration time can be poten-

tially reduced from 7 hours to 5 hours. Therefore, it can allow three test runs

per day. In theory, the Bayesian approach increases the manufacturing capacity

by 50%.
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Chapter 3

Bayesian Linear Model with

Dirichlet Process Mixture Prior

3.1 Introduction

Earlier in Section 2.4, we described the importance of the characterisation process

for sensors to provide reliable outputs. The main task of characterisation can

be viewed as estimating the critical parameter β using measurements collected

during characterisation. The goal of this chapter is to estimate β by using a

reduced number of measurements; particularly when multi-modality is discovered

from the historical estimates of β. Following the idea introduced in Eves et al.

[2015], the information stored in previously tested sensors can be used to replace

information needed to be gathered on the current sensor without sacrificing the

accuracy of the estimate.

It is worth noting that the historical estimates of β are obtained via OLS

method using full measurements, and the company has accumulated a huge his-

torical dataset of information on this type of sensors. We can model the historical

information and use it as the prior information to draw the posterior inference

of β in order to reduce the number of measurements needed per sensor. The

proposed Bayesian method was a success in a certain way, where the historical

estimates of β are assumed to follow a Normal distribution. However, when this
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method is applied to a different type of sensor dataset, the proposed Bayesian

method completely failed as the historical estimates of β exhibit a multi-model

structure.

In this chapter, we focus on the type of sensors where a multi-modal structure

is displayed in the historical parameter estimates. Two approaches are proposed

to characterise this type of sensors. The first one is a Bayesian linear model with

Dirichlet process mixture prior (BL-DPMP), where the Bayesian linear regression

relationship is used to describe the response variable and the covariates, and the

regression coefficient β is modelled by a Dirichlet process mixture (DPM) model.

Following the BL-DPMP approach, the reduction in individual sensor measure-

ments can be achieved in two stages. In the first stage, the unknown structure of

historical information is modelled by a hierarchical nonparametric model. Specif-

ically, we assume the historical estimates of β follow a Dirichlet process mixture

(DPM) of Normal distributions, instead of a single Normal distribution. Using

the historical estimates of β as the data, the multi-modal structure of the histor-

ical information can be captured by a mixture model with a sufficient and finite

number of Normal distributions.

In the second stage of the BL-DPMP approach, one Normal component from

the constructed mixture model is assigned to be the prior distribution for the

current sensor with reduced measurements. The Bayesian posterior inference of

β for the current sensor can then be derived by combining the prior information

that has been derived from the historical dataset with full measurements, and

the likelihood function with reduced measurements. Following the proposed BL-

DPMP procedure, we can characterise the problem type of sensors with reduced

measurements to meet the required high precision. Based on the numerical ev-

idence, the proposed BL-DPMP approach is verified by achieving a satisfactory

pass rate.

The second proposed approach is a DPM regression model with data-driven

prediction (DPMR-DDP) procedure, which uses a DPM regression model to de-
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scribe the relationships between the response variable and the covariates from the

historical dataset, and which improves the prediction accuracy following a data-

driven prediction procedure. The DPM regression approach was first proposed

by Müller et al. [1996], which modelled the joint distribution of response variables

y and covariates X as a DP mixture of multivariate Normals to obtain the condi-

tional density of y given X. However, researchers noticed that, in some cases, this

model can lead to poor curve fitting and poor prediction. Recent developments

on the topic can be found in Shahbaba and Neal [2009] and Wade et al. [2014].

The poor prediction issue becomes crucial when dealing with high-precision sen-

sors in the considered situation. It is shown that predictions drawn from the

standard DPM regression model are not accurate enough to meet the company’s

quality specifications. In addition, we propose a data-driven prediction (DDP)

procedure on the DPM regression model in order to enhance the accuracy of pre-

diction when characterising the current sensor with reduced measurements. The

slice sampling algorithm introduced by Kalli et al. [2011] is applied to estimate

the nonparametric mixture density for both proposed approaches.

The chapter is organised as follows: Section 3.2 provides a preliminary study

on the type of sensors with multi-modality displayed from the historical estimates

of the critical parameter β. Section 3.3 describes the details of both the proposed

BL-DPMP and DPMR-DDP approaches mentioned above, which will be used to

reduce the number of measurements required for the current sensor characterisa-

tion. The results obtained by applying the proposed approaches to the problem

sensor dataset are presented in Section 3.4, along with the results obtained from

other methods. Section 3.5 discusses the drawbacks of the proposed approaches

and suggests directions for further research.

3.2 Motivation

As mentioned in Section 2.4, the aim of our project is to use the historical in-

formation and advance statistical models to reduce the number of measurements
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required for the current sensor characterisation. This is equivalent to estimate

the critical parameter β of the current sensor using a reduced number of measure-

ments and to embed the estimated value of β in the current sensor, so that the

sensor output can achieve the required high level of accuracy. Eves et al. [2015]

proposed a Bayesian way to model the historical estimates of critical parameter β

by a Normal distribution, and use the historical information as the prior distribu-

tion to estimate the posterior distribution of β for the current sensor. However,

the proposed method completely failed to a different type of sensors where the

historical parameter estimates exhibit a multi-modal structure.

For the sensor considered in this project, the company has accumulated huge

historical databases of information on the S1 type of sensors. There are N = 895

previously characterised S1 sensors with full measurements {(yi, Xi)}895
i=1 included

in the S1 dataset, where each yi is a 32 × 1 response variable and each Xi is a

32× 5 covariate variable.

Figure 3.1: Top plot (a) is the full test procedure including 32 measurements for OLS;
bottom plot (b) is the test procedure without measurements at the mid-range tempera-
tures including 18 measurements for the proposed Bayesian method.

It is worth noting that the x-axis in both plots represents the number of measure-

ments which needs to be collected during characterisation process. As illustrated
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in Figure 3.1(a), measurements are recorded at low, medium and high tempera-

tures. At each range of temperatures, measurements are recorded twice under 3

different pressure levels: low, medium and high. For the S1 type of sensors, two

extra measurements are taken at the second warm temperatures. Hence, there

are 32 measurements in total that need to be collected to characterise the S1 type

of sensors.

For each sensor i, a linear relationship between yi and Xi is demonstrated to

be appropriate by the company, which can be expressed as

yi = Xiβi + εi,

where εi is a 32 × 1 error vector for i = 1, . . . , 895. Thus, the estimates {βi}895
i=1

of the regression coefficient β can be obtained via the OLS method, where each

βi = (βi,1, . . . , βi,5)T is a 5-dimensional vector. This 32 number of measurements

can be treated as the minimum requirement for OLS estimates of β to achieve

the required high level of accuracy. On the other hand, the proposed Bayesian

method removes the measurements under the mid-range temperatures from the

three temperatures currently used. It uses only 18 measurements to characterise

the current S1 sensors as shown in Figure 3.1(b).
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Figure 3.2: Histogram of the historical estimates {βi,2}895
i=1 from the S1 type of sensors.

In order to reveal the multi-modal structure of the regression coefficient β, we

focus on the second dimension of β estimates {βi,2}895
i=1 and present the histogram

plot in Figure 3.2. In Figure 3.2, there are two important features shown on the

histogram plot. First, the OLS estimates {βi,2}895
i=1 are well spread and extreme

values can be observed on both sides of the main clustered area. Hence, fitting

a single Normal distribution leads to a flat bell-shaped curve as the curve needs

to cover all values of {βi,2}895
i=1. As a result, the variance-covariance matrix of

the fitted Normal distribution becomes too large, whereas most of β estimates

are actually concentrated in the central area. In this case, a Normal distribution

will not be able to correctly capture the multi-modal structure of parameter β.

Similar phenomena are discovered on other dimensions of β estimates.

The second feature becomes more noticeable after increasing the number of

bins of the histogram plot upto 100 as presented in Figure 3.3. Then, we can

observe a clear multi-modal structure in the histogram plot. The black curve

represents a single Normal distribution, which is specified by the sample mean

and the covariance matrix. As shown by the black dotted vertical line, the sample

mean is located in a region with low likelihood. Thus, modelling the parameter
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estimates of β into a Normal distribution as the prior distribution can potentially

mislead the posterior estimate of β. Such an inaccurate model is unable to provide

sufficient prior information to accurately estimate the posterior distribution of β

for the current sensor. As a result, the current sensor with reduced measurements

would be recognised as a failed product. However, this sensor would be recognised

as a qualified product if it is characterised by the current OLS method with full

measurements. The red curve in Figure 3.3 apparently has a better fitting for

the multi-modality of β estimates. In this chapter, we propose a nonparametric

mixture model to capture the unknown structure of β and use the estimated

mixture model as prior information to compensate the information needed to be

gathered on the current sensor.

Figure 3.3: Histogram of the historical estimates {βi,2}895
i=1 with curve fitting by a Normal

distribution (black) and a mixture of Normal distributions (red).

In order to demonstrate the proposed Bayesian approaches in this chapter, a

historical dataset is formed to contain the first n number of β estimates {βi}ni=1,

which are obtained via OLS method with full measurements {(yi, Xi)}ni=1. We es-

timate the mixture density of β from the historical dataset, and use the estimated

mixture density as the prior information to estimate the posterior distribution of
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β for the current sensor with reduced measurements. Therefore, the size of the

historical dataset needs to be carefully chosen to be able to reflect the structure of

β. To determine the size of the historical dataset, we apply the Kullback-Leibler

divergence (KLD) to measure the distance between a pair of probability distri-

butions f1:i and g1:i+1, which are specified by the first i and i + 1 estimates of β

for i=1, . . . , 895. The KLD for each pair can be calculated as,

KLD(f1:i || g1:i+1) =

∫
f(y) log

(
f(y)

g(y)

)
dy.

By increasing the value of i, we can use the increment of KLD to judge how

much extra information is carried forward by the newly included estimate βi.

The accumulated KLD increments for each value of i are plotted in Figure 3.4.

Figure 3.4: Cumulative Kullback Leibler divergence obtained from the historical esti-
mates of {βi}895

i=1 for the S1 type of sensors.

The black solid line represents the cumulated KLD values, which increases as more

estimates βi are included in f and g. On the right hand side of the red vertical

dashed line, there is hardly any increment on the KLD value can be observed.

Hence, the first 240 OLS estimates of β are chosen to form the historical dataset.

Meanwhile, we notice that the first 240 sensors includes some β estimates with
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little increment. In theory, those estimates with little KLD increment could be

moved out of the historical dataset. In this chapter, we keep the arriving order

of the first 240 β estimates since every sensor is characterised immediately once

it was manufactured.

In Figure 3.5, we present the histogram plot of the first 240 β OLS estimates.

As the black curve shows, modelling the historical estimates {βi}240
i=1 by a single

Normal distribution is considered to be inappropriate for this type of sensors.

The mixture density of {βi}240
i=1 will be estimated by the Bayesian approaches

introduced in the Section 3.3.

Figure 3.5: Top plot (a) shows the first 240 {βi,2}240
i=1 OLS estimates are fitted by one

Normal distribution, with location represented by a dash line; bottom plot (b) zooms
in to the most clustered range; fitting a Normal distribution as prior still produces
misleading informations for both mean and variance-covariance.

The 895 S1 sensors data with full measurements {(yi, Xi)}895
i=1 are separated

into three parts. The first part of data contains the first n = 240 sensors data

with full measurements {(yi, Xi)}240
i=1, which is used to calculate the OLS estimates

{βi}240
i=1 and to construct the mixture density of β.
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Figure 3.6: Historical sample size with full measurements and the posterior sample size
with full and reduced measurements of the S1 type of sensors.

The second part of data contains the rest 655 sensors information with reduced 18

measurements {(y−i , X−i )}895
i=241, which need to be characterised via the proposed

Bayesian approaches. Then, the estimated mixture density from the historical

dataset is used as the prior information to derive the posterior inference for the

sensors in the second part of data with reduced measurements.

In order to validate the proposed Bayesian method, we need to assess the accu-

racy of the estimated β values for sensors with reduced measurements. Therefore,

we form the third part of data which contains the rest 655 sensors information

with full measurements. We embed the obtained β estimate via the proposed

Bayesian approach to the current sensor, and recognise the current sensor as a

qualified product if the estimated response variable achieve the required high level

of precision given the full measurements as the covariate variable. Further details

will be given in Section 3.4.

3.3 Methodology

3.3.1 Bayesian Linear Model with Dirichlet Process

Mixture Prior

The main purpose of the sensor characterisation can be simplified by estimating

the value of the critical parameter β through minimising the difference between

the estimated response variable and the true value. As shown in Section 3.2,
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a multi-modal structure of β is discovered from the historical dataset of the

S1 type of sensors. In this section, we propose a Bayesian linear model with

Dirichlet process mixture prior (BL-DPMP), which uses the historical information

to reduce the number of measurements needed per sensor without sacrificing

accuracy of the β estimate.

In industry, sensor characterisation relies on a linear model

y = Xβ + ε, (3.3.1)

where response variable y is a p × 1 vector, covariates X is a p × q matrix,

regression coefficient β is a q× 1 vector. The error vector ε follows a multivariate

Normal distribution ε ∼ N (ε| 0, σ2Ip) with a fixed value of σ2, and Ip denotes a

p× p identity matrix. For high-precision sensors, the estimates of the regression

coefficient β are highly accurate and the variation is extremely small (of the order

×(10−7)), hence we fix the value of σ2 as a constant.

Instead of constructing a single Normal distribution as the prior information

for the regression coefficient β, as proposed by Eves et al. [2015]. We provide

a new way to provide more accurate prior information for the current sensor

through a Dirichlet process mixture (DPM) model. The idea is to use n number

of OLS estimates {βi}ni=1 as observations to build a DPM of Normal distributions,

where the OLS estimates are obtained from the historical dataset {(yi, Xi)}ni=1

with full measurements. We can then describe β by a finite number of distinct

Normal components, which can be used as the prior choices for the current tth

sensor with reduced measurements y−t and X−t for t = n+ 1, . . . , N .

Given historical OLS estimates {βi}ni=1, the regression coefficient β can be

modelled by infinite mixture of multivariate Normal distributions as follows,

fω,µ,Σ(β) =
∞∑
j=1

ωj N (β| µj,Σj), (3.3.2)
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where ω = {ωj}∞j=1 represent the stick-breaking weights,

ω1 = v1 and ωj = vj
∏
{l<j}

(1− vl) for j > 1. (3.3.3)

Take {vj}∞j=1 to be independent and identically distributed variables from a Beta

distribution,

π(v) ∼ Beta(v|M1,M2),

with fixed constants of M1 and M2. Let component-specific parameters (µ,Σ) =

{(µj,Σj)}∞j=1 denote means and variance-covariance matrices for every mixing

Normal distribution, and the prior distributions for mean and variance-covariance

parameters are given by

π(µ|Σ) ∼N (µ|m0, τ0Σ)

π(Σ−1) ∼Wishart(Σ−1|s0, S
−1
0 ).

(3.3.4)

The initial value of m0 is obtained as the mean of n OLS estimates of β, such as

m0 = n−1
∑n

i=1 βi, τ0 is initialised as 1, and S0 is the precision matrix of {βi}ni=1.

In order to truncate the infinite mixture model to be finite, we introduce a

latent variable U such that the joint density of (β, u) given (ω,µ,Σ) can be

written as

fω,µ,Σ(β, u) =
∞∑
j=1

1{u<ξj}
ωj
ξj
N (β| µj,Σj), (3.3.5)

where ξ = {ξj}∞j=1 is generated as a deterministic, positive and decreasing se-

quence. It is used as an envelope function to improve the efficiency of sampling

without changing the mixture model. It is clear that the infinite expression of

the desired density fω,µ,Σ(β, u) in Equation (3.3.2) can be returned by integrating

over u. Hence, the marginal density for U is given by

fξ(u) =
∞∑
j=1

1{u<ξj} =
∞∑
j=1

ξj Unif(u|0, ξj),

where Unif(·) denotes a uniform distribution. A collocation of j can be obtained
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as

Aξ(u) = {j : ξj > u}.

The collection Aξ(u) is a finite set for all u > 0. Then, the joint density of (β, u)

in Equation (3.3.5) can be equally written as

fω,µ,Σ(β, u) =
∑

j∈Aξ(u)

ωj
ξj
N (β|µj,Σj).

The conditional density of β given u is stated as

fω,µ,Σ(β|u) =
1∑

j 1{u<ξj}

∑
j∈Aξ(u)

ωj
ξj
N (β| µj,Σj).

We introduce the latent variable U as a threshold to rule out those mixing com-

ponents with insignificant contributions, and have a finite mixture model with

equal weights 1/(
∑

j 1{u<ξj}).

Furthermore, a second latent variable γ is introduced to indicate allocations

of observations. We write γi = j to state that the ith observation is allocated to

the jth mixing component, such that γi = γi′ = j if observations βi and βi′ share

common parameters µi = µi′ = µj and Σi = Σi′ = Σj. Thus, the joint density of

(β, u, γ) can be written as

fω,µ,Σ(β, u, γ) = 1{u<ξγ}
ωγ
ξγ
N (β| µγ,Σγ).

The configuration information of γi = j means that observation βi is generated

from the jth Normal component with parameters (µj,Σj). By introducing the

latent variable γ significantly improves efficiency of the sampling scheme.

With observations {βi}ni=1 and latent variables {ui}ni=1 and {γi}ni=1, the com-

plete likelihood function can be written as,

Lω,µ,Σ({(βi, ui, γi)}ni=1) =
n∏
i=1

1{ui<ξγi}
ωγi
ξγi
N (βi| µγi ,Σγi).
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Also, the full posterior of component-specific parameters is proportional to

p(µ,Σ|{(βi, ui, γi)}ni=1) ∝ π(µ|Σ) π(Σ)
n∏
i=1

1{ui<ξγi}
ωγi
ξγi
N (βi| µγi ,Σγi).

where π(µ|Σ) and π(Σ) denote the prior distributions in Equations (3.3.4).

To be able to implement the slice sampler introduced by Kalli et al. [2011]

to the model, a set of full conditional density function is required. We initialise

the chain by assigning {γi = i}ni=1 and the slice sampler can be proceeded by

following a Gibbs sampling scheme.

Step 1. The latent variable U can be sampled from a Uniform distribution

according to the configuration indicators γ,

ui ∼ Unif(ui|0, ξγi),

where the sequence {ξγi}ni=1 is determined by ξγi = exp{−b · γi} with a pre-fixed

constant b. For each observation βi, we need to sample a sufficient number of

{ξj}kij=1 until we can no longer find a ξki+1 > ui. Then, the number of mixture

components ki can be determined by,

ki = b− log(ui)

b
c, (3.3.6)

where bxc stands for the greatest integer that is less than or equal to x. Hence, the

total number of mixture components k∗ can be obtained by k∗ = max{i=1,...,n}{ki}.

Step 2. We sample vj from its conditional posterior distribution, which

follows a Beta distribution,

(vj| {βi, ui, γi}ni=1,M1,M2) ∼ Beta (vj| nj +M1,mj +M2) .

The term nj =
∑n

i=1 1{i:γi=j} represents the number of observations in the jth

component, and mj =
∑n

i=1 1{i:γi>j} sums the number of observations which

have not been allocated to any of the previous 1, . . . , j − 1 components yet. The
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component weight parameter ωj can be updated by substituting the posterior of

vj to the stick-breaking expression mentioned in Equation (3.3.3).

Step 3. The conditional posterior distributions of parameters µj and Σj can

be derived as

p(µj,Σj| {(yi, Xi)}{i:γi=j},m0, τ0, s0, S0) ∝ π(µ|Σ)π(Σ)
∏
{i:γi=j}

N (βi| µγi ,Σγi),

where π(µ|Σ) and π(Σ) represent prior distributions stated in Equations (3.3.4).

Hence, component parameters µj and Σj can be sampled from

(µj|β{i:γi=j},Σj,m0, τ0) ∼ N (µj| mj, τjΣj),

(Σ−1
j |β{i:γi=j}, µj, s0, S0) ∼ W

(
Σ−1
j | nj + s0 + 1, Sj

)
,

where W(·) denotes the Wishart distribution, and hyperparameters can be up-

dated as

mj =τj

 ∑
{i:γi=j}

βi +
1

τ0

m0

 , τj =

(
nj +

1

τ0

)−1

,

and Sj =

S0 +
∑
{i:γi=j}

(βi − µj)(βi − µj)T +
1

τ0

(µj −m0)(µj −m0)T

−1

.

Step 4. Given updated parameters of each component, the conditional dis-

tribution of γi is proportional to

p(γi = j| βi, ωj, µj,Σj) ∝ wj N (βi|µj,Σj).

