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Abstract 
 

Biometric systems are increasingly being used as very convenient and efficient 

person identification systems, even within large populations. To be able to provide 

a successful, secure and reliable authentication process, different mechanisms (e.g. 

developing improved features or classification algorithms or template protection 

schemes – revocable biometrics, etc.) have been developed to protect systems from 

attacks and are deployed across many different modalities. The idea of revocability, 

where a fixed, unchanging biometric template is transformed into a revocable 

template, has been studied for both physiological and behavioural biometrics. But 

the concept of “natural revocability” introduced in this study, which most 

behavioural biometric modalities (and the handwritten signature in particular) offer, 

provides the possibility of adopting an extremely simple and intuitive strategy for 

the revocation process without the need for complex mathematical processing, 

because this is entirely under the user’s control.  This approach, however, has not 

been studied in relation to biometrics and data revocability hitherto and the lack of 

databases to support this type of investigation therefore imposes the need for 

generation of new data. 

The study reported in this thesis investigates the handwritten signature as the target 

biometric modality of interest in relation to natural revocability by means of an 

experimental study starting with the collection of “live” signature samples, and 

wide-ranging subsequent analysis. The suitability and effectiveness of natural 

revocability in handwritten signature biometrics as a practical option is investigated 

by observing how “stability” of the form of the signature changes over a period of 

time. The characteristics of potential revocability are also investigated by analysing 

performance and invoking the “biometric menagerie” notation for individual 

behaviour, while a more practically-oriented test of the viability of the natural 

revocability concept is performed by evaluating recognition performance. A 

feature-based analysis of the concept is presented by investigating some features 
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commonly used in signature processing in both longstanding original and naturally 

revoked new signatures of a group of writers, and exploring the relationship 

between features, signature style and their effect in relation to original signatures 

and new signatures. This study also explores the development of a type of feature 

relating specifically to the concept of hesitancy (or its converse, fluency) for 

signature processing, which appears to be of particular relevance to the study 

reported here and investigates its impact on signature development in the context 

of natural revocability and signature verification more generally, using an objective 

measure of the power of the feature. 

The results from the experiments and the analysis provided suggest that if a 

sufficient time period is allowed then there is a high likelihood of convergence in 

terms of stability between a highly practised and long-standing signature and an 

alternative new representation, which also can be reliably recognised without 

degrading recognition accuracy, supporting the suitability and viability of the 

natural revocability concept. Exploring the influences of objectively defined 

hesitation features in creating the new signature also reveals that signers are more 

hesitant initially in signing the new signatures than the original -  as might be 

expected -  but gradually the hesitancies reduce with time, showing signers’ 

increasing confidence in signing new signatures as time progresses; similarly, 

investigating recognising genuine and forged signatures shows that the hesitation is 

higher in forgery signatures than in genuine signatures, supporting the qualitative 

definition of hesitancy applied in a typical forensic scenario, an encouraging and 

effective performance improvement in discriminating genuine and forgery 

signatures. The study reported brings together two related ideas: the possibilities of 

adopting a natural revocability strategy in relation to security and reliability in 

handwritten signature analysis, and the development of a feature which may be 

particularly effective in the area of handwriting analysis, together with the aim to 

throw new light on issues relating to security in practical biometric systems. 
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Reliability and Security in 

Handwritten Signature Biometrics 

Security and reliability are very important issues for biometric systems if they are to be 

able to provide a successful authentication process while protecting from attacks. Different 

mechanisms (e.g. developing improved features or classification algorithms or template 

protection schemes, etc.) have been developed to counteract such attacks (e.g. providing 

revocable biometrics) and are addressed for different modalities. But relatively little work 

has been reported in the area of behavioural biometrics, such as the handwritten signature. 

This thesis will describe a study to explore this issue in a new and especially natural 

context, exploiting the particular characteristics (e.g. the possibility of adopting an 

extremely simple and intuitive strategy for the revocation process) of such behavioural 

modalities, and the handwritten signature in particular. This study will investigate the 

handwritten signature modality to provide a practical environment for experimentation 

and analysis. 

This first chapter will present the fundamental background and basis for the investigations 

and analysis reported in this thesis. Section 1.1 will describe the general motivation of the 

thesis. Subsequently, Sections 1.2 and 1.3 will report an overall review of   biometric 

systems, relevant security concerns, and the protection mechanisms commonly discussed 

in the literature, providing a context for the new work to be reported later in the thesis. 

Section 1.4 will provide a review of the current state of the art of the handwritten signature 

modality. Following this Section 1.5 will outline the principal contributions of this thesis 

to the field, and finally the organisation of the study to be presented in this thesis will be 

explained in Section 1.6.
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1.1    General motivation 

Biometric authentication is a process of determining or confirming an individual’s 

identity through a measurable biological characteristic (which can either be 

anatomical or physiological, for example, fingerprints, iris patterning, hand 

geometry, etc.) or a behavioural characteristic (handwriting/signature, voice 

characteristics, keystroke patterns, gait, etc.) [1]–[4].  Some examples of commonly 

used and less commonly used biometric modalities are shown in Table 1.1. A 

physiological biometric such as a fingerprint pattern can be imaged by locating the 

end of the finger, while a behavioural biometric, for example, handwriting or a 

handwritten signature requires the user to execute a writing activity before the 

biometric data (handwriting or signature) is available. 

Table 1.1 Some common and less common biometric modalities 

 

Physiological Behavioural 
    

Face Signature/Handwriting 
Fingerprint Voice 

Hand geometry Gait 
Iris Keystroke 

DNA Lip motion 
Ear shape   

Odour   
Retina   

Skin reflectance   
Thermogram   

EEG   
ECG   

Palm print   
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A biometric system has been shown to be far more efficient and effective than a 

more traditional token- or password-based authentication system which relies on 

the person’s knowledge or belongings rather than who the person is.  Therefore, 

biometric systems are increasingly being used in border control environments or in 

airports [5], justice and law enforcement applications (for example, criminal 

identification, forensic investigation in court cases, identification of a missing 

person), financial/transactional support ( for example, mobile or internet banking), 

physical and logical access controls, healthcare and so on [1], [2], [6], [7]. As a 

result of their wide deployment, biometric systems, like any other systems are 

vulnerable to deliberate attack by an adversary [8]–[12]. Thus, the security and 

reliability of biometric systems play a very important role in the biometric 

authentication process and different protection mechanisms have been reported to 

counteract these issues [13]–[16]. 

Among all biometric modalities, handwritten signatures have been the most socially 

and legally accepted means for identification [17], [18]. Though the signature is 

notorious (as a behavioural biometric) for its sometimes-high intra-sample 

variability, practising the writing of the signature over time generally creates a 

natural recognisable pattern which then can be used in identity verification. Unlike 

physiological biometrics, such as the fingerprint (as noted above), signatures cannot 

be produced unintentionally or while the user is unconscious, and therefore the 

signature is likely to be retained in many identity verification tasks.  Being a 

behavioural biometric the handwritten signature is claimed to possess some 

important natural and inherent characteristics, some of which have often been 

overlooked. The motivation of the study reported in this thesis is to investigate and 

explore some of these characteristics in increasing both security and privacy, but 

also avoiding the need for developing alternative and more complex protection 

mechanisms while offering opportunities to increase significantly the attractiveness 

and reliability of handwritten signature as a biometric modality.  This can have 

implications not only in the field of biometrics itself but also in a wide variety of 
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application areas (for example, health care, forensic scenarios, etc.).  

However, first of all, it is important to understand the current situation with regard 

to security and reliability issues in biometric systems. Hence, the remaining sections 

of this chapter will first give a brief overview of  biometric systems in general and 

associated security concerns and protection mechanisms with respect to several 

different key biometric modalities; then an overview of the handwritten signature 

biometric modality in relation to the signing process, signature authentication 

systems and its use in different disciplines will be presented, identifying and 

exploring issues relevant to the study which still need further investigation and 

clarification. Finally, the chapter will identify the main contributions made through 

this study, and will describe the organization of the further chapters of this thesis. 

1.2    Overview of biometric systems  

Generally, a basic biometric authentication system, whether based on either 

physiological or behavioural modalities, operates in two main stages: enrolment 

and authentication. In the enrolment stage, biometric data of the chosen biometric 

modality are captured from an individual (a person) using a  sensor or capture 

device, then feature extraction is performed to extract appropriate features from 

these raw data and using the  extracted features a model is constructed representing 

each individual (with some form of ID linked to these features along with other data 

such as the person’s name), which can then be stored as biometric templates (one 

for each enrolled individual) in a database for future authentication purposes.  In 

the authentication stage an individual is either identified or verified by the biometric 

system. The identification process involves establishing a person’s identity through 

searching an entire database, whereas the verification process involves the 

authentication of a person’s claimed identity by comparing or matching the person’s 

acquired biometric information to that of the stored template of the person’s 
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claimed identity. The processes of enrolment and authentication are carried out 

using several processing steps and the design of these steps can differ significantly 

depending on the biometric modality adopted. However, most biometric systems 

require a processing chain encompassing the following five main steps: 

• Acquisition: is the step where relevant data for the biometric modality of 

interest are captured using a biometric sensor or capture device from an individual.  

For example, if the modality of interest is the fingerprint, then a fingerprint image 

must be captured at this stage.  This is one of the critical modules, as the 

performance of the entire system is often  affected by the amount of care taken in 

the  data acquisition [4], [19], [20].  

• Pre-processing: is the step where the acquired data are processed according 

to the type of the biometric modality and prepared for the further steps. Depending 

on the biometric modality, this step can be carried out either before or after the 

feature extraction.  For example, this step can be simply a normalisation of the 

acquired values from the signature biometric modality, but may include various 

image enhancement processes, and so on. 

•  Feature extraction: is the step where appropriate discriminative identity-

defining information (features) are extracted from the acquired raw or pre-

processed biometric data. A feature selection step is often used after the features 

are extracted to select the most important or effective features for use in the given 

application. 

• Matching: is the step where the extracted features during the authentication 

stage are compared against the stored templates generated from the extracted 

features during the enrolment stage to generate matching scores. Thus, a test sample 

will generate a score which reflects the similarity between that sample and the 

stored template of interest.  Following this, decision making is performed by using 

the matching scores based on a threshold to confirm/deny an individual’s claimed 
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identity (verification) or to identify the user (identification) as one of the set of 

enrolled users.   For example, the identity of the owner of the test sample might be 

judged to be the individual whose template generates the maximum score across all 

the templates.  

•  Database: is where the models of the enrolled individuals (constructed 

from the extracted features) are stored as templates (a compact representation of the 

acquired  biometric sample is known as a biometric template [21]) for future 

authentication purposes.  

1.3    Biometric security 

Biometric systems, like most systems, are also vulnerable to potential security 

threats leading  to adverse consequences such as repudiation claims by corrupt users 

(users deny accessing the system claiming their data were acquired covertly or 

circumvented [22]), legitimate users being denied (denial-of-service), unauthorized 

users intruding the system(by spoofing) and so on. Figure 1.1 shows some potential 

adversary attacks and attack points on biometric systems.  

Many of these attacks are applicable to any authentication systems such as replay 

(where an adversary replays a stolen electronic copy of the stored biometric data to 

the system avoiding the biometric sensor), Trojan Horse (where the feature 

extractor, matcher or the decision module is substituted by a Trojan Horse program 

to generate either desired feature sets or match scores or decision irrespective of the 

identity of the user presenting the biometric sample at the sensor), man in the middle 

attack (where an adversary intercepts the data while it is being transported through 

the channel and inserts a modified version of the data back into the system). But 

there are two adversarial attacks which are more specific to biometric systems. 

Spoofing is one of them [23]–[26], where a fake biometric generated typically by 

covert acquisition of  a genuine individual’s  biometric data, is presented at the 

biometric sensor to access the system [2], [21]. For example, lifting latent 
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fingerprint impressions from objects touched by an individual and using these to 

construct a mould which is later used to gain unauthorised access to the biometric 

system [22]. Another major threat is attack on the template, where the stored 

template (stored either locally or centrally) generated during the enrolment stage, is 

modified or replaced by a new one. Typically, biometric information is permanently 

associated with its owner and if fraudulently obtained or simply stolen , this cannot 

be replaced [14], [27]. In the event of compromise, the attacker can generate fake 

samples to gain unauthorised access to a biometrically-protected system [28]–[32].  

If the same biometric feature is used by a user in multiple applications, then the 

attackers can use the same mechanism to compromise all applications, and 

furthermore if organisations share biometric data, they (attackers) can potentially 

track the user.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Possible attacks and attack points on a generic biometric system, 

adapted from [9] 

When a biometric system is used as part of a larger scale security system, some 

other vulnerabilities associated with larger system requirements can be observed 
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[33], [34] such as damaging the biometric sensor or disabling the power supply can 

cause the whole biometric system to become ineffective [9], [35] or even sometimes 

non-biometric modules that are part of the overall security system can reduce the 

effectiveness of the biometric system [36]. Several factors, such as  template 

corruption due to an accidental system failure, template alteration by deliberate 

adversarial attack or template substitution (replace a valid one with a fake template) 

to hinder the system, are listed by the UK Biometric Working Group  (UK-BWG) 

[37] by which the quality of the template can be affected. 

Intentional alteration of biometric traits (for example, use of altered fingerprints) to 

avoid identification (for example, individuals want to avoid identification because 

of their previous criminal convictions) is also a major security concern  in some 

applications (for example, international border control) [38]. In some deployed 

biometrics systems, fraudulent samples  (such as static iris images [39], static facial 

images [40], [41]) and fake fingerprints [42]) presented at the biometric sensors,  

are processed as genuine biometric samples collected from genuine users and 

sometimes are  verified successfully by matching against the stored templates.   

Thus, the detection of spoofing has become a critical requirement of biometrics 

systems. Spoof detection is usually performed using techniques which typically 

check for signs of human “liveness” (such as fingerprint sweat, blood pressure, 

detection of a pulse, or specific reflection properties of the eye)  giving rise to the 

commonly accepted term liveness detection [43] as a collective term for a range of 

such techniques. A range of approaches have been reported in [41], [44]–[48] in 

detecting altered and/or spoof biometrics samples. 

In order to overcome the vulnerabilities of biometric systems, several template 

protection schemes have been proposed in the literature [2], [9], [21], [27], [49]–

[57]. According to [8] the concept of cancellable biometrics [27], [58], also known 

as revocable biometrics (of particular interest in our present context), has been 

introduced as one of the protection schemes and has been paid a lot of attention in 
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the research community in recent years  [13], [16], [27], [59]–[63]. In this method, 

the fixed unchanging biometric template is transformed using a unidirectional 

function into a ‘revocable’ template.   The underlying principle here is that, in the 

event of compromise of the template data, the biometric data can be re-enrolled 

using another different transformation, while the original biometric information 

remains protected and unchanged. Because of the properties of the unidirectional 

transformation which is adopted, it makes the retrieval of the original biometric data 

extremely difficult from the transformed protected template, providing security of 

the template and, as a different transformation is applied in a different application 

it prevents cross-matching between databases, preserving the privacy of the person 

who owns of the biometric data. It is also shown that the matching performance 

does not seriously degrade since the statistical attributes are almost maintained 

when constructing the biometric template in this way[13].  It should be noted that 

this cancellable or revocable biometric template protection scheme is closely 

related to cryptosystem-based scheme, but not equivalent. As described earlier, in 

the revocable template protection scheme computationally recovering the original 

template is extremely difficult from the transformed template because of 

unidirectional transformation even if the secret key is made available, while some 

information about the template is made available (also known as helper data) in the 

cryptosystem-based scheme to generate cryptographic keys during matching 

process. A detailed review of biometric cryptosystems can be found in [9], [64]–

[66]; some examples of biometric cryptosystems in the literature include fuzzy vault 

[49], [54], distributed source coding [67], shielding functions [68],  fuzzy extractors 

[69] and fuzzy commitment [70].   

Different strategies for generating revocable biometric templates have been 

proposed in the literature. In a recent review of cancellable biometrics published in 

[15], the authors have broadly divided the available cancellable biometric template 

protection schemes into two categories: i) methods that need a particular matcher 

to work with and ii) methods that do not need a particular matcher (i.e. able to work 
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with  available conventional matchers). Examples of methods requiring a particular 

matcher include, Biotokens [71], BioConvolving [61], salting [72], PalmPhasor  

code [73], correlation-based MACE filter approach [74]. Whereas methods such as 

combo [72], block-remapping [75], image warping [75], non-invertible transforms 

[13], [58], [76], dynamic random projections [77], permutations [78], random 

projections [63], BioHashing [79], [80], PalmHashing [81], Minimum distance 

graph [82], curtailed circular convolution [83] can work with available conventional 

matchers. Most of these methods need good registration of the biometric samples, 

for example BioConvolving, non-invertible transforms, salting, and some are 

registration free methods such as correlation-based MACE filter approach, 

minimum distance graph. Some of these methods (e.g. Biotokens, block-remapping 

etc.) work with the original biometric samples where some, for example, 

BioHashing, permutations, work with extracted features (e.g. wavelet transforms 

[81], Gabor features [72])  from the original biometric samples. These different 

revocable biometric schemes have been implemented for a number of biometric  

modalities including the following; fingerprint [13], [71], [77], [79], [82], [83], iris 

[63], [72], [75],  palmprint [73], [81], face [78], [84], and  signature [61]. A further 

detail review of these revocable techniques applied to different biometric modalities 

will be discussed in Chapter 4. As can be seen from the many studies reported in 

the literature, this idea of revocability (revoking a new template through 

transforming the original template) has been studied for both physiological and 

behavioural modalities. It is evident that most behavioural modalities, and the 

handwritten signatures in particular, present the possibility of adopting an 

extremely simple and intuitive strategy for the revocation process.  Since such 

modalities depend entirely on an action carried out by an individual rather than an 

inherent physiological characteristic, the revocation process can be entirely under 

that individual’s control. We have called this approach “natural revocability” (a 

detailed explanation and discussion is given in Chapter 4) and clearly, this is an area 

which will benefit from further investigation.   
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1.4    Handwritten signature 

The handwritten signature has long been established as a common means for 

providing proof of identity especially in financial transactions, certification of 

documents, wills and other legal documents, etc.  Because of its widespread use, 

signature checking based authentication is very familiar and highly acceptable to 

the public, hence putting the handwritten signature in an advantageous position over 

other biometric modalities in relation to suitability for a range of practical 

applications.  

1.4.1    Signing process and signature development 

The handwritten signature (as a specific manifestation of general handwriting) is 

the product of a learned neurophysiological motor program which is a complex 

interaction of cognitive and neuromuscular and biomechanical [85], [86] processes. 

This fine motor act involves (Figure 1.2) the brain which initiates the motor control 

via stimuli; the peripheral nervous system which modulates the movement by 

relaying impulses from the spinal cord to muscles; the muscles themselves which 

then activate the appropriate limbs (arm/ wrist/ fingers) by contraction or relaxation 

in a coordinated fashion; and finally, the limbs which execute the signature using a 

writing device (e.g. pen, paper etc.).   Quoting from [86] - “according to this model, 

some central nervous system mechanisms within the brain fire, with a 

predetermined intensity and duration, the nerve network which activates the proper 

muscles in a predetermined order. The motion of the pen on the paper, resulting 

from muscle contraction/relaxation, leaves a partial trace of the pen-tip trajectory”.  
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Figure 1.2 Schematic overview of the writing/signing process adapted 

from [87] 
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The signing process is derived from the normal, more general handwriting process 

and starts with lines and scribbles at a very early age. In the pre-school (between 

age 3 and age 4) stage, children begin to write letters and numbers, usually copying 

or tracing from printed worksheets. This helps to create the spatial memory or 

cognitive map by improving their motor control. This also helps the children to 

learn different shapes and understand the spatial concept of objects in relation to 

other objects [88].  Once  the motor skills begin to mature (by practising over time 

[89]) the person starts to write  fluently and effortlessly and at this stage s/he 

develops his/her own signature style [90]. 

1.4.2    Signature variation 

Due to the nature of the signing process, appearances of two samples of the same 

signature written by the same writer are never absolutely identical. Thus, there is 

always a variation between samples of a person’s signature, which is also referred 

to as intra-personal variability. This variation can be influenced by the signing 

condition, such as the position of signing and pen grip as well as the  writing 

instruments and writing surface used [91], [92] , the psychological  or 

environmental (e.g. stress) [93], [94] or physical condition [95]–[100] of the signer 

at the time of signing, ageing of the signer, and so on. This intrinsic variability of 

signatures is an important and sometimes subtle factor that should be taken into 

consideration in the design of automatic signature verification systems, as this 

highly affects their performance. 

As mentioned earlier, the signing act involves a complex interaction between the 

brain, the central and peripheral nervous systems as well as the muscles and limbs 

(Figure 1.2), and any influence on these parts of the motor system will affect the 

writing and signing behaviour. The genetic makeup of these parts also contributes 

to individual writing or signing style (which leads to a natural inter-person 

variability). For example, important factors include the relative shapes, sizes, and 
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locations of the hand bones (for example, carpals – wrist bones, metacarpals and 

finger bones) influencing the writer’s pen grip; whether the writer is right or left 

handed; the strength of the muscles, peripheral nervous system disorders (such as 

peripheral neuropathy resulting loss of coordination and muscle weakness) etc. The 

authors of the study reported in [101], [102] refer to these as genetic (biological) 

factor, and identify them as one of the fundamental factors that contribute to the 

individuality of the writing style. Another factor, described as memetic (cultural), 

is the cultural influence on how a person grips the pen, writes the characters or 

letters (allographs). Usually people learn these during education or by observing 

other people’s writing or from the printed worksheets employed. As the learning 

strategies are quite diverse, writing style differs not only from one country to 

another but also between schools [103], [104].  Analogous to handwriting style, 

signature style is strongly influenced by cultural habits and languages. For instance, 

in the USA a signature is usually executed in neat and legible handwriting, where 

European signatures can commonly have more of a resemblance to more abstract 

shapes, where the main body of the signature is usually surrounded by a number of 

curves, lines, and loops. In order to consider a signature as legally relevant in 

Germany, at least three letter shapes have to be legible, where a Persian signature 

is more of an ornament that is barely legible. Furthermore, Japanese and Chinese 

signatures are made up of independent symbols, while Bangla and Hindi signatures 

do not have any case concept (upper or lower case) and people write Arabic 

signatures starting from right to left as opposite to most of the other signatures. 

Therefore, for an automatic signature verification system to be universally 

successful, it should incorporate design considerations addressing these differences. 

Examples of some specific approaches proposed in some studies reported in the 

literature for  single script include Chinese, Japanese, Arabic, Persian, Bangla and 

Hindi signatures [105]–[109] and for multiscript include English and Chinese, 

Dutch and Chinese,  English and Hindi [110]–[113] etc. 
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Due to these different kinds of factors that affect the signature characteristics, it can 

also be important  to consider a set of metadata, also known as soft biometrics [114], 

related to some personal information about the signer such as, gender, ethnicity, 

handedness, script language, age etc. The study reported in  [114] defined soft 

biometrics as follows:  “Soft biometric traits are those characteristics that provide 

some information about the individual, but lack the distinctiveness and permanence 

to sufficiently differentiate any two individuals”.  Some studies reported in the 

literature on soft biometrics based on signature biometrics can be found in  [56], 

[115]–[118].   

1.4.3    Signature based authentication 

Like the basic biometric system described in Section 1.2, a basic signature 

authentication or verification system is also operated using the following modules 

or stages: acquisition, pre-processing, feature extraction, matching and a database 

to store signature templates. In general, signature verification can be divided into 

two categories based on the acquisition method adopted, i) static, also referred to 

as offline capture and ii) dynamic, also often referred to as online capture [17], 

although online capture can also give rise to dynamic features.  In the offline mode, 

the signature is acquired when the writing is completed, generally through a camera 

or an optical scanner and represented as a digital image, usually in grayscale format, 

as a set of points S(x, y), 0 <= x <= W, 0 <= y <= H, where W and H are the width 

and height of the image. In the online or dynamic mode, signature is generally 

acquired using a graphics/digitising tablet with an electronic pen while the signature 

is being executed.  The data in online mode is collected as a time sequence S(n), 

where n = 1, ..., N is the discrete time index and S(n) is the signal sampled at time 

n∆t, where ∆t being the sampling interval. Depending on the capture device, the 

signal may contain only the position data (horizontal x and vertical  y position) of 

the pen at each sampling point, or may include additional data such as the pen 
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inclination, pressure, etc. [119].  However, in this mode, it can be seen that 

information can be captured not only about the overall appearance of the signature 

(image), but also about the execution of the signature – that is, time-based 

information. 

Digitising tablets with electronic pens are the most traditional online signature 

acquisition devices [120], [121]. Some of these devices use touch screen display 

with digital-ink technology that provide immediate visual feedback to the writer 

while signing (e.g. tablet PC) [122], [123];  some devices use  a standard paper 

overlaid on the tablet surface with an inking pen, which not only allows the writer 

to write conventionally using  pen and paper but also produces an exact digital copy 

of the actual handwritten signature, allowing both offline and online acquisition of 

the biometric data at the same time [3], [124].  In addition to standard electronic 

tablet and scanner for online and offline signature acquisition, other devices have 

been used, for example, personal digital assistants (PDAs) and smartphones[125]–

[128]. Studies reported in recent years have also used camera-based acquisition 

systems [129], [130] by recording sequential pen tip tracking using a webcam for 

online signature verification.  Another study reported in the literature proposed a 

video-based acquisition system for in-air signature (writing virtually in front of the 

camera) [131].   Although, some devices raise specific issues, such as writing with 

a fingertip or stylus instead of a pen or using a touch screen based surface (or even 

in the air) instead of writing on paper or collecting a limited number of data or poor 

sampling frequency of the collected data, etc., the increase in the possible number 

of acquisition devices will make signature acquisition and eventually automatic 

verification of signature more feasible and usable in various applications. Figure 

1.3 shows some acquisition devices reported in the literature. 

A pre-processing step is generally performed, with the aim of reducing noise as 

much as possible in order to obtain the most accurate signature representation for 

later authentication purposes. Though there may be an argument that potentially 
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useful information may be lost in this process [132], it can affect the other 

successive steps of the authentication process [119] and in some cases it is crucial 

to perform this step. Common pre-processing approaches include filtering, noise 

reduction, normalising, segmenting and smoothing. Details of the typical 

algorithms for filtering, noise reduction, normalising and smoothing can be found 

in [133]–[138]. Segmentation of the signature can be a very complex task because 

of the intra-person signature variability and is a crucial pre-processing step 

especially for offline signatures. The most common offline signature segmentation 

techniques are based on an analysis of connected components [134], [139],  analysis 

of tree structures obtained from projection profiles (horizontal and vertical) [140], 

and statistical analysis of directional data [141]. Some online signature 

segmentation approaches are based on specific signature information (such as pen 

pressure) and simply derived from the collected signature signal by considering the 

signature as a sequence of writing blocks (when the pen is down) and interruptions 

(when the pen is up) [142]. Other approaches are based on the analysis of velocity 

signals [143], dynamic time warping (DTW) [144],  and so on. 

 

Figure 1.3.  Signature acquisition devices [3], [130], [131], [145], [146] 
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Features used for handwritten signature processing can be broadly divided into two 

types: i) features where signature is represented as a string of time-based signals or 

functions, also referred to as function features [119], and ii) features where 

signature is represented as a vector of some specific measures of signature 

characteristics, also known as parameter features. The parameter features can 

further be divided into two types: a) global features (where extracted features 

represent the whole signature) and b) local features (where extracted features 

represent specific parts of the signature). Generally, function features are 

considered for online signature verification and provide greater verification 

performance compared to parameter features, but the matching process usually 

requires a long time [119]. Examples of online function features include pen tip 

position (also applicable in offline), its moving direction, velocity, acceleration, 

inclination or angle, pressure [147]–[151]. Global parameter features used in the 

studies reported in the literature typically include total signature execution time, 

number of pen ups or pen downs, different measures of position, velocity or 

acceleration (e.g. average or maximum or minimum, etc.), time duration of positive 

or negative position, displacement, velocity or acceleration etc. for online where 

size and shape related features are also used in offline [152]–[155]; and various 

statistics-based features computed by applying mathematical transforms, such as 

Fourier and Wavelet transforms [156]–[158] for both online and offline, and the 

discrete cosine transform for online [159] signature verification.  Studies reported 

in [18], [134], [140], [160], [161] use grid-based, orientation-based, geometric-

based, structure-based and projection-based, and local features for offline signature 

verification. 

