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Abstract

In many contexts we may be interested in understanding whether direct connections between

agents, such as declared friendships in a classroom or family links in a rural village, affect their

outcomes. In this paper we review the literature studying econometric methods for the analysis

of linear models of social effects, a class that includes the ‘linear-in-means’ local average model,

the local aggregate model, and models where network statistics affect outcomes. We provide

an overview of the underlying theoretical models, before discussing conditions for identification

using observational and experimental/quasi-experimental data.
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1 Introduction

Researchers and policymakers are often interested in identifying whether and the extent to which

direct connections between agents affect their outcomes. For example, does the schooling perform-

ance of an individual depend on that of her friends? Does the health seeking behaviour of one’s

relatives influence one’s own health seeking behaviour? Are firms’ investment and pay decisions

influenced by the behaviour of firms in the same or closely-related industry? The identification and

estimation of such social or network effects – direct spillovers from the characteristics or outcomes

of one agent to the outcome of others – is of central interest in empirical research on networks in

economics.

This paper reviews recent developments in methods to identify linear peer effect models using

networks data – data with detailed information on the exact interactions between agents –, when a

single cross-section of data is available. Linear models are the most widely used in empirical work,

with many econometric methods developed to work with these, making them a natural choice to

consider in this review.1 Moreover, panel data on the network is rarely available, so that a large

swathe of methods focus on the case with a single cross-section of data.2

We provide an overview of a number of commonly used empirical specifications, the underlying

theoretical models that generate them; and the conditions for the causal identification of parameters

with cross-sectional data. We first consider three ‘local’ models, where only an agent’s direct

connections (or neighbours) affect his outcome. The three specifications allow this effect to depend

on the average outcome, total outcome, or both, of his neighbours. In the absence of information

on interactions within a network (or group), identification of social effects parameters is greatly

complicated by the so-called reflection problem, a form of simultaneity where it is not possible to

identify who influences whom within the network or reference group (Manski, 1993). Information

on the exact interactions within a network can break this simultaneity for a wide range of network

structures, allowing for identification of social effect parameters.3

Recent theoretical analyses have shown that the structure of networks, as well as positions of agents

within them influences agents’ overall outcomes on dimensions such as information diffusion, risk

sharing, among others (Bloch et al. (2008), Jackson et al. (2012), Banerjee et al. (2013) among

others). The availability of detailed networks data has motivated the testing of implications of these

1Brock and Durlauf (2001) and Brock and Durlauf (2007) study identification of social effects in models with
discrete outcomes.

2Panel data on networks is becoming increasingly available. Such longitudinal information can be useful in making
identification more credible by, for example, allowing for models that account for fixed unobserved variables that affect
both the network and the outcomes of interest. Studies making use of such data to estimate peer effects include Patnam
(2013), Goldsmith-Pinkham and Imbens (2013), Comola and Prina (2014), among others. The former studies use
the panel data to account for network endogeneity. More commonly, studies often have available data with a panel
dimension of outcomes, but only a single measurement of the network. The methods outlined in this paper can be
applied in these cases, though stronger restrictions could also be imposed improving the credibility of identification.

3It is possible to overcome the reflection problem without detailed networks data. Possible methods include using
conditional variance restrictions as in Graham (2008), or using variation in network/group size as in Lee (2007).
Blume et al. (2010) provide a more complete overview of the different methods.
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models in recent work. We thus next discuss models where the entire structure of the network might

matter for an individual’s outcome. Finally, we discuss how experimental and quasi-experimental

variation could be used to provide additional variation to uncover social effects.

Our objective is to provide an overview of methods developed under the assumption that the

network is (conditionally) exogenously formed: that is, there are no unobserved individual variables

within the network that determine who links with whom. This is an important issue that is the

subject of much recent research. A companion paper (Advani and Malde, 2016), as well as other

recent reviews (e.g. Graham, 2015; Chandrasekhar, 2015; and de Paula, 2016) provide overviews

of this issue and of possible methods to deal with this.

An important issue in the practical estimation of social effects relates to the definition and meas-

urement of the network. Our review proceeds assuming that the researcher perfectly observes and

measures the network (or network neighbours) relevant for the outcome(s) of interest. Clearly,

the researcher’s choice of network to use will influence the estimated parameters, and potentially

lead to different policy implications. However, few existing datasets collect information on more

than one type of network, so that in practice, researchers are often restricted in their definition of

the network by the available data. Nonetheless, existing studies indicate that the definition of the

network matters (often in line with theory): For example, Sacerdote (2001) finds that only stu-

dents’ individual room-mates affect their college performance, while a broader set of peers matters

for decisions related to social group participation; Renna et al. (2008) document that adolescents’

weights are more responsive to those of their friends of the same gender; while Patacchini et al.

(2016) find that adolescent friendships lasting longer than one year have persistent effects on ad-

olescents’ education outcomes, while shorter-lived friendships do not. Measurement error on the

network will also bias parameter estimates. A more detailed overview of this issue, as well as of

methods to deal with it are provided in Advani and Malde (2014) and another companion paper,

Advani and Malde (2016).

To illustrate the practical restrictions imposed by each of the different models, empirical specifica-

tions and conditions for causal identification, we will use a simple and widely studied question in the

education and labour economics literatures: How is a teenager’s schooling performance influenced

by his friends? This is also a question of great policy interest.4 More specifically, this paper will

provide an overview of methods that can yield answers to questions such as “Is a teenager’s school-

ing performance influenced by the average schooling performance of her friends?”; “Do teenagers

gain more utility from studying if their friends also study?”; “What is the relative importance of

the average schooling performance of a teenager’s friends, and complementarities arising from one’s

friends’ studying decisions in shaping a teenager’s overall schooling performance?”; and “How does

a student’s popularity influence his/her schooling performance?” The same methods can also be

applied to answer analogous questions about interactions between many other types of agents.

The literature on methods for networks data is broad and developing rapidly. We therefore focus

4See Sacerdote (2011) for an overview of this literature.
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our review on the issues outlined above, leaving aside a number of other interesting areas, including

methods to deal with endogenous network formation and measurement error in the network, that

have been surveyed elsewhere. In addition, though many of the methods reviewed here either

build on or apply methods developed in spatial econometrics, it is not our objective to provide an

overview of spatial econometric methods (see instead Anselin, 1988). Boucher and Fortin (2015)

provide a complementary review, though they do not cover methods using experimental and quasi-

experimental variation.

The rest of the paper is organised as follows. Section 2 outlines the notation used in this paper.

Section 3 provides an overview of the local average model, where the average of neighbours’ out-

comes are allowed to affect an individual’s outcome. In Section 4 we cover the local aggregate

model, where instead it is the total of neighbours’ outcomes that matter. In Section 5 we consider

hybrid local models, which allow both local average and local aggregate type effects. We consider

models including network statistics that are not purely local, in Section 6. Finally, we show how

experimental and quasi-experimental variation can be used to identify social effects in Section 7,

before concluding.

2 Notation

We begin by outlining the notation we use throughout the paper. We define a network or graph

g = (Ng, E g) as a set of nodes, Ng, and edges or links, Eg.
5 The nodes represent individual agents,

and the edges represent the links between pairs of nodes. In economic applications, nodes are

usually individuals, households, firms or countries. Edges could be social ties such as friendship,

kinship, or co-working, or economic ties such as purchases, loans, or trade. The number of nodes

present in g is Ng = |Ng|, and the number of edges is Eg = |Eg|. We define GN = {g : |Ng| = N}

as the set of all possible networks on N nodes.