The value of γi for each observation βi lies in between 1 to k∗, where k∗ is the

largest number of components obtained in Step 1. For a component with no

allocation yet, the component parameters are independently sampled from the

corresponding prior distributions.

Therefore, all the conditional densities are available in closed forms and the

Markov chain is complete. The described Gibbs sampling scheme is iteratively
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proceeded through Step 1 - 4 until convergence is reached.

Until now, the observations {βi}ni=1 are allocated to k∗ distinct Normal com-

ponents with parameters {(µj,Σj)}k
∗
j=1 and corresponding weights {ωj}k

∗
j=1. When

we observe new sensors data with reduced measurements {(y−t , X−t )}Nt=n+1, these

k∗ Normals are treated as prior choices for the regression coefficients β in the

linear model stated in Equation (3.3.1). Set {γt}Nt=n+1 denote the prior allocation

indicators of {(y−t , X−t )}Nt=n+1. Denote γt = j as the jth Normal component is

assigned to be the prior distribution of the tth sensor. For each sensor t, the

probability of the prior selection γt = j is proportional to

p(γt = j| y−t , X−t , ωj, µj) ∝ ωj N (y−t | X−t µj, σ2Ip−).

The terms ωj and µj are the weight and the mean respectively for the correspond-

ing jth Normal component, and p− is the dimension of response variable y−t with

reduced measurements. Therefore, the prior allocation for the current sensor γt

is selected as the component j with the highest probability p(γt = j). Given the

prior allocation γt = j, the prior distribution of the regression coefficient βt is

given by

π(βt) ∼ N (βt|µj,Σj).

Then, the posterior distribution of βt is derived as,

p(βt| y−t , X−t , γt = j, µj,Σj) ∝ π(βt)N
(
y−t | X−t βt, σ2Ip−

)
,

which follows a Normal distribution,

(β̂t| y−t , X−t , γt = j, µj,Σj) ∼ N
(
β̂t| µt,Σt

)
, (3.3.7)
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where

µt =

(
Σ−1
j +

1

σ2
X−t

T
X−t

)−1(
Σ−1
j µj +

1

σ2
X−t

T
y−t

)
,

Σt =

(
Σ−1
j +

1

σ2
X−t

T
X−t

)−1

.

We use the posterior inference of β̂t given in Equation (3.3.7) as the characterised

value of the critical parameter β for the tth sensor with reduced measurements

(y−t , X
−
t ).

To validate the proposed BL-DPMP approach, we substitute the estimate β̂t

to the the following equation,

εt = yt −Xtβ̂t,

where (yt, Xt) denote the full measurements recorded for the current tth sensor.

Hence, the resulting error εt is calculated from the complete data by using β̂t

obtained from the BL-DPMP model. We use the error terms {εt}Nt=n+1 to asses

the performance of the proposed BL-DPMP approach, where details are described

in Section 3.4.

3.3.2 Dirichlet Process Mixture Regression Model with

Data-Driven Prediction Procedure

In this section, we propose a Dirichlet process mixture regression model with data-

driven prediction (DPMR-DDP) procedure to describe the relationship between

the response variables {yi}ni=1 and covariates {Xi}ni=1 in the historical dataset and

enhance the prediction accuracy by adding a data-driven prediction procedure.

We have a nonparameter regression model for {(yi, Xi)}ni=1, which can be stated

as

fω,β(yi|Xi) =
∞∑
j=1

ωj N (yi|Xiβj, σ
2Ip), (3.3.8)
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where Xi is a p × q matrix of covariates, and yi is a p × 1 vector of response

variable for i = 1, . . . , n. The mixing weights of components are denoted by

ω = {ωj}∞j=1, which follows the stick-breaking process as described in Equations

(3.3.3). The regression coefficients β = {βj}∞j=1 follow a Normal prior distribution

N (β|µ0,Σ0), where µ0 is obtained as the average of the n OLS estimates of {βi}ni=1

and Σ0 is the variance-covariance matrix of {βi}ni=1. We fix variance σ2 to be a

small constant for the same reason mentioned in Section 3.3.1.

Now, we need to find the corresponding regression version of the DPM model.

Similarly, two sets of latent variables U and γ are introduced to transform the

infinite mixture model to be

fω,β(y, u, γ| X) = 1{u<ξγ}
ωγ
ξγ
N (y| Xβγ, σ2Ip).

Given observed pairs {(yi, Xi)}ni=1, we can write down the full likelihood function

as

Lω,β({(yi, Xi, ui, γi)}ni=1) =
n∏
i=1

1{ui<ξγi}
ωγi
ξγi
N (yi| Xiβγi , σ

2Ip).

Hence, the conditional posterior of regression coefficient β can be derived as

p(β|{(yi, Xi, ui, γi)}ni=1) ∝ π(β)
n∏
i=1

1{ui<ξγi}
ωγi
ξγi
N (yi| Xiβγi , σ

2I),

where π(β) denotes the prior distribution stated in model (3.3.8).

Similar to the slice sampling scheme described in Section 3.3.1, we initialise

the chain by assigning {γi = i}ni=1, and proceed the iterative procedure as follows.

Step 1. The latent variable U can be sampled from a Uniform distribution

according to the configuration indicator γ,

ui ∼ Unif(ui|0, ξγi).

The sequence ξ = {ξγi}ni=1 is determined by ξγi = exp{−b · γi} with a fixed

constant b, where the value of b controls the decreasing speed of ξ. Given the
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sampled value of ui, we can truncate a sufficient number of {ξj}kii=1 and deter-

mine the number of mixture components ki by Equation (3.3.6). Thus, the total

number of mixture components k∗ can be found by k∗ = max{i=1,...,n}{ki}.

Step 2. Given that vj follows a Beta prior distribution Beta(vj| M1,M2), we

can sample vj from the conditional posterior distribution,

(vj| {(yi, Xi, ui, γi)}ni=1,M1,M2) ∼ Beta (vj| nj +M1, mj +M2) ,

where nj =
∑n

i=1 1{i:γi=j} and mj =
∑n

i=1 1{i:γi>j}. Then, the weight parameter

ωj can be obtained by substituting the posterior of vj into the stick-breaking

expression stated in Equation (3.3.3).

Step 3. According to the configuration indicator γ, we can find a set of

observations indices in the jth component. The conditional posterior distribution

of βj can be derived as

p(βj| {(yi, Xi)}{i:γi=j}, µ0,Σ0) ∝ N (β| µ0,Σ0)
∏
{i:γi=j}

N (yi| Xiβγi , σ
2Ip).

Hence, we can sample βj from

(βj| {(yi, Xi)}{i:γi=j}, µ0,Σ0) ∼ N (βj| µj,Σj), (3.3.9)

where µj =

 1

σ2

∑
{i:γi=j}

XT
i Xi + Σ−1

0

−1 1

σ2

∑
{i:γi=j}

XT
i yi + Σ−1

0 µ0

 ,

and Σj =

 1

σ2

∑
{i:γi=j}

XT
i Xi + Σ−1

0

−1

.

Step 4. Given updated parameters {(ωj, µj,Σj)}k
∗
j=1 of every existing compo-

nent, the conditional distribution of γi is proportional to

p(γi = j| {(yi, Xi)}ni=1, ωj, βj) ∝
wj
ξj
N (yi| Xiβj, σ

2Ip).

for j = 1, . . . , k∗. The value of γi is chosen to be the component with the greatest
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probability.

Therefore, the chain is completed and the slice sampler can be proceeded

until convergence is reached. Up to this stage, the historical data {(yi, Xi)}ni=1

are allocated into a DPM regression model with k∗ distinct regression coefficients

{βj}k
∗
j=1.

Next, we need to predict the value of yt given Xt with full measurements,

when only the incomplete pair of data (y−t , X
−
t ) is available. We consider the

prediction obtained from the standard DPM regression model to be not accurate

enough for high-precision sensor characterisation. Here, we briefly discuss the

reasons and propose a data-driven prediction (DDP) procedure to improve the

accuracy of the prediction.

Our aim is to predict the value of response variable yt given the covariates

Xt with full measurements. In general, based on the estimated DPM regression

model with k∗ components, the predictive distribution of yt given Xt can be

derived as

f(yt|Xt) =
α0

α0 + n+ 1

∫
N (yt| Xtβ0, σ

2Ip)N (β0| µ0,Σ0)dβ0

+
k∗∑
j=1

nj
α0 + n+ 1

∫
N (yt| Xtβj, σ

2Ip)N (βj| µj,Σj)dβj,

=
α0

α0 + n+ 1
N
(
yt| Xtµ0, σ

2Ip +XtΣ0Xt
T
)

+
k∗∑
j=1

nj
α0 + n+ 1

N
(
yt| Xtµj, σ

2Ip +XtΣjXt
T
)
,

(3.3.10)

where the term of µ0 and Σ0 represent the initial values of mean and covariance

matrix in the mixture regression model stated in Equation (3.3.8). As a result,

the prediction of yt is simply an average of all component-specific predictions

{Xtµj}k
∗
j=0 with weights given by the Pólya urn scheme described in Section 2.1.3.

Following this way, the prediction of yt does not involve any information carried

in the available reduced measurements (y−t , X
−
t ). As we mentioned earlier, each

sensor needs to be individually characterised in order to achieve the required high
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precision. Therefore, the prediction of yt obtained from Equation (3.3.10) is not

considered to be accurate enough as it is not specified for the tth sensor by using

the information from (y−t , X
−
t ).

In order to improve the prediction performance, we can specify a suitable

regression relationship from the estimated mixture regression model for each pair

of reduced measurements (y−t , X
−
t ). Let γt = j to represent that the jth regression

component is assigned to the observed pair of (y−t , X
−
t ). For each sensor t, the

predictive probability is proportional to

p(γt = j|y−t , X−t , βj) ∝ N (y−t | X−t µj, σ2Ip−), (3.3.11)

for j = 1, . . . , k∗. Then, the predictive distribution of yt given Xt with full

measurements can be derived as

f(yt|Xt, γt = j) ∼ N (yt|Xtµj, σ
2Ip +XtΣjX

T
t ). (3.3.12)

In this way, the information carried in reduced measurements (y−t , X
−
t ) is incor-

porated in γt = j in order to identify which regression relationship is the most

suitable one in the estimated mixture regression model. The predictive distribu-

tion of yt given Xt is draw based on the selected regression coefficient βj with

parameters (µj,Σj).

However, following the procedure described above, the prediction of yt given

Xt is simply estimated by using the regression coefficient µj obtained from (3.3.9).

The observed data (y−t , X
−
t ) becomes more likely to be allocated to the largest

component due to the clustering feature of the Dirichlet process. Two different

sensors X−t and X−t′ may share the same value of regression coefficient βt = βt′ =

µj, if we find γt = γt′ = j for another sensor t′ 6= t. In this case, the incomplete

information of (y−t , X
−
t ) is only participated during the selection stage of γt = j.

For high-precision sensors in the considered situation, the prediction drawn by

the shared value of µj may also fail the sensor to meet the required high precision.
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This prediction accuracy issue of the DPM regression model is also noticed by

other researchers: modified versions of the DPM regression model can be found

in Shahbaba and Neal [2009] and Wade et al. [2014], and proposals to allow for

covariate-dependent weights can be found in Griffin and Steel [2006] and Dunson

and Park [2008]. In this section, we propose a data-driven prediction procedure to

further enhance the accuracy of prediction of yt given Xt, by incorporating the in-

formation carried in reduced measurements (y−t , X
−
t ) to the regression coefficients

{βj}k
∗
j=1. Once the mixture regression model with k∗ distinct values of regression

coefficients {βj}k
∗
j=1 is obtained from the historical dataset {(yi, Xi)}ni=1, the in-

formation carried in the reduced measurements (y−t , X
−
t ) can be used to update

every regression coefficient βj for j = 1, . . . , k∗ through the following way,

(β
(t)
j |y−t , X−t , µj,Σj) ∼ N (β

(t)
j | µ

(t)
j , Σ

(t)
j ), (3.3.13)

where µ
(t)
j =

(
1

σ2
X−t

T
y−t + Σ−1

j µj

)(
1

σ2
X−t

T
X−t + Σ−1

j

)−1

,

and Σ
(t)
j =

(
1

σ2
X−t

T
X−t + Σ−1

j

)−1

,

where the posterior distributions of parameters µj and Σj are given in Equation

(3.3.9). Now we have updated k∗ distinct regression coefficients {β(t)
j }k

∗
j=1. We

then use a maximisation procedure to determine the allocation of the tth, where

the probability of γt = j is proportional to

p(γt = j| y−t , X−t , β
(t)
j ) ∝ N (y−t | X−t β

(t)
j , σ

2Ip−),

for each j = 1, . . . , k∗. Therefore, given γt = j, the predictive distribution of yt

given Xt with full measurements can be obtained as,

f(yt| Xt) ∼ N
(
yt| Xtµ

(t)
j , σ

2Ip +XtΣ
(t)
j X

T
t

)
. (3.3.14)

Following the proposed data-driven prediction procedure, the accuracy of predic-

tion is significantly improved and can outperforms the standard DPM prediction.
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The numerical evidence is presented in Section 3.4.

3.4 Results Analysis

In this section, we demonstrate how to apply both proposed BL-DPMP and

DPMR-DDP approaches to reduce the required number of measurements needed

per sensor. We also provide evidence to show that the Bayesian linear approach

with single Normal prior introduced by Eves et al. [2015] is unlikely to provide

accurate estimates of β for some types of sensors with multi-modality shown

in historical parameter estimates. By taking the S1 dataset as an example, we

present performances obtained from both of the proposed approaches when char-

acterising the S1 type of sensors with reduced measurements.

To assess and to compare the performances of the proposed approaches, we

count the number of sensors failed to meet the required high precision from dif-

ferent methods and calculate the corresponding pass rates. Meanwhile, the num-

ber of failures obtained via OLS method with complete data can be used as a

benchmark. To verify those failed sensors, we present the characterisation testing

procedure first.

Recall that the S1 dataset contains information of 895 previously characterised

sensors in total, the first n sensors with full measurements {(yi, Xi)}ni=1 are used to

calculate the parameter estimates {βi}ni=1 and to construct the prior information

of β. Then, we need to characterise the rest (895 − n) sensors with reduced

measurements {(y−t , X−t )}895
t=n+1. Then, we use the obtained estimates {βt}895

t=n+1

to calculate the error terms,

εt = yt −Xtβt, (3.4.1)

where εt is a 32 × 1 vector (ε1,t, . . . , ε32,t)
T for t = n + 1, . . . , 895. Based on the

temperature pattern shown in Figure 3.2(a), the absolute values of average errors
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are calculated for every temperature band,

ε̄low1,t =
1

6

6∑
l=1

|εl,t|, ε̄medium1,t =
1

6

12∑
l=7

|εl,t|, ε̄high,t =
1

6

18∑
l=13

|εl,t|,

ε̄medium2,t =
1

8

24∑
l=19

|εl,t|, ε̄low2,t =
1

6

32∑
l=25

|εl,t|.
(3.4.2)

For a S1 sensor to pass the characterisation test, the absolute values of average

errors for all temperature bands (ε̄low1,t, ε̄medium1,t, ε̄high,t, ε̄medium2,t, ε̄low2,t) calcu-

lated in Equation (3.4.2) must lie within a range of [0, 0.3%]. Otherwise, the

sensor will be recognised as a failure and sent back for further investigation. For

both approaches, we can count the number of sensors which meet the high pre-

cision level and the corresponding pass rates. The proposed approaches will be

approved to be valid if they reach a comparable level of pass rate to the OLS pass

rate obtained with full measurements.

Now, we present the number of failures obtained by the Bayesian linear ap-

proach proposed by Eves et al. [2015] with the single Normal prior assumption.

The first n = 30 OLS estimates {βi}30
i=1 are used to construct the prior informa-

tion of β, where initial values are obtained in Equations (2.4.6). Hence, there are

865 sensors need to be characterised with reduced measurements, and we count

the number of failed sensors and calculate the pass rate. We also present the

numbers of failures obtained from the currently applied OLS method with full

and reduced measurements.

Table 3.1: Numbers of failures obtained among OLS approach with full measurements,
Bayesian linear and OLS approaches with reduced measurements, corresponding pass
rates and execution time for the S1 type of sensors.

OLS (full) Bayesian linear (reduced) OLS (reduced)

No. of failure at 0.1% 19 527 538
No. of failure at 0.2% 18 343 366
No. of failure at 0.3% 17 233 250

Pass rate 98.03% 73.06% 71.10%
Time (second) 0.04 0.1 0.04
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As shown in Table 3.1, the numbers of failures are collected under three different

errors limits 0.1%, 0.2% and 0.3%. We identify 17 failed sensors at 0.3% level

after being characterised by OLS method with full measurements. The pass rate

98.03% can be treated as the benchmark for other methods, as it is obtained by

using the current practice in the real characterisation line. On the other hand, the

Bayesian linear approach with reduced measurements gives 233 failures with pass

rate 73.06%, and the OLS approach with reduced measurements gives a slightly

worse result: 250 failures with pass rate 71.1%.

It is obvious that when dealing with the sensor data with reduced measure-

ments, the pass rates drop significantly for both OLS approach and Bayesian

linear approach with the single Normal prior assumption. As we expected, OLS

method does not perform well since it can not achieve any information about

measurements at mid-range temperatures. Meanwhile, the Bayesian linear ap-

proach proposed by Eves et al. [2015] suffers from the drawback of assuming a

single Normal prior distribution for datasets with multi-modality shown in the

historical parameter estimates.

BL-DPMP

Following the procedure described in Section 3.3.1, we take the first n = 240

OLS estimates {βi}240
i=1 as observations, and apply the slice sampler to estimate

the Normal mixture density of β. The initial values are chosen as stated in

Equations (2.4.6), and we run the slice sampler for 10,000 iterations with 5,000

iterations as the burn-in period. In practice, the slice sampler mixed fast and

the trace plot of β = (β1, β2, β3, β4, β5)′ estimates for one component after the

burn-in period are given in Figure 3.7.
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(a) β1

(b) β2

(c) β3

(d) β4

(e) β5

Figure 3.7: Trace plots of β = (β1, β2, β3, β4, β5)
′ estimates for the last 5000 iterations.
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The histogram plot of the second dimension of the OLS estimates {βi,2}240
i=1

and the curve fitting are presented in Figure 3.8.

Figure 3.8: Histogram of the historical estimates {βi,2}240
i=1 and the curve fitting obtained

from the BL-DPMP approach with slice sampler of the S1 type of sensors.

Table 3.2 shows the number of allocations in each component and the corre-

sponding weights displayed in Figure 3.8. According to Figure 3.8, the mixture

components are well spread out, and the size of each Normal distribution matches

its weight shown in the Table 3.2.

Table 3.2: Number of allocations and corresponding weight for each mixing Normal
component obtained from the slice sampler of the S1 historical dataset.

Comp. No. of allocations Weight Comp. No. of allocations Weight

1 56 0.2333 2 35 0.1458
3 18 0.075 4 16 0.0667
5 29 0.1208 6 30 0.125
7 13 0.0542 8 8 0.0333
9 7 0.0292 10 11 0.0458
11 5 0.0208 12 1 0.0042
13 8 0.0333 14 2 0.0083
15 1 0.0042
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According to Table 3.2, there are 15 Normal components that survive with ac-

tual observation(s) allocated. We set the initial values of M1 = 1 and M2 = 3 for

the Beta prior distribution from the stick-breaking process described in Equation

(3.3.3). Judging by the curve fitting presented in Figure 3.8, the estimated mix-

ture density of historical dataset is potentially over-fitted. For this considered

industrial application, we prefer to keep those components with only a couple of

observations. Since the estimated mixture density stated in Table 3.2 will be used

as the historical information to compensate the missed information for charac-

terising the next sensor without measurements at warm temperatures, the more

number of components actually provide more prior choices for sensor character-

isations. Hence, it is more likely for a future sensor to find an appropriate prior

distribution.

The estimated mixing components become the prior choice for estimating βt

given reduced measurements (y−t , X
−
t ). The final estimate of βt can be drawn ac-

cording to Equation (3.3.7), then we can calculate the error term εt by Equation

(3.4.1) and the corresponding average errors by Equations (3.4.2). A comprehen-

sive comparison of the performances achieved by different approaches with both

complete and incomplete datasets are presented in Table 3.3.

Table 3.3: Comparison performances obtained from OLS, Bayesian Linear approach
and BL-DPMP approach with slice sampler on both the complete and incomplete
datasets of the S1 type of sensors.