The efficiency and cost of a signature verification system and other processing 

requirements depend on which and how many features are used in the feature set 

for the verification,  and therefore feature selection is also an important aspect of a 

signature verification system [162]. Various feature selection approaches have been 

proposed in studies in the literature, primarily based on Sequential Forward / 
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Backward Search (SFS/SBS) [163],  Principal Component Analysis (PCA) [164], 

Inter-Intra Class Distance Ratios [165], Neural Networks [166], Self-Organizing 

Feature Maps (SOFM) [167], Genetic Algorithms [168] and Gain-Ratio Attribute 

Evaluation [169]. 

Like the basic biometric system described earlier in Section 1.2, in the 

authentication process a test signature of a user is either verified as the person s/he 

claims to be or identified as one of the enrolled users by comparing its extracted 

features against the stored templates generated from the extracted features during 

the enrolment stage, which generates a matching score. For verification, matching 

is performed between the features of the test signature sample and the stored 

templates of the claimed identity, while for identification, it is performed between 

the test sample and all the stored templates.  Matching score generated from the 

matching step is used to arrive at a decision based on a threshold to confirm/deny 

an individual’s claimed identity (verification) or to identify the user (identification).  

Various approaches are adopted in the matching process for both offline and online 

signatures and according to [119] are initially divided into three main approaches: 

template matching, statistical and structural. The most common template matching 

approaches used for online signature verification are based on Dynamic Time 

Warping (DTW) when function features are used.  Because of the possibility of 

occurrences of a writer’s hesitations or pauses, deletions, additions or gaps in the 

signature signal sequences, this can complicate the matching process.  DTW finds 

and obtains an optimal match by allowing expansion and compression of the time 

axis of signature signal sequences, which makes it suitable for online verification 

[170], [171]. Other template matching approaches include fuzzy logic, relaxation 

matching, split-and-merge mechanisms, displacement functions [172]–[174]. A 

statistical approach based on using Support Vector Machines (SVM) has been used 

successfully in both online and offline signature verification [109], [175]. Hidden 

Markov Models (HMM) have also been used often because of the conformability 
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of the technique to intra-person variability [148]. Distance-measure based 

approaches such as Euclidean distance, Mahalanobis distance are preferred when 

parameter features are used [149], [176]. Neural Networks (NN) in signature 

verification  have been used for a long time, for example the Multi-Layer Perceptron 

(MLP), Bayesian networks etc. [177], [178].  Structural approaches, for example, 

tree, graph and string matching techniques in combination with other techniques 

have been used in studies reported in the literature [170], [171], [179].  Various 

Multi-Classifier Systems (MCS), combining classifiers, have also been proposed 

for online and offline verification [180]–[182]. These systems can outperform 

individual local and global feature based verifiers, because the majority of these 

systems use a combination of both global and local features.  

There are two types of error associated with automatic signature verification, i) false 

rejection of genuine signatures, also referred to as Type I error and ii) false 

acceptance of incorrect or forged signatures, referred to as Type II error. Type I and 

Type II errors are calculated as false rejection rate (FRR) and false acceptance rate 

(FAR) respectively; where the FRR is calculated as the percentage of falsely 

rejected genuine signatures out of the total number of genuine signatures shown and 

similarly the FAR is calculated as the percentage of forgeries falsely being accepted 

out of the total number of forgeries shown. Generally, these two error rates are used 

for evaluating the performance of a verification system. A decrease in one error rate 

leads to an increase in the other, therefore, the selection of a decision threshold in 

matching depends on the requirement of the application in to minimise the 

appropriate error rate. Often, to evaluate the overall error rate of a verification 

system, an equal error rate (EER), when FAR is equal to FRR, is used.   

1.4.4    Applications of handwritten signature biometrics 

Due to the nature of handwriting and the writing/signing process this biometric 

modality has been studied in many disciplines and is still a very active ongoing 
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research area.  As noted earlier, the signing process is a complex and fine motor act 

which requires interaction between cognitive and neuromuscular and 

biomechanical processes that generates a fast, fluent handwriting movement to 

produce the learned product, handwritten signature. Any changes in the usual 

signing behaviour or natural variability may give an indication of changes in 

neurophysiological or cognitive properties and  is very useful in medical diagnosis 

[183], [184]. This idea has been applied to detect neurodegenerative diseases by 

analysing some simple handwriting tests carried out by the patients.   Examples 

include Alzheimer’s, Parkinson’s or Huntington’s diseases, spinocerebellar ataxia 

(which badly affects the hand-eye coordination) and Friedreich’s ataxia (which 

damages the nervous system)  [97], [98], [185]–[188]. For instance, in a study 

reported in  [189], the effect of rapid muscle contraction or relaxation of muscles 

during handwriting movement is found to provide significant information about 

neurodegeneration. Another study reported in [100],  shows that degradation of 

handwriting can help in diagnosing the stage of Alzheimer’s disease in patients.   

An analysis of the variability of grip kinematics during handwriting reported in   

[190] shows that it can be  useful in diagnosing diseases at a preliminary stage. The 

rapid movements of the hand during the signing process have been studied 

extensively [126], [191], [192] and the velocity profile model of  these movements 

are currently being used in identifying risk factors for prevention of brain strokes 

[183], [193]. Handwritten signatures have been analysed to estimate or predict  

emotions, intelligence, social attitude, personality and social skills as they are said 

to subconsciously reflect the personality of the writer  [194]–[196]. Above all, 

handwritten signature analysis plays a key role in validating documents such as 

contracts, testaments, corporate tax returns, government legislation, etc. Usually 

this validation is carried out by professional forensic document examiners (FDE) 

mostly focusing on visually detectable features (e.g. unnatural pen lifts, hesitation, 

tremor etc. [197]) which in handwritten signatures form the basis of evidence 

supporting whether a questioned signature is genuine or forged. Automatic 

signature verification can provide substantial support in the field of forensic 
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analysis, and there is an increasing trend towards bringing together researchers in 

biometrics and in forensics. Researchers have reported various automatic signature 

verification systems over the last few decades [119], [198], but most of these 

systems are developed either for general purpose or considering specific industry 

requirements, or cannot be directly applied to a forensic scenario (sometimes due 

to the differences in  discriminating characteristic terminologies used in forensic 

and automated signature analysis). Although, according to [7], [199]–[201], the 

work of professional FDEs have a great influence on the research carried out in 

automatic signature verification field as, it has not been possible to computationally 

extract every feature utilised in forensic document examination [202] and 

sometimes this has been overlooked. Therefore, this remains an issue in the 

signature analysis field in terms of its applicability and reliability, and is a topic to 

which we shall return in the present study.   

So, there is clearly a demand for objective and reliable testing procedures in 

distinguishing authentic signatures from forged signatures.   In the study to be 

reported here, two of the areas referred to in this initial review will be of principal 

concern.  The first concerns the investigation of the idea of what we have termed 

“natural revocability in the handwritten signature, as an example of a widely used 

biometric modality.  The second is the development of features which may be 

particularly effective in the area of handwriting analysis.  These two ideas are 

closely related, and the present study will bring these together to throw new light 

on issues relating to security in biometric systems. 

1.5    Contributions 

The key point emerging from the review and discussion presented so far is that 

security and reliability of biometric systems is an ongoing issue, especially in 

behavioural biometrics, which we suggest can be seen to offer the effective 

adoption of natural revocability, which has not been studied in relation to biometrics 
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and data revocability hitherto. Thus, the main contribution of this thesis is the 

investigation of natural revocability which may open up possibilities for 

revocability strategies proving to be both simple and effective, offering 

opportunities to increase significantly the attractiveness and reliability of the 

handwritten signature as a general-purpose biometric modality. More specifically, 

this thesis contributes the following novelties to the field. 

 A novel signature database is developed collecting samples of a newly 

developed signature for each subject as well as subject’s original signature over 

a significant number of capture sessions (four, six, and ten) to study the nature 

of natural revocability in the handwritten signature.   No other such database 

exists. 

 A new concept of “natural revocability” for handwritten signature is defined 

and investigated (in Chapter 4).  

 The practical viability of the concept of natural revocability when replacing a 

longstanding signature (original signature) in terms of gaining stability with 

time is investigated and reported, and we present evidence to show that attaining 

stability in a relatively short time scale (for most of the signers) is achieved. 

Also, the variation in stability is investigated from the longstanding original to 

naturally revoked new signature using the nomenclature of the “biometric 

zoo/menagerie”. This is one of the first studies of online signature revocability 

coupled to the use of biometric menagerie terminology (described in detail in 

Chapter 4). 

 Variation in signature features and signing style when changing from 

longstanding original signature to new signature following revocation is 

investigated. 

 A new algorithmic feature to objectify a hitherto qualitative concept relevant to 
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handwritten signature processing is developed and its impact on signature 

processing investigated. 

 Human detection of genuine and forgery in the context of natural revocability 

is investigated in a preliminary study. 

1.6    Chapter conclusion and thesis organisation 

This chapter has presented the general motivation of the study reported in this 

thesis, with an overview of the previously reported research related to the study 

reported in the thesis, in order to provide a clearer view of the current state of the 

art.  However, each of the subsequent chapters will review the relevant material in 

a more comprehensive, detailed and focused way in order to illuminate relevant 

issues relating to each specific analysis to be performed. In the light of the initial 

reported review, some specific research problems have been identified, where a 

better or more extensive exploration and investigation is necessary if an 

enhancement in the reliability and security of practical biometric systems is to be 

achieved. Subsequently, the specific contributions made to the field from the study 

to be presented in this thesis are reported.  

Finally, in order to make the following chapters more cohesive and easier to follow, 

it is useful to set out and draw attention to the organisation of this thesis as follows: 

Chapter 2: Experimental infrastructure 

This chapter will provide an overview of the basic experimental infrastructure and 

the important practical details used in all the experiments reported in this thesis. 

The details of data acquisition, feature extraction and some feature processing 

(respectively), and classification software used in the experiments and analysis for 

this study will be presented. Also, a discussion of the available online signature 
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databases, which the literature shows to have been commonly used previously for 

signature studies, as well as the databases and datasets utilised in carrying out the 

experiments (to be described in greater detail in subsequent chapters) for this study 

will be presented. Beginning with this overall consideration of the basic tools and 

experimental infrastructure will make the subsequent chapters, which report and 

analyse a range of experimental studies, more cohesive and easier to follow. 

Chapter 3: Revocability database compilation 

This chapter will discuss the handwritten signature data collection protocol and 

ethical approval procedure, together with an overview of the acquisition system. 

Also, an illustration of the collected data and acquired subject information will be 

presented as well as a discussion on the challenges faced during data collection. 

The long-term value of this database will be explained. 

Chapter 4: Natural revocability in handwritten signature biometrics 

This chapter will present the experimental analysis of the handwritten signature 

samples collected to support the initial study of our concept of natural revocability 

in handwritten signature biometrics. A review of the revocability studies reported 

in the literature in different biometric modalities, together with a discussion on the 

idea of natural revocability and its viability in handwritten signature recognition 

will also be presented.   

Some of the work to be reported in this chapter is published in [152] 

Chapter 5: Feature Based Analysis of Natural Revocability in Handwritten 

Signatures 

This chapter will present some feature-based analysis of the natural revocability 

concept by investigating some features commonly used in signature processing in 

both the original and newly generated signatures of a group of writers, and 
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exploring the relationship between features, signature style and some demographic 

factors (specifically, age, gender and handedness) and their effect in relation to the 

original signatures and new signatures. 

Chapter 6: Developing features to improve handwritten signature biometrics 

This chapter will explore the development of a type of feature for signature 

processing which appears to be of particular relevance to the study reported here.  

The feature relates specifically to the concept of hesitancy (or its converse, fluency) 

in handwriting, and we will investigate its impact on signature development in the 

context of natural revocability and signature verification more generally, using an 

objective measure of the power of the feature. A brief review which covers all the 

relevant studies and background information about hesitation in different areas will 

also be given.  

Some of the work to be reported in this chapter is published in [203] 

Chapter 7: Ancillary issues and final remarks 

This chapter will briefly document a number of additional pieces of experimental 

and analytical work carried out to help to complete a comprehensive picture of 

related aspects of handwriting biometrics which this study has contributed, as well 

as a final discussion of all the contributions made in this thesis, together with 

possible future work required to develop improved strategies for handwritten 

signature biometric systems in the light of the findings emerging from the reported 

study.  
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Experimental Infrastructure  

 

This chapter will provide an overview of the basic important tools and 

infrastructure of all the experimental studies reported in this thesis. Beginning with 

a brief documentation of the basic signature processing system (utilised in this 

study) in Section 2.1, Sections 2.2, 2.3 and 2.4 will present the details of data 

acquisition, feature extraction and some feature processing (respectively) used in 

the experiments and analysis for this study.  Section 2.5 will then present the 

classification software used for the experiments reported in this thesis. Section 2.6 

will discuss the available online signature databases, which the literature shows to 

have been commonly used previously for signature studies and also the databases 

and datasets utilised in carrying out the experiments (to be described in greater 

detail in subsequent chapters) for this study. Finally, Section 2.7 will briefly 

conclude this chapter. Beginning with this overall consideration of the basic tools 

and experimental infrastructure will make the subsequent chapters, which report 

and analyse a range of experimental studies, more cohesive and easier to follow.  
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2.1    Basic signature processing  

Like the basic biometric system, a typical signature processing system is also 

operated in the following stages: acquisition, pre-processing, feature extraction, 

matching and a database to store signature templates (as described in Section 1.4.3 

in Chapter 1).  As described in Chapter 1, at first in the acquisition stage handwritten 

expression which forms the signature pattern is captured as a two-dimensional 

signature image (usually associated with offline signature capture) or a set of data 

packets tracking pen movements in time (usually associated with online signature 

capture) [17], [204]–[206]. Following the acquisition stage feature extraction is 

performed to extract the dynamic and static features of the signature, where 

dynamic features are obtained from the constructional aspects of signatures while 

static features are obtained from the image of signature [207].  

Then, in the pre-processing stage a feature normalisation and a feature correlation 

can be performed.  In the feature normalisation step, extracted features are 

normalised, so that the specific feature values measured from each individual 

signature sample are presented within a fixed range. In feature correlation step, the 

correlation between the extracted signature features are evaluated, so that redundant 

features can be removed in order to use more discriminating features for later 

processes. Sometimes, a feature selection is also performed in order to identify and 

use only the most powerful and highly discriminatory features to obtain the best 

recognition performance. Finally, in matching stage, classification is carried out by 

comparing the signature features against the stored signature templates in the 

database, in order to confirm/deny an individual’s claimed identity (verification) or 

to identify the individual (identification). All these steps of a basic signature 

processing system are shown in Figure 2.1. 
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Figure 2.1. Initial steps of the signature processing system used in this study 

The basic signature processing system used for the study reported in this thesis 

implements the processing chain described above and shown in Figure 2.1. The 

techniques used in each of the steps are described in more detail in the next sections 

of this chapter. 

2.2    Data acquisition 

Handwritten signature data were acquired together with some short non-signature 

handwritten samples for the purpose of the study reported in this thesis. All data 
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were captured using a standard pen of familiar style and feel, and an electronic 

graphics tablet connected to a computer. The system allowed a subject to write 

normally on a sheet of paper overlaid on the tablet surface, with the pen movement 

tracked and a representation stored in the computer in the form of a sequence of 

time-stamped spatial pen coordinates (e.g. x, y position, pen pressure etc.). The 

electronic tablet used to capture the data was a Wacom Intuos3 Graphics tablet 

(model PTZ-930) [146] and capture software developed and refined over a period 

of time in the School of Engineering and Digital Arts at the University of Kent [208] 

(called MEDDRAW Data Capture v 2.1) was used for the acquisition and 

information transmitted to the PC’s USB port by the tablet. Further details of the 

acquisition system are described in Chapter 3.  

2.3    Feature extraction  

Over the many years of research in the automated processing of handwriting, 

researchers have used a very large number of both dynamic and static features 

suitable for signature processing, details of which can be found in the extensive 

literature which is available (see, for example, [201], [209]–[211].   This makes a 

choice of which features to work with necessary for any specific study. Since it is 

not practical to use every possible feature encountered, a total of 60 commonly used 

features for signature processing  [153], [209]–[212] are extracted from the 

acquired  signature samples for the study reported in this thesis. These features are 

listed and described briefly in Tables 2.1 (features 1 to 20), Table 2.2 (features 21 

to 40) and Table 2.3 (features 41 to 60).  Although the features listed in the tables 

are self- explanatory, a further description of these features can be found in [153], 

[203], [209]–[215]. 
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Table 2.1. Extracted features (1-20) 

 

Feature 

Type

Feature 

Number
Feature Names

Static 1 Total distance of pen travelled

Dynamic 2 Total signature execution time

Dynamic 3 Pen lift:(Number of pen ups=> button 1 to 0)

Dynamic 4 Average velocity in X direction

Dynamic 5 Average velocity in Y direction

Dynamic 6 Amount of zero velocity in X direction

Dynamic 7 Amount of zero velocity in Y direction

Dynamic 8
Maximum pen velocity in x - Average pen velocity in x 

Dynamic 9 Maximum pen velocity in x - Minimum pen velocity in x

Dynamic 10 Maximum pen velocity in y - Average pen velocity in y

Dynamic 11
Maximum pen velocity in y - Minimum pen velocity in y 

Dynamic 12
Maximum pen velocity in x - Minimum pen velocity in y 

Dynamic 13 Average pen acceleration in x

Dynamic 14 Average pen acceleration in y

Dynamic 15
Number of zero acceleration sample points in x 

Dynamic 16
Number of zero acceleration sample points in Y 

Dynamic 17 Maximum pen acceleration in x - Average pen acceleration in x

Dynamic 18 Maximum pen acceleration in x - Minimum pen acceleration in x

Dynamic 19 Maximum pen acceleration in y - Average pen acceleration in y

Dynamic 20 Maximum pen acceleration in y - Minimum pen acceleration in y 
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Table 2.2. Extracted features (21-40) 

 

 

Feature 
Type

Feature 
Number

Feature Names

Dynamic 21
Maximum pen acceleration in x - Minimum pen acceleration in y 

Dynamic 22 Azimuth

Dynamic 23 Altitude

Dynamic 24 Pressure

Static 25 Number of points comprising the image

Static 26 Sum of x coordinate values

Static 27 Standard deviation of x coordinate values

Static 28 Maximum x coordinate value - Last x coordinate value

Static 29 First x coordinate value - minimum x coordinate value

Static 30 Last x coordinate value- minimum x coordinate value

Static 31 Average x coordinate value

Static 32 Maximum x coordinate value - Average x coordinate value

Static 33 Average x coordinate value - minimum x coordinate value

Static 34 Sum of y coordinate values

Static 35 Standard deviation y coordinate values

Static 36 Maximum y coordinate value - Last y coordinate value

Static 37 First y coordinate value - minimum y coordinate value

Static 38 Last y coordinate value- minimum y coordinate value

Static 39 Average y coordinate value

Static 40 Maximum y coordinate value - Average y coordinate value
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Table 2.3. Extracted features (41-60) 

 

 

Feature 

Type

Feature 

Number
Feature Names

Static 41 Average y coordinate value - minimum y coordinate value

Static 42 Horizontal centralness

Static 43 Vertical centralness

Static 44 Width of signature

Static 45 Height of signature

Static 46 Width/Height ratio

Static 47 Signature area

Static 48 Width / Area

Static 49 Height / Area

Static 50 Number of vertical midpoint crossing the signature

Dynamic 51 Total time of zero velocity/execution time in X direction

Dynamic 52 Total time of zero velocity / total time in Y direction

Dynamic 53 Average resultant velocity 

Dynamic 54 Total time of zero velocity / total time in resultant

Dynamic 55 Amount of zero velocity in resultant

Dynamic 56 Total pen up time

Dynamic 57  Total pen up time/total time

Dynamic 58 Average pen acceleration in resultant

Dynamic 59 Average pen jerk in x

Dynamic 60 Average pen jerk in y
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2.4    Feature normalisation and correlation 

The feature normalisation step is carried out after the features are extracted using a 

Mean and Variance Normalisation technique (MVN) [153] as defined in  (2.1). 

 

 

where 𝑥௞ 
௜ is the kth feature of the ith sample for i = 1, 2, . . .,  m, and m being the 

number of samples and k= 1, 2, . . . , n, and n is the number of features;  𝑧௞
௜  is the 

corresponding mean and variance normalised kth feature of the ith sample;  µk and 

σk are the mean and standard deviation (respectively) of all samples in the kth feature 

as defined in (2.2) and (2.3) respectively. 
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Correlations between all MVN normalised features are evaluated in the feature 

correlation step by using Spearman’s rank correlation [216][153]. This is a 

nonparametric (distribution-free) rank-based estimate of correlation where data are 

converted to ranks (i.e. ranking all the observation values of a feature from smallest 

to largest) before calculating the coefficient.  The coefficient is calculated between 

(2.1) 
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all possible combinations of two feature vectors resulting in F*F coefficient values, 

where F is the number of features as defined in (2.4). 

 

 

Where xi and yi are vectors of ranks of observations of feature x and y respectively 

(for i = 1, 2, …, m, and m is the number of observations), and  𝑥పഥ  and 𝑦పഥ   are the 

mean of xi and yi respectively. Each value of rho ρ (correlation coefficient) obtained 

by the evaluation is a number between –1 and 1 that determines the extent to which 

the feature values are related. A ρ value close to zero indicates there is no evidence 

of any correlation or relationship, while the closer to 1 is this value, the stronger is 

a positive correlation (i.e. if the value of one feature increases, the feature value in 

the other feature also increases) while the closer to –1, the stronger is the negative 

correlation (i.e. if the value of one feature decreases, the value in the other feature 

increases).  

2.5    Classification software 

A K-Nearest Neighbour (KNN) classifier [217]–[219] is implemented for the 

experimental study reported in this thesis using, a data mining package named 

‘Weka’ [220]. The KNN classifier is simple, non-parametric and does not require 

any explicit training phase. The K-nearest neighbour is determined based on a 

distance measure appropriate for the extracted feature type (e.g. squared Euclidean 

distance metric is utilised in this study). Distances are measured between the test 

signature sample and all the training signature samples representing classes or 

categories.  Then the measured distances are sorted from minimum to maximum 

and K-nearest neighbours are determined based on K-th minimum distance. The 

 

(2.4) 
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class label appearing the most within the K-nearest neighbours is assigned to the 

test sample.  

2.6    Publicly available online signature databases 

The availability of suitable biometric data is a key element for experimentally 

assessing a systems’ performance through benchmarking and evaluation.  However, 

factors such as the nature of the natural variability in handwriting, the occurrence 

of different types of forgery and additional legal issues regarding data protection, 

make signature data collection from a large population of individuals for more than 

one acquisition a time consuming and complicated process.  For these reasons the 

number of publicly available online signature databases is quite limited. Next in 

this section the details of some public domain signature databases together with 

some small custom or proprietary databases are briefly outlined. 

2.6.1    MCYT  

The MCYT database is a bimodal biometric database consisting of online signature 

and fingerprint modalities [124]. A WACOM Intuos A6 pen tablet was used for 

signature data acquisition with 100Hz sampling frequency and an overall capture 

area of 127 mm x 97 mm (width x height) which was further divided into acquisition 

frames measuring 37.5 mm x 17.5 mm in size. Each target user produced 25 

signature samples in groups of 5 and for each user 25 shape based skilled forgeries 

were also captured from 5 different “impostors”. In total, data were collected from 

330 users. The signature corpus of  the MCYT database was released by the 

Biometric Recognition Group–ATVS in 2003  [221].  Figure 2.2 shows some 

signature samples from the MCYT database. 
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Figure 2.2. MCYT signature samples. 

 

 

Figure 2.3. BIOMET signature samples 

 

2.6.2    BIOMET 

The BIOMET [222] database is a multimodal biometric database consisting of five 

biometric modalities - speech, face, hand, fingerprint and signature. A WACOM 

Intuos2 tablet with a sampling frequency of 200 Hz was used for signature 

acquisition. Data were collected by using both a grip pen that does not provide any 

visual feedback while writing and an inking pen over a standard paper positioned 

on the tablet that allows the writer to write conventionally using pen and paper. The 

grip pen was used in the first session and the inking pen was used in the remaining 

sessions. In total, signature samples were acquired in three acquisition sessions, 

with three and five months of interval between them. 15 genuine and 17 forgery 

signature samples were collected for each user. In total data were collected from 



 

38 

 

130 users in the first session, 106 users in the second and 91 users in the last session. 

An example of the signature samples collected in BIOMET database is shown in 

Figure 2.3. 

Figure 2.4. SVC signature samples 

2.6.3    SVC  

The SVC signature database was collected for the First International Signature 

Verification Competition organised in 2004 to provide a common benchmark for 

comparing different signature verification systems on the same data and evaluation 

protocol [223]. Signature data were acquired using the WACOM Intuos tablet with 

a grip pen (no visual feedback when writing) in two capture sessions with a time 

period of one week between them. Each target user contributed 20 genuine 

signature samples (10 in the first session and another 10 in the second session). 20 

skilled forgery samples per user were also collected from at least four other users. 

In order to protect users’ personal data, users were advised not to use their original 

signatures which they use in daily life, instead they used a different signature 

invented for the purpose of this data acquisition. Some signature samples collected 

for SVC 2004 database are shown in Figure 2.4. 
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2.6.4    BioSecure Multimodal Database (BMDB) 

The BioSecure Multimodal Database (BMDB) consists of different biometric 

modalities such as, face, fingerprint, hand, iris, signature, and speech.   11 European 

institutions participating in the EU-funded BioSecure Network of Excellence [224] 

were involved in the collection of this database. Data collected in three different 

sets in three different capture environments: DS1 (internet-based), DS2 (desktop-

based) and DS3 (acquisition via a mobile device). Signature samples were collected 

in DS2 using the WACOM Intuos 3 A6 (at 100 Hz sampling rate) and in DS3 using 

the HP IPAQ hx2790 PDA (at 100 Hz) in two acquisition  sessions [3]  In each 

session 15 genuine and 10 forgery samples were collected from each subject for 

both sets. In total, therefore, 6300 genuine signature samples were collected from 

210 users in the DS2 collection. Some signature samples collected for the 

BioSecure Multimodal Database (BMDB) is shown in Figure 2.5. 

 

 

Figure 2.5. BMDB signature samples 

2.6.5    BioSecure Kent  

The BioSecure Kent database [225] is a multimodal database collected as part of 

the Europe-wide project undertaken by the BioSecure Network of Excellence [224], 

[225] in the School of Engineering and Digital Arts at the University of Kent.   In 
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fact, this dataset was submitted as a Kent contribution to the wider-ranging BMDB 

described in Section 2.6.4 above.  For signature acquisition of this database, a 

Wacom Intuos 3 A6 graphics tablet with a sampling frequency of 100 Hz was used.  

Data were collected  in a standard office environment under the guidance of a 

supervisor [3]. The BioSecure Kent database contains samples from 79 users, 

collected in two sessions. Each user donated 30 genuine (15 in each session) and 

20 skilled forgery samples (10 in each session). Figure 2.6 shows some signature 

samples collected for this database. 

 

 

Figure 2.6 BioSecure Kent signature samples 

2.6.6     Limitations of currently available signature databases  

As described above, due to the nature of the intrinsic variability in handwritten 

signature and other data collection and protection related issues the number of 

signature databases readily available to the research community are quite limited. 

Some of the major and most commonly adopted signature databases are described 

above. Most of the databases mentioned above contain a good number of subjects’ 

original/genuine signature samples with some forgery samples, providing the 

opportunity for further analysis and the evaluation of signature processing 

techniques. But for the investigation of the natural revocability (mentioned in 
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Chapter 1), which is a major part of the study to be reported in this thesis, two major 

requirements had to be fulfilled. Firstly, as well as what might be termed a user’s 

“original” signature samples (i.e. his/her currently established signature which s/he 

uses in her/his everyday life) samples of a newly developed signature, such as might 

be adopted should the original need to be withdrawn, needed to be collected from 

the same subject. In the SVC database, newly invented signature samples were 

collected in two sessions, which were classed as genuine signature samples (for not 

making the actual signature publicly available which the participant uses in daily 

life), but the database does not have the actual original signature samples while 

other databases have the original signature samples as “genuine” samples but there 

is no newly invented signature samples. Secondly, signature samples needed to be 

collected over a longer period of time (e.g. four sessions or more with a period of 

at least a week between them) using the same acquisition device from the same 

subjects to study how increased familiarity with a new signature affects its form 

and reproducibility. In most of the databases described above signature data were 

collected in only one or two capture sessions. In the BIOMET database, signature 

samples were collected in three capture sessions but using two different types of 

tablet pens. Unfortunately, the publicly available databases do not facilitate the 

experimentation proposed. All these deficiencies in relation to the requirements of 

the proposed study make the compilation of a new and “bespoke” database a 

fundamental part of the work in the study of interest here.   This new data collection 

exercise will produce a database of both original and newly invented handwritten 

signature samples collected over a considerably longer period of time (maximum 

of ten sessions) when compared with the acquisition process of other databases 

currently available in signature biometrics. 