In the simplest case – the binary network – any (ordered) pair of nodes i, j ∈ Ng is either linked,

ij ∈ Eg, or not linked, ij /∈ Eg. If ij ∈ Eg then j is described as being a neighbour of i. We denote

by neii,g = {j : ij ∈ Eg} the neighbourhood of node i, which contains all nodes with whom i is

linked. Nodes that are neighbours of neighbours will be referred to as ‘second degree neighbour’.

Typically it is convenient to assume that ii /∈ Eg ∀i ∈ Ng. Edges may be directed, so that a link

from node i to node j is not the same as a link from node j to node i; in this case the network is a

directed graph (or digraph).

Network graphs, whether directed or not, can also be represented by an adjacency matrix, Gg, with

typical elementGij,g. This is anNg×Ng matrix with the leading diagonal normalised to 0. When the

network is binary, Gij,g= 1 if ij ∈ Eg, and 0 otherwise, while for weighted graphs, Gij,g = wei(i, j).

We will use the notation Gi,g to denote the ith row of the adjacency matrix Gg, and G′
i,g to denote

5In a slight abuse of notation, we will also use g to index individual networks when data from multiple networks
is available.
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its ith column.6 Many models defined for binary networks make use of the row-stochastic adjacency

matrix or influence matrix, G̃g, whose elements are defined as G̃ij,g = Gij,g/
∑

j Gij,g.7

In what follows, we will frequently work with data from a number of network graphs. Graphs for

different networks will be indexed, in a slight abuse of notation, by g = 1, ...,M , where M is the

total number of networks in the data. Node-level variables will be indexed with i = 1, ..., Ng, where

Ng is the number of nodes in graph g. Node-level outcomes will be denoted by yi,g, while exogenous

covariates will be denoted by the 1 × K vector xi,g and common network-level variables will be

collected in the 1×Q vector, zg.

The node-level outcomes, covariates and network-level variables can be stacked for each node in a

network. In this case, we will denote the stacked Ng × 1 outcome vector as yg and the Ng × K

matrix stacking node-level vectors of covariates for graph g as Xg. Common network-level variables

for graph g will be gathered in the matrix Zg = ιgzg where ιg denotes an Ng × 1 vector of ones.

The adjacency and influence matrices for network g will be denoted by Gg and G̃g. At times we

will also make use of the Ng × Ng identity matrix, Ig, consisting of ones on the leading diagonal,

and zeros elsewhere.

Finally, we introduce notation for vectors and matrices stacking together the network-level outcome

vectors, covariate matrices and adjacency matrices for all networks in the data. Y = (y
′

1
, ...,y

′

M )
′

is an
∑M

g=1
Ng × 1 vector that stacks together the outcome vectors; G = diag{Gg}

g=M
g=1

denotes the
∑M

g=1
Ng×

∑M
g=1

Ng block-diagonal matrix with network-level adjacency matrices along the leading

diagonal and zeros off the diagonal, and analogously G̃ = diag{G̃g}
g=M
g=1

(with similar dimensions

as G) for the influence matrices; and X = (X
′

1
, ...,X

′

M )
′

and Z = (Z
′

1
, ...,Z

′

M )
′

are respectively,
∑M

g=1
Ng×K and

∑M
g=1

Ng×Qmatrices, that stack together the covariate matrices across networks.

Finally, we define the vector ι as a
∑M

g=1
Ng × 1 vector of ones and the matrix L = diag{ιg}

g=M
g=1

,

as an
∑M

g=1
Ng ×M matrix with each column being an indicator for being in a particular network.

3 Local Average Models

3.1 Set Up

In local average models, an agent’s outcome (or choice) is influenced by the average outcome of

its neighbours.8 Thus, an individual’s schooling effort or performance is influenced by the average

schooling effort or performance of his friends. We characterise the individual as a node, i, in network

g, with outcome yi,g. This outcome is modelled as being influenced by the individual’s own observed

characteristics, xi,g, scalar unobserved heterogeneity εi,g, observed network characteristics zg, an

unobserved network characteristic νg, and the average outcomes and characteristics of neighbours,

6G′

i,g is the ith row of G′

g, which is the ith column of Gg.
7A row stochastic (also called ‘right stochastic’ matrix) is one whose rows are normalised so they each sum to one.
8Identification of parameters in such a model was first systematically considered by Manski (1993).
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∑Ng

j=1
G̃ij,gyj,g and

K
∑

k=1

Ng
∑

j=1

G̃ij,gxj,k,g. Below, we consider identification conditions when data are

available from multiple networks, though some results apply to data from a single network.9

Stacking together data from multiple networks yields the following empirical specification, expressed

in matrix terms:

Y = αι+βG̃Y +Xγ + G̃Xδ +Zη +Lν + ε (3.1)

where Y , ι, G̃, X, Z, L and ν are as defined previously. Pre multiplying the vector Y by G̃ gives

a vector containing, for each individual, the average outcome of his neighbours, and similarly G̃X

is a vector of the average characteristics of his friends. The social effect of interest is β, the effect of

an increase in the mean of neighbours’ outcome on the individual’s outcome. This is often described

as the ‘endogenous social effect’, in contrast to the (vector of) ‘contextual effect(s)’ (or ‘exogenous

social effect(s)’), δ, which represent the effect of an increase in neighbours’ characteristics. ν is

described as the ‘correlated effect’, capturing the correlation in individuals’ outcomes simply due

to common (unobserved) shocks.

Given the simple empirical form of this model, it has been widely applied in the economics literature.

Examples include:

• Understanding how the average schooling performance of an individual’s peers influences the

individual’s own performance in a setting where students share a number of different classes

(e.g. De Giorgi et al., 2010), or where students have some (but not all) common friends (e.g.

Bramoullé et al., 2009).

• Understanding how non-market links between firms arising from company directors being

members of multiple company boards influence firm choices on investment and executive pay

(e.g. Patnam, 2013).

Although this specification is widely used in the empirical literature, few studies consider or acknow-

ledge the form of its underlying economic model, even though parameter estimates are subsequently

used to evaluate alternative policies and to make policy recommendations. Indeed, parameters are

typically interpreted as in the econometric model of Manski (1993), whose parameters do not map

back to ‘deep’ structural (i.e. policy invariant) parameters without an economic model.

3.2 Theoretical Foundations

An economic model that leads to this specification is one where nodes have a desire to conform to

the average behaviour and characteristics of their neighbours (Akerlof, 1980; Jones, 1984; Bernheim,

9When data on only a single network are available, the empirical specification is as follows: yg = ν̃gι+ βG̃gyg +
Xgγ+G̃gXgδ+εg, where ν̃g = α+zgη+ νg in our earlier notation, capturing all of the network-level characteristics.
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1994; Patacchini and Zenou, 2012). In our schooling example, conformism implies that individuals

would want to exert a similar amount of effort in their school work as their friends so as to ‘fit in’.

Conditional on the individual’s own characteristics which affect his school effort, if his friends exert

relatively low effort in their school work, he will reduce his effort. Below we write out this model

more formally and demonstrate how it leads to Equation 3.1.

Conformism is commonly modelled by individual payoffs that are decreasing in the distance between

own outcome and network neighbours’ average outcomes.10 Payoffs are also allowed to vary with

an individual heterogeneity parameter, πi,g(Xg, G̃i,g), which captures the individual’s ability or

productivity associated with the outcome:

Ui(yi,g;y−i,g,Xg, G̃i,g) =



πi,g(Xg, G̃i,g)i,g −
1

2



yi,g − 2β

Ng
∑

j=1

G̃ij,gyj,g







 yi,g (3.2)

β in Equation 3.2 can be thought of as a taste for conformism. Although we write this model

as though individuals are perfectly able to observe each others’ actions, this assumption can be

relaxed. In particular, an econometric specification similar to Equation 3.1 can be obtained from a

static model with imperfect information (see Blume et al., 2015).