No. of failures (655) Pass rate Time (sec)
0.1% 0.2% 0.3%

OLS
Complete 4 3 2 99.69% 0.04

Incomplete 432 290 199 69.62% 0.05

Bayesian Linear
Complete 4 3 2 99.69% 0.1

Incomplete 431 290 199 69.62% 0.1

BL-DPMP
Complete 6 3 2 99.69% 1350

Incomplete 162 24 8 98.78% 1936

In Table 3.3, all methods provide 2 failures out of 655 sensors with full measure-

ments. It shows that the proposed BL-DPMP approach works well when data is
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fully observed. If we focus on the 0.3% column, both OLS and Bayesian linear

methods provide 199 failures with incomplete data. On the other hand, the pro-

posed BL-DPMP model is able to reduces the failure number to 8, which pushes

the pass rate from 69.62% up to 98.78%. It is worthy to note that the 98.78%

pass rate is achieved from sensors without having measurements at mid-range

temperatures. Similar results are observed from other two columns with 0.1%

and 0.2% error limits. Therefore, when dealing with incomplete data, BL-DPMP

approach consistently provide much fewer numbers of failures compare to OLS

and Bayesian linear approaches.

To further investigate the performance of these three methods, we take one

sensor as an example to compare the corresponding error terms.

Figure 3.9: Errors comparison for one product among OLS, Bayesian linear and BL-
DPMP approach with slice sampler of the S1 type of sensors.

In Figure 3.9, the errors calculated from different methods with incomplete data

are plotted with different colours. The horizontal lines represent ±0.2% and

±0.3% error limits. For the current S1 sensor with 32 measurements and 5

temperature bands, both OLS (blue) and Bayesian linear (red) approaches are

failed, since the resulting average errors for medium temperature bands are below
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the −0.3% error limit. It is clear that this sensor can be considered as a failed

product by using OLS method or the Bayesian linear approach. On the other

hand, the errors from BL-DPMP approach (green) are successfully narrowed into

the ±0.1% error interval, which implies that the sensor is well characterised.

Here, I would like to briefly discuss the normality assumption of the error term

ε = (ε1, . . . , ε32)′. We assumed that ε follows a Normal distribution N (ε|0, σ2I32)

with fixed value of σ2 in Equation (3.3.1). However, in Figure 3.9, the estimated

errors do not seem to perfectly fluctuate around zero. This phenomenon is simply

caused by the manufacturing reasons in the real world industrial application. It

is not possible to have a clear Normal distribution with only 32 error points. The

overall error does follow a Normal distribution, this is simply because of the large

sample size. Therefore, it is reasonable to assume the error term ε following a

Normal distribution with extreme small variance.

Based on the results shown above, the proposed BL-DPMP method is capable

to reduce the number of measurements required per sensor without losing much

of the estimation precision. The 98.78% pass rate from the proposed approach

is considered to be tolerable, given the subsequent benefits from the reduction in

both costs and time for the characterisation process.

DPMR-DDP

By taking the first 240 full measurements {(yi, Xi)}240
i=1 as observations, we build

a DPM regression model to describe the relationship between response variable y

and covariates X, by executing the slice sampler for 10,000 iterations and 9,800

iterations as the burn-in period. Then, given the estimated mixture regression

model with distinct k∗ regression coefficients, the prediction of yt conditioning on

Xt with full measurements is obtained by incorporating the available information

carried in the reduced measurements (y−t , X
−
t ) for the current tth sensor via the

proposed data-driven prediction procedure.

As discussed in Section 3.3.2, the prediction obtained from the DPM regres-

sion model is not considered to be accurate enough for high-precision sensor in
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this industrial case. We compare the prediction performances of DPM regression

with and without data-driven prediction procedure, along with methods men-

tioned previously. The overall results from different methods with complete and

incomplete datasets are summarised in Table 3.4.

Table 3.4: Comparison of number of failures caused by OLS, Bayesian Linear, BL-
DPMP, DPMR and DPMR-DDP for both the complete and incomplete datasets of the
S1 type of sensors.

No. of Failures (655) Pass rate Time (sec)
0.1% 0.2% 0.3%

OLS
Complete 4 3 2 99.69% 0.04

Incomplete 432 290 199 69.62% 0.05

Bayesian Linear
Complete 4 3 2 99.69% 0.1

Incomplete 431 290 199 69.62% 0.1

BL-DPMP
Complete 6 3 2 99.69% 1350

Incomplete 162 24 8 98.78% 1936

DPMR
Complete 408 120 57 91.3% 12220

Incomplete 590 314 135 79.39% 10990

DPMR-DDP
Complete 4 3 2 99.69% 4318

Incomplete 309 120 46 92.98% 4522

When dealing with the S1 sensor data with full measurements, all methods

perform as good as the OLS method, except for the DPM regression model. The

DPM regression model provides 57 failed sensors, which is considered to be too

many to meet the company’s requirement. The reason is that when the DPM

regression model draws prediction of yt given Xt, it actually uses the same set of

regression coefficient βγt=j for all observations with reduced measurements X−t

that are allocated in this jth mixing component. For instance, if an observation

is allocated to the jth Normal component and its location is actually on the

edge of the selected Normal curve, it shares the same set of regression coefficient

{βt}{t:γt=j} as the same as the other observations in the same jth component.

Thus, the distance between the component location and the observation causes

the sensor to fail the characterisation test. As shown in Equation (3.3.12), the

estimated mean µj does not carry information from the reduced measurements

(y−t , X
−
t ). The unique information about the tth sensor only participates to the
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selection stage through Equation(3.3.11). According to the resulting number of

failures, this extent of information participation in the standard DPM regression

model is not enough to be able to deliver accurate prediction of yt given Xt.

The inaccurate selection might be another reason for the poor prediction from

the DPM regression model. According to Equation (3.3.11), the incomplete pair

of (y−t , X
−
t ) turns out to be the driving force in deciding the allocation of the tth

sensor. Extra concern is arisen such that the selected component may not be the

most suitable one since the information of the tth sensor only partially contained

in reduced measurements (y−t , X
−
t ). Therefore, the DPM regression model are

not considered to be very suitable for this high precision sensor characterisation

problem.

To enhance the accuracy of the prediction, we propose a data-driven pre-

diction procedure for the DPM regression model. When data is incomplete for

the current sensor, the data-driven prediction incorporates the information of

(y−t , X
−
t ) into the coefficient regression β

(t)
j by Equation (3.3.14). In this way, the

information stored in (y−t , X
−
t ) provides more contributions of drawing prediction

of yt given Xt. In the proposed data-driven prediction, the allocation of the tth

sensor is dependent on β
(t)
j rather than βj, where β

(t)
j has combined the complete

information from the historical dataset and the incomplete information for the

current sensor. Therefore, the data-driven prediction leads to a better selection

for the current sensor characterisation and a better prediction. The numbers of

failures obtained from the DPM regression model with and without data-driven

prediction procedure are both considered to be too high in the company’s point

of view. However, the proposed data-driven prediction procedure improves the

accuracy of prediction significantly compared to the standard DPM regression

model.

In summary, when the data is incomplete, the proposed BL-DPMP approach

can achieve a satisfied pass rate comparing to currently applied OLS method with

complete data. The results obtained from the DPMR-DDP procedure suggests
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that this DDP procedure has potential to be further improved. The commonly

applied DPM regression model without data-driven prediction procedure ends

with the largest number of failures among all methods, which shows it is not

suitable for high-precision sensor characterisation considered in this industrial

case. The OLS and Bayesian linear model with single Normal prior both collapse

for the S1 dataset.

Based on the results we have presented above, the proposed BL-DPMP ap-

proach shows the possibility that there is no need to take measurements at the

mid-range temperatures for the S1 sensors characterisation in the future. Despite

the common drawback of high computational cost of the MCMC type of algo-

rithms, the results approve that our proposed BL-DPMP approach performs as

good as the current OLS method with a fewer number of measurements. The

potential benefits on cost and time can be introduced to the manufacturer by

applying the proposed method on the real characterisation line.

In addition, we applied the proposed BL-DPMP approach to characterise

other two types of sensors with reduced measurements. The historical datasets

from both types of sensors exhibit single modal structure. In those cases, the

proposed BL-DPMP approach was able to accurate describe the historical infor-

mation and provided 100% pass rate on both types of sensors. Therefore, the

BL-DPMP approach is shown to be powerful enough to deal with sensors which

exhibit unknown structure of historical datasets.

3.5 Discussion

In this chapter, we proposed two Bayesian approaches, which will be used to re-

duce the required number of measurements for characterising one type of sensors

where a multi-modal structure is exhibited in the historical parameter estimates.

The first proposed BL-DPMP approach captured the multi-modality of historical

estimates of the regression coefficient {βi}ni=1 by a Dirichlet process mixture of
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Normal distributions. Following this, one of the mixing components is selected

and used to provide the prior information for the current sensor with reduced

measurements. The posterior distribution of the coefficient regression β for the

current sensor was derived through a Bayesian linear regression model. The pro-

posed BL-DPMP approach achieved a satisfactory pass rate level in comparison

to that achieved by OLS method with full measurements as the reference pass

rate.

Instead of modelling the historical estimates of the regression coefficient β, we

also proposed a DPM regression model to describe the relationship between the

response variable {yi}ni=1 and the covariate {Xi}ni=1 from the historical dataset

and added a data-driven prediction (DPMR-DDP) procedure to enhance the ac-

curacy of the prediction. Since the prediction obtained from the standard DPM

regression model was not able to reach the satisfactory level of accuracy in the

considered situation, we proposed a data-driven prediction procedure used to

draw prediction of yt given Xt with full measurements for the current sensor by

incorporating the incomplete information carried in (y−t , X
−
t ). According to the

results obtained from the proposed DPMR-DDP approach, the proposed predic-

tion procedure significantly improved the prediction performance of the DPM

regression model. However, it still produced too many sensors that failed to meet

the company’s quality specifications.

One concern that arose when applying the proposed BL-DPMP approach to

the real characterisation line in industry is how to update the prior information.

There might be a slight shift in the β estimates as time goes by. Hence, we need

to update the β estimates for the current sensor with reduced measurements to

the prior information. This updated prior information will be used to characterise

the next sensor with reduced measurements. In future work, the proposed BL-

DPMP approach can potentially be extended to apply to a generalised linear

model. In this case, the linear relationship between the response variable y and

the covariates X in the historical dataset no longer hold. Additionally, the OLS

estimators are replaced by the maximum likelihood estimations (MLE).
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Other concerns arise when applying the MCMC method to estimate the mix-

ture density. One drawback of MCMC methods is that they are quite computa-

tionally intensive, which counteracts the time saved from collecting a fewer num-

ber of measurements in the characterisation process. The proposed BL-DPMP

approach costs 1936 seconds, more than half an hour, to run 10,000 iterations. In

comparison, the OLS method currently used in industry can be executed in under

a second. The expensive computational cost would be a major hurdle that we

need to address before we can apply the proposed BL-DPMP model to the real

characterisation line. Another concern is the repeatability; if we run the sampling

method multiple times, the estimated mixture densities always differ slightly from

each other. Therefore, we will seek fast alternatives to MCMC methods that can

provide deterministic mixture density estimations without losing much precision.

79



Chapter 4

Hybrid Variational Bayesian

Algorithm for Mixture Models

4.1 Introduction

In Chapter 3, we proposed a Bayesian linear model with Dirichlet process mix-

ture prior (BL-DPMP) to reduce the number of measurements required for sensor

characterisations. For a certain type S1 sensors, we modelled the historical esti-

mates of parameter β by a DPM of Normal distributions. Hence, the estimated

mixture density provides sufficient prior information for characterising sensors

with reduced measurements.

A key step in the BL-DPMP approach is to estimate the mixture density for

the unknown multi-modal structure from the previous estimates of parameter β.

The slice sampler we applied in Chapter 3 can be categorised as a stochastic

technique. In general, such a method draws samples under the exact posterior

distributions. Hence, given sufficiently large samples, inference drawn from the

MCMC approach is reliable and can be treated as a reference for comparisons

with other algorithms. However, one of the drawbacks of the MCMC approach

is that the sampling techniques usually require expensive computational effort.

As a result, the time saved by taking fewer measurements is counteracted by

the extra time needed to draw samples. Moreover, the sampling approach can-
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not guarantee to consistently provide the same estimate of the mixture density.

Moreover, if we run the slice sampler multiple times, some observations may be

assigned to different mixture components in each run, which may slightly change

the posterior inference of the mixing component parameters. This repeatability

problem presented by the proposed BL-DPMP approach might be a concern from

the manufacturer’s point of view, especially when applied to for characterising

high-precision sensors.

Instead of the sampling technique, we apply an alternative class of techniques

called deterministic approximations to estimate the mixture densities. Without

losing much accuracy, the intractable posterior distribution can be analytically

approximated by a well-studied parametric form. However, the mixture densities

estimated by deterministic approximation techniques can never be exact. We can

therefore view it as a complementary approach of MCMC, since it requires less

computational effort to provide a deterministic result, but only an approxima-

tion. In this chapter, we focus on a family of approximation techniques called

Variational Bayes (VB) or Variational Inference (VI).

The main idea behind Variation Bayes approach is to approximate the ex-

act posterior distribution by positing a family of approximating densities over

unobserved variables, and exploring the member of that family that minimises

the Kullback-Leibler divergence (KLD) of the posterior distribution. Thus, Vari-

ational Bayes turns inference from a simulation problem into an optimisation

problem. As one of the critical points of drawing successful variational inference,

the chosen approximating family must be flexible enough to give a close approx-

imation to the posterior distribution. Meanwhile, the form of the chosen family

should not be too complicated for efficient optimisation. Summaries of contem-

porary variational approximations can be found in the works of Jordan et al.

[1999] and Titterington [2004]. New variational approximation methodologies for

particular applications have been proposed by McGrory and Titterington [2007].

The statistical properties of estimators obtained via variational approximation

are presented in Wang and Titterington [2006].
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One common drawback when applying Variational Bayes to estimate mixture

model densities is the local maxima problem. When applying VB to the S1 his-

torical dataset with multi-modality, we discovered that, sometimes, VB inference

results in a local maximum rather than in the global maximum. Another well-

known shortcoming of VB is that the variance of the posterior distributions is

generally underestimated, as discussed in Wang and Titterington [2005]. Various

methods have been proposed by researchers in order to overcome these issues.

For example, Ueda and Ghahramani [2002] proposed a split and merge procedure

to optimise an objective function, which allows simultaneous estimates of the pa-

rameters and the number of components in a Normal mixture model. By using

the component-elimination property noted by Attias [1999] and Corduneanu and

Bishop [2001], a variational optimisation technique is described by McGrory and

Titterington [2007], where the algorithm is initialised with a large number of com-

ponents, and those components with sufficiently small weights are dropped out

during the optimisation process. Constantinopoulos and Likas [2007] introduced

a progressive mean splitting procedure, which starts with two components. Wu

et al. [2012] developed a split and eliminate VB for highly heterogeneous spiky

spatial data patterns.

In this chapter, we propose a hybrid Variational Bayes (HVB) algorithm to

approximate the DPM of Normal densities. The HVB algorithm starts with

an over fitted number of components, and it converges to a suitable number

of components according to the component-elimination property. Then, HVB

follows a greedy searching scheme which explores every possible model structure.

In this way, the risk of becoming trapped in a local maximum is reduced. We can

further reduce this risk by incorporating two types of splitting operations, where

details are given in Section 5.3.3. This proposed HVB approach deterministically

estimates the mixture density by consuming much less computational resources.

HVB allows for accurate descriptions of each Normal component and provides

flexibility in terms of the number of mixture components needed in order to

avoid local maxima problems. Judging by the results from the empirical study,
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the proposed HVB approach is able to provide accurate approximations of β

with reduced measurements with much less the computational effort, in contrast

to that required by MCMC approaches.

The remainder of this chapter is organised as follows. In Section 4.2, we

describe basic Variational Bayes approximations for Normal mixture density es-

timation. The proposed HVB algorithm is introduced in Section 4.3. In Section

4.4, we illustrate the HVB algorithm through a simulation study of Normal mix-

tures. Details of how we apply HVB to the S1 dataset and a comparison with

VB and overfitting VB approaches are also included. Section 4.5 discusses the

potential drawbacks of HVB and directions for further research.

4.2 Variational Bayes

A central task in Bayesian statistics is to evaluate the posterior distribution p(θ|x)

of the unobserved parameters θ given the observed data variables x, especially if

the posterior is not easy to compute. Consider a joint density

p(x,θ) = p(θ)p(x|θ)

with observations x = {xi}ni=1 and parameters θ = {θj}kj=1, where p(θ) and

p(x|θ) are known as prior and likelihood respectively in a Bayesian model. The

inference of θ can be drawn by computing the conditional density

p(θ|x) = p(x,θ)/p(x).

The necessary marginal density p(x) can be evaluated by marginalising out

the parameters from the joint density, such as p(x) =
∫
p(x,θ) dθ. For many ap-

plications in practice, the integral is not available in analytical form or it requires

prohibitive computational effort. In this section, we introduce a class of deter-

ministic approximation algorithms based on variational Bayes. The basic idea is
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to pick an variational distribution q(θ) which follows some tractable family, and

then to try to make this q(θ) as close as possible to the exact posterior p(θ|x).

The log marginal density can be equally written as

log p(x) = log

∫
q(θ)

p(x,θ)

q(θ)
dθ.

Recall that if a function g is concave, then we have g(E[x]) ≥ E[g(x)] from

Jensen’s inequality. Thus, the log marginal density of data can be expressed as

log p(x) ≥
∫
q(θ) log

(
p(x,θ)

q(θ)

)
dθ,

where the right hand side of the inequality is known as the evidence lower bound

(ELBO),

ELBO(q) =

∫
q(θ) log

(
p(x,θ)

q(θ)

)
dθ. (4.2.1)

The difference between the marginal density log p(x) of data and ELBO can be

written as,

log p(x)− ELBO(q) = log p(x)−
∫
q(θ) log

(
p(x,θ)

q(θ)

)
dθ

=

∫
q(θ) log

(
q(θ)

p(θ|x)

)
dθ

= KLD(q||p),

(4.2.2)

which is recognised as a Kullback-Leibler divergence (KLD). The KLD(q||p) mea-

sures the distance between two probability distributions q(θ) and p(θ|x), where

the value of KLD is always non-negative and vanishes when q(θ) = p(θ|x). Hence,

we can decompose the log marginal likelihood into two parts:

log p(x) = ELBO(q) + KLD(q||p).

The quantity ELBO(q) is tractable to compute with a suitable choices of q(θ).

Then, we can maximise the evidence lower bound with respect to the variational

distribution q(θ), which is equivalent to minimizing the KLD stated in Equation
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(4.2.2).

Assume that parameters θ = {θj}kj=1 are mutually independent, and each of

them is governed by a distinct factor in the variational density, such as q(θ) =∏k
j=1 qj(θj). It is worth noting that no further assumption is made about the

variational distribution q(θ) and no restriction is placed on the functional form of

an individual qj(θj). The optimal value of the ELBO is achieved by maximising

with respect to each of the qj(θj) in turn. Substituting q(θ) =
∏

j qj(θj) into

the ELBO(q) expression in Equation (4.2.1), we focus on one group ql(θl) and

dependent terms for l = 1, . . . , k. Denoting ql(θl) by ql for simplicity, the evidence

lower bound can be written as

ELBO(q) =

∫
q(θ) log

(
p(x,θ)

q(θ)

)
dθ

=

∫ ∏
j

qj

(
log p(x,θ)−

∑
j

log qj

)
dθ

=

∫
ql

∫ ∏
j 6=l

qj

(
log p(x,θ)− log ql −

∑
j 6=l

log qj

)
dθ{j:j 6=l}dθl

=

∫
ql

(∫
log p(x,θ)

∏
j 6=l

qjdθj

)
dθl −

∫
ql log ql dθl + const,

where terms unrelated to θl are absorbed in the constant term. From right hand

side of the expression, the term in bracket
∫

log p(x,θ)
∏

j 6=l qjdθj can be treated

as the expectation of log p(x,θ) with respect to variational distributions over

all parameters θj for j 6= l. We can write down the evidence lower bound and

rearrange it as

ELBO(q) =

∫
ql Ej 6=l[log p(x,θ)] dθl −

∫
ql log ql dθl + const

=

∫
ql log

(
Ej 6=l[log p(x,θ)]

ql

)
dθl + const

=−KLD(ql||Ej 6=l[log p(x,θ)]) + const.