Details of acquisition process, the collection protocol, and the contents of this new 

database, which we have called the ‘Revocability database’, are described in detail 

in Chapter 3, and this database forms a significant contribution of the overall study 

undertaken. As well as this Revocability database, the BioSecure Kent database has 
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also been used for the experimental analysis reported in this thesis. For ease of 

subsequent reference, the Revocability database and the BioSecure Kent database 

are designated as the Rev-Kent and Bio-Kent databases respectively. 

2.7      Conclusion 

In this chapter, the basic experimental framework and important practical details 

used in the experiments and analysis (to be described) have been introduced. 

Initially the steps of a basic signature processing system and a basic signature 

processing system were briefly described. Taking this as a basis for the signature 

processing system utilised for the experiments reported in this thesis, the techniques 

used for data acquisition, feature extraction, feature normalisation, feature 

correlation, classification were presented. 

A review of some of the principal online signature databases available to 

researchers has been presented, providing a useful and critical analysis of the 

potential additional benefits and enhanced characteristics of the proposed new data 

acquisition exercise. Finally, the two databases utilised for the experiments carried 

out were identified. 

The next chapter will present the details of the new data acquisition exercise. 
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Revocability Database Compilation  

 

This chapter will discuss the handwritten signature data collection protocol 

together with an overview of the acquisition system. Section 3.1 will give a brief 

background of the means and methods used for the construction of a handwriting 

and handwritten signature database. Section 3.2 will present the data collection 

protocol and ethical approval procedure. Section 3.3 will discuss the data 

acquisition system – hardware and software. Section 3.4 will illustrate the collected 

data and subject information acquired. Section 3.5 will discuss the challenges faced 

during data collection and explain the value of this database and Section 3.5 will 

conclude the chapter.   
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3.1    Introduction 

The overall aim of the data collection procedure is to establish a database of 

handwritten samples based on the handwritten signature, but enhanced by the 

addition of short, simple non-signature handwriting samples.   Most importantly, in 

order to enable the investigation of “natural revocability”, as mentioned in Chapter 

1 (detail study of the natural revocability will be presented in Chapter 4), it is 

necessary to acquire samples of a new signature developed by each participant to 

simulate a situation where an original signature has been compromised, and a new 

one is required.  Moreover, it is necessary to obtain samples over a period of time, 

to study how increased familiarity with a new signature affects its form and 

reproducibility.  As discussed in previous chapters, when considering sample 

capture for automated processing, signature data are traditionally divided into two 

categories:  online – where both the spatial and temporal information regarding the 

signature (i.e. information about both the appearance and execution of the 

signature) is available from the written input; and offline –where temporal 

information is not available, but only the spatial information (i.e. form and 

appearance), typically from a scanned document is available [17], [119], [198].  

Signature data captured through offline methods may involve the use of a scanner 

or a camera as input device and therefore only the 2D signature image is captured. 

On the other hand, the more common means of capture, that of online signature 

acquisition, typically uses a graphics tablet device or digitiser, although the use of 

a camera based acquisition system, incorporating a visual tracker of the pen-tip 

position in the writing surface, has been proposed in the literature [226], [227]. The 

use of digitising tablets or instrumented pens goes back as early as late 1970s 

according to data input devices reviewed by Plamondon and Lorette [228]. The 

types of error (spatial errors, temporal errors and intrinsic errors)  that are likely to 

occur during data collection using digitisers were reported by Meeks and Kuklinski 

[229]. Digitiser technology has since developed further providing high accuracy 
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and reliability, and user- friendly interfaces while introducing the measurement of 

parameters in addition to the standard x y coordinates, with higher sensitivity in the 

pen tip pressure captured, and other characteristics such as pen altitude, azimuth, 

etc.  A large number of descriptive parameters can subsequently be extracted from 

those directly captured by the tablet, such as pen tip velocity, acceleration, and so 

on. 

The next sections of this chapter will describe the digitizer tablet used in this study, 

and the data acquisition software used to collect the data along with the data 

collection protocols. 

3.2    Data collection protocol 

To facilitate the data collection, an appropriate and robust data collection protocol 

was required in order to guide and underpin the construction of a viable and 

potentially extremely valuable and unique database of handwritten signature and 

non-signature handwriting samples, incorporating samples illustrating the effects of 

“inventing” a new signature form. The data collection protocol describes the 

strategy adopted to ensure the uniform collection of the handwritten signature and 

non-signature handwriting samples, defining systematic and reliable procedures to 

ensure high quality handwritten data was collected under precisely defined and 

repeatable conditions. The protocol also provided the ability to manage and 

administer the data acquisition process in a systematic way and uniform. This 

specified the overall procedure for the acquisition of the signature and non-

signature handwriting samples, covering important issues such as the following: 

 What equipment will be used for acquisition: All signature and non-

signature handwriting samples will be captured using a standard pen of 

familiar style and feel, and an electronic graphics tablet connected to a 
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computer.  The system allows a subject to write normally on a sheet of 

paper overlaid on the tablet surface, with the pen movement tracked and a 

representation stored in the computer in the form of a sequence of time-

stamped spatial pen coordinates. Details of the acquisition system are 

described in Section 3.3. 

 Task division within  the acquisition process: There are three parts of this 

acquisition process: Part A, where a subject will be asked to provide 

samples of his/her usual signature; Part B where a subject will be asked to 

provide samples of a new signature invented by the subject or suggested by 

the researcher, for the purpose of improving the understanding of the notion 

of ‘natural revocability’ for the handwritten signature; and Part C, where 

samples of handwritten examples of numerals and alphabetic strings will 

be collected.  

 Number of acquisition sessions: Volunteers may be asked to return and 

repeat some or all of the data collection process, both to increase the 

number of available samples per user, but, more importantly, also to reflect 

changes in handwriting styles and appearance with time.  Not all subjects 

will take part in all parts of the collection process.  

 Recruitment: A varied population is to be recruited with respect to age, 

gender, and so on.  A private space will be provided for the data collection, 

and a supervisor will be present throughout every collection session. 

 Data storing: The samples collected will be stored so that they are linked to 

a reference number rather than the volunteer’s name, and only the research 

team will be able to link the samples to the volunteer personally.  This 

information will be kept strictly confidential within the research team. 

 How the data will be used: The data collected will be analysed by 

researchers at the University of Kent for the purposes of research into 
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writing and signing, and the development and evaluation of automatic 

handwriting processing systems and related technologies.  The data will not 

be made available to any third parties.  The results of the evaluation will be 

documented and are likely to be published in the scientific literature to help 

others benefit from the evaluations in the future, but subject anonymity will 

always be preserved. 

3.2.1    Ethical requirements 

A Data collection at the University of Kent involving human participation is subject 

to approval by the University Ethics Committee, according to rules governing most 

respectable institutions to ensure the legal protection, privacy and safety of users 

and their biometric samples, and overseeing this process is part of the function of 

the Ethics Committee. 

The University of Kent Ethics Approval Procedure requires applicants to complete 

an “Application Form for Ethical Approval from Research Ethics Group”, together 

with the provision of supporting documentation which included the associated 

participant information sheet, consent form and participant detail sheet, cover letter 

and an Ethics Review Checklist, all of which are provided in Appendix A.1, A.2, 

A.3, A.4, A.5, A.6. All of these documents are submitted to the Faculty of Science 

Ethics Committee where the study is reviewed and any further information and 

questions from the reviewers can be asked regarding the submitted application. 

Once the application passes the ethical review procedure, the study can then 

commence making sure the ethical procedures are adhered to. 
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3.2.2    Participant recruitment process  

After approval from the Ethics Committee the next part of the database compilation 

process involved recruiting subjects to take part in the data collection. A large 

number of staff and students from the University of Kent were invited by email 

together with the member of the general public through personal contact with 

respect to age, gender, ethnicity, and so on.  

A list was compiled of people who agreed to take part in the data collection.  They 

were then contacted by email with an appointment schedule. After confirmation of 

the appointment date and time they were sent the Participants Information Sheet via 

email in which they were informed of the purpose of this study, how long this will 

take, what will happen to the samples provided, how to withdraw from 

participation, what will happen to the results of the evaluations using the database, 

information about the research and contact details for further information. 

3.2.3    Meeting and greeting participants 

The next phase after recruitment involved meeting and greeting participants. Each 

participant is met by the researcher on arrival, and taken to a private room (to avoid 

distractions) where the collection infrastructure is set up. The participants were 

asked if they read and understood the Participant Information Sheet and invited to 

ask any further queries. Each participant was asked to provide their contact 

information such as first name, surname, e-mail, and telephone number etc. in the 

first section of the Participant Details form. An identification number and the date 

of data acquisition was also recorded in this section. In the second section 

participants provided anonymised information relating to age, gender, ethnic origin, 

handedness, occupation. 

The participants were also asked to read and sign a consent form, which was used 
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to describe the general purpose of the research project. The information of the 

consent form is similar to the information of the Participant Information Sheet 

which listed the following details: 

 Data to be collected 

 Criteria to be satisfied for participation in the data collection 

 Purpose of this collection 

 Privacy and safety of participants’ samples 

 Proposed use of data after collection 

 Contact details of the investigators 

 Details regarding the opportunity to withdraw participation from this study 

at any time. 

3.2.4    Start of the data collection process 

After all the initial paperwork has been completed (described above) and the 

participant is satisfied with the explanation of the data collection study each 

participant she/he is asked to make her/ himself comfortable with the writing 

arrangements – using a standard pen of familiar style and feel, and an electronic 

graphics tablet connected to a computer, as described in the data collection protocol 

in Section 3.2. A Details of the acquisition system are described later in this chapter 

(Section 3.3). Once the participant is comfortable with all arrangements, the data 

collection process itself can begin. As described in Section 3.2 the data collection 

process consists of 3 parts -Part A, Part B and Part C and the acquisition starts from 

Part A. 

Figure 3.1 illustrates the introduction to the data collection process.  
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3.2.5    Part A acquisition 

Under supervised conditions the participant was asked to provide samples of her/his 

original signature (the signature (s) he use in her/his everyday life) on the sheet of  

paper provided , one sample at a time in each grid using the pen provided mentioned 

in 3.2. In session one and two participants were asked to provide ten samples, and, 

if repeated, five samples from session three onwards. A sample of the Part A capture 

form is shown in Figure 3.2.  

3.2.6    Part B acquisition  

Once the Part A acquisition is completed the participant is asked to provide samples 

of a new signature invented by the participant (using the same acquisition system 

as in Part A) or suggested by the researcher for the purposes of improving an 

understanding of how a signing style develops. Blank papers were provided for the 

participant to try and practice the new signature before writing it on the tablet. Like 

Part A acquisition, participants were also asked to provide ten samples of the new 

signature for session one and two, and five samples of the same from session three 

onwards, if repeated.  A sample of the capture form used in the experiment is shown 

in Figure 3.3. 

3.2.7    Part C acquisition 

After Part A and Part B each participant was asked to provide samples of 

handwritten examples of the numerals “0” to “9”, and the alphabetic strings 

representing the months of the year, “January”, “September” (using the same 

acquisition system as in Part A and Part B). A four-digit number ‘4857’ (like a pin 

number) was chosen to represent the different orientations of numeral (e.g. 

numerals with horizontal and/or vertical line, angle, curve etc.) as much as possible 

within the four-digit number. The two months “January” and “September” as 

alphabetic strings were also chosen to represent as many as different letters possible 

within the twelve months of the year. The purpose of the Part C collection was to 



 

57 

 

have the database enhanced with signature and non-signature handwriting data from 

the same participant. As the main focus of this study was to study the behaviour of 

handwritten signature, collected data in this part (Part C) has not been used for 

experimental purpose in this thesis. But these data can be used for future analysis 

such as, combining handwritten numerals or handwritten alphabet strings with 

handwritten signature for user identification, verification etc. A sample of the Part 

C collection form is shown in Figure 3.4 and Figure 3.5. 

3.2.8    Repeated sessions and conclusion of the data collection 

As mentioned in the protocol in Section 3.2 some volunteers were recruited to take 

part in the repeated sessions with an interval of one week between sessions to 

observe and reflect changes in handwriting styles and appearance with time. 

Sessions were repeated from two to ten sessions. In session one and session two all 

collection phases (Part A, Part B, Part C) were involved, where in Part A ten 

samples of a subject’s original signatures, in Part B ten samples of the new signature 

and in Part C five samples of writing “January”, five samples of handwriting 

“September” and five samples of handwritten numerals “ 4857” were captured. As 

mentioned earlier, the repeated sessions aim to allow the observation of the changes 

in handwriting styles and appearance of signatures and also to understand the 

possibility of exploiting the ‘natural revocability’ phenomenon in the handwritten 

signature. A week difference between collecting sessions allowed to observe how 

the participants naturally adopt the new signing process rather than doing it every 

day or a long two or three weeks separation and collecting up to ten sessions 

allowed to observe the variation over a period of time within the bounds of 

feasibility of this data collection (challenges of this data collection is described later 

in this chapter in Section 3.5). Samples were collected only from the Part A and 

Part B phases, five samples in each phase from session three onwards. (An example 

is shown in Figure 3.6). After the first two sessions participants found using the 

tablet and pen very straightforward, so the number of samples actually collected 

was reduced down to five from session three. Also, in other known databases, four 
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or five signature samples were collected per session or per set. [3], [124], [230].  

At the end of each session an inspection was made of the dataset to determine if all 

samples were collected. The participant was thanked for volunteering to take part 

in data collection study and a date was arranged for the next session where 

applicable. 

3.3    Acquisition System 

To acquire the handwriting and handwritten signature samples as outlined in the 

protocol a digitising tablet and a custom piece of software was required. The 

hardware and software employed in this data collection are described in the 

following sections. Table 3.1 shows the general features of the data acquisition 

process and the biometric data for each subject in each session.  

3.3.1 Digitising Tablet 

The digitiser used in this data collection exercise was a Wacom Intuos3 Graphics 

tablet (model PTZ-930). It measured 439.5 mm by 340 mm in dimension with an 

active area of 304.8 mm by 228.6 mm. It also has a cordless Grip pen, ink pen and 

mouse which do not need batteries. The pen enables 1024 pressure levels and 5080 

dpi resolution to be achieved [231]. The Intuos 3 pen was used because of its 

capability to be easily used by a wide range of people. For example, it can be used 

by those who suffer from Repetitive Strain Injury (RSI) as it has a non-slip 

rubberised grip and is excellent for hand balance. The pen tracks excellently well, 

introduces absolutely no delay with its movement and complex intercepts. 

According to the  Wacom specification [232] the communication between the tablet 

and the pen is achieved by means of an electromagnetic process. The tablet 

transmits an electromagnetic signal to the pen, which in turn modifies it and sends 

it back to the tablet for position and pressure analysis. A grid of wires below the 
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tablet’s screen alternates approximately 20 microseconds to accommodate the 

transmission and reception of the information. The tablet sends the information to 

the computer via its USB port. An illustration of the transmission is shown in Figure 

3.7.  

Table 3.1.  General features of the data acquisition process 

 

 

In order for the signing process to be as natural as possible it was deemed necessary 

for the signatures to be executed on paper which is placed as an overlay on the 

surface of the tablet, while making use of the Intuos 3 Ink tip rather than the 

polyacetal tip that would allow ‘invisible’ drawings on the bare surface of the tablet. 

This ensured that the signing process was entirely familiar and natural for the 

subject, giving the accustomed visual feedback during signing.  As a guide, the A4 

paper was divided into five sections (or boxes) both on the left and on the right (as 
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shown in Figure 3.2, 3.3, 3.4, 3.5 and 3.6) and the writing and signing area was 

restricted to the box provided, as closely simulating restrictions applied in the 

signing space available in most implementations encountered in common point–of-

sales applications. 

 

Figure 3.7. Transmission of information between pen and tablet  
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3.3.2 Acquisition Software 

A piece of capture software developed in the School of Engineering and Digital 

Arts at the University of Kent (called MEDDRAW Data Capture v 2.1) was used 

for the acquisition and storage of the information transmitted to the PC’s USB port 

by the tablet. It was developed as part of the MEDDRAW project to enable 

computer-based assessment of hand-drawing tasks to enhance diagnosis and 

assessment of neuropsychological conditions. But the techniques developed are 

applicable to any condition where assessment can be aided by objectively studying 

the patient's performance in writing or drawing tasks such as the copying of visual 

shapes. 

The MEDDRAW software application was developed based on the programming 

interface for using digitising tablets specified in the ‘Wintab Specification’ [232]. 

This software enables the recording of pen movement data from an attached Wintab 

compliant graphics tablet or a Tablet PC. It was developed to capture multiple 

attempts (writing or drawing attempts) from an individual test subject and to 

support multiple conditions and tests. The condition profile describes the fields that 

are to be recorded in the subject info file and all capture (TST is described in Section 

3.3.4) files and the test profile describes which overlays are to be displayed for the 

test being conducted.  It also describes if the test is to be conducted in portrait or 

landscape mode, and if a timer is required to sound after a specified interval, for 

each overlay. Each test attempt is stored in an individual text file (TST) with a range 

of Wintab parameters including position, pressure, and button status for future 

analysis. Each data packet is timestamped to microsecond accuracy (actual sample 

rate dependant on hardware configuration. The details of the parameters are 

described in Section 3.3.4. 

The overlay templates provided in the software were not suitable for this data 

collection, so it was configured by adding new overlays, a new condition profile 
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named “Handwritten signatures” which was segmented into two test profiles – 

‘HandSig’ and ‘HandSig3’, the initial test profile being for the first two enrolments 

and the latter for the third to tenth enrolments, to display the overlays while 

capturing data. Figure 3.8 shows the new condition profile ‘Handwritten signatures’ 

and its two test profiles. 

 

Figure 3.8.  Condition and test profile in MEDDRAW 

 

The MEDDRAW software has been designed to allow the incorporation of a tablet 

PC, a graphics tablet or an oversize tablet. For the purpose of this study as described 

above, a graphics tablet was used. This mode scales the window of the graphics 

tablet to the size of the image as seen on the screen. The subject was then selected; 

this was either a new subject or an existing one. If a new one, a form is displayed 

which contains vital information of the subject to be inputted.  If an existing subject, 

the capturing mode is turned on. The ID no, name, date of birth, age, gender, 

nationality, file creation date, file last edit date, writing hand (left or right), session 

dates and comments are recorded and stored in the database. For a new subject and 

existing subject, supervision had to be incorporated into capturing the details as 

described in the data collection protocol.  



 

63 

 

3.3.3 Data storage 

The data captured were stored and written to files and folders in the directory where 

the program was installed in individual subject directories. As shown in Figure 

3.9, each subject directory e.g. E060, contains a ‘subject.txt’ file which is written 

when the subject is created and contains all of the information entered when the 

subject was registered, as well as a directory for each capture session.  These 

capture session directories are named by <Test_Name>-dd-mm-yyyy-mm-

ss, where dd-mm-yyyy-mm-ss is the date and time at the start of that capture session. 

An example directory might be HandSIG-11-03-2012-19-51-03.   This allows for 

multiple capture sessions any length of time apart without the previous data being 

overwritten.   

 

 

Figure 3.9.  Text file containing subject information (for user E060) 

3.3.4 TST File Contents 

Each session directory of individual subject directories contains a tst file and a jpeg 

image file for each sample (as shown in Figure 3.10). The tst files themselves 
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contain information about the subject (taken from the relevant subject.txt file at the 

time of capture), the tablet information (technical data retrieved from the capture 

device) and finally the data packets themselves, consisting of the following tab 

separated parameters.   

 

 

 

Figure 3.10.  Directory structure of the database 

1) Timestamp – The offset in milliseconds since the start of the capture process. 

2) X coordinate – Horizontal location of the pen. 

3) Y coordinate – Vertical location of the pen. 

4) Normal Pressure – Normal pen tip pressure. 

5) Tangential Pressure – Tangential or barrel pressure. 

6) Status – If the cursor is in or out of the context etc. 
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7) Cursor - The cursor type that generated the packet such as a stylus, or a finger 

touching a touch pad. 

8) Context – The id of the context that generated the packet.  

9) Buttons – The button or pen tip state (such as button released/pressed or pen 

up/down) 

Three data items relating to the orientation of the pen. 

10) Azimuth - the clockwise rotation of the cursor about the z axis through a full 

circular range. 

11) Altitude - the angle with the x-y plane through a signed, semi-circular range. 

Positive values specify an angle upward toward the positive z axis; negative values 

specify an angle downward toward the negative z axis. 

12) Twist - the clockwise rotation of the cursor about its own major axis. 

Three data items relating to the rotation of the pen. 

13) Pitch - The pitch of the cursor. 

14) Roll - The roll of the cursor. 

15) Yaw - The yaw of the cursor. 

An example of the .tst file contents is shown in Figure 3.11. 
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Figure 3.11. Example of a .tst file contents 

 

A set of features can be extracted from these captured raw data from the tablet as 

described in Chapter 2 and utilised for the experimental work reported in later 

chapters in the thesis. The commonly used raw data items (Timestamp, X 

Coordinate, Y Coordinate, Pressure, Button status, Azimuth, Altitude) are used for 

feature extraction like other available databases described in Chapter 2  [3], [223]. 

Figure 3.12, 3.13 and 3.14 show some examples of the trajectories of these captured 

raw data items for one sample. 
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Figure 3.12. Trajectories of x and y pen position (top) and pen pressure 

(bottom) 
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Figure 3.13.  Trajectories of pen status (top), pen up and down points 

(middle) and reconstructed signature from pen down points (bottom) 
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Figure 3.14.  Trajectories of pen azimuth and altitude 

3.4    Collected data and test subject information 

As mentioned earlier, in the recruitment phase the population taking part in this 

database collection mainly consisted of staff and students of the University of Kent, 

but also together with some members of the general public.  

The following information was obtained from each test subject: 

 Name (Family name and First names). 

 Gender. 

 Date of birth 

 Nationality 

 First speaking and writing language 

 Occupation 

 Handedness (Right, Left) 
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Distribution of the sample population by age group (16- 25, 25 – 40, 40 – 60) is 

shown in Figure 3.15 and by gender (Male and Female) in Figure 3.16. Figure 3.17 

shows the distribution of the sample population according to an individual’s 

tendency to left or right handedness and the distribution according to the subject’s 

ethnic origin is shown in Figure 3.18. 

 

Figure 3.15. Age distribution of the sample population 

 

 

Figure 3.16.  Gender distribution of the sample population 
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Figure 3.17. Handedness distribution 

 

 

 

Figure 3.18. Ethnic origin distribution 

 

Data were collected from 62 individual subjects. A total of 4190 signature samples 

and 1740 handwriting samples were thus donated overall (shown in Figure 3.19). 

The number of signature samples for each subject varied between 10 and 120. This 

was dependent on the number of the capture sessions. The number of sessions also 

varied between 1 and 10.   It was originally planned for initially up to 4 collection 

sessions to be used, with a week’s interval between sessions. Later, while the 

collection process was underway it was increased up to 6 and later to 10 collection 
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sessions to be able to observe the signature development over a longer period of 

time (reported in Chapter 4 and 6). However, some participants could not complete 

all the planned sessions and, indeed, some left the process even after the first 

session. Section 3.5 describes these challenges during data collection and Figure 

3.20 shows the distribution of the participants according to the number of sessions 

in which they took part.   

 

 

 

 

Figure 3.19. Number of collected samples in the database 
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Figure 3.20.  Number of sessions completed by the subjects 

 

3.5    Challenges and benefits of the data acquisition 

The data acquisition process required a great amount of time and effort because of 

collecting different handwriting samples for a number of sessions.  The nature of 

this project was completely voluntary and motivational solely by a willingness to 

support the research effort, without any monetary reward. This posed challenges to 

recruit people for the data collection. Participants could withdraw at any time during 

the process between capture sessions, which made it even harder to collect data for 

all sessions (4 sessions, 6 sessions or 10 sessions depending on the experimental 

work reported in chapter 4 in this thesis) from the same participant. Figure 3.20 

shows an overview of the number of acquisition sessions completed by the 

participants. A total of 62 participants were involved in this process, where 48 of 

the participants completed at least 4 sessions and 25 of them left the process after 

the 4th session, 22 participants continued to the 6th session and   9 of these 

participants completed up to the 10th session.  7 participants withdrew from the 

process after just the first session, due to personal reasons. 

Since this data acquisition process was such a time-consuming part of the overall 
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work reported in this thesis, it is worth discussing briefly the benefits and, indeed, 

the necessity of carrying this out.  The data acquisition was designed to acquire 

handwritten signature samples along with other handwriting samples, although the 

work reported in this thesis mainly focuses on analysis of the handwritten signature. 

This data collection process involved collecting many samples of a newly 

developed signature for each subject as well as subject’s original signature to study 

the nature of naturally revoked signature in a situation where the original was 

compromised. Other available signature databases (described in Chapter 2) consist 

only of original signatures and some with forgery samples, but not a new signature 

created by the same signer. This type of database with an original and a new 

signature created by the same subject was essential for the study and work reported 

here in this thesis. Also, the number of capture sessions (four, six and up to ten) was 

important for the experimental work reported in later chapters (Chapter 4, Chapter 

5, Chapter 6) in this thesis. The collection of this enhanced signature database was 

thus important to support a principal strand of the investigation carried out, but was 

also worthwhile in generating a range of data from each of a number of writers.  It 

therefore provided a good set of signature samples along with other handwriting 

samples for further analysis. Although the number of participants were not very 

large due to the challenges discussed above, it can be seen from Figure 3.15 to 

Figure 3.18 that the participants were from a range of different ethnic background, 

profession (e.g. students, academics, homemakers, police, businessmen etc.) age, 

gender which reflect the members of the larger population. 

3.6    Conclusion 

A brief review of the available data acquisition methods for offline and online 

capture approaches was initially provided. The data collection protocol and the 

ethical procedures were described, leading to the construction of a database 

containing 4190 signature samples and 1740 non-signature handwriting sample, for 
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use in the experiments and applications to be reported in later chapters. The digitizer 

tablet and software used for this data acquisition was described, while the format of 

the generated data and the parameters captured by the tablet were also explained. 

An illustration of the collected data and subject information was provided. Finally, 

the challenges during data acquisition procedure and the value of this entirely new 

database collected as part of the project were discussed. 