The best response function derived from the first order condition with respect to yi,g is:

yi,g = πi,g(Xg, G̃i,g) + β

Ng
∑

j=1

G̃ij,gyj,g (3.3)

Patacchini and Zenou (2012) derive the conditions under which a Nash equilibrium exists, and

characterise properties of this equilibrium.

Note that this is not the only economic model that leads to an empirical specification of this

form: a similar specification arises from, for example, models of perfect risk sharing.11 Here,

when preferences are homogeneous and risk is perfectly shared, the consumption of risk-averse

households will co-move with the average household consumption in the risk sharing group or

network (Townsend, 1994).

The individual heterogeneity parameter, πi,g(Xg, G̃i,g), can be modelled as a linear function of

observed and unobserved individual and network characteristics:

πi,g(Xg, G̃i,g) = xi,gγ +

Ng
∑

j=1

G̃ij,gxj,gδ + zgη + νg + εi,g (3.4)

10Notice that in Equation 3.2,
∑Ng

j=1
G̃ij,gyj,g is identical to the ith row of G̃gyg, which appears in Equation 3.1.

11Consumer demand models where, given prices, an individual’s demand increases with average demand of some
reference group also generate a similar specification (see Gaertner, 1974; Pollak, 1976; Alessie and Kapteyn, 1991;
Case, 1991).
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Substituting for this in Equation 3.3, we obtain the following best response function for individual

outcomes:

yi,g = β

Ng
∑

j=1

G̃ij,gyj,g + xi,gγ +

Ng
∑

j=1

G̃ij,gxj,gδ + zgη + νg + εi,g (3.5)

Then, stacking observations for all nodes in multiple networks, we obtain Equation 3.1, which can

be taken to the data.

3.3 Identification

3.3.1 Without Network Fixed Effects

Bramoullé et al. (2009) study the identification and estimation of Equation 3.1 in observational data

with detailed network information or data from partially overlapping peer groups.12 To proceed

further, one needs to make some assumptions on the relationship between the unobserved variables

– ν and ε – and the other right hand side variables in Equation 3.1.

We first consider identification under the assumptions that E[ε|X,Z, G̃] = 0 and E[ν|X,Z, G̃] = 0

i.e. both the individual level error term, ε and the network level unobservable are assumed to be

mean independent of the observed individual and network-level characteristics and of the network.

We will later relax the assumption on ν.

Under these assumptions, the parameters {α, β,γ, δ,η} are identified if {I, G̃, G̃2} are linearly

independent. Identification thus relies on the network structure. In particular, the condition would

not hold in networks composed only of cliques – subnetworks comprising of completely connected

components – of the same size, and where the diagonal terms in the influence matrix, G̃ are not

set to 0. In this case, G̃2 can be expressed as a linear function of I and G̃. Moreover, the model

is then similar to the single peer group case of Manski (1993), and the methods outlined in Blume

et al. (2010) apply.

In an undirected network (such as the in the left panel in Figure 1 below), this identification

condition holds when there exists a triple of nodes (i, j, k) such that i is connected to j but not

k, and j is connected to k. The exogenous characteristics of k, xk,g, directly affect j’s outcome,

but not (directly) that of i, hence forming valid instruments for the outcome of i’s neighbours

(i.e. j’s outcome) in the equation for node i. Intuitively this method uses the characteristics

of second-degree neighbours who are not direct neighbours as instruments for outcomes of direct

neighbours.

12Similar identification results have been independently described by De Giorgi et al. (2010), who have data with
overlapping peer groups of students who share a number of classes.
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(a) Intransitive triad in undirected network (b) Intransitive triad in directed network 

Figure 1: Intransitive triad in a undirected network (left panel) and a directed network (right panel)

It is thus immediately apparent why identification fails in networks composed only of cliques: in

such networks, there is no triple of nodes (i, j, k) such that i is connected to j, and j is connected

to k, but i is not connected to k.

In the directed network case, the condition is somewhat weaker, requiring only the presence of an

intransitive triad: that is, a triple such that ij ∈ E , jk ∈ E and ik /∈ E (as in the right panel

of Figure 1 above).13 This is weaker than in undirected networks, which would also require that

ki /∈ E .

These conditions impose strong restrictions on behaviour. The identification condition for undirec-

ted networks, for example, relies on i and k not influencing one another directly, which might be too

strong an assumption in contexts such as within-classroom networks, where it is not unreasonable

to assume that all students are likely to interact with one another, and hence influence one another.

Similarly, the identification assumption in a directed network is likely to plausibly hold in specific

contexts only: for example, the effort of check-out workers who face the same direction (or are

arranged in a circle) would be influenced by that of the colleagues that they can see, satisfying the

identification condition. Conversely, such an assumption might be too strong to justify in other

teams where interactions are not as rigidly fixed.

Let us consider how this method could be applied to identify the influence of the average schooling

performance of an individual’s friends on the individual. Potential variables that one might include

as controls include the individual’s age, gender, and parental income; the average age, gender, and

parental income of his friends; and some observed school characteristics such as expenditure per

pupil. Assume first that the underlying friendship network in this school is undirected as in the

left panel of Figure 1, so that if i considers j to be his friend, j also considers i to be his friend.

j also has a friend k who is not friends with i. We could then use the age, gender, and parental

income of k as instruments for the schooling performance of j in the equation for i. If instead, the

network were directed as in the right panel of Figure 1, which might be the case for outcomes such

as risky behaviours, where the arrows indicate who is affected by whom (i.e. i is affected by j in

the Figure, and so on), we can still use the age, gender, and parental income of k as instruments

for the school performance of j in the equation for i even though k is connected with i. This is

13Equivalently, a triple such ji ∈ E , kj ∈ E and ki /∈ E forms an intransitive triad.
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possible since the direction of the relationship is such that k’s school performance is affected by i’s

performance, but the converse is not true.

3.3.2 Including Network Fixed Effects

The identification result above requires that the network-level unobservable term be mean independ-

ent of the observed covariates, X and Z, and of the network, G̃. However, in many circumstances

one might be concerned that unobservable characteristics of the network might be correlated with

X, so that E[ν|X,Z, G̃] 6= 0. In the schooling context, where the network of interest is often

constrained to be within the same school, a large literature (e.g. Black, 1999, Gibbons and Machin,

2003, Bayer et al., 2007 among others) indicates that wealthier parents choose to live in areas with

good schools, making it likely that children with higher parental income will be in schools with

teachers who have better unobserved teaching abilities. A natural solution is to include network

fixed effects, Lν̃, which will control for the network-level unobservable, Lν, though at the cost of

meaning we cannot identify ν.

Since the fixed effects themselves are generally not of interest, to ease estimation they are removed

using a within transformation. This is done by pre multiplying Equation 3.1 by J , a block diagonal

matrix that stacks the network-level transformation matrices Jg = Ig −
1

Ng
(ιgι

′
g) along the leading

diagonal, and off-diagonal terms are set to zero. This subtracts the network-level mean of the

outcome, giving a vector JY of deviations from the mean. The resulting model is of the following

form:

JY = βJG̃Y + JXγ + JG̃Xδ + Jε (3.6)

The identification condition here imposes a stronger requirement on network structure: now, the

matrices {I, G̃, G̃2, G̃3} need to be linearly independent. This requires that there exists a pair

of agents (i, l) such that the shortest path between them is of length 3. That is, i would need

to go through at least two other nodes to get to l (as in Figure 2 below). The presence of

at least two intermediate agents allows the researcher to use the characteristics of third-degree

neighbours (neighbours-of-neighbours-of-neighbours who are not direct neighbours or neighbours-

of-neighbours) as an additional instrument to account for the network fixed effect.