Therefore, the optimal solution of q∗l (θl) is achieved when the Kullback-Leibler

divergence between ql(θl) and Ej 6=l[log p(x,θ)] is minimised to zero with other
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factors {qj}{j:j 6=l} fixed,

log q∗l (θl) = Ej 6=l[log p(x,θ)] + const. (4.2.3)

In words, this means that the log of the optimal solution for ql(θl) is simply

obtained by considering the log of the joint distribution over all observed variables

x and unobserved parameters θ, and then taking the expectation with respect

to all of the other variational factors {qj(θj)}{j:j 6=l}. The additive constant is

calculated by normalising the distribution log q∗l (θl). Thus, the general solution

to optimisation of q∗l (θl) is obtained as

q∗l (θl) =
exp{Ej 6=l[log p(x,θ)]}∫

exp{Ej 6=l[log p(x,θ)]} dθl
,

by taking the exponential on both sides of Equation (4.2.3).

4.2.1 VB for Mixtures of Normals

In this section, we take a mixture of Normal distributions as an example to

explain the intractability of the mixture model and demonstrate how to construct

a Variational Bayes algorithm to estimate a mixture of Normals. VB for Normal

mixtures is well studied by Beal and Ghahramani [2003] and Biship [2006]. Let

x = {xi}ni=1 be a set of D-dimensional observations, which is generated from a

finite mixture model of k Normal distributions with mixing weights ω = {ωj}kj=1,

means µ = {µj}kj=1 and precision matrices Λ = {Λj}kj=1. Thus, the model can

be written as,

p(xi| ω,µ,Λ) =
k∑
j=1

ωj N (xi| µj,Λ−1
j ).

We assign a Dirichlet distribution to be the prior for weight parameters ω,

π(ω) ∼ Dir(ω|α) = C(α)
k∏
j=1

ω
αj−1
j , (4.2.4)
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where α = {αj}kj=1 and the normalisation constant C(α) is the multivariate

Beta function, which is C(α) = Γ(
∑k

j=1 αj)/(
∏k

j=1 Γ(αj)). For the component

parameters, we assume the following factored conjugate joint prior distribution,

π(µ,Λ) = π(µ|Λ)π(Λ) =
k∏
j=1

N (µj| m0, (τ0Λj)
−1)W(Λj| s0, S0), (4.2.5)

with pre-fixed initial values (m0, τ0, s0, S0).

As we have mentioned earlier, the marginal density f(x) is necessary, and it is

derived by integrating over all parameters (ω,µ,Λ). Given conjugate prior dis-

tributions, each individual integral is computable. However, the marginalisations

involve summing over all possible configurations of the unobserved parameters,

and there are kn of integrals needs to calculate in total. The required computa-

tional effort remains exponential in k, hence it is considered to be intractable in

practice.

To overcome this issue, we introduce latent configuration variables z = {zi}ni=1

to indicate allocations of observations x = {xi}ni=1. Each zi is a binary vector

zi = (zi1, . . . , zik) and we write zij = 1 if the ith observation is allocated to the

jth component for i = 1, · · · , n and j = 1, · · · , k; otherwise zij = 0. Therefore,

the joint density of (x, z) given (ω,µ,Λ) can be written as,

fω,µ,Λ(x, z) =
n∏
i=1

k∏
j=1

ω
zij
j N (xi| µj,Λ−1

j )zij .

The conditional distribution of z given the mixing weights ω can be expressed

as,

p(z|ω) =
n∏
n=1

k∏
j=1

ω
zij
j . (4.2.6)

Therefore, the conditional distribution of observations x given latent variables z

and Normal component parameters (µ,Λ) is given by,

p(x| z,µ,Λ) =
n∏
i=1

k∏
j=1

N (xi| µj,Λ−1
j )zij .
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We can also write down the full joint distribution as,

p(x, z,ω,µ,Λ) = p(x|z,µ,Λ)p(z|ω)π(ω)π(µ|Λ)π(Λ). (4.2.7)

Given the configuration zi indicates which component xi comes from, the marginal

density of f(x) can be derived by

f(x) =
∑

z

∫
Λ

∫
µ

∫
ω

π(ω)π(µ)π(Σ)
n∏
i=1

(
k∏
j=1

ω
zij
j N (xi| µj,Λ−1

j )zij

)
dωdµdΛ.

For each observation xi, we only need to marginalise over parameters from one

component with zij = 1, which greatly reduces the required computational effort.

We now consider a variational distribution which factorises between the latent

variables and the parameters, such as,

q(z,ω,µ,Λ) = q(z)q(ω,µ,Λ). (4.2.8)

Updating configuration variables z.

According to the joint density stated in (4.2.7), the posterior of z given observa-

tions x is proportional to

p(z|x,ω) ∝ p(z|ω) p(x|z,µ,Λ).

The optimal solution for the variational inference of q∗(z) can be obtained by

following the general result derived in Equation (4.2.3). By collecting those terms

related to z and absorbing the rests to the normalised constant, we obtain the

updating equation of latent variables as,

log q∗(z) = Eω[log p(z|ω)] + Eµ,Λ[log p(x|z,µ,Λ)]. (4.2.9)

The first expectation in Equation (4.2.9) is derived by using the conditional dis-
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tribution p(z|ω) in Equation (4.2.6),

Eω[log p(z|ω)] =
n∑
i=1

k∑
j=1

zij E[logωj].

Since observations {xi}ni=1 follow a mixture of Normal distributions, the second

expectation in Equation (4.2.9) is expressed as,

Eµ,Λ[log p(x|z,µ,Λ)]

= Eµ,Λ
[
log

((
(2π)−

D
2 |Λ−1

j |−
1
2 exp{−1

2
(xi − µj)TΛj(xi − µj)}

)zij)]
= zij

(
−D

2
log(2π) +

1

2
E
[
log |Λj|]−

1

2
Eµj ,Λj [(xi − µj)TΛj(xi − µj)

])
.

Therefore, the updating equation for q(z) is obtained as

log q∗(z) =
n∑
i=1

k∑
j=1

zij log ρij + const, (4.2.10)

by defining

log ρij = E[logωj]− D
2

ln(2π) + 1
2
E[log |Λj|]− 1

2
Eµj ,Λj [(xi − µj)TΛi(xi − µj)]

E[logωj] =ψ(αj)− ψ

(∑
j

αj

)

E[log |Λj|] =
D∑
d=1

ψ

(
sj + 1− d

2

)
+D log 2 + log |Sj|

Eµj ,Λj [(xi − µj)TΛj(xi − µj)] =Dτ−1
j + sj(xi −mj)

TSj(xi −mj),

where ψ denotes the digamma function, which is defined as the log derivative of

the gamma function, e.g. ψ(x) = d
dx

log(Γ(x)). Parameters αj are subject to the

constraint 0 < αj < 1 in order to ensure that the distribution can be normalised.

Taking the exponential on both sides of log q∗(z) in Equation (4.2.10), it can be
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standardised as

q∗(z) ∝
n∏
i=1

k∏
j=1

ρ
zij
ij

=
n∏
i=1

k∏
j=1

r
zij
ij ,

where rij = ρij/
∑k

j=1 ρij. For a latent variable zi = {zij}kj=1, each zij is a bivariate

variable and they sum to 1 such as
∑k

j=1 zij = 1. Therefore, the optimal solution

q∗(zi) is given by,

E[zij] = rij. (4.2.11)

Back to our proposed variational distribution stated in Equation (4.2.8), the

second term on the right hand side can be further factorised as

q(ω,µ,Λ) = q(ω)
k∏
j=1

q(µj,Λj).

Using the general result in Equation (4.2.3), we have

log q∗(ω,µ,Λ) = Ex,z[log p(x, z,ω,µ,Λ)]

= Ez[log p(z|ω)] + log p(ω) +
k∑
j=1

n∑
i=1

E[zij] logN (xi| µj,Λ−1
j )

+
k∑
j=1

log p(µj,Λj) + const.

Updating weight parameters ω.

To obtain the optimal solution of ω, we gather related terms to the following

equation,

log q∗(ω) = Ez[log p(z|ω)] + log p(ω)

=
k∑
j=1

n∑
i=1

rij logωj + (α0 − 1)
k∑
j=1

logωj + const

=
k∑
j=1

logωj

(
α0 − 1 +

n∑
i=1

rij

)
,
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where nj =
∑n

i=1 rij summarises the number of observations allocated in the jth

component. Taking the exponential on both sides, we have

q∗(ω) =
k∏
j=1

ω
α0−1+nj
j ,

which is recognised a Dirichlet distribution

q∗(ω) ∼ Dir(ω|α), (4.2.12)

where α = {αj}kj=1 with αj = α0 + nj.

Updating component parameters µ and Λ.

The the optimal solution of variational posterior of q∗(µj,Λj) for the jth compo-

nent can be derived as,

log q∗(µj,Λj) =
n∑
i=1

E[zij] logN (xi| µj,Λ−1
j ) +

n∑
i=1

log p(µj,Λj) + const.

The component parameters can be represented as q∗(µj,Λj) = q∗(µj| Λj)q
∗(Λj).

Hence, the log variational posterior can be derived as,

log q∗(µj,Λj) = log q∗(µj| Λj) + log q∗(Λj)

=
n∑
i=1

E[zij] logN (xi| µj,Λ−1
j ) + logN (µj| mj, (τjΛj)

−1)

+ logW(Λj| vj, Sj).

By keeping terms relevant to µj, the log conditional posterior distribution of µj

given Λj can be written as

log q∗(µj|Λj) = −1

2

[
µTj

(
τ0 +

n∑
i=1

E[zij]

)
Λjµj + µTj Λj

(
τ0m0 +

n∑
i=1

E[zij]xi

)]

+ const.

Taking the exponential on both sides, the posterior of q∗(µj) follows a Normal
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distribution

q∗(µj|Λj) ∼ N (µj| mj, τjΛj), (4.2.13)

where x̄j = 1
nj

∑n
i=1 rijxi, τj = τ0 + nj and mj = 1

τj
(τ0m0 + njx̄j).

Similarly, by gathering terms related to Λj, we obtain the log conditional

posterior distribution of q∗(Λj) as,

log q∗(Λj) = log q∗(µj,Λj)− log q∗(µj|Λj)

=
v0 −D − 1 + E[zij]

2
log |Λj| −

1

2
Tr
[
Λj(S

−1
0 + τ0(µj −m0)(µj −m0)T

+
n∑
i=1

E[zij](xi − µj)(xi − µj)T − τj(µj −mj)(µj −mj)
T )

]
.

Since Λj is independent of µj, the expression can be further simplified until all

terms related to µj are cancelled out. Eventually, the posterior of q∗(Λj) follows

a Wishart distribution,

q∗(Λj) ∼ W(Λj| sj, Sj), (4.2.14)

where sj =s0 + nj,

S−1
j =S−1

0 + njWj +
τ0nj
τj

(X̄j −m0)(x̄j −m0)T ,

Wj =
1

nj

n∑
i=1

rij(xi − x̄j)(xi − x̄j)T .

The algorithm of Variational Bayes can be described as

Step 1. Initialise the prior parameter values and randomly assign each observa-

tion to a prefixed number of mixture components.

Step 2. Estimate the model parameters (ω,µ,Λ) using Equations (4.2.12),

(4.2.13), (4.2.14). Find the allocation probabilities for each observation based on

the updated parameters using Equation (4.2.11).

Step 3. Iteratively perform Step 2 until convergence reached.
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Updating the ELBO.

The convergence of the Variational Bayes algorithm can be assessed by applying

the evidence lower bound that we have mentioned in (4.2.1),

ELBO(q) =
∑

z

∫ ∫ ∫
q(z,ω,µ,Λ) log

{
p(X, z,ω,µ,Λ)

q(z,ω,µ,Λ)

}
dωdµdΛ

= E[log p(X, z,ω,µ,Λ)]− E[log q(z,ω,µ,Λ)]

= E[log p(X|z,µ,Λ)] + E[log p(z|ω)] + E[log p(ω)] + E[log p(µ,Λ)]

− E[log q(z)]− E[log q(ω)]− E[log q(µ,Λ)].

Individual expectations are expressed as the following:

E[log p(x|z,µ,Λ)] =
1

2

k∑
j=1

nj{E[log |Λj|]−Dτ−1
j − sjTr[WjSj]

− sj(x̄j −mj)
TSj(x̄j −mj)−D log(2π)},

E[log p(z|ω)] =
n∑
i=1

k∑
j=1

rijE[logωj],

E[log p(ω)] = logC(α0) + (α0 − 1)
k∑
j=1

E[logωj],

E[log p(µ,Λ)] =
1

2

k∑
j=1

nj

{
D log(

τ0

2π
) + E[log |Λj|]−

Dτ0

τj

−τ0vj(mj −m0)TSj(mj −m0)
}

+ k logB(S0, s0)

+
s0 −D − 1

2

k∑
j=1

E[log |Λj|]−
1

2

k∑
j=1

sjTr[S−1
0 Sj],

E[log q(z)] =
n∑
i=1

k∑
j=1

rij log rij,

E[log q(ω)] =
k∑
j=1

(αj − 1)E[logωj] + logC(α),

E[log q(µ,Λ)] =
k∑
j=1

{
1

2
E[log |Λj|] +

D

2
log
( τj

2π

)
− D

2
− H[q(Λj)]

}
,
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where H[q(Λj)] is the entropy of the Wishart distribution

H[Λj] = − logB(S, s)− s−D − 1

2
E[log |Λj|] +

sD

2
,

and the coefficients C(α) and B(S, v) are given by

C(α) =
Γ(
∑k

j=1 αj)

Γ(α1) · · ·Γ(αk)
,

B(S, s) =|S|−s/2
(

2sD/2πD(D−1)/4

D∏
d=1

Γ

(
s+ 1− d

2

))−1

.

As previously mentioned, the values of the evidence lower bound should monoton-

ically increases, and the difference of ELBO at two consecutive iterations can be

used to assess the convergence. If the difference is less than a pre-fixed criterion,

then the Variational Bayes is claimed to have converged.

4.3 Hybrid Variational Bayes

Fitting a Normal mixture model via the standard VB algorithm introduced in

Section 4.2 involves choosing a initial value for the number of components k. In

most cases, the total number of components is unknown. In order to obtain a

sensible estimate of the number of components, we can execute VB with different

choices of k = 1, 2, . . . , and collect the corresponding values of the ELBO for each

k. Since a higher ELBO indicates a better fitting of the data, a sensible value

k∗ can be determined by the resulting mixture model with the largest ELBO.

Obviously, this approach could be computationally expensive if VB converges

slowly.

Another commonly recognised drawback of VB is the so-called local maxima

problem. The problem has been well studied in the Expectation-Maximisation

(EM) algorithm proposed by Dempster et al. [1977]. It is shown that the EM

algorithm always converges to a local maximum, but this local maximum is not

guaranteed to be the same as the global maximum. Similarly, the VB algorithm,
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which can be treated as an extension of the EM algorithm, often results in a

suboptimal solution rather than the global optimal solution. In the case of mix-

ture models, the local maxima problem arises when there are too many Normal

components in one area of the space and too few in another. For the standard VB

algorithm introduced previously, it is not possible to move the component from

the overestimated region to the underestimated region without passing through

areas with low values of the marginal likelihood.

One way to alleviate the local maxima problem is to run the standard VB

algorithm for multiple times with randomly generated initial values of parameters.

Then we can pick the one with the largest value of ELBO as the final density

estimate. Similar to the model selection problem mentioned above, when the

number of repeats increases, it is more likely to find a global maximum, but, the

computational efforts also increases. Therefore, for datasets with relatively slow

convergence rates, researchers usually adopt the multiple restart strategy. This

involves running VB for multiple randomly generated initial parameter values for

a fixed number of steps, then the one with the highest evidence lower bound is

chosen and that VB is continued until convergence.

In this section, we propose a hybrid Variational Bayes (HVB) algorithm to

estimate the posterior of a mixture model. The HVB algorithm follows a greedy

searching scheme which explores every possible model complexity. Hence, the op-

timal number of components k∗ is decided by the data with minimum restrictions.

The proposed greedy searching scheme incorporates the component elimination

property of VB. Meanwhile, the local maxima problems can be made less likely

by applying two types of splitting operations.

4.3.1 Component-Elimination Property

The Variational Bayes algorithm assumes that the number of components k is

fixed at the start of the run. Instead of repeating VB with different choices of k,

an alternative approach is to over-fit a relatively large number of components as
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a starting value, and allow VB to converge to a mixture density with a suitable

value of k. This mechanism is known as the component-elimination property of

VB. Basically, if some of the components fall in the same region in the data space

during maximisation of the lower bound, then there is a strong tendency in the

model to eliminate those redundant components once the data in the region are

sufficiently described by fewer components.

According to Attias [1999], this important component-elimination property

protects VB away from the well-known problem with the ordinary EM algorithm

for mixture models. For instance, if a component is centred at only one observa-

tion, the component covariance will equal zero and the model likelihood will be

infinity. Thus, the wrong model might achieve a higher likelihood than the cor-

rect one. The component-elimination property of VB can automatically rule out

this problem by assign a prior distribution on the weight parameter. Moreover,

Attias [1999] stated that if the number of observations assigned to a component

is one or less, the posterior mean of the mixing weight of that component is zero,

which means it will be automatically eliminated.

To illustrate the component-elimination property, recall that the difference

between log p(x) and evidence lower bound can be measured by the Kullback-

Leibler divergence between the variational distribution q(θ) and marginal likeli-

hood p(θ|x),

KLD(q||p) = log p(x)− ELBO =

∫
q(θ) log

q(θ)

p(θ|x)
dθ,

where parameters θ = (ω,µ,Λ) include mixing weights and component parame-

ters. Assuming the chosen conjugate priors can be factorised over the number of

components, the KLD is calculated by the sum of the number of components,

∫
q(θ)log

q(θ)

p(θ|x)
dθ =

k∑
j=1

∫
q(θj)log

q(θj)

p(θj|x)
dθj.

Adopting the mean-field approximation, which implies q(θ) = q(ω)q(µ,Λ), each
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term related to θj on the right-hand side of the equation can be written as

∫
q(θj)log

q(θj)

p(θj|x)
dθj

=

∫
q(ωj)log

q(ωj)

p(ωj|x)
dωj +

∫ ∫
q(µj,Λj)log

q(µj,Λj)

p(µj,Λj|x)
dµjdΛj.

We take mixing parameter ωj as an example. Imagine there are only a few

observations allocated to the jth component, the posterior of variational dis-

tribution q(ωj) follows a Dirichlet distribution Dir(ωj|αj) as stated in Equa-

tion (4.2.12), where αj = α0 +
∑n

i=1 nj, α0 is a constant and nj =
∑n

i=1 rij

counts the number of observations in the jth component. Then, the posterior

distribution of q(ωj) is dominated by the prior p(ωj), which leads the value of∫
q(ωj)log(q(ωj)/p(ωj|x))dωj to zero. Similar results hold for the rest terms re-

lated to µj and Λj. Therefore, as the number of data that are available to

the jth component tends to zero, the corresponding KLD also tends to zero.

Consequently, the KLD is decreased by removing a component that covers few

observation, and the ELBO increases as the component is eliminated.

Corduneanu and Bishop [2001] introduced an approach which estimates the

number of components by optimising the mixing weight through a type-2 max-

imum likelihood. The unwanted components are removed if their weights are

less than 10−5. They also noticed the importance of initial choice of mixture

parameters, and proposed to use the K-means clustering to set the initial means.

The standard VB algorithm will lead to suboptimal models if the initial num-

ber of components is chosen smaller than required. Thus, a natural approach

for addressing the model selection problem is to fit a mixture model initialised

with a large number of components to start off. In general, such a strategy is

not recommended for other types of approaches but VB, because the following

reasons: first, the VB approximation has a low requirement on computational

resources compared to sampling approaches. This is true even for repeating mul-

tiple times. Second, the VB algorithm does not suffer from the label-switching

problem. Third, the component-elimination property enhance the possibility of
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finding the global optimal solution. With the component-elimination property,

redundant components are removed as VB converges to a solution, thereby de-

termining model complexity automatically. However, this tactic is not compu-

tational efficient when an arbitrarily large number of components is initialised.

Hence, it is useful to perform a preliminary investigation of the dataset to have

some sense of the number of components needed.

4.3.2 Greedy Searching Scheme

For estimating the unknown structure of mixture density, the component-elimination

property of VB suggests a natural overfitting strategy for the determination of

the number of component. However, VB is shown sensitive to the initialisations

of the hyperparameters and the initial allocations of observations. It is possible

that the VB converges to a suboptimal model complexity as a result of the ini-

tialisation choices. In addition, the eliminating operation is not reversible during

VB updating procedure. Hence, the overfitting strategy can not guarantee the

detection of the global optimum in a single run.