The next chapter will analyse the data collected in this data collection process, and 

will introduce a detailed study of the concept which we call “natural revocability” 

in relation to the handwritten signature.  
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Natural Revocability in Handwritten 

Signature Biometrics  

 

 

 

 

This chapter will present some analysis of the handwritten signature samples 

collected as described in Chapter 3 to support the initial study of Natural 

Revocability in handwritten signature biometrics. Section 4.1 will discuss the idea 

of natural revocability. Section 4.2 will demonstrate the pre-processing of the 

collected data for natural revocability analysis. Following the data pre-processing 

some experimental analysis which has been carried out will be reported in section 

4.3. Finally, section 4.4 will conclude the chapter.  
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4.1    Review of revocable biometrics, and the concept of 

natural revocability  

Like most data sources, if not secured, biometric data may be fraudulently obtained 

or simply stolen, and subsequently misused without a user’s consent. Significantly, 

a compromised biometric is forever compromised if access to the raw information 

has occurred [13], [14]. Consequently, template protection is a security feature that 

needs to be addressed in biometric-based authentication systems [8], [49] and such 

concerns have led researchers to introduce the concept of cancellable 

biometrics[15], [27], [58], [233] ). In this concept a fixed and unchanging biometric 

template is replaced by a revocable one (i.e. one which can be revoked or changed 

in the event of compromise), which can be created, for example, through processing 

by a unidirectional transformation. In the event of compromise, a new biometric 

template can then be created from the raw data simply by invoking a different 

transformation. This concept of revocability has been studied extensively with 

respect to physiological biometrics such as iris, fingerprints etc. [14], [27], [63], 

[71], [233]–[235]. Some examples of the iris modality include introducing a two-

factor scheme using password with iris biometric data for revocable iris template 

generation. An IrisCode shuffling scheme is employed which increases the 

Hamming distances between genuine and non-genuine users without changing 

intra-person distances between genuine users. An Error Correcting Codes (ECC) 

scheme is also used which corrects more error in the genuine Iris-codes than the 

non-genuine IrisCodes (this eventually reduces the intra-person Hamming distances 

between genuine users). Thus, employing the combination of these two schemes 

increases the verification performance. [59]. In a study reported in [235], another 

approach known as “BioEncoding” is adopted in which a “BioCode”, a compact 

non-invertible bit-string is randomly generated from an original IrisCode and used 

for user identity verification without affecting the performance when using the 

original IrisCodes. Gabor filters have also been introduced to achieve the same 
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purpose [236]. In another study reported in [237], a technique based on  

Steganography where a combination of Huffman Encoding and Discrete Cosine 

Transformation (DCT) is used to  generate cancellable iris template, referred to as 

“Stego” image or template. Since the transformed Stego image is irreversible, this 

approach increases the security of the biometric template.  In another approach 

[238], an adaptive Bloom filter-based transform is  applied to IrisCodes in order to 

generate alignment-independent revocable iris template. Over the years a number 

of revocable biometric schemes have been proposed to increase privacy and 

security but many at the expense of substantially decreased accuracy in 

performance. It is shown that [238]–[240] the Bloom filter-based transform not only 

can protect the template but also maintain the performance. Another scheme named 

“Indexing-First-One” (IFO) hashing has been introduced by Lai et al. [16] which is 

inspired by the “Min Hashing” technique that is used for quick estimation of 

“Jaccard Similarity” between two sets and initially has been used in text matching. 

To increase the privacy and security the scheme is  modified using P-order 

Hadamard product and modulo threshold function and it has been reported [16] that 

the IFO hashing scheme maintains recognition accuracy as well as providing 

privacy and/or security. In the fingerprint modality, reported approaches include 

introducing various transformation functions for example,  polar, Cartesian and 

surface folding algorithms on the minutiae positions [13], securing the templates by 

a method called “crypto biometric fuzzy vault framework”. This is implemented by 

extracting features from the fingerprint, including passwords to provide 

revocability and then securing the password-hardened revocable templates in a 

biometric fuzzy vault[241]; extracting the features from the fingerprint minutiae 

pairs, dividing them into discrete levels, performing histogram equalisation, 

binarisation and finally generating bit strings [51]. In addition, a process called 

"Bin-based Quantization (BQ)" is used whereby features such as ridge orientation, 

frequency, angles between minutiae pairs and total number of minutiae are 

extracted,  eventually revocable templates are generated governed by a secret key 

providing security[242]. In another approach, a kernel principal components 
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analysis (KPCA) and binarisation techniques are used to generate a fixed-length 

binary fingerprint template from a variable size and unordered “Multi-line Code” 

(a minutiae descriptor) fingerprint template.[243]. In the work reported in [157], a 

non-invertible partial Hadamard transform is applied to generate a complex binary 

vector representation of  the cancellable fingerprint template which makes the 

retrieval of the original binary vector representation of the template almost 

impossible. It is also shown that the stochastic distances between binary vectors are 

preserved after the transformation in this approach.  

In this general research area much less attention has been given to behavioural 

modalities. However, some studies that have been reported in this area of biometrics 

include using ensemble systems in four ways transformed (Interpolation, 

BioHashing, BioConvolving and Double Sum) cancellable touchscreen data [244], 

the process of binding a key to a biometric template for online authentication by 

encryption at the registration stage and authentication at the final stage through 

point matching [11], a signer  revoking a blind signature to enable looking into the 

original user activity in cases of foul play through the use of a "magic ink" 

signature[245]. A biometric hash generation scheme has also been used by 

connecting the quantised binary strings transformed from the feature vector subsets 

selected with genetic optimisation [246]. A convolution-based non-invertible 

transformation approach, BioConvolving, is used in the study reported in [61] to 

generate revocable signature template, where the signature template is represented 

as a set of discrete sequences.  Another study reports work in the handwritten 

signature modality using a haptic device (a virtual environment where signers write 

on a virtual plate)[247] , where a user-specific key is assigned to extracted features 

and in the event of compromise, a new key is assigned or chosen to cause a different 

permutation of the features (shuffling of the features).  

In the majority of the studies reported above, original signatures are distorted to 

revoke a new template. However, it is evident that most behavioural modalities, and 
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the handwritten signature in particular, present the possibility of adopting an 

extremely simple and intuitive strategy for the revocation process.  Since such 

modalities depend entirely on an action carried out by an individual rather than an 

inherent physiological characteristic, an individual can simply aim to change the 

execution pattern of whatever action is the source of the biometric data, and which 

is entirely under that individual’s control.   We have coined the term “natural 

revocability” for this approach, which has not been studied in relation to biometrics 

and data revocability hitherto, but which may open up possibilities for revocability 

strategies proving to be both simple and effective.   The simplest example is the 

consider the handwritten signature.  Biometric identification based on the process 

of signing depends on the assumption (well-supported by observation, intuition and 

experimentation) that for most people the act of signing becomes sufficiently 

familiar and ingrained that an individual effortlessly produces multiple examples of 

his/her signature which are inherently similar.  However, such a signature can be 

revoked simply by not using it anymore, and instead a new signature substituted 

which, again through repetition, may be assumed over time to become similarly 

effortlessly reproducible.   However, this new approach also raises a number of 

important and interesting questions, apart from the obvious one about how easy it 

might be for a familiar to “invent” and personalise a newly formed signature.  These 

include, for example, questions about how long the process of achieving stability 

in the new signature will take, is stability guaranteed in a signer whose previous 

signature was stable, what is the likelihood of important features in the original 

signature carrying over into the new one, and so on.  Therefore, this chapter will 

present some preliminary studies of the phenomenon of natural revocability as a 

precursor to longer term and more detailed investigations of the potential for natural 

revocability in behavioural biometrics to be realised as a practical option in the 

future.   We will focus our study on the handwritten signature, recognising that the 

general principles discussed, although not necessarily all the detail, may also be 

relevant to other behavioural modalities. 
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Natural revocability, then, is the term we use to describe the fact that most 

behavioural biometrics, being under the direct control of the “user”, can be created 

at will in multiple forms.  The handwritten signature provides a very good 

illustrative example [248].  Unlike the case when using a physiological modality 

such as the fingerprint or iris, the handwritten signature form developed by a 

particular individual can be discontinued at any point in time, and a new signature 

invented.  This natural revocability potentially offers the opportunity to increase 

security and privacy while simultaneously avoiding the need for developing 

alternative and more complex protection techniques. Though the dimensions of 

handwritten signatures can vary with time [211], [249]–[251] for most people, the 

fundamental characteristics of the handwritten signature remain relatively constant 

over a period when written in a given frame [252]. Since it is a voluntary action to 

change an original signature to a new one, a new biometric can be created easily, 

thus paralleling closely a user-manipulated password scenario. However, the 

stability of the form of the signature is generally acquired with repeated use, and it 

cannot be assumed that all individuals will easily achieve stability with a newly 

acquired signature.  Even if this can be achieved, it is not known whether this is 

likely to occur on a sufficiently short timescale to make such a change viable in the 

context of biometric recognition.  Thus, in this chapter some fundamental questions 

will be addressed which need to be considered if the concept of natural revocability 

is to be exploited as a practical strategy with respect to the signature.  Of course, 

such an investigation also raises a range of other questions of practical importance 

and a number of these also will be pointed out in this preliminary study. 
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4.2    Experimental framework for the analysis of natural 

revocability  

This section will describe the experimental set ups and protocols used and some 

practical details relevant to an exploration of the viability of natural revocability in 

handwritten signature biometrics.  

To study our concept of natural revocability of the handwritten signature it is 

necessary to establish a database of handwritten samples based first on an 

individual’s current established signature and also of a new signature such as might 

be adopted should the original need to be withdrawn. So, as described in Chapter 3, 

under supervised conditions, samples of both were captured from a group of 

volunteers using a standard pen of familiar style and feel, and an electronic graphics 

tablet (here a WACOM Intuos-3 tablet with a resolution of 5080 lines per inch) 

connected to a computer. The system allowed a subject to write normally on a sheet 

of paper overlaid on the tablet surface, with the pen movement tracked and a 

representation of the signature stored in the computer in the form of a sequence of 

time-stamped spatial pen coordinates [146]. Details of the data collection protocols, 

procedures and storage have been described in Chapter 3.    

For this experimental study, two datasets O-RevKent (Original signatures) and N-

RevKent (New signatures) of the above-mentioned database – namely Rev-Kent, 

as designated in Chapter 2, are defined. Following this, a range of commonly used 

features (listed and specified in Table 2.1, 2.2 and 2.3 in Chapter 2) are extracted 

from all the signature samples. Extracted features are then normalised and a feature 

correlation is performed for each dataset. Features with high correlation coefficient 

are identified for each dataset and discarded from the experiment allowing to use 

only non-redundant features for the experimental study. Subsequently, the 

suitability and effectiveness of natural revocability in handwritten signature 

biometric as a practical option in signature recognition, can be investigated using 

the defined uncorrelated features by observing how “stability” of the form of the 
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signature changes over a period of time, as this stability in signing (the extent to 

which the “intrinsic properties of rapid human movements that constitute the basic 

element of each signature” [198], [253] are reproduced) is a key factor in 

determining the suitability of the signature for biometric identification.  

Furthermore, in order to investigate the characteristics of potential revocability in 

the signature modality, performances will be analysed by invoking the “biometrics 

menagerie” notation for individual behaviour which was first introduced by 

Doddington in the context of speaker recognition [254]. Also, a more practically-

oriented test of the viability of the natural revocability concept for the handwritten 

signature will be performed by evaluating the achievable performance in a 

recognition/verification scenario. 

The next section will report the experimentation in detail with the aim to introduce 

greater clarity about the potential for natural revocability in handwritten signature 

biometrics to be realised as a practical option, providing some results and analysis. 

4.3    Experimentation and results 

As described in the previous section, an experimental study is carried out to 

investigate and explore the potential for natural revocability in handwritten 

signature biometrics to be realised as a practical option. For this experimental study 

the Rev-Kent database (Data collection is described in Chapter 3) is utilised. Then, 

the signature samples of O-RevKent and N-RevKent are processed by using the 

signature processing system as described in Chapter 2.  

Hence, recalling the processing chain illustrated in Figure 2.1 (in Chapter 2), 60 

features defined in Table 2.1, 2.2 and 2.3(in Chapter 2), are extracted from all 

samples of the signature database, in the feature extraction step. Subsequently, the 

feature normalisation step is carried out and the extracted features are normalised 

by using the MVN (Mean and Variance Normalisation) technique as defined in 
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Equation 2.1 (in Chapter 2). Then the Spearman’s rank correlation is evaluated 

between all the extracted and normalised features as explained in Section 2.1.2 (in 

Chapter 2) in the feature correlation step. As a result of this correlation test, 60*60 

(3600) correlation values (ρ) are obtained. The correlation results obtained in the 

experiments are illustrated in Table 4.1 – Table 4.6. 

Each value of rho ρ (correlation coefficient) obtained by the evaluation is a number 

between –1 and 1 that determines the extent to which the feature values are related, 

with a value closer to zero indicating lower correlation and a value closer to -1 or 1 

indicating higher correlation.   In this experiment, a value which lies between -0.65 

and +0.65 is the criterion used to define “non-correlation”. Although the specific 

experiments are not reported here in detail, this threshold value (0.65) is 

experimentally determined such that a balance is achieved between performance 

and the number of features used.  Hence, each feature which has at least one value 

which is not between -0.65 and +0.65 is discarded from the defined feature list. As 

a result, 25 features are found to be uncorrelated for both original (O-RevKent) and 

the new (N-RevKent) signature dataset, and the ρ values of 25*25 feature 

combinations (1 - 5, 8, 10, 13, 14, 17, 19, 22- 24, 27-29, 31, 35, 37, 39, 46, 50, 59, 

60) with respect to the O-RevKent and N-RevKent datasets are shown in Table 4.5 

- Table 4.6.  
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Table 4.7.   Uncorrelated selected features for O-RevKent and N-RevKent 

 

Feature 
Number 

Feature Names 

1 Total distance of pen travelled 
2 Total signature execution time 
3 Pen lift:(Number of pen ups=> button 1 to 0) 
4 Average velocity in X direction 
5 Average velocity in Y direction 
8 Maximum pen velocity in x - Average pen velocity in x  
10 Maximum pen velocity in y - Average pen velocity in y 
13 Average pen acceleration in x 
14 Average pen acceleration in y 

17 
Maximum pen acceleration in x - Average pen acceleration 

in x 

19 
Maximum pen acceleration in y - Average pen acceleration 

in y 
22 Azimuth 
23 Altitude 
24 Pressure 
27 Standard deviation x coordinate values 
28 Maximum x coordinate value - Last x coordinate value 
29 First x coordinate value - minimum x coordinate value 
31 Average x coordinate value 
35 Standard deviation y coordinate values 
37 First y coordinate value - minimum y coordinate value 
39 Average y coordinate value 
46 width/height ratio 
50 Number of vertical midpoint crossing the signature 
59 Average pen jerk in x 

60 Average pen jerk in y 
 

 

It is found from the obtained Spearman-rank correlation test results that features 1, 

2, 4,5, 8, 10, , 13, 14, 17, 19, 22-24, 27-29, 31, 35-39, 50, 59, 60 are not correlated 
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in O-RevKent while in N-RevKent, features 1-5, 8, 10, 13, 14, 17, 19, 22-24, 27-

29, 31, 35, 37, 39, 46, 50, 59, 60 are found to be uncorrelated. In summary, feature 

36 and 38 are found to be correlated in N-RevKent dataset while these features are 

not correlated with other features in O-RevKent. Features 3 and 46 are found to be 

uncorrelated in N-RevKent dataset while correlated with other features in O-

RevKent. Looking at the definition as described in Table 2.1-Table 2.3 in Chapter 

2, feature 36 and feature 38 are both based on the vertical (y) coordinate value and 

similar (but not correlated) to features 35, 37 and 39; where features 3 and 46 are 

very commonly used features in signature processing [116], [175], [209], [255], 

[256]. In order to ensure like-for-like analysis as far as possible in both O-RevKent 

and N-RevKent, features 1-5, 8, 10, 13, 14, 17, 19, 22-24, 27-29, 31, 35, 37, 39, 46, 

50, 59, 60 will be utilised for both datasets in the experiments reported in this 

chapter. This feature subset is also shown in Table 4.7. 

As described in Chapter 1, the handwritten signature is the product of a learned 

neurophysiological motor program which is a complex interaction of cognitive and 

neuromuscular and biomechanical [85], [86] processes. [85], [86], [191], [192], 

[257]. People generally start learning to write at a very early age, eventually develop 

a signature model of their own and practise constantly to produce similar signature 

samples according to their own personal model. But everyone is aware that even 

after practising constantly the appearances of two samples of a person’s signature 

is not always the same. As well as the intra-person and inter-person variability 

described in Chapter 1, based on the effect over time the variability is also 

categorised as: short-term variability and long-term variability. Short-term 

variability is evident on a day-to-day basis as it depends on the signing condition 

such as the position of signing and pen grip as well as the  writing instruments and 

writing surface used [91], [92], and the psychological  or environmental (e.g. stress) 

[93], [94] condition of the signer at the time of signing, while long-term variability 

is apparent over longer periods of time as it depends on the modification of the parts 

of the motor system (e.g. brain, central and peripheral nervous systems, muscles, 
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limbs etc.) [126], [191], [212], [258]. It may also be influenced by 

neurodegenerative diseases affecting the signer[96], [98], [187], [259].  Due to this 

variability and complexity in handwritten signatures, making an automatic 

signature verification system applicable in all everyday-life applications is still 

remains difficult. Several studies have been reported recently  in [158], [251], [258], 

[260]–[263] have focused on the analysis of the signing process, and the variability 

and complexity of handwritten signatures in particular in order to achieve a better 

understanding of  the complex phenomena underlying the signing process. 

Therefore, the adoption of the handwritten signature as a biometric modality 

depends on the reproducibility of signature samples in an individual. In other words, 

the “stability” in signing (the extent to which the “intrinsic properties of rapid 

human movements that constitute the basic element of each signature” [126] are 

reproduced) is a principal factor in determining the suitability of the signature for 

biometric identification. 

To study natural revocability in signatures it is necessary to investigate the signing 

process in both the original and the new signature domains of individuals since, as 

with all behavioural biometrics, intrinsic variability within samples of any 

individual can be considerable, and the existence of so-called goats (those whose 

signatures quite naturally vary a great deal) [254]) is not uncommon.  In assessing 

a new signature, the principal issue of interest here is to determine whether, and 

how quickly, the signing process attains a degree of stability in reproduction which 

makes its use as a biometric indicator viable.  Clearly, such an assessment benefits 

also from knowledge of the stability properties of the original signature.  

 

Although the concept of stability may be difficult to define formally or 

quantitatively, it is intuitive that, in this context, developing the habits of signing 

through repetition is important in establishing the automatic signing patterns 

required to decrease the dissimilarity between intra-individual signature samples 
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and hence ensure the degree of reproducibility required for biometric identification. 

Thus, an informal and intuitive notion of increasing stability is adopted -  referring 

to the tighter clustering of samples in multi-feature space, -  which we expect to 

observe among the samples of a new signature as time passes, and which is a 

prerequisite in the biometrics context.  Understanding how stability, described in 

this way, changes with time, is therefore a primary factor in assessing the value and 

viability of natural revocability as a practical strategy.   

In order to observe the variations in stability in the original and new signatures 

across different capture sessions, initially Euclidean distances between samples in 

multidimensional feature space are measured.  As mentioned earlier in this section 

the RevKent database is utilised for this experimental study and Euclidean distances 

are measured between samples of handwritten signature of an individual in each 

capture session for both original and new signatures for each user (e.g. distance 

between sample 1 and sample 2, sample 2 and sample 3 and so on for session 1(S1), 

and same way for session 2 (S2), session 3(S3) etc. for user 1, user 2 etc.). Then the 

mean of these distances (D) for each user for each session is calculated and the 

mean distance, M, for all users is calculated for each session. Comparing the 

distance of a signature sample to other signature samples of the same individual 

(signer) is used as a posteriori approach when evaluating the quality of a biometric 

sample and also used in signature stability considerations[264]. In this way, the 

lower the mean distance M is for one session, the more similar is the sample to the 

other samples of the that session, in other words samples are more “stable” within 

that session.  Figure 4.1 shows the variation of both the original and new signatures 

in each of the capture sessions, measured as the mean distances between samples 

captured in first four successive sessions (as a majority of the subjects/users 

completed at least four sessions).  
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Figure 4.1. Mean distances between samples in each successive session 

(Session 1 to Session 4) for all users 

It can be observed from Figure 4.1 that the mean distance between samples in the 

first session (S1) is higher than the second session (S2) and then the value of the 

mean distance in the second session (S2) is higher than the third (S3) and the fourth 

session (S4). Although it is likely that there is an effect here of unfamiliarity with 

the tablet-based writing environment, most likely to have an impact in the early 

session, it is clear from the trend line in Figure 4.1 that stability increases with time 

and that signature variability tends to stabilise as the sessions proceed. A similar 

analysis for an individual user’s original and new signature is shown in Figure 4.2 

(User 41 is shown in the figure which represents majority of the users except some 

‘goats’). This also shows that the value of the distances between samples in the first 

session (S1) is higher than the other sessions and the second (S2), third (S3) and 

fourth session (S4) distance values gradually decrease, although the sample 

distances do not vary substantially across different sessions. But this nevertheless 

indicates that stability in a new signature can be achieved on a relatively short 

timescale. 
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Figure 4.2. Distances between successive samples in each session for one 

user/subject (user 41) 

As noted earlier in Chapter 3, it was challenging to recruit people for data collection, 

as participation was completely voluntary and motivated solely by a willingness to 

support the research effort without any monetary reward, and participants could 

withdraw anytime during the process between capture sessions. This made it 

especially difficult to collect data over longer periods (larger number of sessions) 

from the same participants. However, some participants contributed their signature 

samples for up to six and some up to ten sessions beyond the initial four collection 

sessions.   
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Figure 4.3.  Distances between successive samples in each session for six (top) 

and ten (bottom) sessions for two different users  

Figure 4.3 shows examples of two users’ original and new signatures over this 

greater number of sessions, here six and ten acquisition sessions respectively, and 

Figure 4.4 shows the variation of both the original and new signatures in each of 

the capture sessions, measured as the mean distances between samples captured in 

ten successive sessions. 
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Figure 4.4.  Mean distances between successive samples in each session for 

ten sessions (considering all users)  

To get a more generalised and quantitative view of this increasing stability in the 

new signature a ‘degrees of stability – low, medium and high’ (categories defined 

in [261], [262]) analysis is performed for both signatures of all signers. For this the 

maximum and the minimum value of the mean distances of the original signatures 

are calculated and then two different distance values (T1 and T2) are set as threshold 

for the three degrees of stability (low, medium and high) as defined in (4.1) and 

(4.2) for the degree of stability. 

T1 = Mmin + T 
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where T = (Mmax –Mmin) / 3; Mmax = Maximum of all distances M’s of original 

signature; and Mmin = Minimum of all distances M’s of original signature. Using 

these threshold values, stability analysis is performed for each signer according to 

the degrees of stability defined in Table 4.8.  

Table 4.8.   Degree of stability 

Distance values Degrees of stability 

Distance M >T2 Low Stability 

T1< Distance M < = T2 Medium Stability 

Distance M < T1 High Stability 

Table 4.9.   Percentage of achieved degree of stability in four successive 

sessions 

  
Degree of stability 

Sessions 

  S1 S2 S3 S4 

O
ri

gi
n

al
 

High Stability 15.38% 25.64% 53.85% 61.54% 

Medium Stability 79.49% 71.79% 38.46% 33.33% 

Low Stability 5.13% 2.56% 7.69% 5.13% 

Total 100% 100% 100% 100% 

            

N
ew

 

High Stability 25.64% 28.21% 43.59% 53.85% 

Medium Stability 53.85% 66.67% 56.41% 46.15% 

Low Stability 20.51% 5.13% 0.00% 0.00% 

Total 100% 100% 100% 100% 
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Figure 4.5.  Degree of stability in each session for original and new signature           

(four sessions) 

Table 4.9 and Figure 4.5 report the degree of stability found in each session in both 

original and new signatures, where all signers are considered. It is noticeable that 

comparing the original signatures and the new signatures (Table 4.9 and Figure 4.5), 

the percentage of high stability samples among the new signatures is higher in 

session one (S1) than that of the original signature.  This may reflect a greater 

degree of care and caution on the part of the signer when developing a new signing 

style but, more importantly, it shows that the high stability increases and low 
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stability decreases with time and also that the majority of the signers show either 

high or medium stability when signing the new signatures. 

 

 

 

Figure 4.6.   Degree of stability in each session for original and new signature              

(ten sessions) 

Figure 4.6 reports the degree of stability analysed in the same way for a longer 

number of capture sessions, in this case ten sessions but for the smaller number of 

signers who had volunteered to contribute both the original and new signatures for 
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ten capture sessions. While it is important to exercise some caution when dealing 

with such a small number of signers, these results do suggest, on the one hand, that 

behavioural biometrics are always open to the possibility of somewhat 

unpredictable characteristics, but also that if a sufficient time period is allowed then 

there is a possibility of convergence in stability between a highly practised and 

long-standing signature and an alternative new representation. 

4.3.1    Categorised analysis 

In order to investigate the characteristics of potential revocability in the signature 

modality, it is useful to analyse performance by invoking the “biometric menagerie” 

notation for individual behaviour first introduced by Doddington et al. in the context 

of speaker recognition [254]. The authors in that study grouped speakers in four 

categories, labelled respectively “Sheep”, “Goats”, “Lambs” and “Wolves” (Figure 

4.7) based on the given classifier’s genuine and non-genuine match scores.  

 

Figure 4.7.   Doddington’s representation of the “biometric menagerie” [48] 
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According to [254]  the speakers who are recognised easily are labelled as “Sheep”; 

speakers who are difficult to recognise are labelled as “Goats”, speakers who can 

be imitated easily are labelled as “Lambs” and “Wolves” are the speakers who are 

good imitators (i.e. they are particularly successful at imitating others). This 

“biometric menagerie” notation has been later applied in the context of other 

biometric modalities such as, fingerprint [265]–[267], iris and face  [265], [267], 

[268].  More categories of users (“Worms”, “Chameleons”, “Phantoms” and 

“Doves”) have been added recently by Yager & Dunstone [76], [78] to the 

“biometric menagerie”. All these study focusing on Doddington’s categorisation 

[46], [265], [267], [268], [73]–[75] provide evidence that the “biometric 

menagerie” can be a useful concept in most biometric modalities. 

In the present study we are especially interested in characterising individuals as 

sheep or goats, designated according to the following definitions:  

• Sheep:   Sheep, in this model, are those signers who show relatively 

little variability in their signature samples over time (i.e. those whose 

signatures are generally stable). 

• Goats: Goats are those signers whose signature samples have a 

tendency to considerable variation over time (i.e. those whose signatures are 

generally unstable).  

In this way both the original and newly invented signatures have been observed to 

determine the extent to which the characterisation of an individual’s signing 

behaviour remains constant between the original and new signature style, or 

whether and how individuals change category. To this end an analysis of each 

individual’s signatures was carried out with respect to their signature stability 

category, with results summarised in Figures 4.8, 4.9, 4.10, and 4.11.  Here we use 

a rather subjective and intuitive interpretation of “stability” for the purpose of a 

qualitative analysis. For example, if the mean distances measured between 
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signature samples captured in successive sessions gradually decrease or do not vary 

significantly with time then this signature can be deemed stable in this context.  

Figures 4.8, 4.9, 4.10, and 4.11 show the different groups of signers within the test 

population categorised according to the relationship between the original and new 

signing characteristics. 

 

Figure 4.8.  Category 1- Signers’ both original and new signatures are stable 

(Consistently sheep) 

 

Figure 4.9. Category 2- Signers’ both original and new signatures are 

unstable (Consistently goats) 
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Figure 4.10.  Category 3- Signers’ original signature is stable but the new 

signatures is unstable (Sheep change to goats) 

 

 

Figure 4.11.  Category 4- Signers’ original signatures are unstable but new 

signatures are stable (Goats change to sheep) 
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The signer population can then be divided into four categories, as follows: 

• Category 1- In our current context, this category defines those individuals 

who are consistently sheep according to our qualitative definition (i.e. those for 

whom both the original and new signatures are stable - Figure 4.8). 

• Category 2 - These are those signers who are consistently goats (i.e. those 

for whom both original and new signatures are unstable - Figure 4.9). 

• Category 3 – This category defines those signers who were sheep with 

respect to their original signatures, but who turned into goats when generating a 

new signature form (i.e. those whose original signatures are stable but whose new 

signatures are unstable - Figure 4.10). 

• Category 4 – These are signers who were goats with respect to their original 

signature samples, but turned into sheep when developing a new signature (i.e. 

whose original signatures are unstable but whose changed new signatures are stable 

- Figure 4.11, this could be due to paying more attention when creating the new 

signature or creating a different signature style or less complex signature than the 

original signature which makes the new signature less variable). 

 

To get an estimate of the existence of these signers’ categories within the overall 

test population a further analysis is performed based on the qualitative definition of 

the sheep and goats as shown in Figure 4.12. 
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Figure 4.12. Defining sheep and goats. 
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To measure the increasing or decreasing pattern of the mean distances (M’s) for the 

successive capture sessions a linear regression model is developed and the slope of 

the regression line is measured for both the original and the new signature for each 

signer as defined in (4.3). 