10



Figure 2: Identification with network fixed effects. The picture on the left panel shows an undirected
network with an agent l who is at least 3 steps away from i, while the picture on the right panel
shows the same for a directed network.

A concern that arises when applying this method is that of instrument strength. Bramoullé et al.

(2009) find that this varies with graph density, i.e., the proportion of node pairs that are linked; and

the level of clustering, i.e. the proportion of node triples such that precisely two of the possible three

edges are connected.14 Instrument strength is declining in density, since the number of intransitive

triads tends to zero, reducing the variation in the instrument. The results for clustering are non-

monotone, and depend on density.

The discussion thus far has assumed that the network through which the endogenous social effect

operates is the same as the network through which the contextual effect operates. It is possible

to allow for these two networks to be distinct. This could be useful in the school setting, for

instance, where contextual effects could be driven by the average characteristics of all students in

the school, while endogenous effects by the outcomes of a subset of students who are friends. Such

a formulation allows for a more flexible representation of the environment: the contextual effect

could operate through, for example, the resources available to a school, which might depend on the

parental income of all students (if schools are financed through local taxation); while peer influences

on effort or performance might come only from friends.

Let GX,g and Gy,g denote the network-level adjacency matrices through which, respectively, the

contextual and endogenous effects operate. As before we define the block diagonal matrices GX =

diag{GX,g}
g=M
g=1

and Gy = diag{Gy,g}
g=M
g=1

. Blume et al. (2015) study identification of this model

assuming that both networks are (conditionally) exogenous and show that when the matrices Gy

and GX are observed by the econometrician, and at least one of δ and γ is non-zero, then the

necessary and sufficient conditions for the parameters of Equation 3.1 to be identified are that the

matrices I, Gy, GX and GyGX are linearly independent.

14This definition is also referred to as the clustering coefficient.
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4 Local Aggregate Model

The local aggregate class of models, studied theoretically by Ballester et al. (2006), Calvó-Armengol

et al. (2009) and Bramoullé et al. (2014); and empirically by Calvó-Armengol et al. (2009), Lee and

Liu (2010) and Liu et al. (2014b), considers settings where agents’ utilities are a function of the

aggregate outcomes (or choices) of their neighbours. This is in contrast with local average models,

where utilities are a function of the difference between own outcome and the average outcome of

his neighbours. The local aggregate model thus encompasses a different assumption on behaviour

– it applies to situations where there are strategic complementarities or strategic substitutabilities

– and, allows dyad-level social effects to aggregate at network or group-level. An agent’s utility

is thus influenced by complementarities/substitutabilities with all his neighbours, rather than by

the distance between his choices and those of his neighbours, as is the case with the local average

model. Consequently, as will be seen below, the social effect will vary across agents depending on

their network position.

Examples of cases where strategic complementarities and substitutabilities are likely to be at play,

and thus where a local aggregate, rather than local average model would be more appropriate

include:

• An individual’s costs of engaging in crime may be lower when his neighbours also engage in

crime (e.g. Bramoullé et al., 2014).15

• An agent is more likely to learn about a new product and how it works if more of his neighbours

know about it and have used it.

• A student gains more utility from undertaking effort in studying if his friends also undertake

more effort (e.g. Calvó-Armengol et al. 2009)

4.1 Set Up and Theoretical Foundations

The local aggregate model corresponds to the following empirical specification:

Y = αι+βGY +Xγ +GXδ +Zη +Lν + ε (4.1)

where Y , G, X and Z are as defined earlier. In contrast to the local average model, G̃ has been

replaced by G. As before, the social effect of interest is β, which now represents the effect of the

aggregate outcome of my neighbours on my own outcome.

This specification can be motivated by the best responses of a game in which nodes have linear-

quadratic utility and there are strategic complementarities or substitutabilities between the actions

15The games considered in both Bramoulle and Kranton (2007) and Bramoullé et al. (2014) are not strictly linear
models, since there are corner solutions at zero.
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of a node and those of its neighbours. A model of this type has been studied by among others,

Ballester et al. (2006) and Bramoullé et al. (2014). The former focus on the case of strategic

complementarities; while the latter study the case with strategic substitutabilities and characterise

all equilibria of this game. In this model, the utility function for agent i in network g takes the

following form:

Ui(yi,g;y−i,g,Xg,Gg) =



πi,g(Xg, G̃i,g)−
1

2



yi,g − 2β

Ng
∑

j=1

Gij,gyj,g







 yi,g (4.2)

where yi,g is i’s action or choice, and πi,g(Xg, G̃i,g) is, as before, an individual heterogeneity para-

meter.16 This has the same form as Equation 3.2, but with G replacing G̃. πi,g(Xg, G̃i,g) is again

typically parameterised as:

πi,g(Xg, G̃i,g) = xi,gδ +

n
∑

j=1

G̃ij,gxj,gγ + zgη + νg + εi,g

so that individual heterogeneity is a function of a node’s own characteristics, the average character-

istics of its neighbours, network-level observed characteristics, and some unobserved network- and

individual-level terms. This model shares some features with the model of Blume et al. (2015), as

different network matrices are used to capture the effects of neighbours’ outcomes and character-

istics, which helps to ease identification.

The quadratic cost of own actions means that in the absence of any network, there would be a

unique optimal amount of effort the node would exert, as in the local average model. β > 0 implies

that neighbours’ actions are complementary to a node’s own actions, so that the node increases his

actions in response to those of his neighbours. If β < 0, then nodes’ actions are substitutes, and

the reverse is true. Nodes choose yi,g so as to maximise their utility.

The best response function is:

y∗i,g(Gg) = β
n
∑

j=1

Gij,gyj,g + xi,gδ +
n
∑

j=1

G̃ij,gxj,gγ + zgη + νg + εi,g (4.3)

Ballester et al. (2006) solve for the Nash equilibrium of this game when β > 0 and show that when

|βωmax(Gg)| < 1, where ωmax(Gg) is the largest eigenvalue of the matrix Gg, the equilibrium is

unique and the equilibrium outcome relates to a node’s Katz-Bonacich centrality, which is defined

as b(Gg, β) = (Ig − βGg)
−1(ιg).

17,18

16Notice that
∑Ng

j=1
Gij,gyj,g = Gi,gyg.

17A more general definition for Katz-Bonacich centrality is b(Gg, β, a) = (Ig − βGg)
−1(aGgιg), where a > 0 is a

constant (Jackson, 2008).
18The condition that |βωmax(Gg)| < 1 ensures that positive feedback loops set off by these complementarities don’t

diverge without bound. The extent to which it binds will depend on the underlying network topology: the largest
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Bramoullé et al. (2014) study the game with strategic substitutabilities between the action of a node

and those of its neighbours. In this case, when one agent chooses one action, his neighbours would

choose the opposite action, inducing their neighbours to choose a similar action to the first agent,

and so on. In equilibrium, the agent’s choice is influenced by the direct choice of his neighbours, as

well as by the aggregated sum of these opposing choices across different network paths. Bramoullé

et al. (2014) characterise the set of Nash equilibria of the game and show that they depend on

the lowest eigenvalue of the network adjacency matrix, ωmin(Gg). This eigenvalue is negative and

relates to the aggregated effect of agents’ choices on others. When it is large in magnitude, the

opposing forces outlined above could go in many different directions, leading to multiple equilibria.