In this section, we introduce a VB algorithm with greedy searching scheme to

resolve the model selection problem and the VB does not depend on the initialisa-

tion. It is basically an incremental method which attempts to split all k existing

components, and stops if there is no further improvement of the evidence lower

bound. Splitting tests are applied to each existing component, which will be de-

scribed in Section 4.3.3. Once a component is qualified to be split, an additional

component is generated, and the observations in that component are re-allocated

into those two subcomponents. Then, the VB updating equations are applied to

the new mixture model starting with k + 1 components. If VB converges with a

higher value of the ELBO, we keep the resulting mixture density, which implies

the existence of more than one components for the testing data region; otherwise,

we return to the initial structure with k mixtures and continue searching for the

next potential candidate.
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Given VB converged to a mixture model with k component and a value of

ELBO, the greedy searching scheme can be briefly described as follows.

Greedy searching scheme of the HVB algorithm

Step 1. Perform the splitting tests for each existing component j for j = 1, . . . , k.

Stop testing once one component is found satisfying the splitting criteria.

Step 2. Observations allocated in the jth component are re-assigned into two

subcomponents, while allocations in other components are kept fixed.

Step 3. Run VB updating equations for this new mixture model with k + 1

components until convergence. Evaluate the value of ELBO for the new model.

Step 4. If new value of ELBO is larger than the previously obtained one, we

keep the new structure of mixture density. Otherwise, we return to the original

model and move on to the next component.

Step 5. Repeat Step 2 - 4 until either no further component satisfy the testing

criteria, or no further improvement of ELBO can be achieved.

For the first step of searching candidate components to be split, we performs

two types of splitting tests with orthogonal directions, and those two types of

splitting operations are applied to the component highlighted in Step 2. Details

of splitting tests with specific criteria and corresponding splitting operations are

described in the next section. The greedy searching scheme can be viewed as

a driving force for the VB to explore other possible model structures, and thus

increases the chance of finding a global maximum posterior of a mixture model.

4.3.3 Two Splitting Directions

We incorporate two types of splitting tests and two splitting operations in the

greedy searching scheme, which allows us to have a better description for different

regions of data, and thus leads to a more accurate estimate of the mixture density.
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The first one is referred as the mean split operation, which splits a component

into two side-by-side subcomponents with unequal means µj 6= µj+1. The type of

splitting operation is commonly applied in mixture density estimation, see Ueda

et al. [2000] and Constantinopoulos and Likas [2007] as examples.

Additionally, we also introduce the variance split operation, which splits a

component into two overlapping subcomponents such that ‖Σj‖ � ‖Σj+1‖ with

similar means µj ' µj+1. For heterogeneous multi-modal pattern, some regions of

data can be better described by a mixture of a concentrating “peaky” component

and a relative “flat” component, rather than fitting one single Normal distribu-

tion. A component is split into two subcomponents, inners and non-inners, in

situations where there exists a high concentration of observations close to the

component mean. Next, we introduce the mean and the variance split in details.

Following the first step of the greedy searching scheme, we first run stan-

dard VB with a overly fitted number of components. Based on the component-

elimination property, VB converged to a local maximum of mixture density with

a number of component k∗. The corresponding component parameters are up-

dated to {ω∗j , µ∗j ,Λ∗j}k
∗
j=1 according to the allocation matrix Z∗. The allocation

matrix Z∗ is formed by n × k∗ elements, zij = 1 implies the ith observation is

allocated to the jth component, and
∑k∗

j=1 zij = 1 for each observation.

Next, we attempt to examine all k∗ number of existing mixing components

by two splitting operations.

Mean split

The idea of mean split is to identify a component which covers two or more

groups of data, then split the observations in the highlighted component into

two subcomponents. For those observations which are less than the component

mean, they will be re-allocated to the left-hand side subcomponent, and the rest

observations are automatically moved to the right-hand side subcomponent.

In general, the mean split operation splits components into two side-by-side

subcomponents, without considering the direction of split for high-dimensional
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datasets. For the considered multivariate dataset, we apply principal component

analysis (PCA) to determine the directions of the mean split, where PCA is

an orthogonal transformation to convert linearly correlated variables into a set

of uncorrelated principal components. For D-dimensional observations, we can

transform the component variance-covariance parameters into a vector containing

D eigenvalues. It allows us to assess the variation for the component according

to the weight of the largest variance. If there is too much variation on the

major direction, it suggests that we might have a better fit with more than one

component for that data region.

For the D×D covariance matrix Σ∗j = Λ−1
j

∗
of the jth mixing component, we

can decompose it into D principle components (p1, . . . , pD)′, where p1 with the

largest eigenvalue λ1 represents as much of the data variation as possible. The

component j is highlighted by the mean splitting test if

λ1∑D
d=1 λd

> c1 and σmax
j > c2,

where σmax
j =

√
max{1:D}{diag(Σj)} represents the largest standard deviation

of the jth component of interest and diag(Σj) denote the diagonal elements of

the covariate matrix Σj. A component is considered as suitable to split to two

subcomponents, if the data variation along p1 is larger than c1, and the largest

value of the standard deviations σmax
j is greater than c2, where constants c1 and c2

are carefully chosen according to each specific dataset. It is worth noting that we

should chose the value of c1 reasonably large, as this reflects a large difference in

the eigenvalue ratio which usually implies a poorly fitted component. Meanwhile,

if we chose a relative small value of c2, it means that the component would be

split more likely, and hence leads to a higher number of mixtures.

After identifying the component by the mean splitting test, we project all

observations in the flagged component on the p1 axis, and calculate the sample

mean mp1 on the major splitting direction p1. Then, we can re-assign observa-

tions to either left or right hand side subcomponents according to mp1 . Hence,
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the number of columns in the allocation matrix Z∗ becomes k∗ + 1, and the cor-

responding component parameters can be determined by the sample mean and

the sample covariance,

µk∗+1 =
1

nk∗+1

n∑
i=1

xzi,k∗+1=1,

Λk∗+1 = cov({xzi,k∗+1=1}ni=1)−1,

where nk∗+1 denotes the number of observations in the new component k∗ + 1.

This newly obtained allocation matrix will be used as the starting point to

proceed the VB until convergence. If the resulting value of ELBO of the new

model is larger than the previous one, we keep the resulting mixture density;

otherwise, we return to the original mixture model and perform the mean splitting

test to the next component.

Variance split.

In contrast to the mean split, we also examine each component for the variance

splitting test. For a component which is highlighted to be variance split, we

identify those observations which are concentrated in the central area as inners,

and the rest observations which are scattered around as non-inners. Then, we

split the highlighted component into two overlapping subcomponents with one

peaky subcomponent and one broad subcomponent.

We identify inner observations using the Mahalanobis distance (MD), which

measures the distance between an observation x and a distribution P . The dis-

tance becomes zero if x is at the mean of P and increases as x moves away from

the mean of P . For high-dimensional data, it measures the number of standard

deviations from x to the mean of P along each principal component axis. For

the considered case, assuming an observation xi is allocated to the jth Normal

component, the distance MD
(j)
i is given by

MD
(j)
i =

√
(xi − µ∗j)TΛ∗j(xi − µ∗j),
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where (µj,Λj) are component mean and precision parameters. We can compare

the value of MD
(j)
i with the theoretical results from a chi-square distribution with

D degree of freedom, e.g. (MD
(j)
i )2 ∼ χ2

df=D. This relationship exists when xi

is assumed to be normally distributed. Hence, an observation is identified as an

inner if

MD
(j)
i <

√
χ2
df=D,c3

, (4.3.1)

where c3 represents the cumulative probability of the area under the curve of the

chi-square distribution. Typically, a small value of c3 is preferred, as we only

collect inner observations concentrating to the component mean. Meanwhile, if

the value of c3 is chosen to be too close to zero, the algorithm may miss some

potential inner observations since the observations are not close enough to the

fitted component mean.

We consider a component to have a better description with two overlapping

subcomponents, if

ninners
j /nj > c4,

where ninners
j and nj are the number of identified inners according to condition

(4.3.1), and the total number of observations in the jth component. The value

of c4 is chosen as a probability such that 0 < c3 < c4 < 1. When the inners

proportion c4 is larger than the theoretical expected proportion c3, that means

the actual number of observations that lie in the centre region of the component

is larger than the expected number. Therefore, we highlight the jth component

for a variance split.

Once a component is flagged as suitable to be replaced by two overlapping

subcomponents, inner observations will still be allocated in the jth component,

and non-inner observations will be re-allocated to the (k∗+1)th component. Then,

the component parameters are initialised as the follows,

µinners = µnon-inners = µj,

Λnon-inners = Λj and Λinners = c5 × Λj,

(4.3.2)
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where c5 is a fixed constant which must be larger than 1. According to Equations

(4.3.2), half weights are assigned on both newly proposed subcomponents, and

the inner subcomponent is initialised with a higher precision. Meanwhile, the

component mean remains the same.

After the variance split, we obtain a new allocation matrix Z∗ with k∗ + 1

number of columns. It will be used as a starting point for applying the VB

updating procedure until convergence. We keep the resulting mixture model if

the corresponding value of the ELBO is larger than the previous one. Otherwise,

we return to the original mixture model and apply the variance splitting test to

the next component.

4.3.4 Hybrid Variational Bayes Algorithm

We propose a hybrid Variational Bayes (HVB) algorithm to estimate densities

of mixture models by combining all three features mentioned above. The HVB

algorithm starts with an overfitting strategy. Fixing a relatively large number of

component, VB converges to a local maximum model estimates. Even though

such a local maximum is not guaranteed to be the global optimal solution, it

provides a sensible estimate of the number of components k as a initial value for

the greedy searching scheme. Then, HVB progressively attempts to split every

existing mixture components. Moreover, each component is examined by two

types of splits, the mean split and variance split, which potentially provide a

more thorough description of the mixture model. The greedy searching scheme

is designed to avoid local maxima and to find the global optimal solution.

The hybrid Variational Bayes algorithm will terminate when either no compo-

nent satisfies any of the split criteria or the ELBO is the same within a tolerance

level compared to the previous value. Instead of running standard VB for multiple

times, HVB only needs to execute once and it is independent of initialisations.

Therefore, HVB effectively reduces the possibility of becoming trapped into a

local maximum, and highly likely to deliver a global maximum of the mixture
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density estimation problem. In summary, the proposed hybrid VB algorithm can

be described by the following steps.

Hybrid Variational Bayes algorithm:

Step 1. Set initial number of component k relative large, randomly assign obser-

vations to k components and run VB until convergence. Start splitting test from

lsplit = 1.

Step 2. If component lsplit is highlighted by the variance/mean splitting test,

proceed with variance/mean split and get the new allocation matrix. Using the

new allocation as a starting point, apply the VB updating equations until con-

vergence. If the new ELBO is larger than the original, keep the resulting mixture

model and update all the posterior parameters. If this component does not qualify

for both splitting criteria, move on to the next component lsplit = lsplit + 1.

Step 3. Repeat Step 2 until no further component can pass splitting tests or

no further split can improve the ELBO from the current mixture density.

The corresponding pseudo code is given as follows.
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Algorithm 1 Hybrid Variational Bayes Algorithm

1: Set k freely and ELBOincrement = 1−20. Let lsplit = 1.
2: Run VB with randomly allocation of observations in k components. Obtain

an estimated mixture density with k∗ components.
3: while lsplit < k∗ do
4: Apply the variance split, and obtain a new allocation R.
5: Use the new R to run VB updating until convergence is reached.
6: if ELBOnew − ELBO > ELBOincrement then
7: Keep the new mixture density and the corresponding posterior param-

eters.
8: Set lsplit = lsplit.
9: else
10: Apply the mean split, and obtain a new allocation R.
11: Use the new R to run VB updating until convergence is reached.
12: if ELBOnew − ELBO > ELBOincrement then
13: Keep the new mixture density and the corresponding posterior pa-

rameters.
14: Set lsplit = lsplit.
15: else
16: Set lsplit = lsplit + 1.
17: end if
18: end if
19: end while

4.4 Result Analysis

In this section, we carry out a simulation study to show that the local maxima

problems can be highly likely avoided in mixture density estimation by using the

hybrid Variational Bayes algorithm proposed in Section 4.3.4, whereas the stan-

dard Variational Bayes can be easily caught. In Section 4.4.2, we also demonstrate

the HVB algorithm for the industrial application mentioned in Chapter 3. The

performance of the proposed HVB algorithm is compared with results from those

previously presented MCMC methods. As a fast alternative of the MCMC, the

HVB algorithm consistently provides reliable mixture density estimation on both

simulated datasets and real-world applications.
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4.4.1 Simulation Study

In this section, we apply the proposed hybrid Variational Bayes algorithm to

a simulated dataset with multi-modality. One hundred bivariate observations

y = {yi}100
i=1 are generated from a mixture of 3 Normal distributions,

fω,µ,Σ(yi) =
3∑
j=1

ωj N (yi|µj,Σj).

Mixing components weights ω and locations µ are defined as

ω = (0.3, 0.5, 0.2), µ =

−0.5 0 3

0 2 2.5

 ,

and covariance are given as Σ1 = 0.02×I2, Σ2 = 0.05×I2, Σ3 = 0.01×I2, where I2

indicates a 2×2 identity matrix. Initial values of parameters stated in Equations

(4.2.4) and (4.2.5) are fixed as follows: α0 = 1, m0 =
∑n

i=1 yi, τ0 = 1, s0 = 3 and

S0 = I2. The HVB terminates when the increment of the ELBO between two

consecutive iterations is less than the pre-fixed constant 10−20. HVB finishes in

7 seconds and the curve fitting is plotted in Figure 4.1.

107



4.4 Result Analysis

Figure 4.1: Density estimation of a simulated dataset on both dimensions by hybrid
Variational Bayes.

The histogram on each dimension shows the locations of the 100 generated obser-

vations, the dashed black curve represents the true density of the simulated data,

and the solid red curve is the density estimation obtained from the hybrid Varia-

tional Bayes algorithm. As shown in Figure 4.1, two close Normal components are

generated for each dimension, and HVB correctly catches the multi-modal struc-

ture of the simulated dataset. Numerical evidence can be found by comparing

the estimated values of mean and weight parameters,

ω = (0.3415, 0.4343, 0.1843) and µ =

−0.4018 −0.09248 2.7145

−0.1539 1.9923 2.4724

 ,
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which are fairly close to their true values. On the other hand, the standard VB

with fixed number of component k = 3 is clearly stuck to a local maximum and

failed to deliver the global optimal density estimation, as shown in Figure 4.2.

Figure 4.2: Density estimation of a simulated dataset on both dimensions by standard
Variational Bayes algorithm.

The estimated values of parameters (ω,µ) are given by

ω = (0.006, 0.6322, 0.3618) and µ =

0.3309 −0.2992 1.4677

1.4437 0.9496 2.2737

 .

It can be seen from the weight estimates, the first component has a much smaller

weight than the other two. This is because the number of components is fixed to

be 3 and VB has converged to a local mixture density with only 2 components.
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When compared to the true density, the estimates of mixture locations are ob-

viously inaccurate. For standard VB with an unknown number of components,

the general approach for this model selection problem is to fit VB with different

numbers of components separately. We also fixed k = 2 and k = 4 to run VB, and

both runs highly likely deliver inaccurate density estimates of the true mixture

model.

In addition, we compare the values of the Kullback-Leibler divergence from

HVB and VB algorithms. The KLD between the estimated density and the true

density is calculated by

KLD(fest || gtrue) =

∫
f(y) log

(
f(y)

g(y)

)
dy.

The KLD from HVB algorithm equals to 0.0053, whereas the KLD from standard

VB is calculated as 0.1336 which is 25 times larger. It is worth noting that the

number of component k is inferred from HVB but fixed to be 3 for standard

VB. According to both numerical and graphical evidence, the proposed hybrid

Variational Bayes algorithm performs better than the standard VB algorithm,

especially when dealing with multi-modal datasets.

4.4.2 Industrial Application

In Chapter 3, we proposed a Bayesian linear model with Dirichlet Process mixture

prior (BL-DPMP) approach to reduce the number of measurements required per

sensor. In order to obtain accurate estimates of the critical parameter β for the

current sensor with reduced measurements, the historical estimates of β with full

measurements is used as prior to compensate for the missed information.

The BL-DPMP approach takes the first n = 240 historical OLS estimates

{βi}ni=1 as observations, then estimates the mixture density of β as a finite number

of mixture model,

fω,µ,Σ(βi) =
k∑
j=1

ωj N (βi| µj,Λ−1
j ),
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where ω = {ωj}kj=1 represent component weights which follows a Dirichlet dis-

tribution with initial value of α0 = 0.3. Component parameters (µ,Λ) follow

conjugate Normal and Wishart priors, which are stated in Equation (4.2.5) with

initials τ0 = 1, m0 = n−1
∑n

i=1 βi, s0 = 15 and S0 is the precision matrix of

{βi}ni=1. The prior value of α0 is assigned empirically. A discussion about choos-

ing initial value of α0 can be found in Rousseau and Mengersen [2011], where

they distinguished different asymptotic behaviours of posteriors corresponding to

different relationships between α0 and the number of components.

In order to apply the hybrid Variational Bayes algorithm to estimate the mix-

ture density of β, we fix the number of components k = 30 at the start of the run.

Constants involved in the mean split operation and the variance split operation

are given as (c1, c2, c3, c4, c5) = (0.95, 10−3, 0.75, 0.8, 1000) as stated in Section

4.3.4. HVB terminates when the ELBO increment between two consecutive iter-

ations is less than 10−20.

We present the resulting observation allocations and corresponding weights of

the mixture density in Table 4.1 with a descending order.

Table 4.1: Number of allocations and corresponding weight for each mixing Normal
component obtained from HVB of the S1 historical dataset.

Comp. No. of allocations Weight Comp. No. of allocations Weight

1 156 0.6504 2 35 0.1458
3 16 0.0667 4 10 0.04167
5 3 0.125 6 2 0.0083
7 2 0.0083 8 2 0.0083
9 1 0.0042 10 1 0.0042
11 1 0.0042 12 1 0.0042
13 1 0.0042 14 1 0.0042
15 1 0.0042

Table 4.1 shows that the historical observations are mainly clustered into four

Normal components, which matches our visual judgement on the histogram plot

of {βi,2}ni=1 shown in Figure 4.3. The red curve successfully captures the multi-

modal structure of the β historical dataset. The solid line in the plot represents
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the curve fitting based on estimated mixture density from HVB.

Figure 4.3: Histogram of the historical estimates {βi,2}240
i=1 and the curve fitting obtained

from the BL-DPMP approach with HVB of the S1 type of sensors.

Next, when a new sensor with reduced measurements (y−t , X
−
t ) is available,

the estimated mixture density of critical parameter β obtained by HVB is used

as prior choices for the regression coefficient βt. The probability of selecting the

most suitable Normal component is proportional to

P(γt = j| y−t , X−t , ωj, µj) ∝ ωj N (y−t | X−t µj, σ2I18).

where response variable y−t is a 18× 1 vector, covariates X−t is a 18× 5 matrix.

Let γt denote the allocation of the tth sensor, ωj and µj represent the weight and

the mean for the jth Normal component, the value of σ2 is fixed to be extremely

small, and I18 denotes a 18× 18 identity matrix. Conditional on γt = j, the prior

of βt is assigned to be,

π(βt) ∼ N (βt| µj,Σj).

Then, the posterior distribution of βt conditional on γt = j can be estimated
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through a Bayesian linear model

p(βt| y−t , X−t , γt = j, µj,Σj) ∝ π(βt)N
(
y−t | X−t βt, σ2Ip−

)
.

Hence, the posterior distribution of βt conditional on γt follows a Normal distri-

bution,

(βt| y−t , X−t , γt = j, µj,Σj) ∼ N (βt| µt,Σt) ,

where

µt =

(
Σ−1
j +

1

σ2
X−t

T
X−t

)−1(
Σ−1
j µj +

1

σ2
X−t

T
y−t

)
and Σt =

(
Σ−1
j +

1

σ2
X−t

T
X−t

)−1

.

Eventually, we can calculate the characterisation error by εt = yt −Xtβt, where

(yt, Xt) represent the complete data with full measurements for the tst sensor,

and error term εt is a 32× 1 vector.

According to the sensors quality specification stated in Equations (3.4.2), we

calculate the absolute values of average errors for all temperature bands, and

they must lie within a range of [0, 0.3%] to be a qualified product. In Table

4.2, we summarise the total numbers of failures from 655 sensors with reduced

measurements obtained from the standard VB, the proposed HVB and the over-

fitting strategy of VB, along with previously described MCMC method and OLS

approach with full data.