𝑺𝒍𝒐𝒑𝒆 (𝒎 ) =  
෍ (𝑺𝒊ି𝑺)

𝒏

𝒊స𝟏
(𝑴𝒊ି𝑴)

൫∑ (𝑺𝒊ି𝑺)𝟐𝒏
𝒊స𝟏 ൯

     (4.3) 

 
where i = 1, 2, 3… n, and n is the number of capture sessions, Si and Mi are the 

capture sessions and the mean distances respectively for the ith session, and  𝑆̅ and 

𝑀ഥ   are the mean of Si and Mi respectively. Each value of m obtained by the 

evaluation is either positive (above zero) or negative (below zero), and a positive 

value of m represents an increase in mean distances M with time while a negative 

value of m represents a decrease in mean distances M with time, which is an 

indicator of stability of the signature with time. As the handwritten signature is a 

behavioural biometric, and due to its natural variability, there may be some cases 

where the mean distance is very low from the first capture session but shows a very 

low positive slope and the mean distance is low for all the sessions (i.e. though the 

distances do not show a decreasing pattern they are in the low distance (High 

stability, M<=T1) range for all the sessions (Figure 4.13). On the other hand, there 

may be cases where the mean distances show a decreasing pattern with a low 

negative slope but the value of the mean distances are in the low stability range 

(M>T2). In the latter case, this is showing a decreasing pattern which means it could 

reach a high stability range if more time were allowed, but for the purpose of this 

analysis this type of signature will be deemed as unstable (goats) due to having four 

capture sessions (as majority of the signers’ completed up to four sessions, 

therefore, session one, two, three and four are chosen for a like-for-like analysis 

across all the signers).  Taking these cases into consideration, sheep and goats are 

determined for all the signers as shown in Figure 4.12 and the percentage of each 
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category of signers (as described earlier in this section) within the overall 

population is shown in Figure 4.14. 

 

 

 

Figure 4.13.  Examples of different cases of signers’ stability 

 

Figure 4.14 shows that Category 1 contains the largest number of individuals across 

the population, indicating that stable signers in their original signatures remain 

stable signers when developing a new signature.  Encouragingly, a rather small 

proportion of the population are unstable signers in their original signature and 

remain so when moving to a new signature style, but some 10.26% of the population 

with an originally stable signature generate a degree of instability when changing 

to a new signature style - although we have presented evidence that such a group 

may, in the longer term, still achieve stability. Finally, for 15.38% of the population 
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who exhibited instability in the original signature the results show that it is possible 

nevertheless to achieve stability when changing their signature style. 

 

 

 

Figure 4.14. Percentages of each category in overall population 

 

4.3.2    Classification results  

A more practically-oriented test of the viability of the natural revocability concept 

for the handwritten signature may be considered to be the achievable performance 

directly in a recognition/verification scenario. To observe whether the newly 

formed signature can be reliably verified or not, and to compare the performance 

achieved against performance with the original signature, a recognition experiment 

was performed using the data mining software named Weka [220]. Since for our 

purposes in the present context, relative performance is more important than 

absolute performance, for this experiment a simple nearest neighbor classification 

algorithm (KNN) [219] was adopted.  However, in order to give greater generality 

to the results, performance using  the SVM classifier [272] was also determined.  
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As described in Section 2.5 in Chapter 2, KNN is a simple, non-parametric classifier 

that does not require any explicit training phase but the class or category 

representing the samples must be labelled.  In these experiments the simplest 

configuration with k = 1 has been used. The first nearest neighbour is determined 

by measuring the squared Euclidean distance between the test signature sample and 

all the training signature samples. Then the measured distances are sorted from 

minimum to maximum and the class label appearing within the minimum distance 

(first nearest neighbour) is assigned to the test sample. 

The Support Vector Machine classifier approach was originally designed for binary 

classification. It finds a hyperplane or a decision surface (separating plane) between 

two point classes determined by certain points (the closest points between the two 

classes) of the training set. The closest points are called the support vectors. The 

hyperplane or the decision surface tends to maximise the distance. The training 

samples are divided into positive and negative groups according to this hyperplane 

or surface. In this experiment,  the  ‘one-against-one’ method reported in [273],  has 

been adopted in order to apply the binary SVM classifier to a multi-class problem. 

The  method constructs N(N – 1)/2 binary classifiers (N being the number of 

classes) for each distinct pair of classes and then each binary classifier assigns the 

test sample to one of the two distinct classes . In order to assign a class label to the 

test sample, a majority voting strategy is used. In each case, the assigned class label 

is incremented by one and finally the class with the most votes determines the 

ultimate class label of the test sample. In the case of ties, the first class label is 

assigned to the test sample. 

For both the KNN and SVM classifiers a 10-fold cross validation methodology 

[274] has been adopted, where the dataset is randomly divided into ten subsets of 

approximately equal size. One of these ten subsets is used as a test set and the 

remaining nine subsets are used for training the classifier. This process is repeated 

ten times until each of ten subsets is used as a test subset once.  If the class of the 
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predicted training and test subjects match, are from the same class, the decision is 

recorded as   correctly classified; otherwise it is recorded as incorrectly classified. 

The overall error rate is evaluated as the percentage of total number of incorrectly 

classified test subjects out of all the test subjects. Figure 4.15 shows the evaluated 

error rates for the original and new signatures using both KNN and SVM classifiers. 

The classification results are based on one-to-many identification and recognition 

rate is on the basis of the correct match  in the first rank (Rank 1). The reported 

results show that the error rate generated is lower in both classifiers for the new 

signature than for the original signatures, although the difference is modest. This 

may be due to taking greater care when creating the new signature, or the style or 

type of the new signature which may have more distinguishing features than the 

original signature for recognition (signature style and a feature based analysis is 

reported in Chapter 5). But, nevertheless, this shows the potential of the new 

signatures to be reliability recognised in the event of compromise of the original 

signature without degrading the recognition accuracy.  

 

 

 

Figure 4.15. Classification results 
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4.4    Conclusions 

In this chapter, the idea of natural revocability – a particular characteristic of a 

behavioural modality which might be exploited in security applications, has been 

investigated and explored for the handwritten signature modality. Experimental 

analysis has been performed using both O-RevKent (Original signatures) dataset 

and N-RevKent (New signatures) dataset, which enabled the investigation to carry 

out using the current familiar signing pattern of each individual as a reference point. 

.     

Although it is difficult to assess the wider significance of the results using only a 

small database, the observations provide initial indications which suggest, in 

general, that individuals are able in most cases to develop a new signature which 

can quickly achieve stability.  This provides some evidence, and a degree of 

optimism, that the idea of natural revocability, whereby a compromised signature 

can be revoked by a user and a new signature form substituted, offers potential 

viability in a practical scenario, especially given that stability appears in most cases 

to be achieved over a relatively short timescale. It has also been shown how stability 

patterns between original and new signatures change across individuals. Finally, 

recognition performance has been evaluated as a more practically-oriented test of 

the viability of the natural revocability concept. It has been shown that the new 

signatures can be reliably recognised and even that the performance achieved can 

be better than that found for the original signatures.  Further and much more 

extensive investigation would be required to determine how this might change over 

a longer timescale, such as applies when the original signature, typically developed 

and established over long periods, is used. 

In summary, the study presented in this chapter provides some valuable indicators 

of performance in respect of the potential for further development of the principles 

of natural revocability as a practical option in appropriate applications. 
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The next chapter will explore some further issues related to the concept of natural 

revocability such as correlation between original and new signatures, relationship 

between performance and the features used and so on.  
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Feature Based Analysis of Natural 

Revocability   

 

 

 

This chapter will present some feature-based analysis of the natural revocability 

concept (defined and presented in Chapter 4) by investigating some features 

commonly used in signature processing in both original and new signatures of a 

group of writers, and exploring the relationship between features, signature style 

and their effect in relation to original signatures and new signature. Section 5.1 

will give a brief review of related feature-based studies. Section 5.2 will investigate 

the relationship between original and new signatures based on feature values, 

variability and interrelations between them. Following this some experimental 

analysis will be reported in Section 5.3; examining the effect of signature style in 

sub-section 5.3.1 and the effect of demographic factors (specifically, age, gender 

and handedness) in sub-section 5.3.2. Finally, Section 5.4 will conclude this 

chapter.  

 



 

116 

 

5.1    Review of feature based analysis in handwritten 

signatures 

Since the handwritten signature is a very widely used biometric trait (discussed in 

Chapter 1), a considerable number of studies have been reported on some 

particularly important factors related to signature verification and identity 

prediction, for example, reliable signature verification systems [17], [198], [255], 

[275], different types of approaches to extract information from signature samples 

[126], [276], [277], the investigation of the consistency of signatures [210], [278], 

improving identity prediction performance using soft biometrics [56], investigation 

of ageing in signature biometrics [153], [213], [279] and so on. Most studies within 

the signature biometric field have examined both the static data relating to the 

physical characteristics of the signature and the dynamic data relating to often more  

informative [93], [280]  temporal characteristics of the signing behaviour (in other 

words how the signature was constructed).  Some feature based analyses have also 

been reported, including, analysis of feature repeatability or stability [207], where 

a set of common, mostly static features have been used to analyse feature variability 

both within a single capture session and over time (multiple sessions) and the 

influence of physical characteristics on the variability.  

In another study reported in [200], the signing process is analysed using  dynamic 

features covering both the kinematic (describing the motion) and kinetic (describing 

the force involved in the movement) characteristics of the signing behaviour in 

order to provide evidence of the distinctiveness of genuine and forged handwritten 

signatures. Differences and similarities of the dynamic features (pen position, 

writing velocity, pen stop or break, pen force, pen lifts and landing, pen orientation 

-  azimuth and pen tilt) between genuine and forged signatures have been reported.  

A recent similar feature-based study has been reported in [281], which performed 

dynamic signature verification under a forensic scenario using  a large number (40 
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out of 117 were selected for verification) of global features to improve performance. 

This study also reported some statistical analysis of a set of selected features (6) for 

genuine and forged signatures.  A set of selected features have been analysed 

statistically for genuine and forged signatures to obtain useful information that 

could support forensic experts in distinguishing between genuine and forged 

signatures.  

Another study in the forensic field, reported in [214], examined whether there is 

any  difference in dynamic features (duration, size, velocity, jerk, and pen pressure) 

between genuine and simulated signatures and if the signing style (text-based, 

stylized, and mixed)  has any impact on the characteristics of handwriting 

movements for simulations. The author also reported another study [282] where the 

differences in the same dynamic features between different signature styles have 

been examined. The effects of signing style on handwriting dynamics across 

genuine, disguised and auto-simulated signatures have also been examined. The 

results reported in both studies suggest that the signing style might be a potentially 

significant characteristic in signature feature evaluation with a view to forming 

opinions regarding authenticity.  

The impact of signature legibility [283] (legible, medium and non-legible) and 

signature type (Simple flourish, Complex flourish, Name + simple flourish, and 

Name + complex flourish) in off-line signature verification and classification of 

handwritten signatures based on name legibility [177]  have also been reported in 

the biometrics field.  Some other feature based studies reported in the literature 

include the relationship  between personality trait and signature production [284], 

feature based comparison of pen-based and swipe-based signature characteristics 

[285].  
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5.2    Relationship between features in original and newly 

established signatures 

This section will explore the relationship between writers’ original and newly-

established signatures, initially based directly on feature values, and later 

considering the variability of features. The effect of feature values on feature 

variability is also investigated, observing the differences and similarities of the 

effect between original and new signatures in the same writer.  

For this experimental study, 60 commonly used [153], [177], [207], [215], [255], 

[282], [284], [286] features, as defined in Table 2.1, 2.2 and 2.3 (in Chapter 2), are 

extracted from all the signature samples of the two datasets O-RevKent (original 

signatures) and N-RevKent (new signatures) of the Rev-Kent database (the data 

collection and dataset characteristics are described in detail in Chapter 3). 

Following feature extraction, a Spearman rank correlation test (as defined in 

Chapter 2) is performed between each corresponding feature in the original and new 

signatures. As described in Chapter 2 (Section 2.4) the obtained correlation 

coefficient rho(ρ) is a number between –1 and 1 that determines the extent to which 

the feature values in the original and new signatures are related. A rho(ρ) value 

close to zero indicates there is no evidence of any correlation or relationship, while 

the closer to 1 is this value, the stronger is a positive correlation (i.e. if the feature 

value in the original signature increases, the feature value in the new signature also 

increases) while the closer to –1 the stronger is the negative correlation (i.e. if the 

feature value in the original signature decreases, the feature value in the new 

signature also increases). A significance level (p-value) is also calculated to 

determine the confidence in the relationship (as described in [287]) between the  

feature values in the original and new signatures. The rho(ρ) value indicates the 

strength of the correlation between original and the new signature for a feature (e.g. 

according to [288] strength of the correlation based on rho (ρ) value: 0.9-1 very 

strong, 0.7-0.9 strong, 0.5-0.7 moderate, 0.3-0.5 weak and 0-0.3 negligible) and the 



 

119 

 

p-value indicates how significant the relationship or the correlation is between 

original and new signature for that feature. For example, if the calculated correlation 

coefficient and p-value for feature 24 between original and new signature is 0.91 

and 0.001 respectively, this indicates that feature 24 in original and new signature 

is very strongly correlated and correlation is highly significant i.e. there is over 99% 

chance that feature 24 in original an new signature is very strongly correlated.  The 

results of the correlation (correlation coefficient rho (ρ) and its significance level 

p-value) are shown in Table 5.1. 

It can be observed in Table 5.1 that many features are found to have significant 

positive correlations between the original and new signatures (with some features 

having very strong correlations and some having moderate to weak correlations). 

For example, azimuth (feature number 22), altitude (23), pen pressure (24), 

horizontal centralness (42), average y coordinate value (39) are found to have strong 

correlations between the original and new signatures. Average resultant velocity 

and acceleration (53 and 58 respectively), difference between maximum and 

average and between maximum and minimum vertical acceleration (19, 20) are 

found to have moderately strong correlations. This indicates that the same 

underlying constructional mechanism is evident in the new signatures as was the 

case with the original signatures for these features. It is also noted from Table 5.1 

that there is no evidence of significant correlation found in total distance travelled 

(1), signature execution time (2) number of pen lifts (3), signature width (44) 

between original and new signatures. Figure 5.1 shows the boxplots of feature 

values of these features in the original and new signatures. On each box, the central 

mark is the median, the edges of the box are the 25th and 75th percentiles, and the 

whiskers extend to the most extreme data points considered.  
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Table 5.1.  Correlation between features in the original and new signatures 

(NS = Not significant, considered if p-value >0.05) 

Feature No rho(ρ) p-value   Feature No rho(ρ) p-value 

1 0.177126 NS   31 0.5731 p<0.001 

2 0.290688 NS   32 0.3453 p<0.05 

3 0.198623 NS    33 0.1186 NS 

4 0.592105 p<0.001   34 0.4698 p<0.01 

5 0.687854 p<0.001   35 0.5393 p<0.001 

6 0.606478 p<0.001   36 0.6561 p<0.001 

7 0.574089 p<0.001   37 0.7024 p<0.001 

8 0.593725 p<0.001   38 0.6182 p<0.001 

9 0.489271 p<0.01   39 0.9279 p<0.001 

10 0.768219 p<0.001   40 0.7802 p<0.001 

11 0.799798 p<0.001   41 0.4759 p<0.01 

12 0.677733 p<0.001   42 0.9279 p<0.001 

13 0.339271 p<0.05   43 0.5731 p<0.001 

14 0.274494 NS   44 0.2435 NS 

15 0.685223 p<0.001   45 0.5852 p<0.001 

16 0.651012 p<0.001   46 0.3686 p<0.05 

17 0.718421 p<0.001   47 0.5034 p<0.01 

18 0.741296 p<0.001   48 0.6321 p<0.001 

19 0.838057 p<0.001   49 0.2365 NS 

20 0.837854 p<0.001   50 0.4196 p<0.01 

21 0.802429 p<0.001   51 0.6721 p<0.001 

22 0.867409 p<0.001   52 0.7172 p<0.001 

23 0.871862 p<0.001   53 0.7249 p<0.001 

24 0.912348 p<0.001   54 0.7123 p<0.001 

25 0.446761 p<0.01   55 0.6204 p<0.001 

26 0.382794 p<0.05   56 0.3112 NS 

27 0.293927 NS   57 0.5126 p<0.001 

28 0.502632 p<0.01   58 0.8097 p<0.001 

29 0.510121 p<0.01   59 0.6107 p<0.001 

30 0.488462 p<0.01   60 0.5121 p<0.01 
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Figure 5.1. Boxplots of total distance travelled by pen, signature execution 

time, pen lifts in original and new signatures 
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It can be observed in Figure 5.1 that users tended to lift the pen more when writing 

their original signatures compared to when writing the newly formed signatures. 

Total distance travelled by the pen, and signature execution time are also slightly 

longer in the original compared to the same features in the new (naturally revoked) 

signatures. Whether the differences in feature values are due to creating a different 

signature or whether any other factors such as signature style and/or user/subjects 

age or gender has any effect on this, needs further investigation, which is discussed 

later in this chapter (in Section 5.3).  

As described in Chapter 4,  the physical dimensions of a handwritten signature can 

vary over time [211], [249]–[251] due to its natural variability, signing environment 

and so on, but the fundamental characteristics of the handwritten signature remain 

relatively constant over a period when written in a given frame. Therefore, it is 

particularly important to understand the variability of features of the new signature 

(for example, which features are more variable and which are more consistent) and 

comparing the variability with that of the original to see if the variability of the 

features is similar or different. In order to investigate this, features are extracted 

from the two datasets specified earlier in this section. Then, the mean, µ, and 

standard deviation, σ, of the feature values are extracted from the same and different 

acquisition sessions (intra-session and inter-session values respectively) for each 

feature for each user or user. To determine the variability of each feature the 

coefficient of variation (CV) is used – a measure of the dispersion of data that 

describes the variability relative to the mean [289].  It is measured as the ratio of 

the standard deviation, σ, to the mean, µ, as defined in (5.1).  As this is 

dimensionless, it permits the comparison in variation of different feature values free 

from scale effects. 

 

 

𝐶𝑉 =  
𝜎

|μ|
 ×  100 (5.1) 
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In this way, an intra-session coefficient of variation (intra-CV) is calculated for each 

feature using the samples collected within a session for each user. This intra-CV for 

each feature describes how much the feature varies within the session -  in other 

words, how repeatable, reproducible or stable the feature is in that session. Hence, 

a high intra-CV for a feature indicates that high variation occurs between the 

signature samples within a session and the feature is not repeatable or not stable 

(i.e. extracted feature values differ greatly between samples) whereas a low intra-

CV indicates the feature is stable (i.e. extracted feature values are similar between 

samples). Also, to observe the features which show stability within a session, 

whether these show similar stability over a period or not, an inter-session coefficient 

of variation (inter-CV) is calculated for each feature using all the samples collected 

from all user’s capture sessions. Like the intra-CV, a low inter-CV for a feature 

indicates that it does not vary greatly between all the sessions -  in other words, the 

feature shows stability over a period for a user. Figures 5.2 and 5.3 show the 

boxplots of each feature’s intra and inter session variability in the original and new 

signatures. The boxplots of each feature show the mean and the variance of the CVs 

across the users. It can be observed from these Figures that individual feature’s 

variability is similar in the original and the new signature.   

A further analysis has been carried out to obtain a generalised view of each feature’s 

variability (or stability) from these intra-CVs and inter-CVs across all the users. A 

mean intra-CV (M-intra-CV) for a feature is calculated from all the intra-CVs of all 

users. A low M-intra-CV for a feature means that the feature has low variability -  

in other words high stability -  within all sessions for all users. Figure 5.4 shows the 

calculated M-intra-CVs for all the features (static and dynamic) arranged in a 

ranked order of stability or ease of repeatability for both the original and new 

signatures. A mean inter-CV (M-inter-CV) is also calculated for a feature from all 

inter-CVs across all users, where a low value of M-inter-CV shows that the feature 

is repeatable (or reproducible) for all users across all the capture sessions indicating 

a characteristic which does not fluctuate between the capture sessions.      
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Figure 5.2.  Intra session variation of individual feature in oringinal (top) and new (bottom) signatures 
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Figure 5.3.  Inter session variation of individual feature in oringinal (top) and new (bottom) signatures 
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Figure 5.4.  Mean intra-session variation of features across all users in a ranked order. 
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Figure 5.5.  Mean inter-session variation of features across all users in a ranked order 
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Table 5.2.  Top 20 most stable (least variable features) 

Feature 
Number 

Feature Name 
Feature 

Type 
22 Azimuth Dynamic 
23 Altitude Dynamic 
24 Pressure Dynamic 
53 Average resultant velocity Dynamic 
1 Total distance of pen travelled Static 
58 Average pen acceleration in resultant Dynamic 
49 height / area Static 
25 Number of points comprising the image Static 
3 Pen lift Dynamic 
44 Width of signature Static 
12 Maximum pen velocity in x - Minimum pen velocity in y Dynamic 
52 Total time of zero velocity / total time in Y direction Dynamic 
27 Standard deviation x coordinate values Static 
9 Maximum pen velocity in x - Minimum pen velocity in x Dynamic 
2 Total signature execution time Dynamic 
51 Total time of zero velocity/execution time in X direction Dynamic 
11 Maximum pen velocity in y - Minimum pen velocity in y Dynamic 

33 
Average x coordinate value - minimum x coordinate 

value 
Static 

50 Number of vertical midpoint crossing the signature Static 
48 Signature width / area Static 

 

Figure 5.5 shows the calculated M-inter-CVs for all the features (static and 

dynamic) arranged in a ranked order of high to low repeatability (reproducibility) 

between sessions.  

It can be noted that the highly stable or least variable features in the original 

signatures have similar mean values (both M-intra-CV and M-inter-CV) as the 

highly stable features in new signatures and a majority of the features’ mean values 

are found to have a plus or minus value of 10 between the calculated mean values 

for original and new signatures indicating the stability or variability characteristics 
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of the features remain almost consistent even when creating a new signature. It is 

also observed that the static features have higher variability compared to the 

dynamic features and the feature ranking is almost same for M-intra-CV and M-

inter-CV in both original and new signatures. The top twenty least variable (or most 

stable) features are shown in Table 5.2 (other features’ descriptions are given in 

Table 2.1, Table 2.2 and Table 2.3 in Chapter 2).  

In order to investigate the effect of a feature’s calculated value on its 

variability/stability/reproducibility (over a period), a Spearman rank correlation (as 

defined in Equation 2.2 in Chapter 2) is determined between the calculated mean 

feature values and the inter-CVs of each feature for every user for both original and 

new signatures. A significance level (p-value) is also calculated to determine the 

confidence in the relationship (as described in [287]) between feature values and 

their variability. The results of the correlation (correlation coefficient rho (ρ) and 

its significance level p-value) are shown in Table 5.3 and Table 5.4. (Table 5.5 

shows the correlation results including all samples from both original and new 

signatures). 

Based on the calculated correlation coefficient rho(ρ) and the significance level p-

value, it can be observed in Tables 5.3 and 5.4 that several features are found to 

have significant correlation between the feature values and their variability, which 

indicates that the variability is influenced by the physical characteristics of the 

signature and/or temporal characteristics of the signing behaviour. Feature numbers 

42 (Horizontal centralness), 43 (Vertical centralness), 31 (Average x-coordinate 

value), 39 (Average y-coordinate value) are found to have very strong negative 

correlations with their variability in both the original and new signatures being 

significant at p<0.001.  This means that the variability of these features decreases 

as the feature values increase or, in other words, the higher the feature value the 

more reproducible the feature.    
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Table 5.3.  Correlation between feature values and feature variability in 

original signatures (NS = Not significant) 

Feature No rho(ρ) p-value   Feature No rho(ρ) p-value 

1 -0.1626 NS   31 -0.7063 p<0.001 

2 -0.2571 NS   32 -0.0474 NS 

3 -0.3630 p<0.05   33 -0.4395 p<0.01 

4 -0.5555 p<0.001   34 -0.5016 p<0.01 

5 0.3478 p<0.05   35 0.1419 NS 

6 -0.4972 p<0.01   36 -0.6915 p<0.001 

7 -0.4597 p<0.01   37 -0.3188 p<0.05 

8 -0.0868 NS   38 -0.6607 p<0.001 

9 -0.3417 p<0.05   39 -0.9698 p<0.001 

10 -0.2441 NS   40 -0.2870 NS 

11 -0.2484 NS   41 -0.0391 NS 

12 -0.2180 NS   42 -0.9698 p<0.001 

13 0.2067 NS   43 -0.7063 p<0.001 

14 0.7285 p<0.001   44 -0.2508 NS 

15 -0.6271 p<0.001   45 -0.1233 NS 

16 -0.5962 p<0.001   46 0.1838 NS 

17 -0.2202 NS   47 0.1014 NS 

18 -0.0921 NS   48 0.3799 p<0.05 

19 0.2020 NS   49 0.2412 NS 

20 0.1974 NS   50 -0.4800 p<0.01 

21 -0.0326 NS   51 -0.4587 p<0.01 

22 -0.5241 p<0.001   52 -0.3271 p<0.05 

23 0.0818 NS   53 0.1921 NS 

24 -0.5512 p<0.001   54 -0.3848 p<0.05 

25 -0.4581 p<0.01   55 -0.4727 p<0.01 

26 -0.2897 NS   56 -0.3190 p<0.05 

27 -0.1057 NS   57 -0.3889 p<0.05 

28 -0.6785 p<0.001   58 0.2271 NS 

29 -0.5996 p<0.001   59 0.2409 NS 

30 -0.4753 p<0.01   60 0.4030 p<0.05 
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Table 5.4.  Correlation between feature values and feature variability in new 

signatures (NS = Not significant) 

Feature No rho(ρ) p-value   Feature No rho(ρ) p-value 

1 -0.0593 NS  31 -0.8004 p<0.001 

2 0.2407 NS  32 -0.0717 NS 

3 -0.1990 NS  33 -0.3221 p<0.05 

4 -0.4802 p<0.01  34 -0.0729 NS 

5 0.0945 NS  35 0.1769 NS 

6 -0.0644 NS  36 -0.6842 p<0.001 

7 0.0158 NS  37 -0.2283 NS 

8 -0.0233 NS  38 -0.6221 p<0.001 

9 -0.1036 NS  39 -0.9423 p<0.001 

10 -0.0417 NS  40 -0.1719 NS 

11 -0.2789 NS  41 0.1676 NS 

12 -0.1034 NS  42 -0.9423 p<0.001 

13 0.2231 NS  43 -0.8004 p<0.001 

14 0.6055 p<0.001  44 -0.2492 NS 

15 -0.2573 NS  45 0.0089 NS 

16 -0.2362 NS  46 0.0652 NS 

17 -0.3816 p<0.05  47 0.1767 NS 

18 -0.0964 NS  48 0.3375 p<0.05 

19 -0.0176 NS  49 0.3226 p<0.05 

20 -0.1338 NS  50 -0.4186 p<0.01 

21 -0.2702 NS  51 -0.2808 NS 

22 -0.5273 p<0.001  52 -0.1834 NS 

23 -0.0178 NS  53 0.0777 NS 

24 -0.6466 p<0.001  54 -0.2565 NS 

25 -0.0010 NS  55 -0.0245 NS 

26 -0.3583 p<0.05  56 -0.2599 NS 

27 -0.1429 NS  57 -0.4308 p<0.01 

28 -0.8051 p<0.001  58 0.1745 NS 

29 -0.4796 p<0.01  59 0.1983 NS 

30 -0.4079 p<0.05   60 0.5617 p<0.001 
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Features 22 (Azimuth) and 24 (Pen pressure) are also found to have negative 

correlations, both being significant at p<0.001 in both original and new signatures 

-  i.e. the higher the amount of pressure applied in signing, the more consistent is 

the user in applying that pressure. Signatures that cross the vertical centre point 

(Feature 50) more are found to be less variable than those that cross less frequently 

(significant at p<0.01 in the original and in the new p<0.001). Variability in the 

width of the signature does not seem to correlate its feature value significantly in 

original or new signatures. It is also observed that the more pen lifts within a 

signature, the easier it is to reproduce those lifts (significant at p<0.5 in original 

signatures but not in new signatures); the higher horizontal velocity applied while 

signing, the more consistent is the signer in applying those velocities (significant at 

p<0.001 in original signature and p<0.01 in new signatures). 

A further study, to investigate if there is any effect of signature styles or external 

factors such as gender, age etc. on the features’ variability, is reported in the next 

section.  

5.3    Signature style and other factors  

This section will present some analysis of the signature “style” adopted by signers 

when creating both the original and new signatures, exploring whether users 

typically tend to write the new signature keeping the same style as the original, or 

whether they adopt a different style; if there is any effect of signature style on 

original and new signatures based on individual feature values, its variability. 