When it is sufficiently small, i.e. β|ωmin(Gg)| < 1, a unique equilibrium exists since the opposing

forces move in the same direction to converge to a single point. When multiple equilibria are

possible, they must be accounted for in any empirical analysis. Methods developed in the literature

on the econometrics of games may be applied here (Bisin et al., 2011). See de Paula (2013) for an

overview. Below, we focus on conditions under which the social effect parameter is identified when

a unique equilibrium exists. This is done to keep the exposition simple.

When a unique equilibrium exists, this theoretical set-up implies the following empirical model

(stacking data from multiple networks):

Y = αι+ βGY +Xγ + G̃Xδ +Zη +Lν + ε (4.4)

where variables and parameters are as defined above .

4.2 Identification

Identification of Equation 4.4 using observational data has been studied by Calvó-Armengol et al.

(2009), Lee and Liu (2010) and Liu et al. (2014b). They proceed under the assumption that

E[ε|X,Z,G, G̃] = 0 and E[ν|X,Z,G, G̃] 6= 0. That is, the node-varying error component is

conditionally independent of node- and network-level observables and of the network, while the

network-level unobservable could be correlated with node- and network-level characteristics and/or

the network itself.

These assumptions imply a two-stage network formation process. First agents select into a network

based on a set of observed individual- and network-level characteristics and some common network-

level unobservables. Then in a second stage they form links with other nodes. There are no network-

level unobservable factors that determine link formation once the network has been selected by the

node. Moreover, there are no node-level unobservable factors that determine the choice of network

or link formation within the chosen network.

eigenvalue increases with additional links, so that in larger and denser networks, the largest possible value of β for
which the condition holds will be smaller.
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To proceed, we assume that data are available for multiple networks. Then, as in Section 3, we

replace the network-level observables, Z, and the network-level unobservable, Lν in Equation 4.4

with network fixed effects, Lν̃, where ν̃ is a M × 1 vector that captures the network fixed effects.

To account for the fixed effect, a within-transformation is applied, as in Section 3. This trans-

formation is represented by the block diagonal matrix J that stacks the following network-level

transformation matrices – Jg = Ig −
1

Ng
(ιgι

′
g) – along the leading diagonal, with off-diagonal terms

set to 0. The resulting model, analogous to Equation 3.6, is:

JY = βJGY + JXγ + JG̃Xδ + Jε (4.5)

The model above suffers from the reflection problem, since Y appears on both sides of the equation.

However, the parameters of Equation 4.5 can be identified using linear instrumental variables (IV)

if the deterministic part of the right hand side, [E(JGY ),JX,JG̃X], has full column rank. To

see the conditions under which this is satisfied, we examine the term with the endogenous variable,

E(JGY ). Under the assumption that |βωmax(Gg)| < 1, we obtain the following from the reduced

form equation of Equation 4.4:

E(JGY ) = J(GX + βG2X + ...)γ + J(GG̃X + βG2G̃X + ...)δ

+J(GL+ βG2L+ ...)ν̃ (4.6)

We can thus see that if the matrices {I,G, G̃,GG̃} are linearly independent, and γ, δ, and ν̃ each

have some non-zero terms, the parameters of Equation 4.4 are identified.19 Node degree (GL),

along with the sum of the exogenous characteristics of the node’s direct neighbours (GX), and

sum of the average exogenous characteristics of its second-degree neighbours (GG̃X) can be used

as instruments for the total outcome of the node’s neighbours (GY ). That node degree can be used

as an instrument follows intuitively from the theoretical model: when there are dyad-level strategic

complementarities, an individual’s own outcome will be a weakly increasing function of the number

of his direct neighbours. Moreover, the availability of node degree as an instrument can allow one

to identify parameters without using the exogenous characteristics, X, of second- or higher-degree

network neighbours, which can be particularly advantageous when only sampled data is available,

as shown by Liu (2013).

In terms of practical application, consider using this method to identify whether there are comple-

mentarities between the schooling performance of an individual and that of his friends, conditional

19See Liu et al. (2014b) for a different identification condition that allows for some linear dependence among these
matrices under additional restrictions.
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on his own characteristics (age, gender, and parental income), the composition of his friends (average

age, gender, and parental income), and some school characteristics. Then, if there are individuals

in the same network with different numbers of friends, and the matrices {I,G, G̃,GG̃} are linearly

independent, the individual’s degree, along with the total characteristics of his friends (i.e. total

age, gender, and parental income) and the sum of the average age, gender, and parental income of

the individual’s friends of friends can be used as instruments for the sum of the individual’s friends’

schooling performance. Similar to the local average model, this strategy relies on a researcher being

able to define reasonably well direct, as well as indirect neighbours, which might be less clear in

some contexts.

Parameters can still be identified if is there no variation in node degree within a network for all

networks in the data, but there is variation in degree across networks. In this case, Gg = d̄gG̃g and

[E(JGY ),JX,JG̃X] has full column rank if the matrices {I,G, G̃,GG̃, G̃2,GG̃2} are linearly

independent and γ and δ each have non-zero terms.20 This requires the presence of some pair of

nodes i and k, who are only indirectly connected. Finally, when there is no variation in node degree

within and across all networks in the data, parameters can be identified using a similar condition

as encountered in Section 4 above: the matrices {I, G̃, G̃2, G̃3} should be linearly independent.

It is possible to identify model parameters in the local aggregate model in networks where the local

average model parameters cannot be identified. For example, in a star network (see Figure 3) there

is no pair of agents that has a geodesic distance (i.e. shortest path) of 3 or more, so this fails the

identification condition for the local average model with fixed effects. However, there is variation

in node degree within the network and the matrices Ig,Gg, G̃g,GgG̃g can be shown to be linearly

independent, thus satisfying the identification conditions for the local aggregate model.

Figure 3: Star Network

20With additional restrictions, identification can still be achieved when there is some linear dependence in these
matrices. See Liu et al. (2014b) for details.
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5 Hybrid Local Models

The local average and local aggregate models embody distinct mechanisms through which social

effects arise. One may be interested in jointly testing these mechanisms, and empirically identifying

the most relevant one for a particular context. Liu et al. (2014a) present a framework nesting both

the local aggregate and local average models, allowing for this.

5.1 Set Up and Theoretical Foundations

The utility function for node i in network g that nests both the (linear) local aggregate and local

average models has the following form:

Ui(yi,g;y−i,g,Xg, G̃i,g,Gi,g) =



πi,g(Xg, G̃i,g) + β1

Ng
∑

j=1

Gij,gyj,g −
1

2



yi,g − 2β2

Ng
∑

j=1

G̃ij,gyj,g







 yi,g

(5.1)

where πi,g(Xg, G̃i,g) is node-specific observed heterogeneity, which affects the node’s marginal re-

turn from the chosen outcome level yi,g. A node’s utility is thus affected by the choices of its

neighbours through changing the marginal returns of its own choice (e.g. in a schooling context, an

individual’s studying effort is more productive if his friends also study), as in the local aggregate

model, and by a cost of deviating from the average choice of its neighbours (i.e. individuals face a

utility cost if they study when their friends don’t study), as in the local average model.

The best reply function for a node i nests both the local average and local aggregate terms. Liu

et al. (2014a) prove that under the condition that β1 ≥ 0, β2 ≥ 0 and dmax
g β1 + β2 < 1, where

dmax
g is the largest degree in network g, the simultaneous move game has a unique interior Nash

equilibrium in pure strategies. Note that this rules out the possibility of individuals’ actions being

strategic substitutes (i.e. β < 0), as for example if one student in a group needs to supply effort

on homework so that the others can copy him.