Table 4.2: Comparison performances obtained from OLS, Bayesian Linear approach,
BL-DPMP approach with slice sampler, standard VB, HVB and overfitting VB on the
incomplete dataset of the S1 type of sensors.

No. of Failures (655) Pass rate Time (sec)
0.1% 0.2% 0.3%

OLS complete 4 3 2 99.69% 0.04
OLS incomplete 432 290 199 69.62% 0.05

Bayes Linear incomplete 432 290 199 69.62% 0.1
BL - DPMP incomplete 162 24 8 98.78% 8486

VB incomplete 174 127 121 81.53% 4
HVB incomplete 128 23 11 98.32% 225

Overfitting VB incomplete 128 23 11 98.32% 496
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As we explained in Section 2.4, the OLS method is easy to implement and fast

to execute. The OLS estimates of β is accurate enough to meet the company’s

quality specifications when dealing with full measurements. However, when the

mid-range temperatures are removed, the OLS collapses as expected, since it has

no information about the missing measurements. The Bayesian linear approach

with single Normal prior assumption, proposed by Eves et al. [2015], is not con-

sidered to be suitable for dealing with multi-modality datasets in our considered

situation as illustrated in Chapter 3.

Using the Bayesian linear model with Dirichlet process mixture prior (BL-

DPMP) approach, the resulting number of failures obtained by the slice sampler

actually achieves a comparable level of accuracy (98.78%) to the OLS approach

with complete data (99.69%). However, the drawbacks of MCMC is that it re-

quires a high computational effort. In addition, the resulting estimated mixture

densities are not exactly identical. As fast alternatives to the MCMC type of

approaches, we applied standard VB, the proposed hybrid Variational Bayes al-

gorithm and the overfitting strategy of VB to estimate the mixture density of β

from the S1 historical dataset.

According to Table 4.2, standard VB gives 121 failures, and the pass rate

81.53% is considered to be too low to be accepted, as standard VB is easily

to be caught by a local maximum and cannot move out. The proposed HVB

approach provides 11 failures out 655 sensors with reduced measurements, which

equals to pass rate 98.32%. Meanwhile, the required computational efforts of

HVB is about 36 times less than the MCMC method, even though it costs more

than the standard VB due to the greedy searching scheme. HVB only requires

a single run to estimate the mixture model with great flexibility on the number

of components and prevents local maxima through a greedy searching procedure.

More importantly, it consistently provides reliable mixture model estimates and

requires much less computational efforts. From a practical point of view, the

hybrid Variational Bayes approach is more likely to be applied on the industrial

characterisation line.
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We also apply the overfitting strategy of VB by repeating the algorithm 100

times with fixed k = 40, and other initial values are kept the same as the HVB

approach. From the previous investigation of fitting different initial numbers of

components, the maximum value of the ELBO is achieved when the initial value

of k lies into the range from 12 to 18, and there is no obvious penalty as long

as k is chosen below 40. We then selecte the mixture density estimate with the

minimum number of failures from 100 repeats.

From the last row of Table 4.2, the overfitting strategy of VB obtains the exact

same results as the hybrid Variational Bayes approach. However, overfitting VB

consumes twice time as much as HVB. One may argue that it is not necessary

to use 100 repeats, in that case, less computational time would be required. In

practice, we prefer to make sure that the repeating number is large enough to

give a good probability of finding one global optimum, as it is difficult to choose

the number of repeating for a specific dataset.

Judging by the number of failures obtained by the overfitting strategy of VB,

it seems like to be a valid approach to the considered industrial application. The

over fitted mixture model provides an acceptable number of failures. However, it

requires multiple runs to achieve the best mixture density, which is computation-

ally wasteful in terms of both time and storage. In the company’s point of view,

it is better to have a fast algorithm that consistently provides reliable density

estimations with high repeatability.

To further illustrate the comparison among OLS, Bayesian linear, BL-DPMP

model using slice sampler and the hybrid Variational Bayes approach, we present

characterisation errors of one sensor as an example. The sensor is characterised

without measurements at mid-range temperatures. The passing range is ±0.3%

for average error of each temperature band.
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Figure 4.4: Errors comparison for one product among OLS, Bayesian linear, BL-DPMP
approach with slice sampler and HVB of the S1 type of sensors.

For the current sensor with 32 measurements and 5 temperature bands, Figure

4.4 shows both OLS (cyan) and Bayesian linear (magenta) approaches failed to

meet the company’s quality specification. On the other hand, errors from both

MCMC (blue) and HVB (red) lie within the ±0.1% error interval. Therefore,

HVB successfully deliver an accurate estimate of β and it is considered to be a

faster alternative of MCMC approach for estimating mixture densities.

4.5 Discussion

In this chapter, we proposed a hybrid Variational Bayes (HVB) algorithm as a

way to estimate a mixture model of Normal distributions. As an alternative to

the sampling approaches, the proposed approximation algorithm provides deter-

ministic mixture density estimates and dramatically reduces the computational

time. The HVB begins with an overfitting VB algorithm, then follows a greedy

searching scheme by examining all existing components of both mean and vari-

ances splitting potentials. Overall, the purpose of the greedy searching scheme
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and two splitting operation introduced in Section 4.3 is to find a better a allo-

cation matrix of observations. Once a new allocation matrix Z∗ is proposed, we

can calculate the component parameters and run VB to obtain a new value of

ELBO. Judging by the increment of ELBO, we then decide to keep the resulting

mixture density or not. By exploring every possible model structure, the HVB

algorithm avoids becoming trapped in local maxima, and is highly likely to pro-

vide the global maximum judging by the increments of the ELBO. Results from

both the simulation study and the industrial application support the validity of

the proposed HVB approach in terms of numerical and graphical aspects.

On the other hand, there are a couple of concerns about the proposed HVB

approach. The greedy searching process is not a very efficient design, because it

progressively examines many different models. Running HVB once takes longer

than would running a standard VB or an overfitting VB. In further research, we

will propose an even faster sequential updating algorithm, which can estimate

the unknown multi-modal structure in seconds, without losing much accuracy of

the mixture density estimation.
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Chapter 5

Optimal Permutation Sequential

Algorithm for Mixture Models

5.1 Introduction

In the previous chapters, we presented a two-stage Bayesian nonparametric ap-

proach on an industrial application. The Bayesian nonparametric approach pro-

vides more flexibility when modelling unknown multi-modal structures, which

becomes increasingly popular in many field of statistics. One of the most com-

mon constructions is sampling under the Dirichlet process (DP), introduced by

Ferguson [1973]. When considering the density estimation problem on continuous

functions, Lo [1984] proposed a class of priors called the Dirichlet process mixture

(DPM) that assigns a Dirichlet process on the mixing distribution. The conti-

nuity of the density can be approximated by a mixture model with a countably

infinite number of components. Hence, one can express the posterior distribution

in a DPM by integrating out G as a product of the posterior for the partition

multiplied by independent posteriors for each component. Instead of using the

marginalisation of G to indirectly achieve such a structure, one could directly

specify a model for the random partition by assuming conditional independence

given the allocation to clusters. More details on DPM and other related asymp-

totic behaviours can be found in Chapter 2 of the book edited by Hjort et al.
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[2010].

The main computational hurdle when applying the DPM models to estimate

the mixture density is the intractability of posterior distributions. Recent research

based on the Bayesian methods has made the implementation of the DPM model

feasible and efficient. As one of the most commonly applied and widely studied

approaches, the Markov Chain Monte Carlo (MCMC) methods provide inference

by sampling under the exact posterior distribution. A review of both conjugate

and non-conjugate sampling methods for DPM models can be found in Neal

[2000].

The proposed BL-DPMP approach in Chapter 3 have been analysed using

the slice sampler. In order to explore the posterior distribution of component

parameters θ, MCMC requires a sufficient number of samples to be generated.

In practice, MCMC can be computationally expensive, especially when dealing

with large datasets. Therefore, there is an intense demand for fast alternatives

that can be executed within minutes or seconds.

Several fast alternatives to MCMC have been developed by researchers re-

cently. Liu [1996] proposed a sequential imputation method, which treats the

hidden component allocation parameters γ as missing data and approximates

the actually incomplete data posterior of the parameter vector by a mixture of

the complete data posterior. The multiple complete datasets used in the mixture

are created by this variation of importance sampling without requiring itera-

tions. The recursive update procedure introduced by Newton and Zhang [1999]

and Newton [2002] is designed to estimate the unknown mixing distribution based

on sequential arriving observations. Wang and Dunson [2011] proposed a fast al-

gorithm for DP mixture models, called the sequential updating and greedy search

(SUGS) algorithm, which sequentially maximises the conditional posterior proba-

bility relaying on previously processed observations. Zhang et al. [2014] developed

a variational SUGS (VSUGS) algorithm, which combines the idea contained in

VB with the SUGS algorithm. VSUGS deals with finite mixture models, assign-
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ing a probability distribution on allocation, rather than the hard allocation used

in SUGS.

All sequential techniques, including Newton and Zhang [1999], rely on the

chosen ordering of the data. Unlike MCMC sampling approaches, the permuta-

tion invariant property for joint density of observations and allocations f(y,γ)

does not hold for sequential approaches. Therefore, the posterior inference of

component parameters θ is affected by the updating order of data. Different per-

mutations of data may lead to different mixture density estimates. In order to

eliminate or reduce the order-dependent effect, citetLiu1996 suggested to create

multiple independent complete data copies and averaged them out to obtain a

Monte Carlo type of estimator. The density estimates obtained using SUGS are

found to be dependent on the order in which observations are added. As the order

of the data is typically arbitrary, Wang and Dunson [2011] recommended repeat-

ing the SUGS algorithm for multiple random permutations of the data, as a way

to eliminate the order-dependence. Similarly, VSUGS generates multiple density

estimates with different permutations of data and uses the evidence lower bound

(ELBO) for model selection instead of the pseudo-marginal likelihood (PML)

recommended by SUGS. Wang and Walker [2017] proposed an optimal ordering

(OO) method, which is designed to find the optimal ordering of data first, then

samples multiple sets of allocations based on the determined order of data. The

OO method averages over multiple sets of predictions based on sampled allocation

variables.

In this chapter, we propose a fast optimal permutation sequential (OPS) algo-

rithm, which provides a strategy to find an optimal permutation of observation.

At the same time, it determines the corresponding observations’ allocations. The

component parameters can then be updated directly, once the optimal order of

the data and the allocation are found. The proposed OPS algorithm only requires

a single run, which makes it extremely fast when dealing with small or median

sized datasets. Furthermore, we develop a large data strategy of OPS (L-OPS)

to keep the computational advantage of the proposed procedure when the sample
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size n increases.

The remainder of this chapter is organised as follows. Section 5.2 provides de-

tails of the proposed OPS algorithm, including the large data strategy of OPS (L-

OPS). The performance of OPS is demonstrated through both simulation studies

and a real application; this is presented in Section 5.3, along with the comparisons

with other algorithms. The conclusion and discussion are presented in Section

5.4.

5.2 Methodology

5.2.1 A Sequential Approach for Mixture Models

In this section, we start with the well-known Dirichlet process mixture model,

which takes the form

f(y) =

∫
f(y|θ) dG(θ), (5.2.1)

where f(y|θ) is the density function for each θ, and G(·) is a DP prior with the

presentation

G(·) =
∞∑
j=1

ωjδθj(·) (5.2.2)

where δθj(·) denotes the point mass at θ and {ωj}∞j=1 represents the mixing

weights, which is defined as before in Equations (3.3.3).

Suppose observations y1, y2, . . . arrive sequentially, at time i, we have allo-

cated previous y(i−1) = {yi}i−1
i=1 observations according to γ(i−1) = {γi}i−1

i=1 and an

approximation of the true posterior p(θγi−1
|y(i−1)). Then, the conditional predic-

tive distribution of allocation variable γi given by the previous allocations γ(i−1)

follows a multinomial distribution with probabilities

p(γi = j|γ(i−1)) =


∑i−1
l=1 1{γi=j}
α+i−1

, j = 1, . . . , ki−1

α
α+i−1

, j = ki−1 + 1,
(5.2.3)
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where ki−1 = max({γi}i−1
i=1) represents number of mixing components after updat-

ing previous i−1 observations. With probability α/(α+i−1), the jth observation

is allocated to a new component ki−1 + 1. The number of components also de-

pends on the constant α. The larger value of α we chose, the stronger tendency

for a new observation to be allocated into a new component rather than those

existing components. As mentioned in Section 2.1.3, we have the expected value

of distinct mixing components E(k|α, n) ≈ α log(1+n/α) for n moderately large.

With the current observation yi, the sequential updating equation of alloca-

tion γi given previously observed y(i−1) and determined allocations γ(i−1) can be

derived as

p(γi|yi,y(i−1),γ(i−1)) =
f(yi, γi|y(i−1),γ(i−1))

f(yi|y(i−1),γ(i−1))
, (5.2.4)

where the joint density of yi and γi on the numerator in Equation (5.2.4) can be

obtained by

f(yi, γi|y(i−1),γ(i−1)) = p(γi|γ(i−1))f(yi|γi,y(i−1),γ(i−1)). (5.2.5)

The marginal density of yi on the denominator in Equation (5.2.4) can be obtained

by summarising over all possible values of γi,

f(yi|y(i−1),γ(i−1)) =

ki−1+1∑
j=1

f(yi, γi = j|y(i−1),γ(i−1)). (5.2.6)

Then, we can calculate the probability p(γi|yi,y(i−1),γ(i−1)) in Equation (5.2.4),

and the value of allocation γi can be assigned to the component with the largest

conditional posterior density p(γi|yi,y(i−1),γ(i−1)).

Once we determine the allocation of γi, the conditional posterior distribution

of θγi given the new observation yi and the corresponding allocation γi can be

updated through

p(θγi |y(i),γ(i)) ∝ f(yi|γi, θγi)p(θγi |y(i−1),γ(i−1)), (5.2.7)
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where p(θγi |y(i−1),γ(i−1)) is the posterior of θγi updated by previous observations

y(i−1) and corresponding allocations γ(i−1). The conditional posterior distribu-

tion of θγi is available in analytical form if we assign conjugate prior distributions.

Therefore, the sequential procedure can be proceeded by iteratively calculating

allocation probabilities p(γi|y(i),γ(i−1)) Equation in (5.2.4) and updating con-

ditional posterior distribution p(θγi |y(i),γ(i)) through Equation (5.2.7). In each

step, the sequential approach uses p(θγi , γi|y(i−1),γ(i−1)) to approximate the exact

posterior distribution p(θγi , γi|{yi}ni=1, {γl}{l 6=i}).

Next, we illustrate the details of the recursive updating scheme. By assign-

ing the first observation y1 to the first component γ1 = 1, we can derive the

conditional posterior of θ1 as

p(θ1|y1, γ1) ∝ f(y1|γ1, θ)π0(θ), (5.2.8)

where π0(θ) represents the prior distribution. Given θ1 and γ1, we observe the next

observation y2. According to the DP prediction rule, the probability of assigning

observation y2 to the existing component and a new component is given by,

p(γ2 = j|γ1) =


1

α+1
, j = 1,

α
α+1

, j = 2.

We can calculate the joint density of y2 and γ2 given y1 and γ1 by

f(y2, γ2|y1, γ1) =

∫
f(y2, γ2|θ1)p(θ1|y1, γ1)dθ1

=

∫
f(y2|γ2, θ1)p(γ2|γ1)p(θ1|y1, γ1)dθ1.

Thus, the posterior of γ2 given y2, y1 and γ1 is stated as

p(γ2|y2, y1, γ1) =
f(y2, γ2|y1, γ1)

f(y2|y1, γ1)

where the denominator in the above equation f(y2|y1, γ1) is the marginal density

of y2 given both y1 and γ1. The marginal density f(y2|y1, γ1) is obtained by
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summarising over γ2 = 1 and γ2 = 2,

f(y2|y1, γ1) =
2∑
j=1

f(y2, γ2 = j|y1, γ1).

Following this, we can determine the allocation of y2 by calculating the allocation

probability p(γ2|y2, y1, γ1). If γ2 = 1, it means y2 will be allocated into the existing

component with parameter θ1, and the corresponding component parameter θ1

can be updated by

p(θ1|y2, γ2, y1, γ1) ∝ f(y2, γ2|θ1)p(θ1|y1, γ1).

If γ2 = 2, it means that the observation y2 is assigned to a new component.

Similar to Equation (5.2.8), θ2 can be updated by

p(θ2|y2, γ2) ∝ f(y2, γ2|θ)π0(θ).

In general, when we observe yi, for i ≥ 2, there are ki−1 + 1 choices for

the allocation variable γi, where ki−1 represents the number of distinct values

obtained from previous allocations {γl}i−1
l=1. Hence, according to Equation (5.2.4),

the probability of allocation γi = j is proportional to

p(γi|yi,y(i−1),γ(i−1)) ∝ f(yi, γi|y(i−1),γ(i−1)), for j = 1, . . . , ki−1 + 1.

Based on the value of γi, the conditional posterior distribution of the affected

parameter θγi can be updated via Equation (5.2.7).

Here, we assume the density f(y|θ) follows a Normal distribution N (y|θ) with

component parameters θ = (µ,Λ) in Equation (5.2.1). The component parameter

θ is sampled from some prior distribution G(·) on R × R+, and G(·) itself is

modelled as a Dirichlet process DP(α,G0) with a precision parameter α and a
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base distribution G0. In this model, the base distribution G0 is known as

π0(µ,Λ) = N (µ|m0, τ0Λ−1)W(Λ|s0, S0), (5.2.9)

where N (·|m0, τ0Λ−1) denotes a Normal with mean m0 and τ0 controls the preci-

sion of µ, andWD(·|s0, S0) represents a D-dimensional Wishart distribution with

degree of freedom s0 and scale matrix S0. In this model, the density of yi can

also be viewed as following an infinite mixture of Normal distributions.

Without losing any generality, we suppose that the newly arrived observa-

tion yi is assigned to the jth component for j = 1, . . . , ki−1 + 1, where the new

(ki−1 + 1)th component is generated from the prior distributions given in Equa-

tion (5.2.9). Then, conditioned on previously updated component parameters

µj ∼ N (µj|m(i−1)
j , τ

(i−1)
j Λ−1

j ) and Λj ∼ W(Λj|s(i−1)
j , S

(i−1)
j ), the posterior distri-

bution of component parameters (µj,Λj) can be derived as

p(µj,Λj|yi, γi = j,y(i−1), γ(i−1))

∝ N (yi|µj,Λ−1
j ) N (µj|m(i−1)

j , τ
(i−1)
j Λ−1

j ) W(Λj|s(i−1)
j , S

(i−1)
j ).

(5.2.10)

If we examine the terms only dependent on parameter µj, the conditional poste-

rior of µj can be derived as

p(µj|yi,Λj,m
(i−1)
j , τ

(i−1)
j )

∝ exp

−τ
(i−1)
j + 1

2τ
(i−1)
j

(µj − τ
(i−1)
j yi +m

(i−1)
j

τ
(i−1)
j + 1

)T

Λj

(
µj −

τ
(i−1)
j yi +m

(i−1)
j

τ
(i−1)
j + 1

) ,

which is recognised as the kernel of a Normal distribution N (µj|m(i)
j , τ

(i)
j Λ−1

j )

with updating equations of mean m
(i)
j and precision scale parameter τ

(i)
j defined
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as below,

m
(i)
j =

τ
(i−1)
j yi +m

(i−1)
j

τ
(i−1)
j + 1

τ
(i)
j =

τ
(i−1)
j

τ
(i−1)
j + 1

.

(5.2.11)

We can derive the posterior distribution of Λj by gathering terms related to Λj,

which is proportional to

p(Λj|yi, s(i−1)
j , S

(i−1)
j ) ∝

∣∣∣∣∣ 1

τ
(i−1)
j + 1

∣∣∣∣∣
1
2

|Λj|
s
(i−1)
j

+1−D−1

2

exp

{
−1

2
tr

[(
(yi −m(i−1)

j )(yi −m(i−1)
j )T

τ
(i−1)
j + 1

+ S
(i−1)
j

−1

)
Λj

]}
.

This expression is the kernel of a Wishart distribution W
(

Λj|s(i)
j , S

(i)
j

)
, where

the degree of freedom s
(i)
j and scale matrix S

(i)
j can be updated as,

s
(i)
j =s

(i−1)
j + 1

S
(i)
j

−1
=

(yi −m(i−1)
j )(yi −m(i−1)

j )T

τ
(i−1)
j + 1

+ S
(i−1)
j

−1
.