Effects of other factors, such as age, gender etc., on both the original and new 

signatures are also explored later in this section.  According to the studies reported 

in [177], [214], [282] signatures can be classified into three basic styles based on 

the legibility; i) text-based(T) - where all the allographs in the signature are clearly 

legible, ii) mixed(M) - where some of the  allographs  can be recognised but it is not 

possible to extract all of them completely, and iii) stylised(S) - where none of the 
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allographs in the signature is  legible. For this experimental study, all users’ 

signatures, both original and newly established, are classified into these three style 

categories.  The categorisation is carried out by using a small group of human 

observer to make a judgement.  Five observers (university students and researchers) 

were asked to view a sample for each of all users’ signatures and classify each 

sample as one of the three signature style categories (T, M, S). In this way, the style 

which was assessed as appropriate by a majority of the observers was finally chosen 

to be the designated style category for that signature.  

Table 5.5.  Percentage of users using each signature style 

    Original New   

  Text-based(T) 23% 23%   
  Mixed(M) 33% 26%   
  Stylised(S) 44% 51%   
       

Consistency of style 
Original 

Text-based(T) Mixed(M) Stylised(S) 

New 
Text-based(T) 15% 5% 3% 

Mixed(M) 3% 15% 8% 
Stylised(S) 5% 13% 33% 

Total consistency  63%   

Table 5.5 shows the percentage of users using each style when signing their original 

and the new signatures. Overall, the stylised (S) signature style (original – 44%, 

new – 51%) is adopted more than the text-based (23% in both original and new) 

and the mixed (original - 33%, new - 26%) styles in both original and new 

signatures. 63% of the users used the same signature style as their original signature 

when creating the new signature and 36% of the users changed their signature style; 

where 3% and 5% of them changed style from text-based to mixed and stylised 

respectively.  A change of style from mixed to text-based and stylised is observed 
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in 5% and 13% of the users; stylised to text-based and mixed is observed in 3% and 

8% of the users respectively. This shows that the majority of the users tend to use 

the same signing style when creating a new signature.   

5.3.1    Signature style influence 

The effects of handwriting style (on feature values and feature variability) in 

original and new signatures are examined with two separate 3 × 2 (Style (T, M, S) 

× Type (original-O, new-N signatures)) analysis of variances (ANOVAs) for each 

feature and each feature’s variability. Table 5.7 shows a summary of the ANOVA 

results for feature values (no significant difference is found in interactions between 

style and type of signature for any feature, and these are therefore omitted from the 

Table). Post hoc analyses are carried out with Tukey’s HSD (honest significance 

difference) [290] to determine the style or type contributing to the difference if a 

significant difference is found. 

It can be observed from the ANOVA result (in Table 5.6) for the comparison of 

feature 1 (total distance travelled by the pen) that no significant main effect is found 

for style, but significant difference (p<0.05) is found for type (original and new); 

where original signature traces found to have longer path lengths than the new 

signatures. For signature execution time (feature 2), the main effects for style and 

type are found to be significant (both ps <0.05). Post hoc analysis shows that text-

based signatures take longer to execute than stylised signatures, where there is not 

much difference between mixed and stylised and mixed and text-based; also, 

original signatures take more time than the new signatures. A similar result is also 

found for pen lift (feature 3); users who use the text-based style lift the pen more 

than users who adopt the stylised style and the number of pen lifts is found to be 

greater in original signatures than new signatures. Likewise, total pen-up time (56) 

is also longer in text-based original signatures than stylised original and new 

signatures (p<0.05 for style and p<0.01 for type).  
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Table 5.6.  ANOVA results for style (T, M, S) versus type (Original and new) 

for feature variabilities 

F 
no  

Style Type F 
no  

Style Type 

F (2,72)    p F (2,72)    p F (2,72)    p F (2,72)    p 
                    

1 0.52 NS 4.05 <0.05 31 0.24 NS 105.05 <0.001 

2 3.68 <0.05 5.13 <0.05 32 0.37 NS 0.28 NS 

3 7.27 <0.01 9.05 <0.01 33 1.79 NS 0.44 NS 

4 0.28 NS 0.17 NS 34 5.85 <0.01 5.65 <0.05 

5 0.29 NS 0.00 NS 35 9.20 <0.001 0.17 NS 

6 4.37 <0.05 2.33 NS 36 3.49 <0.05 0.81 NS 

7 4.46 <0.05 2.28 NS 37 0.20 NS 0.06 NS 

8 4.67 <0.05 0.00 NS 38 1.80 NS 0.69 NS 

9 6.57 <0.01 0.02 NS 39 1.00 NS 0.01 NS 

10 4.06 <0.05 0.54 NS 40 2.02 NS 0.37 NS 

11 6.57 <0.01 0.54 NS 41 4.68 <0.05 0.43 NS 

12 7.90 <0.001 0.07 NS 42 1.00 NS 0.01 NS 

13 0.73 NS 0.11 NS 43 0.24 NS 105.05 <0.001 

14 0.60 NS 0.07 NS 44 0.90 NS 0.40 NS 

15 3.91 <0.05 2.26 NS 45 4.64 <0.05 0.00 NS 

16 4.00 <0.05 2.22 NS 46 3.83 <0.05 0.49 NS 

17 0.16 NS 0.10 NS 47 0.54 NS 0.12 NS 

18 0.23 NS 0.22 NS 48 6.29 <0.01 0.01 NS 

19 0.02 NS 0.03 NS 49 2.38 NS 0.02 NS 

20 0.13 NS 0.19 NS 50 4.04 <0.05 4.12 <0.05 

21 0.15 NS 0.00 NS 51 6.54 <0.01 0.31 NS 

22 4.19 <0.05 0.53 NS 52 4.67 <0.05 0.09 NS 

23 4.79 <0.05 0.38 NS 53 10.64 <0.0001 0.01 NS 

24 11.99 <0.0001 0.00 NS 54 5.00 <0.01 0.49 NS 

25 5.92 <0.01 5.05 <0.05 55 3.84 <0.05 2.00 NS 

26 6.15 <0.01 0.04 NS 56 3.47 <0.05 7.15 <0.01 

27 1.36 NS 0.67 NS 57 1.22 NS 1.41 NS 

28 0.35 NS 0.26 NS 58 2.56 NS 0.06 NS 

29 0.67 NS 1.29 NS 59 0.93 NS 0.04 NS 

30 1.46 NS 0.76 NS 60 0.54 NS 0.12 NS 
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No significant main effect is found either for style or type for average horizontal 

and vertical velocity (feature 4 and 5). But the main effect for style for average 

resultant velocity (feature 53) is significant at p<0.0001, and the results show that 

users sign at a lower velocity when using text-based style compared to when 

adopting stylised and mixed style. Number of zero velocities and accelerations in 

both horizontal and vertical direction (features 6,7,15,116) are higher in text-based 

original signatures than mixed and stylised original signatures (all significant at 

p<0.05). There is no significant difference found between original and new 

signatures for these features.   

For azimuth and altitude (22 and 23), no significant main effect is found for type 

(original and new) but a significant (both ps<0.05) main effect is found for style. 

Mixed style signatures show higher azimuth compared to stylised with no 

significant difference between stylised and text-based. Text-based signatures reveal 

lower altitude compared to stylised with no significant difference between text-

based and mixed or mixed and stylised. There is no significant difference in pen 

pressure observed between original and new signatures but a significant difference 

(p<0.0001) between stylised and text-based signatures is observed. Users apply 

higher pen pressure when writing stylised signatures than text-based or mixed.  

The number of points comprising the signature image is significantly greater 

(p<0.01 for style and p<0.05 for type) in text-based original signatures than stylised 

original, mixed new and stylised new signatures with no significant difference 

between mixed and stylised. A similar difference is also observed for feature 34 

(sum of y coordinate values significant at p<0.01 for style and p<0.05 for type) 

while the sum of x coordinates values (feature 26) is larger in text-based original 

signatures than stylised original signatures (p< 0.05 for style and NS for type) with 

not much difference between different styles in the new signatures. Mixed style 

original signatures cross the vertical midpoint more times than stylised original and 

stylised new signatures (significant at p<0.05 for style and p<0.05 for type).  
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Table 5.7.  ANOVA results for style (T, M, S) versus type (Original and new) 

for feature variability 

F 
No 

Style Type F 
No 

Style Type 

F(2,72)    p F(2,72)   p F(2,72)   p F(2,72)     p 

1 3.21 p<0.05 0.30 NS 31 2.52 NS 72.93 p<0.0001 

2 2.72 NS 0.16 NS 32 6.00 p<0.01 0.17 NS 

3 0.84 NS 0.98 NS 33 2.68 NS 1.23 NS 

4 0.63 NS 0.13 NS 34 3.61 p<0.05 0.48 NS 

5 0.21 NS 0.31 NS 35 0.81 NS 0.17 NS 

6 4.33 p<0.05 0.51 NS 36 2.22 NS 0.69 NS 

7 3.18 p<0.05 0.25 NS 37 0.48 NS 0.17 NS 

8 0.07 NS 1.05 NS 38 0.94 NS 0.67 NS 

9 0.67 NS 0.83 NS 39 0.47 NS 0.06 NS 

10 0.06 NS 0.17 NS 40 1.74 NS 0.00 NS 

11 0.69 NS 1.37 NS 41 0.83 NS 0.00 NS 

12 0.85 NS 0.04 NS 42 0.47 NS 0.06 NS 

13 0.78 NS 0.19 NS 43 2.52 NS 72.93 p<0.0001 

14 0.70 NS 0.07 NS 44 6.11 p<0.01 0.48 NS 

15 4.08 p<0.05 0.05 NS 45 1.30 NS 0.00 NS 

16 2.97 NS 0.00 NS 46 0.32 NS 1.93 NS 

17 5.04 p<0.01 1.45 NS 47 3.29 p<0.05 0.01 NS 

18 2.17 NS 1.19 NS 48 1.49 NS 0.41 NS 

19 3.88 p<0.05 1.26 NS 49 4.09 p<0.05 4.06 p<0.05 

20 3.30 p<0.05 0.60 NS 50 1.44 NS 0.18 NS 

21 2.48 NS 0.95 NS 51 7.00 p<0.01 0.03 NS 

22 5.48 p<0.01 0.44 NS 52 4.51 p<0.05 0.00 NS 

23 2.90 NS 0.07 NS 53 8.52 p<0.001 0.02 NS 

24 3.45 p<0.05 0.04 NS 54 4.52 p<0.05 0.00 NS 

25 4.81 p<0.05 0.41 NS 55 2.70 NS 0.02 NS 

26 3.84 p<0.05 53.70 p<0.0001 56 1.67 NS 0.06 NS 

27 6.40 p<0.01 0.10 NS 57 1.52 NS 0.19 NS 

28 0.03 NS 0.01 NS 58 7.62 p<0.001 0.24 NS 

29 0.18 NS 1.50 NS 59 0.03 NS 0.05 NS 

30 0.61 NS 2.69 NS 60 0.43 NS 0.24 NS 
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Table 5.7 shows a summary of the ANOVA results for feature variability (no 

significant difference is found in interactions between style and type of signature 

for any feature, and these figures are hence omitted from the Table). As mentioned 

earlier, post hoc analyses are also carried out with Tukey’s HSD to determine the 

style or type contributing to the difference if a significant difference is found. 

It can be observed from the results (Table 5.7) that for many features the main 

effects for style and type (especially difference between original and new) are not 

significant or have little significance.  For total distance of pen travelled, the main 

effect for style is marginally significant (p<0.05), where variability is higher in 

stylised original signatures than mixed style original signatures with no significant 

difference in variability between text-based new, mixed new, stylised new and text-

based original signatures. 

For azimuth (22), stylised original and new signatures vary more than text-based 

original and new signatures, with main effect for style significant at p<0.01. No 

significant difference in the variability is observed between original and new 

signatures. Pen pressure is found to be more variable in mixed style original than 

stylised original signatures (p<0.05), but the differences between the three styles in 

new signatures are not significant. 

The number of points comprising the signature image varies more in stylised 

original than text-based original and mixed original signatures (p<0.01). The 

variability in stylised new is also higher than text-based new and mixed new but not 

significantly different. Sum of x coordinate values vary more in original signatures 

than new (p<0.0001 for type) where the variations in stylised and mixed original 

signatures are significantly different than the variations in stylised, mixed and text-

based new signatures (p<0.05 for style). Width of the signature is observed to vary 

more in stylised signature (p<0.05), but there is no significant difference in 

variation observed between original and new signatures. Average resultant velocity 
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and acceleration (53 and 58) in stylised signature vary more than the velocity in 

text-based or mixed style signatures (both ps<0.001 for style). 

The number of points comprising the signature image varies more in stylised 

original than text-based original and mixed original signatures (p<0.01). The 

variability in stylised new is also higher than text-based new and mixed new but not 

significantly different. Sum of x coordinate values vary more in original signatures 

than new (p<0.0001 for type) where the variations in stylised and mixed original 

signatures are significantly different than the variations in stylised, mixed and text-

based new signatures (p<0.05 for style). Width of the signature is observed to vary 

more in stylised signature (p<0.05), but there is no significant difference in 

variation observed between original and new signatures. Average resultant velocity 

and acceleration (53 and 58) in stylised signature vary more than the velocity in 

text-based or mixed style signatures (both ps<0.001 for style). 

It is seen from the analysis in Section 5.2 that most of the static features change 

when creating new signatures and some dynamic features (such as pen pressure, 

velocity related features) do not show much difference between the original and 

new signatures. The work reported in this section suggests that adopting a different 

signing style from the original signature style when creating a new signature can 

make a difference in the features values of those features which are found to be very 

similar between original and new versions, when keeping the same signature style 

as the original. For example, if a user chooses to adopt a stylised signing style for 

the new signature in contrast to a text-based original signature, this would  likely to 

increase the amount of pen pressure applied, average writing velocity, altitude and 

decrease the number of pen-lifts, pen-up time, points comprising the signature 

image etc. Although it is dangerous to draw an absolute conclusion from the 

experimental results presented in this section because of the small number of 

subjects in the database, nevertheless the results do suggest that adopting a different 

signature style for the new naturally revoked signature would have an impact on 
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changing not only the static features but also some dynamic features. 

5.3.2    Other factors 

In this section the effects of age, gender, and handedness on original and new 

signatures are examined. Users of both original and new signature datasets are 

divided in to three age groups (age group 1: 16-25 years, age group 2: 25-40 years, 

age group 3: 40-60 years) as described in Section 3.4 in Chapter 3. Users are also 

divided into two gender groups (Gd 1: Female, Gd 2: Male) and two handedness 

groups (Hn 1: right handed and Hn 2: left handed) as described in Chapter 3. 

Percentages of the population for each group are also shown in Figure 3.15-3.17 in 

Chapter 3.  

To examine possible effects of these characteristics two separate 3(age) x 2(type) x 

2(Gd) x 2(Hn) analyses of variance (ANOVA) are performed for individual features 

(feature values and feature variability separately). Post hoc analyses are also 

performed using Tukey’s HSD as described earlier. The significance of the effect 

of these factors (p values) from the ANOVA results is shown in Table 5.8. 

It can be observed from Table 5.8 that the effects of age, gender or handedness are 

not found to be significant for either original or new signatures for feature 1 (total 

distance travelled by the pen). For signature execution time (feature no 2), age 

group 3 (40-60) take (p<0.05 for age and p<0.01 for type) a longer time to sign their 

original signatures than age group 1 and 2 signing both original and new signatures; 

also, when signing the new signatures age group 3 take a shorter time compared to 

the time taken signing the original signature. No significant difference is found in 

the new signature for any age group. Although the execution time may depend on 

the shape and size related features of the signature, this may also suggest that people 

can execute a new signature fluently or rapidly even if they take longer time to sign 

their original signature. 
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Table 5.8.  ANOVA results (p-values) for age x type x gender x handedness 

for individual feature 

F No Age Type Gd Hn F No Age Type Gd Hn 

1 NS NS NS NS 31 NS <0.0001 NS NS 

2 <0.05 <0.01 NS NS 32 <0.01 NS <0.05 NS 

3 NS <0.05 NS NS 33 NS NS NS NS 

4 NS NS NS NS 34 NS <0.01 NS NS 

5 NS NS NS NS 35 NS NS NS NS 

6 <0.001 <0.01 <0.05 NS 36 NS NS NS NS 

7 <0.001 <0.01 NS NS 37 NS NS NS NS 

8 NS NS <0.05 NS 38 <0.05 NS NS <0.01 

9 NS NS NS NS 39 NS NS <0.05 NS 

10 <0.05 NS NS NS 40 NS NS NS <0.05 

11 <0.05 NS NS NS 41 NS NS NS NS 

12 NS NS <0.05 NS 42 NS NS <0.05 NS 

13 NS NS NS <0.01 43 NS <0.0001 NS NS 

14 NS NS NS NS 44 NS NS NS NS 

15 <0.01 <0.01 <0.05 NS 45 NS NS NS NS 

16 <0.001 <0.01 NS NS 46 <0.05 NS NS NS 

17 NS NS <0.05 NS 47 NS NS NS NS 

18 NS NS NS NS 48 NS NS <0.05 NS 

19 NS NS NS NS 49 NS NS NS NS 

20 NS NS NS NS 50 NS <0.05 NS NS 

21 NS NS <0.05 NS 51 <0.0001 NS <0.05 NS 

22 <0.01 NS NS NS 52 <0.0001 NS NS NS 

23 NS NS NS NS 53 <0.05 NS NS NS 

24 NS NS NS NS 54 <0.0001 NS NS NS 

25 <0.05 <0.01 NS NS 55 <0.001 <0.01 NS NS 

26 <0.05 NS NS NS 56 NS <0.05 NS NS 

27 NS NS NS NS 57 NS NS NS NS 

28 NS NS NS NS 58 NS NS NS NS 

29 NS NS NS <0.05 59 NS NS NS NS 

30 <0.05 NS NS NS 60 NS NS NS NS 
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No significant difference is found in pen lifts for age, gender or handedness but pen 

lifts are greater in original than in new signatures.  The number of zero velocities 

and accelerations in x and y directions are found to be greater in 40-60 years old 

male users’ original signatures compared to other age and gender groups for both 

original and new signatures; even 40-60 years old male users’ new signatures have 

less number of zero velocities and accelerations (not significantly different but 

suggesting users become confident signing the new signature irrespective of age) 

and in general female users have less number of zero velocities and accelerations 

than male users. Features 51, 52, 54 (ratio of total time of zero velocities to total 

duration in horizontal, vertical and resultant respectively) are found to have 

significant main effects for age. Post hoc analysis reveals that ratios are 

significantly higher in age group 3 (40-60 years) compared to age group 1 (16-25 

years), and 2 (25-40 years), which suggests as people get older they tend to stop or 

pause more when signing. No effect of gender, type or handedness is found to be 

significant for these features. A significant main effect for handedness is found for 

average horizontal acceleration (p<0.01), where right handed users sign with higher 

horizontal acceleration than left handed users.  

There is no significant main effect for age, type, gender or handedness in altitude 

and pen pressure. Azimuth tends to be higher in the 25-40 age group than in the 16-

25 age group where no significant difference between 40-60 years’ age group and 

the other two age groups (25-40 and 16-25). For number of points comprising the 

signature image, again the 40-60 years’ users tend to have more points than the 

other two age groups. But the number of points are more in their original signatures 

than in their new signatures.  

As mentioned earlier in this section a 3(age)×2(type)×2(Gd)×2(Hn) analysis of 

variance (ANOVA) is performed to examine the effect of age, gender, type and 

handedness on feature variability. The significance values of the effect of these 

factors (p values) from the ANOVA results are shown in Table 5.9.  
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Table 5.9.  ANOVA results (p-values) age x type x gender x handedness for 

individual feature’s variability 

F 
No Age Type Gd Hn 

F 
No Age Type Gd Hn 

1 NS NS NS NS 31 <0.05 <0.0001 NS NS 

2 NS NS NS NS 32 NS NS NS NS 

3 NS NS NS NS 33 NS NS NS NS 

4 NS NS NS NS 34 NS NS NS NS 

5 NS NS NS NS 35 NS NS NS NS 

6 NS NS NS NS 36 NS NS NS <0.001 

7 NS NS NS NS 37 NS NS <0.05 NS 

8 NS NS NS <0.05 38 NS NS NS NS 

9 NS NS NS NS 39 NS NS NS NS 

10 NS NS <0.05 NS 40 NS NS NS NS 

11 NS <0.05 <0.01 NS 41 <0.01 NS <0.05 NS 

12 <0.05 NS NS NS 42 NS NS NS NS 

13 NS NS NS <0.0001 43 <0.05 <0.0001 NS NS 

14 NS NS <0.05 NS 44 NS NS NS NS 

15 NS NS NS NS 45 NS NS NS NS 

16 NS NS NS NS 46 <0.01 NS NS NS 

17 NS NS NS NS 47 NS NS NS NS 

18 NS NS NS NS 48 <0.01 NS NS NS 

19 NS NS NS NS 49 NS NS NS NS 

20 NS NS NS NS 50 <0.05 NS NS NS 

21 NS NS NS NS 51 NS NS NS NS 

22 NS NS NS NS 52 NS NS NS NS 

23 NS NS NS NS 53 NS NS NS NS 

24 NS NS <0.01 NS 54 NS NS NS NS 

25 NS NS NS NS 55 NS NS NS NS 

26 NS <0.0001 NS NS 56 NS NS NS NS 

27 NS NS NS NS 57 NS NS NS NS 

28 <0.0001 NS <0.01 NS 58 NS NS NS NS 

29 NS NS NS <0.05 59 NS NS NS NS 

30 NS NS NS NS 60 NS NS <0.001 NS 
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It can be observed from the Table that not many features have a significant effect 

of age, type, gender, handedness on their variability. The variation in horizontal 

acceleration is higher in original signatures where users sign with their left hands 

(significant at p<0.0001). Vertical acceleration varies more in signatures written by 

male users compared to female users (p<0.05).  But for pen pressure it is the 

opposite, the variation in pen pressure is higher in female than male signers:  i.e. 

male users are better in reproducing the same pressure. Variation in average x 

coordinate value is significantly higher in original signatures written by users from 

age group 1 and age group 2 compared to new signatures written by users from 

same age groups.  Signature width by height ratio tends to be more consistent in 

signatures written by 16-25 years old users than 40-60 years old users (significant 

at p<0.01). Also, the number of vertical midpoint crossings (feature 50) varies more 

in 40-60 years old users than 16-25 years old users (p<0.05). Both effects indicate 

that younger users reproduce size and shape related features better.  

In this section the influence of age, gender and handedness on individual feature of 

original and new signatures has been analysed.  It is found from the experimental 

results that female writers generally tend to stop or pause less than the male writers 

when signing. The older male users (40-60), especially, tend to stop more and for 

longer compared to younger male users (16-25 and 25-40) but interestingly the 

number of pen stops while signing becomes less when creating the new signatures 

compared to the original signatures for older users. Although this could be due to 

the size, shape or the style of the signature (as discussed in Section 5.3.1), this may 

suggest also that people are able to create a new signature fluently irrespective of 

their age, maybe by adopting a different signature style. Right-handed users are 

found to be able to sign faster and reproduce the acceleration better than the left-

handed users. Younger users (16-25) are found to be better in reproducing size and 

shape related features than older users. Although it is hard to draw an absolute 

conclusion from the results because of the small database used for the experiments, 

the results showed that a majority of the features do not show much difference 
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between original and new signatures as a function of age, gender and handedness 

in terms of their feature values and reproducibility, which indicates that the idea of 

natural revocability (adopting a new signature in the event of compromise) can be 

feasible for any age, gender and handedness as the effect of these factors are not 

very different from the original signature. Moreover, for some features the effect of 

ageing can be overcome in the naturally revoked signature by adopting a different 

signature style.   

5.4    Conclusion 

In this chapter, a feature based analysis of the natural revocability phenomenon has 

been presented by investigating the relationship between features, signature style 

and their effect in original signatures and new signature.  A brief review of feature 

based studies in handwritten signatures in relation to feature variability, signature 

style and other demographic factors has initially been provided. Correlations and 

differences between original and new signatures have been explored by 

experimental analysis and discussed including feature values, feature variability 

and the relationship between feature values and variability. Many features have 

been found to be strongly correlated between original and new signatures. Both 

intra-session and inter-session variability has been analysed for each feature and the 

ranking of feature variability has been found almost identical in both original and 

new signatures, indicating that these characteristics are general handwritten 

signature characteristics. An analysis of different signature styles has been 

presented investigating consistency of signature style when changing to a new 

signature, effects of style on signature features between original and new signatures. 

Finally, the effects of demographic factors such as age, gender, and handedness on 

original and new signatures have been explored and discussed.  
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In summary, the study presented in this chapter provides a valuable insight into not 

only the feature based characteristics in naturally revoked signatures but also in 

general handwritten signatures.  

The next chapter will investigate an objective measure of a new feature 

(‘Hesitation’) which may be useful in describing the stability in natural revocability 

as well as exploring its possibility to be an effective discriminating feature in 

automatic handwritten signature verification more generally. 
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Developing features to improve 

handwritten signature biometrics 

 

 

This chapter will explore the development of a type of feature for signature 

processing which appears to be particular relevance to the study reported here.  

The feature relates specifically to the concept of hesitancy (or its converse, fluency) 

of   and we will investigate its impact on signature development in the context of 

natural revocability and signature verification more generally, using an objective 

measure of the power of the feature. Section 6.1 will introduce the general idea of 

hesitation and its measurement and provide a brief review which covers all the 

relevant studies and background information about hesitation in different areas. 

Section 6.2 will introduce and describe an algorithm to measure the feature value 

quantitatively. Following the objective definition of hesitation some experimental 

analysis will be reported in section 6.3. Finally, section 6.4 will conclude the 

chapter.  
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6.1    Introduction 

As discussed in Chapter 1, the handwritten signature has long been established as a 

common means for providing proof of identity, especially in the context of 

certification of documents, financial transactions, and so on, while, in many 

practical situations, everyday signature checking encountered in public services or 

sales environments involves non-experts with no formal training.  In more formal 

situations, for example in legal scenarios of in criminal investigations, the 

determination of the authenticity of a handwritten signature is still most commonly 

carried out by human inspectors, usually professional forensic document examiners 

(FDE).  Automatic signature verification systems can provide more robust solutions 

in the former situation, but can also support and enhance performance in the latter, 

with both online and offline processing scenarios encountered [17], [119], [198], 

[206]. Most of the work carried out  by FDEs regarding signatures is focused on 

offline signatures (where the signature is in the form of an ink trace on a substrate, 

normally paper) and visually detectable features in handwritten signatures form the 

basis of evidence supporting whether a questioned signature is genuine or forged 

[214], [291]. But in this way, significant dynamic information (such as pen velocity, 

stroke duration, etc.) is lost to the examiner, although estimates of these dynamics 

may sometimes be inferred [292], [293] from static traces. It has also been reported 

in published studies [93], [294] that forgers are more successful in copying spatial 

aspects of handwriting than the kinematic aspects, as forging another person’s 

handwriting or signature is an untrained motor task that needs feedback in order to 

simulate general shape characteristics in the best possible way. As a result, the 

writer often shows hesitation, unnatural pen lifts, patching, tremor etc. in writing or 

signing, revealing the true nature of forgery [197] .  

Normally, the signature is written quickly in a fast and fluent motion, as this is 

probably the most practised handwriting movement developed in one’s lifetime 

unless an individual is suffering from some pathology or other physical or mental 
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condition that influences their handwriting performance [295].  These fast fluid 

movements contribute greatly to the flow of the signature and as they are frequently 

rehearsed, and become automatic to the writer [85], [90]. The more this is  skilled 

and automatic, the less variability there is in the temporal domain (performance 

time), the spatial domain (length, height and width) and in characteristics relating 

to pressure (force  applied on an object or towards a surface) measures, and the 

more consistency and fluency is evident [99].  When a forger imitates a signature 

these dynamic movements in signing are generally not imitated accurately, resulting 

in line breaks, hesitations, slow starts and endings and so on [296]. The literature 

shows that poor line quality characteristics have been classically associated with 

simulated movement and the ASTM Standard Guide for Examination of 

Handwritten Items [297]  specifically lists certain characteristics such as “lifts, 

stops, hesitations” [294], as those of which FDEs should take special note in 

assessing the authenticity of a signature.  