The econometric model, assuming that the node-specific observed heterogeneity parameter takes

the form πi,g(Xg, G̃i,g) = xi,gγ +
∑Ng

j=1
G̃ij,gxj,gδ + zgηg + νg + εi,g, is as follows:

Y = αι+ β1GY + β2G̃Y +Xγ + G̃Xδ +Zη +Lν + ε (5.2)

using the same notation as before.

With data from only a single network it is not possible to separately identify β1 and β2 and hence

test between the local aggregate and local average models (or indeed find that the truth is a hybrid

of the two effects). Identification of parameters is considered when data from multiple networks

are available under the assumption that E[εi,g|Xg,Zg,Gg, G̃g] = 0 and E[νg|Xg,Zg,Gg, G̃g] 6= 0.
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Thus, as in Sections 3 and 4 above, the individual error term, εi,g is assumed to be mean inde-

pendent of node- and network-level observable characteristics and the network. The network-level

unobservable, νg, by contrast is allowed to be correlated with node- and network-level character-

istics and/or the network.

5.2 Identification

To proceed, as in the local average and local aggregate model, Zη and Lν are replaced by a

network-level fixed effect, Lν̃, which is then removed using the within-transformation, J . The

resulting transformed network model is:

JY = β1JGY + β2JG̃Y + JXγ + JG̃Xδ + Jε (5.3)

When there is variation in the degree within a network g, then the reduced form equation of

Equation 5.3 implies that JG(I − β1G − β2G̃)−1L can be used as an instrument for the local

aggregate term JGY and JG̃(I − β1G − β2G̃)−1L can be used as an instrument for the local

average term JG̃Y . The model parameters may in principle thus be identified even if there are no

node-level exogenous characteristics, X, in the model, as long as β1 6= 0. However, if β1 = 0, the

model excluding exogenous characteristics, X, is tautological – in this case one is simply regressing

individuals’ outcomes on the mean of the outcomes (see Angrist, 2014 for further discussion). The

availability of such characteristics offers more possible IVs: in particular, the total and average

exogenous characteristics of direct and indirect neighbours can be used as instruments. These

are necessary for identification when all nodes within a network have the same degree, though

average degree may vary across networks. In this case, parameters can be identified if the matrices

{I,G, G̃,GG̃, G̃2,GG̃2, G̃3} are linearly independent.21 If, however, all nodes in all networks have

the same degree, it is not possible to identify separately the parameters β1 and β2.

This specification nests both the local average and local aggregate models, so a J-test for non-

nested regression models can be applied to uncover the relevance of each mechanism. The intuition

underlying the J-test is as follows: if a model is correctly specified (in terms of the set of regressors),

then the fitted value of an alternative model should have no additional explanatory power in the

original model, i.e. its coefficient should not be significantly different from zero. Thus, to identify

which of the local average or local aggregate mechanisms is more relevant for a specific outcome,

one could first estimate one of the models (e.g. the local average model), and obtain the predicted

outcome value under this mechanism. In a second step, estimate the other model (in our example,

the local aggregate model), and include as a regressor the predicted value from the other (i.e.

local average) model. If the mechanism underlying the local average model is also relevant for the

outcome, the coefficient on the predicted value will be statistically different from 0. The converse

21As with the local average and local aggregate model, this identification assumption imposes that there are pairs
of individuals who influence the other (or each other) indirectly only, which might be very strong in some contexts.
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can also be done to test the relevance of the second model (the local aggregate model in our case).

See Liu et al. (2014a) for more details.

6 Models with Network Characteristics

The models considered thus far allow for a node’s outcomes to be influenced only by outcomes of

its neighbours, so-called ‘local’ models. However, the broader network structure may affect node-

and aggregate network- outcomes through more general functionals or features of the network.

Depending on the theoretical model used, there are different predictions on which network features

relate to different outcomes of interest. For example, the DeGroot (1974) model of social learning

implies that a node’s eigenvector centrality, which measures its ‘importance’ in the network by how

important its neighbours are, determines how influential it is in affecting the beliefs of other nodes.

Empirical testing and verification of the predictions of these theoretical models has greatly lagged

the theoretical literature due to a lack of datasets with both information on network structure and

socio-economic outcomes of interest. The recent availability of detailed network data from many

contexts has begun to relax this constraint.

The following types of specification are typically estimated when assessing how outcomes vary with

network structure, for node-level outcomes:

Y = fy(wy(G, Y ),X,wx(G, X),Z) + ε (6.1)

and network-level outcomes:

Ȳ = fȳ(w̄ȳ(G), X̄, w̄x̄(G, X̄)) + u (6.2)

fy(.) and fȳ(.) are functions that specify the shape of the relationship between the network statistics

and the node- and network-level outcomes. Though, in principle, the shape of fy(.) should be

guided by theory (where possible), through the rest of this Section, we take fy(.) to be a linear

index in its argument, as is common in the literature. wy(G, Y ) is an (
∑M

g=1
Ng × R) matrix

stacking the (1×R) node-level vector of network statistics that vary at the node- or network-level

and that may be interacted with Y .22 w̄ȳ(G) is an (M × R̄) matrix containing the R̄ network

statistics in the network-level regression. X is a matrix of observable characteristics of nodes,

wx(G, X) interacts network statistics with exogenous characteristics of nodes, and Z and X̄ are

network-level observable characteristics. w̄x̄(G, X̄) interacts network statistics with network-level

observable characteristics.

22The term wy(G, Y ) will be endogenous when network statistics are interacted with Y .
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The complexity of networks poses an important challenge in understanding how outcomes vary with

network structure. In particular, there are no sufficient statistics that fully describe the structure

of a network. For example, networks with the same average degree may vary greatly on dimensions

such as density, clustering and average path length among others. Moreover, the adjacency matrix,

G, which describes fully the structure of a network, is too high-dimensional an object to include

directly in tests of the influence of broader features of network structure. Theory can provide

guidance on which statistics are likely to be relevant, and also on the shape of the relationship

between the network statistic and the outcome of interest. A limitation though is that theoretical

results may not be available (given currently known techniques) for outcomes one is interested in

studying. This is a challenge faced by, for instance Alatas et al. (2016) who study how network

structure affects information aggregation.

Below we outline methods that have been applied to analyse the effects of features of network struc-

ture on socio-economic outcomes. We do so separately for node-level specifications and network-

level specifications. This literature is very much in its infancy and few methods have been developed

to allow for identification of causal parameters.

6.1 Node-Level Specifications

Many theoretical models predict how node-level outcomes vary with the ‘position’ of a node in

the network, captured by node varying network statistics such as centrality; or with features of

the node’s local neighbourhood such as node clustering; or with the ‘connectivity’ of the network,

represented by statistics that vary at the network-level such as network density.

A common type of empirical specification used in the literature correlates network statistics with

some relevant socio-economic outcome of interest. This approach is taken by, for example, Jackson

et al. (2012) who test whether informal favours take place across edges that are supported (i.e. that

nodes exchanging a favour have a common neighbour), which is the prediction of their theoretical

model.

This corresponds with wy(G,Y ) in Equation 6.1 above being defined as wy(G,Y ) = ω, where ω

is the matrix of network statistics of interest, and wx(G,X) being defined as ι. Here, wy(G,Y )

is defined to be a function of the network only.