(5.2.12)

When i = 1, hyperparameters (m
(0)
j , τ

(0)
j , s

(0)
j , S

(0)
j ) in Equations (5.2.11) and

(5.2.12) are set to be their initial values (m0, τ0, s0, S0) given by the prior distri-

butions in Equation (5.2.9).

5.2.2 Optimal Permutation for Ordering

In order to reduce the ordering sensitivity mentioned in Section 5.1, we propose a

sequential maximisation procedure to find the optimal permutation of the data,

at the same time, to determine the corresponding allocations of the data. Then,

the joint density of y and γ can be approximated by the determined permuta-

tion. The component parameters (µ,Λ) can be updated following the determined

optimal permutation of observations y and their allocations γ.
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Suppose observations {yi}ni=1 are observed and their allocations are denoted

by {γi}ni=1. We can decompose the joint density f(y,γ) as,

f(y,γ) =f(y1, y2, . . . , yn, γ1, γ2, . . . , γn),

=f(y1, γ1)f(y2, γ2|y1, γ1) · · · f(yn, γn|y(n−1),γ(n−1)),

(5.2.13)

where y(i−1) = {yl}i−1
l=1 and γ(i−1) = {γl}i−1

l=1 for i = 1, . . . , n. Each f(yi, γi|y(i−1),γ(i−1))

is a joint marginal density for the current observation yi and its corresponding

allocation γi, based on previously selected observations y(i−1) and their alloca-

tions γ(i−1). An optimal permutation yη = (yη1 , . . . , yηn) is determined by the

proposed OPS algorithm, where η = (η1, . . . , ηn), and yηh = yi indicate that the

hth position in the optimal permutation is occupied by the observation yi from

original order. The OPS algorithm finds the optimal order through maximising

the joint density f(y,γ), which is achieved by sequentially maximising each term

f(yηh , γh|y(h−1),γ(h−1)) in Equation (5.2.13).

To maximise each marginal joint density f(yηh , γh|y(h−1),γ(h−1)), we only need

to find a combination of (yηh = yi, γh = j) which gives the largest value from

yi ∈ {yl}nl=1, yi /∈ {yηh}h−1
h=1 and γh = j for j = 1, . . . , kh−1+1. We can calculate the

marginal joint density f(yηh , γh|y(h−1),γ(h−1)) by integrating out the component

parameters (µj,Λj),

f(yηh , γh|y(h−1),γ(h−1))

=

∫
Λj

∫
µj

f(yηh , γh|µj,Λj) p(µj|Λj,m
(h−1)
j , τ

(h−1)
j ) p(Λj|s(h−1)

j , S
(h−1)
j ) dµj dΛj.

(5.2.14)

As it is mentioned in Section 5.2.1, the posterior distribution of mean parameter

µj follows a Normal distribution N (µj|m(h−1)
j , τ

(h−1)
j Λ−1

j ), and precision matrix

Λj follows a Wishart distribution W(Λj|s(h−1)
j , S

(h−1)
j ). By integrating over the
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component parameters µj and Λj, the marginal joint density can be written as,

f(yηh , γh|y(h−1),γ(h−1))

=f(yηh|γh,y(h−1)) p(γh|γ(h−1))

∝(π(s
(h−1)
j −D + 1))−

D
2 ΓD

(
s

(h−1)
j + 1

2

)
Γ−1
D

(
s

(h−1)
j

2

)∣∣∣∣∣S
(h−1)
j (s

(h−1)
j −D + 1)

τ
(h−1)
j + 1

∣∣∣∣∣
1
2

∣∣∣∣∣(yηh −m
(h−1)
j )TS

(h−1)
j (yηh −m

(h−1)
j )(s

(h−1)
j −D + 1)

(τ
(h−1)
j + 1)(s

(h−1)
j −D + 1)

+ 1

∣∣∣∣∣
− 1

2
(s

(h−1)
j +1)

p(γh|γ(h−1))

which is proportional to a noncentral Student’s t-distribution,

f(yηh , γh|y(h−1),γ(h−1))

∼t
s
(h−1)
j −D+1

(
yηh|m

(h−1)
j ,

S
(h−1)
j (s

(h−1)
j −D + 1)

τ
(h−1)
j + 1

)
p(γh|γ(h−1)).

(5.2.15)

Given the explicit form of f(yηh , γh|y(h−1),γ(h−1)) in Equation (5.2.15), it is not

difficult to compute the joint density under all possible combination of observa-

tions and allocations (yηh = yi, γh = j) for the rest (n− h+ 1) unpicked observa-

tions and kh−1 + 1 number of mixing components. Once we have determined the

pair of (yηh = yi, γh = j), the posterior distributions of component parameters

(µγh ,Λγh) can be updated through Equations (5.2.11) and (5.2.12). Hence, the

OPS updating procedure can be proceeded as described until all observations are

updated.

Next, we go through the details of the proposed OPS algorithm. To simplify

the notation, we use f(yηh , γh) to denote the joint conditional density of (yηh , γh)

given previously updated observations y(h−1) and allocations γ(h−1). In order to

find the first observation in the optimal permutation, we calculate the marginal

density for every observation yi for i = 1, . . . , n,

f(yηh = yi, γ1 = 1) =

∫
f(yηh = yi, γ1 = 1|µ,Λ)dπ0(µ,Λ), (5.2.16)

where π0(·) denotes the prior distribution stated in Equation (5.2.9), as none of
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observations has been proceeded yet. The first observation yη1 is chosen to be

the one which maximises the prior marginal distribution in Equation (5.2.16).

At the same time, the allocation of yη1 is automatically assigned to γ1 = 1. The

component parameters (µ1,Λ1) for the first component can then be updated via

Equations (5.2.11) and (5.2.12).

When we consider the second position of h = 2, we need to find a pair of

(yη2 , γ2) from the rest (n − 1) unpicked observations and γ2 = j for j = 1, 2, to

maximise

f(yη2 = yi, γ2 = j) =

∫
f(yη2 = yi, γ2 = j, µj,Λj)dp(µj,Λj|yη1 , γ1).

For j = 1, p(µj,Λj|yη1 , γ1) denotes the conditional posterior distributions of pa-

rameters (µ1,Λ1) for the first component. When j = 2, it means yη2 is assigned

to a new component, the calculation is the same as stated in Equation (5.2.16).

Then, we can form a (n − 1) × 2 matrix values of f(yη2 , γ2), where each row

represents an observation and each column is a possible allocation for that ob-

servation. The pair of (yη2 , γ2) is determined by the pair with the largest value

of f(yη2 , γ2) in the matrix. Thus, based on the value of γ2, we can update the

component parameters (µγ2 ,Λγ2) given observation yη2 .

In general, in order to determine the pair (yηh = yi, γh = j) for a optimal po-

sition h, we calculate the marginal density f(yηh , γh) of all combinations from the

rest (n−h+1) unpicked observations and all possible existing mixing component

j = 1, . . . , kh−1 + 1. Then, we can form a (n− h+ 1)× (kh−1 + 1) matrix as,

comp. 1 . . . comp. kh−1 + 1


obs. 1 f(yηh = y1, γh = 1) · · · f(yηh = y1, γh = kh−1 + 1)

obs. 2 f(yηh = y2, γh = 1) · · · f(yηh = y2, γh = kh−1 + 1)

...
...

. . .
...

obs. n− h+ 1 f(yηh = yn−h+1, γh = 1) · · · f(yηh = yn−h+1, γh = kh−1 + 1)

.

(5.2.17)
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If the largest value is located at the ith row and the jth column in the matrix,

we assign the observation yi to occupy the hth position in the optimal permu-

tation, and allocate this yi to the jth component. Thus, component parameters

(µj,Λj) are updated with hyper-parameters (m
(i)
j , τ

(i)
j , s

(i)
j , S

(i)
j , ), while parame-

ters for other components {(µl,Λl)}{l 6=j} remain unaffected. We keep applying

this recursive procedure until h = n.

Once the recursion procedure ends, we obtain a finite mixture of Normal

distributions with kn components, where component parameters are updated to

p(µ,Λ|y(n),γ(n)). Then, the predictive distribution of yn+1 given preciously up-

dated y(n) can be obtained by summarising over all possible values of allocation

variable γn+1 as,

f(yn+1|y(n)) =
kn+1∑
j=1

f(yn+1, γn+1 = j|y(n),γ(n)). (5.2.18)

The pseudo-code of the OPS algorithm is presented as follows.

Algorithm 2 Optimal Permutation Sequential Algorithm

1: Initialise prior values (m0, τ0, s0, S0) and set k1 = 1.
2: for i = 1, . . . , n do
3: Compute the joint marginal density in Equation (5.2.15).
4: end for
5: Find the observation yi with the largest value and set η1 = i.
6: for h = 2, . . . , n do
7: for i = 1, . . . , (n− h+ 1) do
8: for j = 1, . . . , (kh−1 + 1) do
9: Compute the joint marginal density in Equation (5.2.15).
10: end for
11: end for
12: end for
13: Find the location of the largest value in the matrix (5.2.17).
14: Set ηh equals to the row number of the largest location.
15: Set γh equals to the column number of the largest location.
16: if γh > kh−1 then
17: Create a new component with parameters updated from initial values.
18: else
19: Update component parameters via Equations (5.2.11) and (5.2.12).
20: end if
21: Draw prediction via Equation (5.2.18).
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5.2.3 Large Data Strategy of OPS

The proposed OPS algorithm introduced in Section 5.2.2 provides a fast sequential

way to estimate the DPM models. In order to simultaneously choose yηh and its

allocation γh, OPS finds the largest value of the joint marginal density f(yηh , γh)

for every possible combination of (yηh , γh). Hence, for each optimal permutation

position h, it requires computing (n−h+1)× (kh−1 +1) number of joint densities

as described in the matrix (5.2.17). The proposed OPS algorithm has a desirable

advantage on the computational aspect for small datasets. However, when data

size n increases, it is noticeable that the required computational cost increases

as O(n2). In this section, we propose a large data strategy for OPS (L-OPS)

algorithm to deal with large datasets.

When implementing OPS, we have found that after selecting a certain number

of observations, the variation of permutations for the rest observations does not

affect the resulting estimate as much. This implies that the beginning of the

selection procedure is critical for the mixture density estimation. Therefore, for

a large dataset, we only run the OPS algorithm described in Section 5.2.2 upto a

sufficient proportion of data, as long as it contains enough information to mimic

the structure of the whole data. As for the rest observations, we only need to

decide on the allocations with the natural order of observations and perform the

sequential updating procedure until the end.

Considering observations y = {yi}ni=1 arrive with their natural ordering, we

split y into two parts, for example, y = (y1,y2) where y1 = {yi}n1
i=1 and y2 =

{yi}ni=n1+1. We apply the proposed OPS method on the first part of data y1 =

{yi}n1
i=1, and obtain a mixture density estimate with parameters updated to

(µ(n1),Λ(n1)). For observations in y2, we keep the original order and find their

allocations based on the estimate from y1. For example, the allocation proba-

bility of the first observation yn1+1 from the second part of data y2 to the jth
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component is given by

p(γn1+1 = j|y(n1+1),γ(n1)) ∝ f(yn1+1, γn1+1 = j|y(n1),γ(n1)),

which is the same as what we used in OPS algorithm in Equation (5.2.4). Ac-

cording to the value of γn1+1, the component parameters (µγn1+1 ,Λγn1+1) can be

updated straightforwardly following Equations (5.2.11) and (5.2.12). The L-OPS

algorithm proceeds the sequential procedure until all observations in y2 are up-

dated and the predictive distribution of yn+1 given y can be derived analytically.

Next, we briefly discuss how to determine the size of the y1 = {yi}n1
i=1 when

applying the L-OPS algorithm. We need y1 to contain enough observations in

order to mimic the structure of the data y. On the other hand, the more ob-

servations that we include in y1, the more computational effort is required for

running OPS on y1. Since OPS has an obvious advantage when data size is small,

we suggest to pick n1 = min{10% × n, 1000}, depending on the length of data.

For example, if a dataset contains 5,000 observations, where 10%× 5000 < 1000,

then we choose n1 = 500 as the size of y1. If the dataset has 20,000 observations,

where 10%× 20000 > 1000, then we can consider n1 = 1000 to be large enough.

Algorithm 3 Large Data Strategy of Optimal Permutation Sequential Algorithm

1: Split dataset y = (y1,y2), where y1 = {yi}n1
i=1 and y2 = {yi}ni=n1+1

2: for i = 1, . . . , n1 do
3: Run the optimal permutation sequential algorithm on y1.
4: end for
5: Obtain the mixture density estimate with kn1 mixing components.
6: for i = n1 + 1, . . . , n do
7: for j = 1, . . . , (kn1 + 1) do
8: Determine the allocation variable via Equation (5.2.15).
9: Update corresponding component parameters by Equations (5.2.11)

and (5.2.12).
10: end for
11: end for
12: Draw prediction via Equation (5.2.18).
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5.3 Results Analysis

In this section, we conduct simulation studies to evaluate the performances of the

proposed OPS algorithm and its extension L-OPS algorithm. Both univariate and

multivariate cases are considered. For each case, simulated data examples and a

real data example are studied. For those data with small to median sample size

up to 1000, we apply the OPS algorithm to estimate the mixture densities, and

record the corresponding execution times. Meanwhile, the accuracy of density

estimations is measured by the Kullback-Leibler divergence (KLD). For large

sized data examples, we apply the L-OPS algorithm and evaluate its performance

on estimation accuracy and time.

We compare the performance of the OPS algorithm with the SUGS algorithm

proposed by Wang and Dunson [2011] and the VSUGS algorithm introduced by

Zhang et al. [2014]. Following the suggestion in Wang and Dunson [2011], we

run SUGS multiple times on the same data with random permutations and select

the result with the order which achieves the largest pseudo marginal likelihood

(PML). The VSUGS algorithm proposed by Zhang et al. [2014] is a generalisa-

tion for the SUGS algorithm, which follows the Variational Bayes (VB) framework

with a fixed number of components. VSUGS uses a “soft” allocation procedure

rather than the “hard” allocation applied in SUGS. They claimed that VSUGS

gives a better fit of data whose components are close in some region. Similar to

SUGS, we run VSUGS multiple times on the same data with random permuta-

tions and choose the outcome with the order which achieves the largest evidence

lower bound (ELBO). For the real industrial dataset, we present the comparison

of the number of failures obtained from the OPS algorithm with the slice sampler

applied in Chapter 3 and the proposed hybrid Variational Bayes (HVB) approach

in Chapter 4.
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5.3.1 Simulated Univariate Data

We start the simulation study from estimating a mixture density of three uni-

variate Normal distributions. The true density is given as

f(y) = 0.3 N (y| − 2, 0.4) + 0.5 N (y|0, 0.3) + 0.25 N (y|2.5, 0.3), (5.3.1)

which is the same mixture density used in Wang and Dunson [2011]. We randomly

generate 100 datasets under the true density with different sample sizes n = 100,

200, 500 and 1000. The prior distributions of mean and precision parameters are

fixed asN (µ|0, 10λ−1) and G(λ|4, 1). Using the OPS algorithm outlined in Section

5.2, the predictive density is obtained by a single run. For each 100 datasets with

the same length n, the 100 estimated predictive densities are plotted in Figure

5.1, which clearly shows the consistency of the OPS estimator for mixture density

estimation. As the sample size increasing, the density estimate gets more and

more concentrated to the true density, and the bandwidth of the 100 repetitions

gets narrower.

We calculate the KLD to measure how close the OPS estimates to the true

density. To obtain a predictive estimate from the SUGS algorithm, we choose

exactly the same prior initials as recommended in Wang and Dunson [2011], and

run it for 30 times with random permutations of data. The best permutation is

selected as the one with the largest pseudo marginal likelihood. Then the mix-

ture density estimate is obtained according to the selected permutation. For the

VSUGS algorithm, we fix the total number of components to be 10 upfront and

repeat VSUGS for 30 times with random permutations. The best permutation is

then chosen to be the one with the highest evidence lower bound. We summarise

the averaged KLD values obtained from OPS for different sample sizes n in Table

5.1, along with the averaged KLD obtained from SUGS and VSUGS.
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(a) n=100

(b) n=200

(c) n=500

(d) n=1000

Figure 5.1: OPS density estimates in univariate simulation for n = 100, 200, 500 and
1000. The estimated densities (green, dotted) from 100 datasets and the true mixture
density (black, solid).
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Table 5.1: Comparison of SUGS, VSUGS, and OPS in terms of the average of KLD
from 100 datasets with different sample sizes n = 100, 200, 500 and 1000.

Sample size SUGS VSUGS OPS

100 0.0443 0.0526 0.0398

200 0.0285 0.0314 0.0272

500 0.0412 0.0432 0.0439

1000 0.0063 0.0089 0.0139

According to Table 5.1, OPS provides consistent density estimates with vari-

ous sample sizes. Comparing with to both SUGS and VSUGS, OPS can achieve

more accurate density estimates when n ≤ 200. For the data of size up to 500,

OPS reaches a comparable level of KLD with both SUGS and VSUGS. When

n > 500, OPS starts perform poorly.

Another important aspect we would like to evaluate is the computational time.

The OPS algorithm is designed to remove order-dependent effect by finding the

optimal permutation of data. On the other hand, SUGS and VSUGS repeat

running for multiple time and pick the best density estimations by some criteria.

For each sample size n, the execution times for those three methods are presented

in Table 5.1.

Table 5.2: Comparison of SUGS, VSUGS, and OPS in terms of computational time
(in seconds) from 100 datasets with different sample sizes n = 100, 200, 500 and 1000.

Sample size SUGS VSUGS OPS

100 90 101 35

200 165 188 71

500 293 496 314

1000 833 818 1102

When n ≤ 200, OPS clearly has an advantage on computation time, which is

only a half and a third of the computational time required by SUGS and VSUGS

respectively. However, when n > 500, the computational time of OPS increases

dramatically. To run OPS algorithm, we need to compute the marginal density

matrix (5.2.17) for each position h in the optimal permutation where h = 1, . . . , n.
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Therefore, as n increases, the required computational time for the marginal den-

sity matrix increases with O(n2). In contrast, the computational time for SUGS

and VSUGS are proportional to O(n).

In the end of this section, we examine the sensitivity of OPS algorithm about

initial values of prior distributions. In order to generate densities estimation

shown in Figure 5.1, we have chosen the initial value of m0 as the sample mean,

m0 =
1

n

n∑
i=1

yi,

in the prior distribution µ ∼ N (µ|m0, τ0Σ). One concern of the OPS algorithm

is that it always starts with the observation which achieves the maximum value

of prior marginal, hence the OPS potentially can be sensitive of the initial values

of prior distributions.

In order to test the sensitivity of initial values, we conduct two cases which

the value of m0 are chosen extremely. In both case, we randomly generate 100

observations which follow the same density of three Normal mixtures stated in

Equation (5.3.1).

Figure 5.2: OPS density estimates for n = 100, where initial value of m0 is chosen to
be the maximum value of observations.
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In the first case, the value of m0 = max{yi}ni=1 is chosen to be the maximum

value of all observations. The OPS algorithm successfully catchs three modes and

the predictive distribution are shown in Figure 5.2.

In the second case, we generate another 100 observations and the value of

m0 = min{yi}ni=1 is chosen to be the minimum value of all observations. Similar

density estimates are achieved by OPS algorithm, which is shown in Figure 5.3.

Figure 5.3: OPS density estimates for n = 100, where initial value of m0 is chosen to
be the minimum value of observations.

Furthermore, we random generate 100 observations from a bimodal density,

f(y) = 0.4 N (y| − 2, 0.4) + 0.5 N (y|3, 0.1). (5.3.2)

Then, the OPS algorithm is applied to estimate the mixture density where m0

is chosen to be the sample mean. The estimated density is given in Figure 5.4.

In this case, we conduct a situation that the sample mean initial value actually

provides inappropriate starting point of the OPS algorithm. According to the

density estimates, OPS results in a mixture of 2 Normal densities and successfully

catches both separate modes on each side of the sample mean. According to the
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presented results of different choices of prior initials, we conclude that the OPS

algorithm is not very sensitive about initial values.

Figure 5.4: OPS density estimates for n = 100 with bimodal, where initial value of m0

is chosen to be the sample mean.

Overall, the OPS algorithm provides reliable estimates of mixture densities

with different sample sizes. OPS preforms especially well on small sized datasets

according to accuracy of estimation and operational time. Meanwhile, the OPS

algorithm does not show sensitivity about prior initials. It is noticeable that the

computational time increases dramatically with the data size. When the data

size n > 500, we recommend to use the L-OPS algorithm described in Section

5.3.3.