Some aspects of handwriting/pen movement have been studied based on 

observations of pen lifts, pen stops, velocity, pen force etc. in order to analyse these 

characteristics differentially in relation to genuine and forged or mimicked 

signatures [298] and based on these handwriting movements (fluency , level of 

tremor etc.)  dynamic signature analysis tools [199] have been introduced to provide 

statistical support for forensic analysis;  but little work has been reported on 

objectively measuring ‘hesitation’ specifically, even though this is one of the 

common signature characteristics in identifying forgeries in forensic practice and, 

by implication, is therefore likely to be of significance in developing a new 

signature in the context of natural revocability This chapter will investigate the 

possibility of defining some objective measures of hesitation and their influence on 

handwritten signature analysis (specifically on signature verification systems) by 

means of some experimental analysis.  A brief survey of definitions and measures 

of fluency and hesitation as reported in the literature is provided next.  As we will 

also show, relevant work in child development studies also supports the idea that 
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this type of feature is likely to be significant from the viewpoint of our concept of 

natural revocability. 

6.1.1    General notions of fluency and hesitation 

According to the study reported in [299],  the general meaning of fluency is defined 

as completing a task effortlessly, where a person writes the signature 

“automatically, fluidly, rapidly, quickly, and accurately”. In other literature, fluency 

is described by using similar terms such as effortless, without hesitation, fearless in 

making mistakes, etc. [299]–[301].  In terms of writing, it is the writer’s ability to 

write without excessive hesitations, blocks, and interruptions [301].   In the area of 

handwriting development, fluency is quantified according to the total number of 

letters, words or sentences written within a given time period (letters or words per 

minute).  Studies in children’s handwriting development show [302] that 

handwriting fluency measured in this way increases with age progression. As 

fluency in writing is the end product of all the writing processes [303],  an increased 

fluency in writing indicates more efficient writing processes and this fluency and 

‘automisation’  result in reduced demands on working memory (i.e. decreased 

cognitive effort). This means fewer pauses (less hesitation), less variation in letter 

height and width, more spatial accuracy, and better control of pen pressure levels 

[304], [305].  

It is noticeable from the studies reported in the literature that hesitation, on the other 

hand, is a form of disfluency or lack of fluency. Generally, it is a descriptor of 

human activity such that, whenever a person is not sure about a task, re-evaluation 

of the situation is performed. Psychologists describe this as the time elapsing 

between the external or internal stimulation of an organism and his, her, or its 

internal or external response [306], and can be expressed through facial expression, 

head movement, special verbal markers etc. [307][. From a psycholinguistic 

perspective [308]  “hesitation disfluencies are found to occur more often before 

longer utterances and when the topic is unfamiliar.” and it is quantified as the 
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number of pauses greater than 0.5 seconds when speaking [309].  

Similarly, forensic researchers have defined hesitation as a pause or stop in the 

writing motion in which the writing instrument remains in contact with the writing 

surface [310] and this can be observed in the process of creating a forgery, as the 

forger may pause to consult the genuine signature and then continue duplicating it 

and sometimes it may leave an ink mark on the page (blobs) [174] .  

The hesitation phenomenon has been extensively invoked in neuroscience to 

explain neurological disorders for patients walking, talking and writing [259]. It has 

also been used in testing visuo-motor dysfunction for a patient’s rehabilitation 

process [311], [312],  for handwriting analysis of patients with Parkinson’s disease 

[97]  and is also mentioned in [205] as a sign of constrained signature and can be 

useful for detecting forgery. The study reported in [311]  was among the first where 

hesitation has been defined in a quantitative approach in drawing shapes. 

It is clear from the review and discussion above that the hesitation phenomenon (i.e. 

the inverse of fluency) plays an important role in children’s handwriting 

development, psychology, speech analysis, neuroscience, forensic document 

examination, and biometrics. Due to its importance, it is thus useful to seek 

objective and robust hesitation measures which can be used in providing automated 

processing tools.  It is noted earlier that this is an area which has not been 

extensively studied formally, and so in the next sections of this chapter some 

objective yet simple ways of quantifying the notion of hesitation in handwriting are 

introduced, and the practical implications are investigated in relation to handwriting 

analysis. 

6.2    Towards an objective measure of hesitation  

Though the notion of ‘hesitation’ is intuitive and natural to human analysts, this 

concept has not generally been objectively defined in a way which can 
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unambiguously be embedded in algorithmic form for automated analysis. This 

section, therefore, explores some objective ways of quantifying the notion of 

hesitation in handwriting with a view to defining the concept in an algorithmic way.  

As noted in Section 6.1 the study reported in [311] is among the first where 

hesitation is defined objectively as the number of times the pen velocity falls 

beneath a threshold value during a single stroke. The work reported in [97] followed 

the same definition when examining handwriting analysis in patients with 

Parkinson’s disease. There are clearly many ways in which hesitation can be 

algorithmically defined.  Three very simple hesitation measures are introduced here 

as a starting point, and these are used to explore the role of this feature in 

handwritten signature analysis tasks. These three hesitation measures are based on 

common intuitive definitions of hesitation as discussed in Section 6.1.1; when a 

person is not confident or is hesitant while writing, the pen moves a relatively short 

distance and/or the pen becomes pretty much stationary. Consequently, in order to 

capture these intuitive notions, one of the defined measures is based on the amount 

of time during which the pen is approximately stationary, a second is based on the 

(short) distance travelled by the pen while moving very slowly (almost stationary) 

and the third measure is based on the time when the pen moves a very short distance. 

These measures are obviously likely to show a degree of correlation, but it is worth 

exploring these three algorithmically implemented intuitive hesitation measures as 

a starting point. The three simple measures considered here are defined as follows: 

a. H1:       This is simply a measure of the proportion of time the pen is 

stationary or near to stationary for the duration of a specified writing 

segment.  Specifically, in this study, it is the ratio of the total time during 

which the pen is effectively at rest (not moving) or near to rest to the total 

time to execute the signature. This definition is close to the original 

definition found in [97], [311]  and is specified in (6.1) below for the 

purpose of the present study: 
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Where tv = total time when velocity < 2mm/sec  [97], [311] and  

T = total time to execute the signature. 

b. H2:        In this measure hesitation is defined as the proportion of the distance 

the pen travelled when the pen is moving below a very low velocity 

(2mm/sec) to the total distance travelled to execute the task and is defined 

in Equation 6.2.  

 

Where dv = Total distance travelled when the pen velocity<2mm/sec and  

D = Total distance travelled to execute the task (signature). 

 

c. H3:       Here hesitation is defined as the proportion of time taken for the 

pen to travel a very short distance from one sample point to the next sample 

point (0.05mm-empirically chosen) or below that distance to the total time 

to execute the task. This measure is defined in Equation 6.3. 

 

 

Where td = Total time when distance travelled <0.05mm and 

T = Total time to execute the task 

Note that these measures each require the specification of a particular threshold 

value.  For hesitation measure H1 and H2 threshold value 2mm/sec was chosen  on 

(6.1) 

𝐻𝑒𝑠𝑖𝑡𝑎𝑡𝑖𝑜𝑛[𝐻2] =
𝑑௩

𝐷
   

  𝐻𝑒𝑠𝑖𝑡𝑎𝑡𝑖𝑜𝑛[𝐻3] =
௧೏

்
   

(6.2) 

(6.3) 

𝐻𝑒𝑠𝑖𝑡𝑎𝑡𝑖𝑜𝑛[𝐻1] =
𝑡௩

𝑇
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the basis of  definition of very low pen velocity (or when the pen is almost 

stationery) reported in [311]. For the hesitation measure H3 when the pen travels a 

very short distance, we have experimented with changing threshold values and 

0.05mm was determined experimentally such that a balance is achieved between 

the performance and the measured hesitation value.  

The next section of this chapter will explore the influence of these three 

algorithmically extractable hesitation features on signature development and 

signature verification. 

6.3    Experimental investigation of the objectively defined 

hesitation parameter 

In this section, some experimental analysis is reported to investigate the influence 

of the objectively defined hesitation measures on handwritten signature analysis -  

particularly on handwritten signature development (when creating a new signature 

in the context of the natural revocability concept) and signature verification 

(verification of genuine signatures and rejection of forgeries). Signature samples 

captured in two databases – RevKent and BioKent (described in Chapters 3 and 2 

respectively) are utilised for the experimental analysis. Details of the data collection 

protocols, procedures and storage of the RevKent database have been described in 

Chapter 3 and the BioKent database (where handwritten signature samples were 

collected as part of a multimodal database) have been described in Section 2.6.5 in 

Chapter 2. Both original and new signature samples in RevKent and genuine and 

forgery signature samples in BioKent) are utilised for the experimental analysis. 

The features designated above as H1, H2, H3 are extracted from all samples in each 

of the two databases as defined in Equation 6.1, 6.2 and 6.3 and labelled as feature 

number 61(H1), 62(H2) and 63(H3) respectively. All of the hesitation features 
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defined can take on a value from 0 to 1 where a value closer to zero signifies less 

hesitation, and a value closer to 1 a higher degree of hesitation.  Thus, the greater 

the hesitation in signing, the greater the value of H returned. 

6.3.1    Hesitation – in the context of natural revocability  

As noted earlier in [85], [90], it is known that the individual handwritten signature 

becomes automatic to the writer because of rehearsing this regularly and frequently 

over a long period of time. Therefore, the user is expected to have better fluency, 

and thus lower hesitation, when signing the original signature which s/he has been 

signing since s/he started signing (learned and practised over a long time), but there 

is a question about what happens when an individual creates a new signature: does 

hesitation change with time (increase or decrease or is it not affected at all)?  

Another relevant question is: do all the different hesitation measures have the same 

effect or are some better indicators than others of the occurrence of hesitation?  

These basic research questions are investigated in this Section, based on 

experimentation utilising the RevKent database (as described in Chapter 2).  

As described in Section 6.2 the three different hesitation features (H1, H2, and H3) 

are extracted from all samples for both original and new signatures contained in the 

RevKent database. In order to show the evolution of the hesitancies in signatures 

with time, statistical analysis is carried out across the sessions and these variations 

are measured in terms of their medians and 25th and 75th percentiles, where an 

increase or decrease in their medians will indicate increase or decrease in the 

hesitancies with time. First, the average of each hesitation feature is calculated for 

a given user’s signature samples belonging to one session. As described in Chapter 

2, majority of users completed at least four sessions, experimentation is initially 

carried out for these four capture sessions.  
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Figure 6.1.  Boxplots of different hesitation values across 4 sessions in 

original and new signatures (at the top H1, middle H2, and bottom H3) 
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In Fig. 6.1, boxplots of the average hesitation values in successive sessions are 

depicted. On each box, the central mark is the median, the edges of the box are the 

25th and 75th percentiles and the whiskers extend to the most extreme data points 

observed.  

It can be observed that all the hesitation measures H1, H2 and H3 show a downward 

trend, as we should perhaps expect, showing that signers (or users) become more 

fluent (or less hesitant) as time progresses. Though this downward trend is visible 

in both original and new signatures, this is more evident in the new signature.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2. Variation in hesitation with time (measured by slope m) showing 

H1 at top left, H2 at top right and H3 at bottom 
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To obtain a clearer picture of these patterns, a linear regression model is developed 

for the average hesitation values for each user for each hesitation measure and the 

slope (m) of the regression line is measured for both the original and the new 

signature for each user as defined in (4.3) in Chapter 4. Each value of m obtained 

by the evaluation is either positive (above zero) or negative (below zero), and a 

positive value of m represents an increase in hesitation values with time while a 

negative value of m represents a decrease in hesitation values with time. The further 

is the value from zero, the steeper the regression (in this case the hesitation values 

change rapidly with time) either in a positive or a negative direction.  The measured 

slope (m) values for each hesitation measure are shown in Figure 6.2 using box 

plots.  

It can be observed from Figure 6.2 that the hesitation values in the new signatures 

decrease rapidly with time compared to the original signatures and the slight 

downward trend in the original signatures is most likely due to the effect of 

unfamiliarity of the signing system. But it is quite clear from Figure 6.1 that the 

hesitation values in the first session are higher in the new signatures compared to 

the same in the original signatures (as, obviously, the users are familiar with their 

original signature) and, more importantly, these reduce with time, providing 

evidence that the signers become less hesitant and more confident in signing the 

new signatures.  In other words, the new signatures developed by the subjects do 

appear to stabilise as time progress. 

This analysis is based on just four successive capture sessions. In order to explore 

this further, and as suggested by  [313] that effective handwriting interventions 

require more practice, signatures were collected for 10 sessions from 9 individuals 

(those who were still available and willing to take part), the sessions taking place 

once a week. Figure 6.3 shows the variation of hesitation values across 10 sessions 

for those 9 individuals, again using box plots. In fact, the downward trend observed  
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Figure 6.3. Boxplots of different hesitation (H1, H2, and H3) values across 10 

sessions in original and new signatures  
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previously is more evident in here than when signatures were collected for just 4 

sessions, which makes it clear that with time hesitation reduces, and that the new 

signatures achieve stability even over a relatively modest timescale.  However, as 

mentioned earlier, even if it is considered that 10 sessions may not be enough to 

attain ultimate stability, these results are an indication that with time hesitation 

reduces.  Statistically, it is accepted that 9 subjects for 10 sessions does not represent 

a large enough sample size  to establish unequivocally that hesitation reduces with 

time (as its inverse, fluency, improves with time), but this preliminary indication 

supports the findings of the experimental analyses carried out in Chapter 4 that can 

lead to important research in handwritten signature development and further 

development in handwritten signature verification, and is a very important finding 

in the context of the concept of natural revocability. 

6.3.2    Hesitation: relevance to analysis of forgeries 

As mentioned previously, in assessing the authenticity of a signature, a human FDE 

compares and assesses features (such as stroke length and slant, letter formation, 

connecting strokes, pen lifts, line quality, pen pressure, base alignment, hesitation, 

patching etc.;  patching is a flaw in the writing line in the form of a correction 

attempted by the forger to fix an obvious defect) between the questioned and known 

signatures and then makes a subjective judgment as to whether the signature is 

genuine or not. In this section, some experimental analysis is performed to compare 

the behaviour of different hesitation features in original and forged signatures, 

utilising the previously described BioKent database. Signature samples were 

collected from 79 subjects, where each of the subjects provided their signature 

samples in two sessions. Each subject donated 30 genuine (15 in each session) and 

20 skilled forgery samples (10 in each session).  

Reported human studies have shown that the value of hesitation is expected to be 

lower in genuine signatures because of the signer’s obvious familiarity with the 
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process [314].  Figure 6.4 shows a comparison between H-measures in the genuine 

and forged samples using box plots, and it is clear from these results that a majority 

of the forgery signature samples show much higher hesitation (in all three measures 

H1, H2 and H3) than the genuine signature samples, suggesting that when a person 

imitates someone else’s signature he/she tends to be more hesitant in signing than 

the genuine signer. Also, Figure 6.5 shows a comparison of hesitation values in 

original and forged signatures for individuals, where it is evident that for H1, in 

96% of users a forged signature has much higher hesitation than that of genuine 

signature; for H2, in 97% of users the forged signature has much higher hesitation 

than that of genuine signature; and for H3, again in 97% of users the forged 

signature shows much higher hesitation than that of the genuine signature.  This in 

turn suggests that measuring hesitancy might be a very useful forensic tool to aid 

the automated discrimination between genuine and forged signature samples. 

Another statistical analysis is carried out to observe the difference in hesitation 

measures between genuine and forged signatures using frequency histograms. 

Signature samples from the BioKent database are used for this investigation. Figure 

6.6 shows the frequency histograms for each objectively defined hesitation features 

(H1-61, H2 – 62 and H3 – 63). The frequency histogram shows that all the 

hesitation features show lower values in the genuine signatures compared to the 

forgeries (as also shown in Figure 6.4 and 6.5). For the H1 feature the frequency 

histogram indicates (Figure 6.6) that a questioned signature is most likely to be a 

forged specimen (with 99.99% confidence, p<0.0001) if the value of the measured 

hesitation (H1) is more than 0.48. If the value of the hesitation(H2) in a questioned 

signature is more than 0.13, is most likely to be a forged counterpart (with 98% 

confidence, p<0.02). Figure 6.6 also indicates that a questioned signature is most 

likely to be a forgery if the value of H3 is more than 0.3 (with 99% confidence, 

p<0.001). This information could be very useful for automating forensic 

examinations or in providing automated tools to assist the human forensic examiner 

in the process of analysing genuine and forgery signatures captured online. 
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Figure 6.4 lots of different hesitation (H1, H2, and H3) values in original and 

forged signatures 
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Figure 6.5. Different hesitation (H1, H2, and H3) values for individuals in 

genuine and forgery signatures 
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Figure 6.6. Frequency histograms of three objectively defined hesitation 

features (H1, H2, H3)  
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To assess whether these hesitation features are reliable as discriminators in 

signature analysis, consistency factors for each of the features have been analysed, 

as reported in [278].  Features associated with genuine signatures should be close 

to each other in value while distances between features associated with genuine and 

forged signatures should be relatively large. This discriminative capability of a 

feature is usually called the consistency of the feature and it is computed based on 

the statistics of the intra class (for the genuine signature class) and interclass 

(between the genuine and forged signature classes) distances. The consistency 

feature CF of a feature (adapted from [278] is calculated as defined in (6.4). 

 

 

 

where Cg and Cf stand for the genuine and the forged classes, respectively, and 

where 𝜇஽൫𝐶௚  , 𝐶௚ ൯ and 𝜎஽
ଶ൫ 𝐶௚ , 𝐶௚൯; and 𝜇஽൫ 𝐶௚ , 𝐶௙ ൯, and 𝜎஽

ଶ(𝐶௚ , 𝐶௙ )   are the sample 

means and sample variances of the genuine intra-class distances and the genuine-

forged interclass distances, respectively. 

To compute the consistency factor (CF) recalling the processing chain illustrated in 

Figure 2.1 (in Chapter 2), in the feature extraction step, a total of 60 features , which 

the literature shows are those most commonly used in signature processing [153], 

[209], [210], [275], [315], as defined in Table 2.1, 2.2 and 2.3 (in Chapter 2), are 

extracted from all samples of BioKent database described previously.  

Subsequently, the feature normalisation step is carried out and the extracted 

features are normalised by using the MVN (Mean and Variance Normalisation) 

technique as defined in Equation 2.1 (in Chapter 2). Then the Spearman’s rank 

correlation is evaluated between all the extracted and normalised features as 

explained in Section 2.1.2 (in Chapter 2) in the feature correlation step. As a result 

of this correlation test, 60*60 (3600) correlation values (ρ) are obtained.  

CF = 
ఓವ൫஼೒  ,஼೒ ൯ିఓವ൫ ஼೒ ,஼೑ ൯

ටఙವ
మ ൫ ஼೒ ,஼೒൯   ା ටఙವ

మ (஼೒ ,஼೑ )  
 (6.4) 
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Table 6.1. Uncorrelated features and their correlation values in the BioKent database 

 

 

1 2 3 4 5 8 10 13 14 17 19 22 23 24 26 27 28 29 34 37 46 50 59 60
1 1.0 0.6 0.1 -0.3 0.1 0.6 0.2 -0.1 0.1 0.4 0.3 0.2 -0.1 -0.2 0.4 0.4 0.3 0.2 0.2 0.2 -0.1 0.4 -0.1 0.0
2 1.0 0.5 -0.5 0.1 0.0 -0.3 -0.1 0.1 0.1 0.0 0.2 -0.2 -0.1 0.6 0.4 0.2 -0.1 0.5 -0.1 0.3 0.7 -0.1 -0.1
3 1.0 -0.3 -0.1 -0.1 -0.2 -0.2 -0.1 0.2 0.2 0.2 -0.1 -0.1 0.3 0.2 0.2 -0.2 0.2 0.0 0.3 0.3 0.1 0.1
4 1.0 -0.1 0.0 0.2 0.1 -0.1 -0.1 0.1 -0.1 0.2 0.3 -0.3 0.2 -0.6 -0.2 -0.3 0.0 0.1 -0.3 0.1 0.1
5 1.0 -0.1 -0.1 0.0 0.1 -0.1 -0.1 0.0 0.0 -0.1 0.1 0.1 0.3 -0.2 0.1 -0.5 0.1 0.1 0.0 0.0
8 1.0 0.3 0.1 0.1 0.6 0.3 0.1 -0.1 -0.1 0.0 0.1 0.2 0.3 -0.1 0.2 -0.3 -0.1 0.0 0.0

10 1.0 0.0 0.0 0.1 0.5 -0.2 0.1 0.1 -0.2 -0.2 -0.1 0.2 -0.2 0.3 -0.6 -0.3 0.0 0.2
13 1.0 0.3 0.3 0.0 -0.1 0.0 0.0 -0.1 -0.1 -0.1 -0.1 -0.1 0.0 -0.1 -0.1 -0.2 -0.1
14 1.0 0.0 0.1 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0 0.1 -0.1 -0.1 0.0 -0.1 -0.3
17 1.0 0.4 0.2 -0.2 -0.1 0.1 0.1 0.2 0.1 0.0 0.1 -0.1 0.1 0.0 0.0
19 1.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.2 -0.3 0.0 0.0 0.1
22 1.0 -0.4 0.0 0.2 0.3 0.1 0.1 0.0 0.0 0.3 0.1 0.0 0.0
23 1.0 0.3 -0.1 -0.1 -0.1 0.0 -0.2 0.1 -0.1 -0.1 0.0 0.0
24 1.0 0.0 0.2 -0.2 0.0 -0.1 0.0 0.1 -0.1 0.0 0.0
26 1.0 0.3 0.1 -0.1 0.3 -0.1 0.2 0.4 0.0 -0.1
27 1.0 0.0 -0.1 0.2 -0.1 0.5 0.5 0.0 0.0
28 1.0 0.1 0.1 -0.1 -0.1 0.1 0.0 0.0
29 1.0 -0.1 0.4 -0.2 0.0 0.1 0.0
34 1.0 -0.1 0.2 0.3 0.0 -0.1
37 1.0 -0.4 0.0 0.0 0.1
46 1.0 0.5 0.0 0.0
50 1.0 0.0 0.0
59 1.0 0.3
60 1.0
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The correlation results obtained in the experiment are illustrated in Table 6.1 and 

the uncorrelated features are listed in Table 6.2.  

 

Table 6.2. Uncorrelated features and three hesitation features 

 

Feature 
Number Feature Names 

1 Total distance of pen travelled 
2 Total signature execution time 
3 Pen lift:(Number of pen ups=> button 1 to 0) 
4 Average velocity in X direction 
5 Average velocity in Y direction 
8 Maximum pen velocity in x - Average pen velocity in x 
10 Maximum pen velocity in y - Average pen velocity in y 
13 Average pen acceleration in x 
14 Average pen acceleration in y 
17 Maximum pen acceleration in x - Average pen acceleration in x 
19 Maximum pen acceleration in y - Average pen acceleration in y 
22 Azimuth 
23 Altitude 
24 Pressure 
26 Sum of x coordinate values 
27 Standard deviation x coordinate values 
28 Maximum x coordinate value - Last x coordinate value 
29 First x coordinate value - minimum x coordinate value 
34 Sum of y coordinate values 
37 First y coordinate value - minimum y coordinate value 
46 width/height ratio 
50 Number of vertical midpoint crossing the signature 
59 Average pen jerk in x 
60 Average pen jerk in y 
61 H1 
62 H2 
63 H3 
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Following the determination of the uncorrelated features, the consistency factor is 

calculated as defined in (6.4), including the three hesitation features with the 24 

uncorrelated features (Table 6.2). A comparison of the consistency factors of 

different features is shown in figure 6.7 using boxplots for 79 users in a non-

increasing manner showing three hesitation features (61, 62 and 63) among the best 

four features on the left. This high consistency of the objectively defined hesitation 

features indicates that these could be useful in automatic handwritten signature 

verification. 

Figure 6.7. Consistency factor of all the features 

Also,  to learn more about the importance of these features, a Gain Ratio Attribute 

Evaluation (which evaluates the importance of an attribute by measuring the gain 

ratio with respect to the class) and a Correlation Attribute Evaluation (which 

evaluates the importance of an attribute by measuring the Pearson's  correlation 

between it and the class) feature selection method have been implemented using the 

WEKA package [220], for which a higher gain ratio (in Gain Ratio Attribute 

Evaluation) and a higher correlation coefficient (in Correlation Attribute 

Evaluation)   for a feature indicates better discriminative power for classification 
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[316].   H1, H2 and H3 are added to the feature list one at a time (i.e. ranking is 

performed for the 24 uncorrelated features + either H1 or H2 or H3). For the sake 

of notation, the different combinations (including these three combinations and 

some others which are utilised later in this section) are denoted as shown in Table 

6.3. The resulting ranking in Table 6.4 (for SetH1, SetH2 and SetH3) shows that 

H1 (feature 61) and H3 (feature 63) are at the top of the ranking in SetH1 and SetH3 

respectively in both feature selection methods, and H2 (feature 62) is at rank two 

and rank three in SetH2 in Gain Ration and Correlation Attribute Evaluation 

methods respectively. It is very clear from these ranking experiments that all these 

three objectively defined hesitation features are important features, showing a high 

discriminative power for classification.  

Table 6.3. Feature combination sets 

 

Feature sets Feature combinations 

SetH0 Only 24 uncorrelated features 

SetH1 All 24 uncorrelated features & H1 

SetH2 All 24 uncorrelated features & H2 

SetH3 All 24 uncorrelated features & H3 

SetH1+H2+H3 All 24 uncorrelated features & H1 , H2 , H3 

SetH1+H2 All 24 uncorrelated features & H1& H2  

SetH2+H3 All 24 uncorrelated features &  H2 & H3 

Set H1+H3 All 24 uncorrelated features & H1 & H3  
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Table 6.4. Evaluation of features using Gain ratio and Correlation based 

feature selection algorithm 

 

Feature 

Ranking 

Gain ratio    Correlation based  

SetH1 SetH2 SetH3  SetH1 SetH2 SetH3 
1 61 2 63  61 2 63 
2 2 62 2  2 26 2 
3 26 26 26  26 62 26 
4 50 50 50  34 34 34 
5 34 34 34  4 4 4 
6 4 4 4  1 1 1 
7 10 10 10  27 27 27 
8 17 17 17  10 10 10 
9 1 1 1  8 8 8 

10 19 19 19  37 37 37 
11 27 27 27  46 46 46 
12 8 8 8  24 24 24 
13 5 5 5  5 5 5 
14 13 13 13  19 19 19 
15 37 37 37  17 17 17 
16 46 46 46  29 29 29 
17 14 14 14  22 22 22 
18 59 59 59  13 13 13 
19 60 60 60  50 50 50 
20 22 22 22  28 28 28 
21 29 29 29  60 60 60 
22 28 28 28  14 14 14 
23 24 24 24  3 3 3 
24 3 3 3  23 23 23 
25 23 23 23   59 59 59 

 

To assess the viability of these features in identifying genuine and forged signature 

samples, classification is performed by using a simple KNN classifier (K=1) using 
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a 10-fold cross validation methodology. The Weka [220] software is used with 

default settings in order to do this.  Eight different combinations of feature sets, as 

shown in Table 6.4, are used to compare the performance of classification in 

different sets.  Classification accuracy and error rates are evaluated for each set and 

the results are presented in Figure 6.8. The best classification performance is 

achieved (the lowest error rate) using feature combination SetH1 and the highest 

error rate using SetH0.  The difference in error rates is not large here, but it is 

evident that whatever measure of hesitation we take (H1, H2 or H3), using feature 

sets which include one or two or all of these hesitation features increases the 

accuracy of classification and reduces the error rates.   Also, it is noticeable that the 

two measures of hesitation adopting a time-based representation show 

comparatively better results than the distance based representation, and this is also 

supported by the consistency factors and feature ranking (using Gain Ratio and 

Correlation) outcome. 

 

 

 

 

 

 

 

 

 

Figure 6.8.   Classification results with different feature sets 
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6.4    Conclusions 

In this chapter, initially a brief review of the notions of fluency and hesitation in 

handwriting/signature production has been provided, where it has been shown that 

the hesitation phenomena (as a lack of fluency) has been used in different research 

areas (including children’s handwriting development, psychology, speech analysis, 

neuroscience, forensic document examination, and biometrics) but generally more 

qualitatively than quantitatively. So subsequently, three quantitative approaches 

have been defined and described. All the definitions are simple and intuitive, and 

all are easily measurable objectively and algorithmically.  Thus, the feature 

extraction process is rapid, reliable and robust. Using these definitions features have 

been extracted from the signature samples in the RevKent and BioKent databases. 