When fy(.) is linear, the specification is as follows:

Y = αι+ωβ +Xγ + Zη + ε (6.3)

where the variables and parameters are as defined above and the parameter of interest is β. Defining

W = (ω,X,Z), the key identification assumption is that E[ε′W ] = 0, that is that the right hand

side terms are uncorrelated with the error term. This may not be satisfied if there are unobserved

factors that affect both the network statistic (through affecting network formation decisions) and
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the outcome, Y or if the network statistic is mismeasured. Both of these are important concerns

that we cover in detail in Advani and Malde (2014).

In some cases, one may also be interested in estimating a model where an agent’s outcome is

affected by the outcomes of his neighbours, weighted by a measure of their network position. For

example, in the context of learning about a new product or technology, the DeGroot (1974) model

of social learning implies that nodes’ eigenvector centrality determines how influential they are in

influencing others’ behaviour. Thus, conditional on the node’s eigenvector centrality, its choices

may be influenced more by the choices of his neighbours with high eigenvector centrality. Thus, one

may want to weight the influence of neighbours’ outcomes on own outcomes by their eigenvector

centrality, conditional on own eigenvector centrality. If we model this linearly, it implies a model

of the following form:

Y = αι+wy(G, Y )β + X̃γ̃ +wx(G, X̃)δ̃ + Zη +Lν + ε (6.4)

wy(G, Y ) is an
∑

g Ng × R matrix, with the (i, r)th element being the weighted sum of i’s neigh-

bours’ outcomes,
∑

j 6=i

Gij,gyj,gω
r
j,g or

∑

j 6=i

G̃ij,gyj,gω
r
j,g, with weights ωr

j,g being the neighbour’s rth

network statistic (e.g. the neighbour’s eigenvector centrality in the DeGroot model of social learn-

ing). X̃ = (X̃ ′
1
, X̃ ′

2
, ..., X̃ ′

M )′, where X̃g = (Xg,ωg) is a matrix stacking together the network-level

matrices of exogenous explanatory variables and (own) network statistics of interest. wx(G, X̃)

could be defined as GX̃ or G̃X̃. Note that this formulation allows for the influence of neighbours’

background characteristics on the outcome to be weighted by the values of their network statistics.

Identification of parameters in this case is complicated by the fact that wy(G, Y ) is a (possibly

non-linear) function of Y , and thus endogenous. It may be possible to achieve identification using

network-based instrumental variables, as above, though it is not immediately obvious how such an

IV could be constructed. Further research is needed to shed light on these issues.

6.2 Network-level Specifications

Aggregate network-level outcomes, such as the degree of risk sharing or the aggregate penetration

of a new product, may also be affected by how ‘connected’ the network is, or the ‘position’ of nodes

that experience a shock or who first hear about a new product.

Empirical tests of the relationship between aggregate network-level outcomes and network statistics

involve estimating specifications such as Equation 6.2. The shape of the function fȳ(.) and the

choice of statistics in w̄ȳ(G) = ω̄, where ω̄ is an (M × R̄) matrix of network statistics, are again,

ideally, motivated by theory. With linear fȳ(.), this implies the following equation:

Ȳ = φ0 + ω̄φ1 + X̄φ2 + w̄x̄(G, X̄)φ3 + u (6.5)
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where the variables are as defined after Equation 6.2. The parameter of interest is typically φ1.

Defining W̄ = (ω, X̄, w̄x̄(G, X̄)), the key identification assumption is that E[uW̄ ] = 0, which will

not hold if there are unobserved variables in u that affect both the formation of the network and

the outcome ȳ; or if the network statistics are mismeasured. Recent empirical work, such as that

by Banerjee et al. (2013), has used quasi-experimental variation to try and alleviate some of the

challenges posed by the former issue in identifying the parameter φ1.

Since this specification uses data at the network-level, estimation will require a large sample of

networks in order to recover precise estimates of the parameters, even in the absence of endogeneity

from network formation and mismeasurement of the network. This is a problem in practice, since

networks data is difficult and costly to collect, meaning that in practice researchers have data for

a small number of networks only.

7 Experimental Variation

Thus far, we have considered the identification of the social effect parameters using observational

data. We now consider identification of these parameters using experimental data. We focus on

the case where a policy is assigned randomly to a sub-set of nodes in a network. Throughout we

assume that the network is pre-determined and unchanged by the exogenously assigned policy.23

We focus the discussion on identifying parameters of the local average model specified in Section 3

above, studied by Dieye et al. (2014). The issues related to using experimental variation to uncover

the parameters of the local aggregate model are similar. As outlined above, this model implies

that a node’s outcome is affected by the average outcome of its network neighbours, its own and

network-level exogenous characteristics (the latter may be subsumed into a network fixed effect),

and the average characteristics of its network neighbours. We are typically interested in parameters

β, γ and δ in the following equation:

Y = αι+βG̃Y +Xγ + G̃Xδ +Lν̃ + ε (7.1)

where the variables are as defined previously.

Throughout this section, we assume that the policy shifts outcomes for the nodes that directly

receive the policy.24 To proceed further, we first assume that a node that does not receive the

policy (i.e. is untreated, to use the terminology from the policy evaluation literature), is only

affected by the policy through its effects on the outcomes of the node’s network neighbours. This

implies the following model for the outcome Y :

23This assumption is not innocuous. Comola and Prina (2014) provide an example where the policy intervention
does change the network.

24Below, we will consider identification conditions in the case where a node may be affected by the treatment status
of his network neighbours even if their outcomes do not shift in response to the treatment.
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Y = αι+βG̃Y +Xγ + G̃Xδ + ρt+Lν̃ + ε (7.2)

where t is the treatment vector, and ρ is the direct effect of treatment. We assume that

E[ε|X,Z, G̃, t] = 0. Moreover, random allocation of the treatment implies that t ⊥⊥ X,Z, G̃, ε.

Applying the same within-transformation as in Section 3 above to account for the network-level

fixed effect leads to the following specification:

JY = αJι+βJG̃Y + JXγ + JG̃Xδ + ρJt+ Jε (7.3)

We can use instrumental variables to identify β as long as the deterministic part of the right hand

side of Equation 7.3, [E(JG̃Y ),JX,JG̃X,Jt] has full column rank. JX and JG̃X can be used

as instruments for themselves. We thus need an instrument for E[JG̃Y ]. We use the following

expression for JG̃Y , derived from the reduced form of Equation 7.2 under the assumption that

|β| < 1, to construct instruments:

E[JG̃Y ] = JG̃

∞
∑

s=0

βsG̃sαι+ J(G̃Xγ + βG̃2Xγ + ...) + J(G̃2Xδ + βG̃3Xδ + ...)

+J(ρG̃t+ βρG̃2t+ ...) (7.4)

From this equation, we can see that G̃t, the average treatment status of a node’s network neigh-

bours, appears in the reduced form for E[JG̃Y ]. However, it does not appear in Equation 7.2.

It can thus be used as an instrument for G̃Y , either in addition to, or as an alternative to G̃2X

and G̃3X, the average characteristics of the node’s second- and third-degree neighbours. Thus, the

policy could be used to identify the model parameters, albeit under a strong assumption on the

mechanism by which it has any effect (see below).25

An advantage to using G̃t as an instrument for the endogenous G̃Y is that since the treatment

is randomly assigned, and it only directly affects the treated individual’s outcome, making it more

plausible than G̃2X and G̃3X, in which X is not likely to be randomly assigned. A second

advantage of this instrument relative to G̃2X and G̃3X is that it only requires knowledge of agents’

direct neighbours. The identification conditions outlined previously in Sections 3 - 5 hinge on the

fact that within the network of interest, some agents are only indirectly connected, which might be

too strong in some contexts. Identification here requires sufficient variation in the proportion of an

agents’ direct neighbours that are treated for it to be a powerful instrument, which imposes fewer

restrictions on network structure (e.g. there should be variation in degree within the network). As

a result, the social effect parameter can be identified in a wider range of network structures.