Large Data Strategy of OPS

Next, we present the performance of the large data strategy of OPS (L-OPS)

algorithm on a large dataset with 5000 observations. As introduced in Section

5.2.3, we split the data into two parts y1 and y2, with the sizes denoted as n1

and (N − n1). To study the affect of different splits, we will look at the splits

with the first part data size n1 = 100, 200, 500 and 1000, respectively. We record

the KLD value and running time for each split in Table 5.3. We also record the
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KLD value and running time of SUGS and VSUGS on the same dataset in Table

5.3. The dataset we simulated here is a (5000× 1) vector.

Table 5.3: Comparison KLD and computational time obtained from SUGS, VSUGS
and L-OPS with different sizes of n1 = 100, 200, 500 and 1000.

n1 size KLD Time (sec)

100 0.0210 2

200 0.0256 7

L-OPS 500 0.0219 19

1000 0.0113 23

5000 0.0079 384

SUGS 5000 0.0039 136
VSUGS 5000 0.0020 43

The simulation results show that the performance of the L-OPS gets better with

the KLD value decreases as the first part data size n1 increases, while the com-

putation time increases. For example, when n1 = 100, the computational time of

L-OPS is just 2 second CPU time.

Next, we visualise the curve fitting of density estimates obtained from L-OPS

with different sizes of n1.

Figure 5.5: Large data strategy of OPS with different n1 = 100, 500, 1000 obtained
from OPS and SUGS.

140



5.3 Results Analysis

When n1 = 100, the resulting green curve is obviously not good fit. As n1

increases to 500, the red curve fits the data better. Then, when n1 = 1000,

two estimated mixture curves obtained from L-OPS (blue) and SUGS (cyan)

are overlapping to each other. According to Figure 5.5, L-OPS with n1 = 1000

achieves a similar density estimate as the SUGS for a 5000×1 simulated dataset.

In summary, the large data strategy of OPS algorithm can be used as a fast

alternative to estimate the mixture density with large sample size. The L-OPS

algorithm execution time increases and KLD decreases as the size of n1 increasing.

It also can be viewed as a way to balance the accuracy of density estimation and

time consumption by empirical selecting n1.

5.3.2 Galaxy Data

The galaxy data is one of the commonly studied real data examples to assess

various Bayesian methods. It is always used to assessing Bayesian methods for

univariate density estimation and clustering. The data contains measured ve-

locities of 82 galaxies for 6 well-separated conic sections of space. The prior

distribution of mean µ follows a Normal distribution N (µ|m0, τ0λ) and the prior

of precision λ follows a Gamma distribution G(λ|a0, b0), where initial values of

hyperparameters are fixed as µ0 = 0, τ0 = 10, a0 = 20, and b0 = 0.7. Meanwhile,

the default prior initials in SUGS are given by µ0 = 0, τ0 = 10, a0 = 1, and b0 = 1.

then we repeatedly run it on 20 random permutations of the data as suggested

in Wang and Dunson [2011]. The density estimates from OPS and SUGS are

plotted in Figure 5.5.
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Figure 5.6: Predictive density estimate obtained from OPS (red, solid) and SUGS (blue,
solid), kernel density estimate (green, dashed), histogram, and plots of galaxy data (+).

Here we also compare the the kernel density obtained using Matlab command

called ksdensity. Clearly, the density estimated by ksdensity is over-smoothed,

while OPS and SUGS provide better curve fittings. The estimated density from

OPS in Figure 5.6 agrees closely.

Our method gave six distinctive clusters, which agrees with the fact that the

true data come from 6 conic sections in space. We list the locations and weights of

the six clusters obtained by OPS method in Table 5.4. We also list the locations

and weights of five clusters obtained by SUGS to compare.

Table 5.4: Comparison of the estimated mixture densities obtained from OPS and SUGS
on galaxy data.

Comp. 1 2 3 4 5 6 Time

OPS Locations 9.87 16.35 19.86 22.97 26.01 32.65 0.1877

Weights 0.0854 0.0244 0.4390 0.3659 0.0488 0.0366
SUGS Locations 9.87 16.35 19.86 23.34 32.65 N/A 0.3915

Weights 0.0854 0.0244 0.4390 0.4146 0.0366 N/A
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The component locations are sorted in an ascending order. According to Table

5.4, OPS and SUGS gave identical location estimates and corresponding weights

of the first 3 components and the last one. The only difference is that OPS is able

to distinguish component 4 and 5, and caught all 6 mixtures. Also, the runtime

(in seconds) of our method is half of the SUGS time, which agrees with the

findings in Table 5.2. Therefore, results presented above show the validation of

the proposed OPS algorithm on univariate simulated datasets with various sizes

and a real application on galaxy data. When dealing with datasets with small

sample sizes, OPS has an obvious advantage on both accuracy and computational

time.

5.3.3 Simulated Multivariate Data

In this section, we first look at a bivariate simulation example. Mainly because it

is not possible to visualise data in one plot when dimension of observations larger

than 2. We simulate bivariate observations from the true density given as

f(y) = 0.3N


−2

−6

 ,
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0 2
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 4

−2
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
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5

 ,
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0 1


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We sample 100 bivariate samples as data, and plot the true mixture density and

the OPS estimate of the mixture density in Figure 5.4.
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(a) True density

(b) OPS density estimate

Figure 5.7: Contour plot for a mixture of three bivariate Normal distributions with 100
observations, true density and the OPS density estimate.

Figure 5.7(a) represents the contour of true density with data denoted by ‘+’

where different colours of ‘+’ are used to distinguish observations generated from

different Normal components. We also plot the OPS density estimate and the
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corresponding classification of data in Figure 5.7(b). If we compare these two

plots closely, we can see that 99 data points are correctly allocated by OPS

method except the marked by the white triangle, and OPS assigned it to the

Normal component upper right. The OPS method accurately caught the three

mixture modes in this example. Similar comparison results in Section 5.3.1 are

achieved with other fast algorithms in multivariate cases.

5.3.4 Industrial Application

In Chapter 3, we proposed a Bayesian linear model with Dirichlet Process mixture

prior (BL-DPMP) approach to reduce the number of measurements required for

sensor characterisation. In order to obtain accurate estimates of the critical

parameter β, the historical information with complete information is used as prior

to compensate the missed information from the current sensor. The BL-DPMP

approach takes the first n = 240 historical OLS estimates {βi}240
i=1 as observations,

and then models {βi}ni=1 by a DPM of Normal distributions described in Equation

(3.3.1)

Instead of using the slice sampler to find the allocations and estimate the

mixture density of β, we apply the OPS algorithm to the considered industrial

problem. We record the allocations and weights obtained by OPS using the S1

dataset.

Table 5.5: Number of allocations and corresponding weight for each mixing Normal
component obtained from OPS of the S1 historical dataset.

Comp. No. of allo. Weight Comp. No. of allo. Weight

1 175 0.7292 2 48 0.2000
3 3 0.0125 4 3 0.00125
5 2 0.0083 6 2 0.0083
7 2 0.0083 8 1 0.0042
9 1 0.0042 10 1 0.0042
11 1 0.0042 12 1 0.0042

In Table 5.5, OPS gave 12 distinctive clusters of historical estimates {βi}240
i=1. We
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plot the histogram of {βi,2}240
i=1 in Figure 5.8, where each βi,2 denotes the second

dimension of βi for i = 1, . . . , n. The curve fitting obtained from OPS density

estimate is also shown in Figure 5.8.

Figure 5.8: Histogram of the historical estimates {βi,2}240
i=1 and the curve fitting obtained

from the BL-DPMP approach with OPS of the S1 type of sensors.

When a new sensor with reduced measurements (y−t , X
−
t ) is available, the

estimated mixture density of critical parameter β from OPS is used as prior

choice for the regression coefficient βt. The probability of selecting the most

suitable Normal component is proportional to

P(γt = j| y−t , X−t , ωj, µj) ∝ ωj N (y−t | X−t µj, σ2I18).

where response variable y−t is a 18× 1 vector, covariates X−t is a 18× 5 matrix,

γt denotes the allocation of the tth sensor, ωj and µj represent the weight and

the mean for the jth Normal component, the value of σ2 is fixed to be extremely

small, and I18 denotes a 18× 18 identity matrix. Conditional on γt = j, the prior

of βt is assigned to be,

π(βt) ∼ N (βt| µj,Σj).
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Then, the posterior distribution of βt can be estimated through a Bayesian linear

model

p(βt| y−t , X−t , γt = j, µj,Σj) ∝ π(βt)N
(
y−t | X−t βt, σ2I18

)
.

We can calculate the characterisation error by εt = yt − Xtβt, where (yt, Xt)

represent the complete data with full measurements for the tst sensor, and error

term εt is a 32× 1 vector.

According to the quality specifications stated in Equations (3.4.2), we calcu-

late the absolute values of average errors for all temperature bands, and they

must lie within a range of [0, 0.3%] to be a qualified product. In Table 5.6, we

summarise the total numbers of failures from 655 sensors with reduced measure-

ments obtained from the OPS, along with OLS approach with full measurements,

previously described slice sampler in Chapter 3, hybrid Variational Bayes (HVB)

in Chapter 4 with reduced measurements.

Table 5.6: Comparison performances obtained from OLS, Bayesian Linear approach,
BL-DPMP approach with slice sampler, HVB and OPS on the incomplete dataset of
the S1 type of sensors.

No. of Failures (655) Pass rate Time (sec)
0.1% 0.2% 0.3%

OLS complete 4 3 2 99.69% 0.04
MCMC incomplete 162 24 8 98.78% 8486
HVB incomplete 128 23 11 98.32% 225
OPS incomplete 84 23 12 98.17% 4

The first row of Table 5.6 is the result achieved by the OLS method with complete

S1 data, which can be viewed as a reference. Under the BL-DPMP approach,

the number of pass products obtained by the slice sampler method (98.78%) is

comparable to the OLS approach as the reference pass rate (99.69%). However,

MCMC sampling method is computational expensive, which takes more than 2

hours to finish. The aim of the project is to reduce the characterisation time

by taking a fewer number of measurements. Hence, we need a faster alternative

to estimate the mixture density. For the HVB method proposed in Chapter 4,
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it achieves 98.32% pass rate and only takes about 3 minutes to finish. More-

over, the proposed OPS algorithm proposed in this chapter only takes 4 seconds.

Meanwhile, the OPS algorithm gives 12 failures out of 655 sensors with reduced

measurements, which equals to 98.17% pass rate. This pass rate is consider to be

acceptable from the practical point of view.

To further illustrate the comparison among the proposed MCMC, HVB and

OPS approaches in the BL-DPMP model, we present the estimated characteri-

sation errors of one sensor as an example. The sensor is characterised by three

approaches without having measurements at mid-range temperatures. The pass-

ing range is ±0.3% for average error of each temperature band.

Figure 5.9: Errors comparison for one product among OLS, Bayesian linear, BL-DPMP
approach with slice sampler, HVB and OPS of the S1 type of sensors.

Figure 5.9 shows that all three methods MCMC (blue), HVB (cyan) and OPS

(red) successfully meet the company’s quality specification. Moreover, errors

obtained from all three methods lie within the ±0.1% error interval. Therefore,

the OPS algorithm can deliver an accurate estimate of β with available historical

information and reduced measurements. In conclude, the OPS algorithm provides
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an on-line solution for the considered industrial problem, which has the potential

to be implemented on the characterisation line in the future.

5.4 Discussion

In this chapter, we proposed an optimal permutation sequential (OPS) algorithm

to simultaneously find an optimal order of the data through a maximisation strat-

egy and its corresponding allocations, and then we can then draw samples from

weights and locations conditional on the allocations. The proposed OPS algo-

rithm shows desirable advantages, in both terms of the high level of accuracy and

the short computation time when the data size is small to median (up to 500 ob-

servations). For large datasets, the large data strategy of OPS (L-OPS) approach

can be considered as an effective alternative to the original OPS algorithm. We

examined the performance of OPS on both univariate case and multivariate case,

and compared its performance with some other fast algorithms. We have also

shown that the proposed OPS algorithm is not very sensitive of prior initials. A

detailed discussion and suggestions are given in the analysis of results.

As shown in Section 5.3, the proposed OPS algorithm was slow when deal-

ing with large datasets. The extended L-OPS algorithm is designed to further

accelerate the processing speed. However, the accuracy of the mixture density

estimation was not satisfactory. We attempt to further investigate the order-

dependence of large data by testing different ways of selecting the size of n1. For

example, we can randomly select 10% of the data to form the first part of the data

y1. In our proposed OPS approach, we used the joint marginal density to identify

an optimal permutation of the data. We are also interested in other ways of find-

ing a permutation of the data which that can lead to an accurate mixture density

estimate. Future work is needed to examine other types of criteria in order to

identify a suitable permutation of data without corresponding allocations.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we proposed a Bayesian linear model with Dirichlet process mix-

ture prior (BL-DPMP), together with an optimal permutation sequential (OPS)

algorithm as a solution to a real industrial enquiry. The problem under study is

considered to be challenging, since the proposed solution intends to achieve three

objectives at the same time. The first objective is to reduce the required number

of measurements during the characterisation process. The second objective is

to characterise each sensor via parameter estimation to achieve the high level of

accuracy. The final objective is that the proposed statistical procedure should be

able to perform an online characterisation.

In current practice, the ordinary least squares (OLS) method is applied to

estimate the sensor parameter β with a certain number of measurements per

device being necessary in order to achieve the required level of accuracy. The

proposed Bayesian model reduces the number of measurements needed per device

by incorporating a prior model constructed from the information of the previous

related sensor estimates. We can then estimate the current sensor parameter β

through the Bayesian theorem, by combining the prior distribution constructed

from the historical dataset and the likelihood with measurements at the mid-range

temperatures removed. Our intention is to use the historical information from
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previously characterised sensors to compensate the block missing information

from the current sensor characterisation.

The natural of the data exhibited in Section 3.2 could suggest other ways of

modelling historical estimates of parameter β. For instance, one choice could be a

simple mixture of two t-distributions which can capture the outliers of historical

β estimates shown in Figure 3.2. Here, we briefly state the reasons of not using

such a mixture of two t-distributions. In general, a Student’s t-distribution has

heavier tails than a Normal distribution. Hence, the observations far away from

the central area in Figure 3.2 can be considered as outliers and covered by t-

distributions, instead of being individually modelled by Normal distributions. A

mixture of two t-distributions might end with a more parsimonious model fitting.

However, for the considered case here, our idea is to use the historical estimates

of β provide information as prior to compensate the missed information from the

likelihood of the current sensor. The estimated mixing components will be used

as prior choices, and a mixture density with over-fitted number of components

actually provide more options of the prior distribution for the coming sensor with

reduced measurements. It is worth noting that those sensors with the outliers

β estimates shown in Figure 3.2 are also passed the calibration. The locations

of those outliers might be the locations for future modes. Therefore, we rather

individually model the outliers by Normal distributions.

To capture the multi-modality shown in parameter estimates of a certain type

of sensors, we proposed a Normal DPM model to capture the multi-modality of

the regression coefficient β. The estimated mixture components are treated as

the prior information of β and applied to a Bayesian linear regression model

for the current sensor with reduced measurements. The proposed BL-DPMP

approach was applied to the considered real industry dataset and outperformed

both the OLS method and the Bayesian linear regression approach under the same

condition. We also proposed a DPM regression model with data-driven predic-

tion procedure to improve the prediction accuracy of a standard DPM regression
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model. As a result, the proposed DPMR-DDP approach significantly improved

the prediction performance, although it still failed to achieve the satisfactory level

of pass rate.

For both approaches proposed in Chapter 3, we applied the slice sampling

scheme to estimate the mixture densities. This sampling scheme draws samples

under exact posterior distribution, which requires expensive computational ef-

forts. In order to reduce the computational time of the characterisation process,

we proposed a hybrid Variational Bayes (HVB) algorithm which follows a greedy

searching strategy. By exploring every possible model complexity, the HVB al-

gorithm is highly likely to provide the global optimum solution. Moreover, at

each step, we attempted to split every mixing component in two ways to provide

a thorough description to the unknown multi-modality. The resulting perfor-

mance of both the simulated data and the real industrial application suggests

the reliability and capability of the proposed HVB algorithm on mixture density

estimation problems. More importantly, HVB dramatically reduced the required

computational effort.

The third objective of our project is to propose a statistical model which can

be implemented in the characterisation line, where the model can be executed

within seconds (online). In order to further accelerate the processing speed, a

sequential update procedure is proposed to capture the structure of the historical

information, where the observations are treated as arriving sequentially. The idea

is to draw approximate independent and identically distributed samples from the

posterior distribution of the allocation variables. Then, independent draws of

component weights and locations can be taken from the posterior distribution

conditional on the determined allocations. In this way, independent samples can

be drawn from the predictive distribution. The proposed OPS algorithm approx-

imates the true mixture density using a single run, which only runs for a few

seconds. When dealing with small datasets, the proposed OPS has advantages

on both the accuracy of the mixture density estimation and the computational

time required. However, the proposed OPS algorithm faces a disadvantage when
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dealing with the large data size problem. To address this, we propose a large

data strategy of OPS (L-OPS) algorithm. The simulation study shows the va-

lidity of the L-OPS algorithm when dealing with large datasets. By using the

proposed BL-DPMP model together with the OPS algorithm, we provided an

online solution to the real industrial case.

6.2 Future Work

It is worth noting that the industrial problem considered in this thesis comes from

real life. The company made it apparent that a procedure of this nature will be

implemented in the near future in the production line, which means the values

of the sensor parameter will be estimated using the Bayesian method. However,

there are a couple of concerns that need to be considered before implementing

the Bayesian idea.

The first concern can be viewed as an information updating problem. When a

new sensor with reduced measurements is characterised and passed, the parameter

estimate of β can be used to refine the prior information for the next sensor and

so on. For example, we use the historical estimates {βi}ni=1 to construct a mixture

model with k∗ distinct Normal components with parameters {(µj,Σj)}k
∗
j=1, where

the mean µj follows N (µj|m(n)
j , τ

(n)
j Σj) and the variance-covariance matrix Σj

followsW(Σ−1
j |s

(n)
j , S

(n)
j ). For the (n+1)th sensor characterisation, the estimated

mixture model provides adequate prior information to the regression coefficient

βn+1. Following this, once the jth Normal component is chosen, the prior distri-

bution of βn+1 becomes π(βn+1) ∼ N (βn+1|µj,Σj). The posterior estimate β̂n+1

is calculated through a Bayesian linear regression model. The hyperparameters

(m
(n+1)
j , τ

(n+1)
j ) of the mean µj used as the prior information for the next new

153



6.2 Future Work

sensor can be updated in the following way:

m
(n+1)
j =

τ
(n)
j β̂n+1 +m

(n)
j

τ
(n)
j + 1

,

τ
(n+1)
j =

τ
(n)
j

τ
(n)
j + 1

.

Similarly, the hyperparameters (s
(n+1)
j , S

(n+1)
j ) of the variance-covariance matrix

Σj can be updated by

s
(n+1)
j =s

(n)
j + 1,

S
(n+1)
j =

(β̂n+1 −m(n)
j )(β̂n+1 −m(n)

j )T

τ
(n)
j + 1

+ S
(n)
j

−1
.

In this way, the information of the (n + 1)th sensor is updated to the mixture

model, and the updated mixture model will be used as the prior information for

the next sensor characterisation.

The second concern is to investigate the details of implementing the proposed

procedure to different types of sensors. To implement the proposed procedure

means that the characterisation line needs to be re-set. However, the company

manufactures a large number of types of sensors with different amount of historical

information available. For some types of sensors, we may find that there is not

enough available historical information to construct our priors. Hence, this lead

to the motivation to identify which types of sensors can be characterised by

the proposed procedure with reduced measurements. For each identified type of

sensors, we need to determine an appropriate size of the historical sample, in

order to construct the prior information.

From the work developed throughout the Section 3.3.2, we found that the

DPM regression model is unlikely to guarantee the high accuracy when estimat-

ing of the mixture density; this is important as high precision is the dominant

concern. In order to estimate the relationship between response variables {yi}ni=1

and covariates {Xi}ni=1 from the historical data, the DPM regression framework
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introduced by Müller et al. [1996] is thought for granted to be the model should

be used in the considered situation. However, as shown in Table 3.4, the standard

DPM regression model was the only method which broke down under the com-

plete data condition. For the considered situation, the DPM regression model

cannot achieve the satisfactory level of accuracy. We will further investigate this

problem and propose a feasible solution by adding a refined procedure to improve

the prediction precision of the mixture density estimation.
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