Influences of these extracted hesitation features on creating new signature 

(naturally revoked) and recognising genuine and forged signatures have been 

explored revealing that signers are more hesitant initially in signing the new 

signatures than the original, as might be expected, and gradually the hesitancies 

reduce with time, showing signers’ confidence in signing the new signature as time 

progress. In a genuine and forgery signature analysis scenario, the consistency 

factors have been evaluated for each feature, revealing high values for these 

hesitation features. The outcomes of two feature ranking analyses have also shown 

that these features have good discriminative power, and results from a classification 

process show an increase in accuracy in discriminating between genuine and 

imitated signatures when a hesitation feature is included in the feature set.  

Of course, there are many further issues which need to be investigated, such as 

correlations between the hesitation feature and type of signature, its complexity and 

so on, but this initial study has established some basic indicators of performance 

and the potential for further development of such features in automatic signature 

verification.  The study has also provided further insights into the adoption of the 

idea of natural revocability in the context of handwritten signatures.  The 
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experimental analysis presented in this chapter shows that even very simple and 

intuitive measures of hesitation offer an encouraging and effective performance 

improvement, which suggests that developing more refined and more powerful 

measures may be worthwhile.   From the point of view of the forensic analysis of 

signatures, this work suggests that developing better and more objective ways of 

assessing hesitation in the signing process may have an increasing role to play in 

forensic investigations, especially as an increasing trend towards online capture of 

signature data continues. 

The next chapter will present a summary of all the studies performed and the 

contributions made by the work reported in this thesis, and also will identify further 

questions and further research ideas which should be seen as priorities for future 

investigation. 
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Some ancillary issues and final 

remarks 

 

 

 

 

This chapter will present a number of additional pieces of experimental and 

analytical work carried out to help to complete a comprehensive picture of various 

issues relevant to  the study reported in the main body of the thesis, as well as a 

final discussion of all the contributions made., This will link naturally to a brief 

discussion of  possible future work required to develop improved strategies for 

handwritten signature biometric systems in the light of the findings emerging from 

the overall study.  

The chapter will start in Section 7.1 with a discussion on some initial additional 

work that can be seen as a bridge between the work reported so far and some areas 

on which future work might most usefully be focused.  Section 7.2 will summarise 

the work reported in this thesis, while pointing to some priority areas for future 

work in Section 7.3.  Finally, Section 7.4 will conclude the chapter. 
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7.1    Some ancillary issues 

In addition to the main study presented in detail in the previous chapters, this section 

reports - briefly rather than in the detail provided on the principal experiments 

described earlier - on some additional work which has been carried out, but not yet 

fully developed.  This will enhance the main body of the work described earlier, 

increasing the value of the study overall and creating a platform for possible future 

work. Some of these additional initial works are presented as follows: 

7.1.1    Human performance in the context of natural revocability 

To investigate human perceptual capabilities with respect to differences between a 

longstanding original signature and a newly created signature, thereby shedding 

further light on the natural revocation process, the following experiments have been 

carried out. 

 Forgery detection 

Initially, five signatures have been chosen from the original signatures of the Rev-

Kent database (described in Chapter 3) which are seen to represent a variety of 

styles, designated as ‘O-target’ signatures, and five new signatures of these same 

signers have also been chosen, designated as ‘N-target’ signatures, and then these 

signatures were presented to a group of five different subjects (designated as 

‘forgers’).  These five subjects were mainly university students. For each target 

signature (both O-target and N-target samples) the forgers were required to submit 

five forgery samples for each target signature.  The subjects (forgers) were allowed 

to practise each target signature on a piece of paper before imitating on the graphics 

tablet, and to keep the respective target signature in view during the imitation 

process. They could delete and resubmit samples when they felt they had made a 
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mistake, to ensure that mistakes made due to lack of familiarisation with the 

digitising tablet is narrowed down to a minimum.  

Another twenty-five participants, mainly university staff and students together with 

members of the general public of different professions (e.g. banker, web developer, 

businessman, detective etc.) took part in this experiment.  A range of both genuine 

and forgery signature samples (designated as ‘test signatures’) for the original and 

the new signatures were presented to the participants and they were asked to classify 

each as either genuine or forgery, and they were also asked to rate each on a scale 

of 1 to 10, reflecting how likely it was considered that the test signature sample was 

a genuine sample (where 1 corresponds to definitely genuine and 10 corresponds to 

definitely forgery), with respect to five genuine samples (designated ‘reference 

samples’) for each target signature, which was simultaneously in view. For each 

target signature, five genuine test samples and five forgery test samples of the target 

signature were displayed in a one-by-one fashion, while the five genuine reference 

samples of the target were constantly in view. A total of one hundred test signature 

samples, where fifty of them were original and the other fifty were new signatures, 

were presented to the participants.   

 In addition to classifying the test samples as described above, the participants were 

asked to comment on the factors or signature characteristics that they considered 

important when rating the test sample as genuine or forged, and this is discussed 

further later in this section. 

The performance achieved from this initial experiment in human visual inspection 

of the genuine and imitated/forged samples of handwritten signatures is presented 

in Table 7.1.  These results show that an average of 83.60% of the original test 

signatures and 86.96% of the new test signatures have been correctly classified as 

being either genuine or forged; and 16.40% and 13.04% of the original and new 

signatures (respectively) have been erroneously classified. 20.64% of the forgery 

test samples have been falsely accepted as genuine (FAR) and 12.16% of the 
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genuine signature samples have been falsely rejected as forgeries (FRR) in the 

original signature; and in new signature false acceptance (FAR) and false rejection 

(FRR) rates are 13.12% of 13.60% respectively. The FAR is calculated as the 

percentage of forgeries falsely being accepted out of the total number of forgeries 

shown, and similarly the FRR is calculated as the percentage of falsely rejected 

genuine signatures out of the total number of genuine signatures shown. 

Table 7.1. Average human performance 

Average Human Performance 

   
 Original New 

   

Total correct classification % 83.60 86.96 

Total error % 16.40 13.04 

FAR % 20.64 13.12 

FRR % 12.16 13.60 

 

Overall, the performance of human verification of the handwritten signatures is 

promising in both the original and newly generated signatures, with marginally 

better performance achieved for the new signatures. Although, as noted earlier, this 

experiment should be regarded as very much at a very preliminary stage of potential 

a much broader and more detailed investigation, it suggests that the possibility of 

using a new/replacement signature being in signature verification in circumstances 

where the longstanding original signature is compromised, is a viable option, and 
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supports optimism about the practical potential of our proposed concept of the value 

of natural revocability. This also provides a platform for future work in this area. 

 Similarity analysis 

A similar experiment is also conducted to analyse the similarity scores for the five 

target signatures in original and new signatures described in the above experiment. 

In this experiment, twenty-five participants were presented with five genuine 

samples of each target signature (both original and new) and asked to rank each test 

signature sample according to its visual similarity level (on a scale of 1 to 10, where 

1 corresponds to the most similar and 10 corresponds to the least similar) with 

respect to the reference signature samples for each target signature. The frequency 

histograms of the responses are shown in Figure 7.1 and Figure 7.2. 

It can be seen from Figure 7.1 and Figure 7.2 that the similarity score histograms 

show a very similar pattern for the target signature in the original and new 

signatures, indicating that the observers perceived the similarity of the signature 

samples with the reference samples provided in a similar manner; in other words, 

the subjects could see the similarity in the new signatures (which have not been 

subject to the same degree of long-standing practice and repetition) as they could 

observe in the much more established original signatures (i.e. visually the difference 

between samples of a long-time practised signature and a rather short-time practised 

signature is not noticeable) . 
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Figure 7.1.  Frequency histogram of similarity scores in new signatures 



 

180 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2. Frequency histogram of similarity scores in new signatures. 
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 Analysis of participant comments 

Analysing the comments of the participants (received during the experiment carried 

out for forgery detection, described earlier in this section), it is found that 

participants particularly took note of overall signature style, start and/or end of the 

signature, size of letters in relation to other letters, fluency, smoothness of the line 

etc. to decide whether the test sample is a genuine or forged one. Among these 

perceptual characteristics, fluency or disfluency in the line was mentioned by a 

majority of the participants to have played the most important role in their decision; 

which is also one of the primary features important to the forensic experts in 

distinguishing genuine and forgery signatures (described in Chapter 6). Most of the 

participants mentioned that a lack of fluency (or hesitation) or lack of smoothness 

in the line of the signature suggested the test sample being forged, as quoted from 

one of the participants’ comments, as follows: “…with some there appeared to be 

hesitation in the line, making it less fluid and bumpy suggesting a copy was being 

made”.  Signature style, shape and size were also mentioned by some of the 

participants as influential criteria, where they looked at the shape, size and structure 

of individual characters in the signature, beginning and ending parts of the 

signature, slant of letters, spacing between characters etc.  This preliminary analysis 

of the comments shows that fluency or hesitation, which is an important key feature 

in signature authentication by forensic experts, also plays an important role in 

distinguishing between genuine and forged samples by non-experts as the 

participants in this experiment.   This vindicates the work on developing objective 

algorithmic representations of hesitation described in the main body of the thesis, 

and also suggests that a further investigation, developing more refined and more 

powerful measures of the hesitation feature (as described in Chapter 6) may be 

worthwhile not only in forensic investigations but also in general automatic 

signature verification. 
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7.2    Summary of the work carried out 

The study reported in this thesis represents a comprehensive analysis of the 

particular characteristics of a behavioural modality. Specifically, the handwritten 

signature has been investigated as the target biometric modality of interest by means 

of an experimental study using a collection of signature samples, and wide-ranging 

subsequent analysis. 

An overview of the general biometric system, its security concerns and protection 

mechanisms currently relevant to the study reported in this thesis is presented 

initially in Chapter 1. Several protection mechanisms (in particular, raising the 

notion of revocable biometrics) for different biometric modalities are discussed, 

and it was noted from a study of the literature that the concept of natural 

revocability, (the fact that most behavioural biometrics, being under the direct 

control of the “user”, can be created at will in multiple forms) has not been studied 

in relation to biometrics and data revocability until the study reported in this thesis 

in Chapter 4 (also published in [152]).  

Following this, the advantages of the handwritten signature over other biometrics 

for use in applications such as a point-of-sale environment has been discussed 

(Section 1.4). The complex process of signing and signature development is further 

analysed. Several factors affecting the inherent variability of the signature (e.g. 

physical and mental condition of the writer; the country, culture or the school where 

the writer has been taught etc.) have been described.  A review of signature-based 

authentication systems reported in the literature has been presented with their 

application in different disciplines as well as biometrics, identifying some important 

issues in relation to objective and reliable methods for handwritten signature 

analysis. 

The literature review discussed in Chapter 1 provided a platform for the 

development of a set of principal objectives to be reported as the core of this thesis. 
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Thus, in this study the focus has been to analyse and explore two of the very closely 

related areas referred to in the initial review in Chapter 1, which are: first, the 

possibilities of adopting a natural revocability strategy in relation to security and 

reliability in handwritten signature analysis; and second, the development of 

features which may be particularly effective in the area of handwriting analysis.   

Before any analysis, an overview of the basic experimental infrastructure and the 

important practical details used in all the experiments reported in this thesis has 

been provided in Chapter 2. This is to make the subsequent chapters cohesive and 

easier to follow.  Thus, the details of data acquisition, feature extraction and some 

feature processing (respectively), and classification techniques implemented in the 

experiments and analysis for the study reported in this thesis have been presented. 

A review of some of the principal online signature databases available to 

researchers has been presented which provided a useful and critical analysis of the 

potential additional benefits and enhanced characteristics of the proposed new data 

acquisition exercise (described in Chapter 3). The deficiencies in the publicly 

available databases in relation to the requirements of the proposed study made the 

compilation of a new and “bespoke” database a fundamental part of the work in the 

study of interest here. The two databases utilised for the experiments carried out in 

the subsequent chapters have also been identified in this Chapter.  This data 

collection exercise was extremely time-consuming (and not always easy to 

accomplish), the benefits of doing this are self-evident. 

The data collection protocol is discussed in Chapter 3 to define the rigorous methods 

used to develop the strategy for the uniform collection of the signature samples.  A 

review of the ethical procedures is presented detailing the criteria to be adhered to 

for participation in the data collection.  An overview of the acquisition system, both 

hardware and software, together with an illustration of the collected data and subject 

information has been provided.  The challenges during data acquisition procedure 

and the importance of this entirely new database collected as part of the study have 

been discussed.  After the overall consideration of the basic tools and experimental 
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infrastructure in Chapter 2 and the new database collected for this study described 

in Chapter 3, the subsequent chapters have reported and analysed a range of specific 

experimental studies to address the main aims of the overall study.  

A further review of the revocability strategies in different biometric modalities is 

provided and discussed in Chapter 4, after the initial review provided in Chapter 1, 

together with a detailed explanation of the idea of natural revocability in 

behavioural biometrics, specifically in handwritten signature biometrics. 

Subsequently, the suitability and effectiveness of natural revocability in 

handwritten signature biometric as a practical option in signature recognition, have 

been investigated by observing how “stability” of the form of the signature changes 

over a period of time, as the stability in signing is a key factor in determining the 

suitability of the signature for biometric identification.  Initially the stability has 

been analysed for the signature samples collected in four successive capture 

sessions and later for ten successive captures sessions, and the analysis suggested 

that if a sufficient time period is allowed then there is a high likelihood of 

convergence in stability between a highly practised and long-standing signature and 

an alternative new representation.  

A further investigation of the characteristics of potential revocability in the 

signature modality has been carried out by analysing performance invoking the 

“biometric menagerie” notation for individual behavior, which was first introduced 

by Doddington et al. in the context of speaker recognition [254]. Results from this 

analysis provide initial data to show how stability patterns between original and 

new signatures are likely to change across individuals and suggests that it is possible 

nevertheless to achieve stability when changing their signature styles.  Recognition 

performance has also been evaluated as a more practically-oriented test of the 

viability of the natural revocability concept and has shown that the new signatures 

can be reliably recognised, and even that the performance achieved can be better 

than that found for the original signatures. 
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A feature-based analysis of the natural revocability concept has been presented in 

Chapter 5 by investigating some features commonly used in signature processing 

in both original and new signatures of a group of writers, and exploring the 

relationship between features, signature styles and their effects in relation to 

original signatures and new signatures. The results from this analysis have shown 

that some features such as pen inclination (azimuth, altitude etc.), pen pressure, 

velocity, acceleration related features remain almost the same for most of the 

signers, when they change their signatures to create a new one, suggesting that the 

same underlying constructional mechanism is evident in the new signatures as was 

the case with the original signatures for these features.  Some other features have 

been found to be different between the original and new signatures, such as number 

of times pen is lifted, total time and distance travelled to execute the signatures, and 

so on.  Intuitively, the difference in size, shape or the style between the original and 

new signatures possibly contributed to the difference and this has been investigated 

by an experimental analysis.  Feature variability in original and new signatures has 

been analysed and it has been found that the ranking of the features based on the 

variability is almost identical in original and new signatures (though the actual 

variability is not the same but very similar), indicating the intrinsic property of the 

handwritten signature (i.e. intra-person variability) remains consistent when 

developing new signatures through the natural revocation process.  A further 

analysis has been carried out to investigate the consistency of the signature style 

and effect of style and other factors (e.g. age, gender, and handedness) on the 

features in the original and new signatures.  

To provide further insights into the adoption of the idea of natural revocability in 

the context of handwritten signatures, development of a type of feature related to 

the concept of hesitancy (or its converse, fluency) is explored in Chapter 6.  A brief 

review of the notions of fluency and hesitation in handwriting/signature production 

provided initially in this chapter has shown that hesitation has been important in 

different research areas (including children’s handwriting development, 
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psychology, speech analysis, neuroscience, forensic document examination, and 

biometrics) but generally more qualitatively than quantitatively.  So subsequently, 

three simple and intuitive quantitative approaches have been defined and described. 

All of these definitions are easily implementable objectively and algorithmically, 

making the feature extraction process rapid, reliable and robust. Exploring the 

influences of these objectively defined hesitation features in creating the new 

signature has revealed that signers are more hesitant initially in signing the new 

signatures than the original -  as might be expected -  and gradually the hesitancies 

reduce with time, showing signers’ increasing confidence in signing new signatures 

as time progresses; and investigating recognising genuine and forged signatures 

showed that the hesitation is higher in forgery signatures than in genuine signatures, 

agreeing with the qualitative definition applied in a typical forensic scenario. Also, 

evaluation of consistency factors for each feature, including these hesitation 

features, has revealed high consistency values for these features in genuine and 

forgery signature analysis scenarios. The consistency factors have been evaluated 

for each feature, revealing high values for these hesitation features and outcomes 

of two feature ranking analyses have also shown that these features have good 

discriminative power.  Results from a classification process show an increase in 

accuracy in discriminating between genuine and imitated signatures when a 

hesitation feature is included in the feature set.  The study reported in Chapter 6 has 

shown that even very simple and intuitive measures of hesitation offer an 

encouraging and effective performance improvement, suggesting that developing 

more refined and more powerful measures may be worthwhile in the future. 

A preliminary investigation is conducted in this final chapter (Chapter 7) to analyse 

the concept of natural revocability in a signature verification experiment based on 

human visual inspection. Although this investigation has not been carried out in as 

detailed or rigorous a way as the main core of the study reported in this thesis, it 

has given some indication that the natural revocability concept could be suitable to 

be exploited in signature verification and more generally signature authentication 
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(along with the study reported in Chapter 4).  An initial similarity analysis by human 

visual inspection of the new and original signatures also suggests that the new 

signature can be similarly detected if the original signature is compromised.  This 

preliminary study has provided some further insight into the development of the 

hesitation features (along with the study reported in Chapter 6).  

The study reported in this thesis has afforded us the opportunity to investigate issues 

related to security and reliability in biometrics, especially using the handwritten 

signature as a wider biometric modality by exploring two closely related areas in 

handwritten signature.  It has also enabled us to develop significant new work and 

contribute to this general area, with the aim of providing some new insights on 

relevant issues of importance. 

7.3    Future work 

Some possible new research ideas emerged from the study reported in this thesis 

are as follows: 

 Although the data collection process described in Chapter 3 of this thesis 

has been very challenging and time consuming, a larger dataset with 

participants from a wider range of ages, occupations etc. would greatly 

benefit further investigation into natural revocability analysis in the 

future. For instance, investigating whether people from a particular age 

group or occupation (e.g. people who have to sign on a daily basis in 

their occupation or who do not sign very frequently) attain stability 

quicker/slower than others or not.  

 Considering the preliminary work reported in Section 7.1 in this chapter, 

a larger number of participants to include in the human visual inspection 

may be suggested for further detailed investigation. 

 As the original signature, the new signature also can be forged, and thus 

an investigation of the resistance to forgery of the new signatures 
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compared to the original signature may be suggested. This can be 

performed as an extension of the forgery data collection described in 

Section 7.1 in this chapter, introducing a ranking based on the ‘difficulty 

to forge’ for a larger number of signatures to be forged by more 

participants (forgers). 

 An investigation of the correlation between each of the hesitation 

features as described in Chapter 6 and the type of signature, its 

complexity, and so on, may be useful in deciding on which hesitation 

feature to use for what type of signature. 

7.4    Conclusion 

This chapter has presented a summary of the research studies performed and 

significant contributions made to the field of handwritten signature biometrics by 

the work reported in this thesis, together with some initial findings leading to some 

possible future work priorities for further investigation.  

The work reported in this thesis is hoped to have a positive influence on issues 

related to security and reliability in handwritten signature biometrics. 
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Appendix A:  

Supporting Documentation for the Ethics 

Approval Procedure 

A.1 Participant Information Sheet  

 

PARTICIPANT INFORMATION SHEET 

Enhanced signature database collection project 

You are being invited to take part in a research study to help us to understand better 

way people develop and produce their signature style and how this relates to other 

forms of handwriting.  The aim of this project is to build up a database of handwritten 

data, including the signature, which will be used in research, development and 

evaluation of automatic handwriting analysis systems and related technologies.  Before 

you decide to participate it is important for you to understand why the data collection 

is being carried out and what it will involve.  Please take the time to read the following 

information carefully and discuss it with others if you wish.  Feel free to ask the 

researcher if there is anything which is not clear or if you would like more information.  

Take time to decide whether or not you wish to participate.  Thank you for reading this. 

 

Purpose of the study 

The overall aim of this project is to establish a database of handwritten samples based 

on the handwritten signature, but enhanced by the addition of short, simple non-

signature handwriting samples.  The database will be used by researchers at the 

University of Kent to develop and improve an understanding of the use of such data in 

biometric identification tasks and in forensic analysis of handwritten documents. 

 

There are three parts to this study: 

Part A:  Samples of your signature will be captured using a standard pen of familiar 

style and feel, and an electronic graphics tablet connected to a computer.  The system 
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allows you to write normally on a sheet of paper overlaid on the tablet surface, with the 

pen movement tracked and a representation of your writing stored in the computer.  

Part B:   We will ask you to develop a new signature (or we may suggest a signature 

form for you to use) and we will collect samples (using the same acquisition system as 

in Part A) of this new signature.   This will help us to improve our understanding of 

how a signing style develops. 

Part C:   We will ask you provide samples (using the same acquisition system as in Part 

A) of handwritten examples of the numerals “0” to “9”, and the alphabetic strings 

representing the months of the year, “January”, February”, etc.  Other similar character 

strings may also be substituted in some sessions.  This is to help us to gain greater 

insight into your personal writing processes, and to investigate whether additional 

samples can increase our confidence in recognizing a signature as belonging to you. 

 

You may be asked to return and repeat some or all of the data collection process, both 

to increase the number of available samples per user, and also to help us to understand 

changes in handwriting styles with time.  Not all volunteers will take part in all parts 

of the collection process. 

 

What will happen to the samples I provide? 

The data that you donate will form part of a database which will be owned and 

maintained by the University of Kent.  The data will be used by the University for 

Research Purposes only. 

When you participate, your samples will be stored so that they are linked to a reference 

number rather than your name.  Only the research team collecting the data will be able 

to link your samples with you personally, and this information will be kept strictly 

confidential within the research team.  It will not be passed to any third party. 

Withdrawal 

Participation in any part of the collection process is voluntary and you are permitted to 

withdraw at any time, without giving any reason.  You may also withdraw 

retrospectively and ask that all data relating to you is destroyed. 
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What will happen to the results of the evaluations using the database? 

The results of the evaluation will be documented and are likely to be published in the 

scientific literature to help others benefit in the future from the knowledge we have 

gained.  However, no participant will be identified individually and no samples will 

appear in any publication or report which is published without express permission.  

Copies of any publication will be available via the contact point noted below. 

 

Contacts for further information 

Professor Michael Fairhurst 

Department of Electronics 

University of Kent 

Canterbury 

Kent CT2 7NT 

Email: M.C.Fairhurst@kent.ac.uk 

 

Tasmina Islam 

Department of Electronics 

University of Kent 

Canterbury 

Kent CT2 7NT 

Email: ti36@kent.ac.uk 

 

You may retain this Information Sheet 

 

       THANK YOU FOR TAKING PART IN THIS STUDY 
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A.2 Consent Form 
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A.3 Participant Details Sheet 
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A.4 Ethics Review Checklist 
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A.5 Cover Letter 

 

RE: ENHANCED SIGNATURE DATABASE COLLECTION PROJECT: 

APPLICATION FOR ETHICAL APPROVAL 

 

 

Please find attached for your attention: 

 

1. 3 copies of the checklist containing the correct title for this project, which is 
‘Enhanced signature database collection project’. 

2. 3 copies of the project proposal with the highlighted relevant parts of the 
project pertaining to data acquisition.  

 

We have attached the project proposal so that we could put into context the scope in 

which the Data Acquisition work package exercise is being carried out.  

 

We hope this meets your requirements. 

 

Thank you 

 

 

Professor Michael Fairhurst     Tasmina Islam 

 

---------------------                  ------------------------- 
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A.6 Ethics Application 

Application Form for Ethical Approval from Research Ethics 
Group 

FOR FACULTY USE ONLY 

Received:  _____________________ Date Submitted  

to Reviewers:  ___________________ 

 

Reviewers:  ______________________ 

 

______________________ 

 

 

Review Completed:  ________________ 

 

________________ 

 Researcher(s) Notified:  _____________ 

 
 
 
 
Submit three copies of this form TO THE FACULTY OFFICE and attach the 
following to each form: 
 
 your research proposal  
 the participant information sheet 
 the participant consent form  
 any questionnaires, scales, measures, letters and phone/verbal scripts to be used 
 debriefing materials 
 
 
 
 
 
Name of Investigator: Professor Michael Fairhurst   Email: 
M.C.Fairhurst@kent.ac.uk 
Status: Undergraduate/Postgraduate/Staff 
 
Name of Investigator: Tasmina Islam    Email:  ti36@kent.ac.uk 
Status: Undergraduate/Postgraduate/Staff 
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Project Title:  Enhanced signature database collection project 
 
 Indicate here if the proposal is a procedural modification of a previously reviewed 

project: Yes/No 
 
 
If yes, what was the title of previously reviewed project: 
 
______________________________N/A______________________________________
_ 
 
 
 
Name of Student/Supervisor in previous project: 
 
_______________________________N/A_____________________________________
_ 
 
List Changes in Current Project:       N/A 
 
Source of participants:    University staff, students and the general public if possible 
 
 
 
Describe the project in no more than one page (summarise the background and hypotheses 
and detail the procedure to include the conditions experienced by the participants, stimulus, 
materials and response measures):  Attached. 
 

Consent (Please see Consent Checklist) 

Is prior informed consent to be obtained? Yes/No 
 

From participants ? Yes/No 
 
 
Describe the means of obtaining prior consent.  
 
By reading the information sheet and signing the associated consent form with the 
opportunity to discuss this with a member of the research team. 
 
 
If prior informed consent is not to be obtained, give reasons: 
 
N/A 
 
Will participants be explicitly informed of what the researcher’s role/status is? Yes/No 
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Will participants be told of the use to which data will be put (e.g. research publication, 
teaching purposes, media publicity)? Yes/No 
 

Deception 
Is there any deception involved? Yes/No 

 
If yes, describe the deception and the reasons for its use 
 
N/A 
 

Debriefing 

How will participants be debriefed? Written/Oral 
 
If they will not be debriefed, give reasons: 
 
N/A 
 

Withdrawal from the investigation 

Will participants be told explicitly that they are free to leave the study at any time without 
jeopardy? Yes/No 
 
When and how will this be done? 
In the Participant Information Sheet and associated Consent Form 
 
 

Confidentiality 

Under the Data Protection Act information about a participant is confidential unless 
otherwise agreed in advance. Will confidentiality be guaranteed? Yes/No 
If yes, what steps will be taken to ensure this? 
 
Acquired images will be linked to an identity number and only this identity number will 
be used in data analysis. 
If no, what procedures will be taken in advance of obtaining consent (how will participants 
be warned)? 
 
N/A 
 

Protection of participants 

Are the participants at risk of physical or psychological harm greater than encountered in 
ordinary life? Yes/No 
 
If yes, describe the nature of the risk and steps taken to minimise it: 
 
N/A 
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Is the information gathered from the participants of a sensitive or personal nature? Yes/No 
If yes, describe the procedures to be used for: 
 
a) assuring confidentiality 
 
Identity numbers will be used in place of participants’ names in the data analysis and 
storage. The participants are assured in the consent form that their signature images 
will only be used within the framework of the ‘Enhanced signature database collection 
project’  
 
 
b) protecting participants from stress 
 
The image acquisition process will be clearly explained and participants will be free to 
have breaks, or to terminate the session at any time. 
 
 
Observational research 
 
If observational research is to be conducted without prior consent, please describe the 
situation in which observations will take place and say how local cultural values and 
privacy of individuals will be taken into account. 
 
N/A 
 
 
I have read the Faculty policies regarding the use of human participants and agree to abide 
by them. I am also familiar with the ethical principles listed in the Research Ethics 
Handbook with regard to human participants. I further agree to submit any significant 
changes in procedures or measurement instruments for additional review.  
 
 
 
 
 Signed: 
 
Researcher(s)   
 
Name: Professor Michael Fairhurst  Signature: ____________________ Date: 
_________ 
 
Name:  Tasmina Islam                            Signature: ___________________    Date: 
_________ 
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c) Please remember to attach 
 your research proposal  
 the participant information sheet 
 the participant consent form  
 any questionnaires, scales, measures, letters and phone/verbal scripts to be used 
 debriefing materials 
 
 
Action Taken 
 
  Approved 
 
  Approved with modifications or conditions noted below 
 
  Action deferred. Please supply additional information or clarification 
noted  
below. 
 
 
Date __________________ 
 
Stamped 

 

 

 