25Similar results can be shown for the local aggregate model when |βωmax(G)| < 1. However, as shown above,
node degree can also be used as an additional instrument in this model.
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In many cases, however, the assumption that the policy affects a node’s outcome only if it is directly

treated may be too strong. The treatment status of a node’s neighbours could affect its outcome

even when the neighbours’ outcomes do not shift in response to receiving the policy. An example of

such a case, studied by Banerjee et al. (2013), is when the treatment involves providing individuals

with information on a new product, and the outcome of interest is the take-up of the product. Then

neighbours’ treatment status could affect the individual’s own adoption decision by (1) shifting his

neighbours’ decision (endorsement effects), and also (2) through neighbours passing on information

about the product and letting the individual know of its existence (diffusion effect).26 In this case,

which is studied by Dieye et al. (2014), a more appropriate model would be as follows:

Y = αι+ βG̃Y +Xγ + G̃Xδ + ρt+ G̃tµ+ ε (7.5)

where ρ captures the direct treatment effect, i.e. the effect of a node itself being treated, and µ is the

direct effect of the average treatment status of social contacts. This highlights the limits to using

exogenous variation from randomised experiments to identify social effect parameters. We might

want to use the exogenous variation in the average treatment allocation of a node’s neighbours,

G̃t, as an instrument for neighbours’ outcomes, G̃Y . However, this will identify β only under the

assumption that µ = 0, i.e. there is no direct effect of neighbours’ treatment status. This rules out

economic effects such as the diffusion effect.

We can still make use of the treatment effect for identification, by using the average treatment

status of a node’s second-degree (and higher-degree) neighbours, G̃2t, as instruments for the average

outcome of his neighbours (G̃Y ). This is the same identification result as discussed earlier, from

Bramoullé et al. (2009), and simply treats G̃2t in the same way the other covariates of second-

degree neighbours, G̃2X. Such instruments rely not only on variation in treatment status, but

also on the network structure, with identification not possible for certain network structures as

we saw in Section 3. As before, note that instruments based on random treatment allocation and

network structure (e.g. G̃t and G̃2t) will be more plausible than those based on the exogenous

characteristics, X, and the network structure (e.g. G̃2X) since t has been randomly allocated,

whereas X need not be.27

Thus far, we have discussed how exogenous variation arising from the random assignment of a

policy can be used to identify the social effect associated with a specific model – the local average

model – which, as we saw, arises from an economic model where agents conform to their peers.

In empirical work, though, it is common for researchers to directly include the average treatment

status of network neighbours, rather than their average outcome, as a regressor in the model. In

other words, the following type of specification is usually estimated:

26The study of how to use these effects to maximise the number of people who adopt relates closely to study of the
‘key player’ in work by Ballester et al. (2006) and Liu et al. (2014b).

27 However, it is important to remain aware that if some variables in X are not exogenous (and so not suitable
instruments when combined with network matrices), then their inclusion in estimation equation will already be a
problem.
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Y = b1ι+ b2G̃t+Xb3 + G̃Xb4 + b5t+ u (7.6)

A non-zero value for b2 is taken to indicate the presence of some social effect. However, without

further modelling, it is not possible to shed light on the exact mechanism underlying this social

effect, or the value of some ‘deep’ structural parameter.

When within-network experimental variation is used to identify social effects, careful attention

must be paid to the important issue of inference. At one extreme, a researcher might have many

(often thousands) of nodes embedded in the same network, and construct a valid comparison

group using similar nodes embedded in a different part of the network to the treated node. The

complication in computing standard errors comes from the fact that all nodes are embedded within

the same network, and may face correlated unobserved shocks. Though these shocks may not affect

identification, they will generate correlations in the outcomes of units, and must be accounted for

when conducting inference. The availability of only a single network makes it very difficult to derive

large sample approximations of distributions and thereby to calculate valid standard errors. Athey

et al. (2015) extend the method of randomisation inference, which calculates exact p-values, to

this setting. Under randomisation inference, the distribution of the test statistic is generated by

considering all possible realisations of the treatment assignment, keeping the potential outcomes

and characteristics of units fixed. A drawback of this procedure is that it allows for testing of sharp

null hypotheses – e.g. the treatment has no effect whatsoever – only. However, we often want to

test non-sharp hypotheses. Athey et al. (2015) develop methods for the computation of p-values

for three specific null hypotheses.

8 Conclusion

In this paper, we provide an overview of methods to identify social effects in linear social effect

models using a single cross-section of data. For a number of the most commonly used specifications

of linear local models, we provide an overview of the theory models that could generate the empirical

linear local specification, before outlining the conditions under which the social effect parameters

of interest are identified. Thereafter, we describe what is known so far about non-local models,

before considering how experimental and quasi-experimental variation can be used to identify the

social effects. Our focus is on methods that take the network to be (conditionally) exogenous as

well as perfectly observed by the researchers.

When data are available on only agents and the reference groups to which they belong, researchers

have for some time worried about how social effects might be identified. However, when detailed

data on nodes and their individual links are present, identification of social effects (taking the

network as conditionally exogenous) is generic, and estimation is relatively straightforward. Three

broader conceptual issues exist in this case.
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First, theory is often silent on the precise form that peer effects should take when they exist.

Since Manski (1993), many people have focused on the ‘local average’ framework, often without

discussion of the implications for economic behaviour, but social effects might instead take a local

aggregate, or indeed local maximum/minimum form where the best child in a classroom provides a

good example to all others, or the worst disrupts the lesson. Until a non-parametric way of allowing

for social effects is developed, researchers need to use theory to guide the empirical specification

they use.

Second, researchers typically treat the observed network as the network which mediates the social

effect, and where many networks are observed the union of these is taken. However, this could

generate important biases if the actual network is different to that observed, either due to measure-

ment error or because a different type of relationship is the relevant one for mediating a particular

effect. Here again it is important that some justification is given for why the network used should

be the appropriate one.

Finally, the observed network is typically treated as exogenous, or at least the errors are treated

as being mean independent of the network. In many circumstances one might imagine that agents

choose which links to form, and these choices may depend on characteristics that are neither ob-

served by the econometrician nor independent of the outcome. This creates a problem for identific-

ation strategies that rely on the absence of links (i.e. using friends-of-friends), since the absence of

a link may contain some information about the difference in the unobservables. For instance, more

motivated pupils in a school may choose to link with other motivated pupils; or individuals may

choose to become friends with other individuals who share a common interest (such as an interest

in reading, or mathematics) that is unobserved in the data available to the researcher. In such

examples, the absence of a link is due to the unobserved terms of the two agents being correlated

in a specific way rather than the absence of correlation between these terms. Recent literature,

including Goldsmith-Pinkham and Imbens (2013), Blume et al. (2015), Arduini et al. (2015) and

Horace et al. (2015) among many others, has begun considering solutions to this issue. Many of

these methods are reviewed in a longer working paper version of this article (see Advani and Malde,

2014).

Much work has been done to develop methods for working with networks data, both in economics

and in other fields. Applied researchers can therefore take some comfort in knowing that many

of the challenges they face using these data are ones that have been considered before, and for

which there are typically at least partial solutions already available. Whilst the limitations of

currently available techniques mean that empirical results should be interpreted with some caution,

attempting to account for social effects is likely to be less restrictive than simply imposing that

they cannot exist.
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