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1. Introduction 
Frequency selective surfaces or dichroics as they are alternatively known can be regarded 
as filters of electromagnetic waves, mainly in frequency, though they do find application in 
the angular spectrum [1].   There are two frequency sensitive processes which are 
commonly exploited in the design of these surfaces.  One is the interference of waves 
reflected from cascaded partially transmitting boundaries (broadly similar to the Fabry 
Perot interferometers well known in optics), and the other is the resonant interaction of 
waves with segments of conductor - normally periodic arrays of conducting elements or 
slots in conducting screens.  The cascaded boundaries could simply be the interfaces 
between stacked dielectric sheets, where the number of boundaries, their spacings and the 
dielectric permittivities are the quantities influencing the transmission response. Double or 
multiple layers of the metallic grids described later in these notes or cascaded arrays of 
elements can be employed, or more often in practice a combination of dielectric interfaces 
and arrays of elements.  Waveguide has a high pass transmission characteristic - each 
mode has a cut-off frequency below which it is evanescent.  This property is exploited in 
dichroic structures made up from stacks of short lengths of guide.  Typically, these 
structures consist of metallic plates drilled with periodic arrays of circular apertures [2].  
Below the cut-off frequency of the dominant TE11 mode they are highly reflecting, while 
above it there is a usable transmission region. 

Areas where FSS have been applied include frequency separation in quasi optical beam 
splitters [3,4] dual or multi-banding Cassegrain reflectors [eg. 5-7], the provision of 
windows in metallic radomes [8], and in reflectors, phase screens for beam steering [9], 
beamwidth equalisation, and in dual band arrays [10]. These notes concentrate on 
important basic properties of FSS and do not discuss the electrical performance of 
individual antenna systems. Crosspolar effects are important to applications in 
communications. This is addressed in references 2, 6, 7 and in 11-14 for example. 
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Fig.1:   Three band offset reflector antenna 

 

As an illustration of the application of FSS, Fig. I shows a scheme for providing 3 band 
operation of an offset reflector, using two cascaded dichroic subreflectors.  The 
experimental performance of such a feed system has been described by Comtesse et al 
[17]. 

There are three principal techniques which are used for the analysis and design of FSS.  
The first is a modal analysis in which the distribution of current induced in conducting 
elements (or fields in slots) is represented as a series of suitable basis functions (usually 
sinusoidal functions or waveguide modes).  Local fields are expanded as a set of Floquet 
modes [15] of the form 

                           ȥpq = exp[ - jkpq . r] exp[ ± j Ȗpq z]                                             (1) 

where r is a position vector in the x,y plane of the array, kpq is a wave number determined 
by the lattice geometry and 

                          Ȗpq  =   sqrt (k2 – kpq
2 )                                                                 (2) 

The two sets are matched by applying standard electromagnetic boundary conditions at the 
conductors.  A resulting integral equation involving the element currents can be solved by 
the application of the method of moments [16,17] which generates a matrix equation for 
the coefficients of the current basis functions.  This is a vector analysis and is capable of 
giving information about the polarisation of the scattered fields. 

The second method is an equivalent circuit approach which models the arrays as lumped 
impedances on a transmission line [18].  Quasi empirical equivalent circuits have been 
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given [19] as design tools for quite complicated elements, requiring very little computing 
power.  We shall return to this topic later. 

The third technique is an Iterative process [20].  A first estimate of the element current 
induced by the incident field Einc is used to calculate the local electric field distribution E, 
which is then forced to zero at the surface of the conductors.  This modified field is in turn 
used to recalculate the element current distribution.  The rms value of E/Einc over the 
conductors can be used as an indicator of the progress of the iteration. 

The first two of these techniques assume that the arrays are periodic and infinite in extent. 
The third is not restricted in these ways and variants [21] have been used to study edge 
effects and element currents across non uniformly illuminated FSS of finite size [22].  An 
interesting review of analysis techniques has been given by Mitra et al [23]. 

In the following sections, some of the more detailed properties of frequency selective 
surfaces and some of their limitations are illustrated. 

 

2.   Strip gratings and equivalent circuits 

2.1   Strip gratings 

 
Fig. 2 

 

Transmission through periodic arrays of conducting strips (Fig. 2) is frequency dependent 
and also depends on the orientation of the incident electric field relative to the strips.  It can 
be modelled by using the analogy with a transmission line of characteristic impedance 
equal to that of free space, on which is mounted a lumped reactance representing the strip 
array [24].  When the tangential component of the incident electric field is parallel to the 
conductors (Fig. 2) this reactance is inductive, allowing very little transmission at low 
frequencies where the inductance virtually short circuits the line.  The inductance 
decreases if the periodicity p decreases, or their width w increases and in consequence the 
transmission declines further, as would be expected as the grid approximates more closely 
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a solid metallic surface. The value of the inductance depends not only on p and w but also 
on the angle of incidence ș and on whether the incidence is TE or TM.  The (normalised) 
reactances are 

 

 

          XTE,TM  =  (p/ Ȝ ) cos ș · [ ln cosec( ʌw/2p) + GTE,TM (p, w, Ȝ, ș )]                  (2) 

                       =  F(p, w, Ȝ, ș )                                                                                   (2a) 

 

 

 

where G is a correction term which is small compared with the ln cosec term.  The 
capacitive susceptance (E field perpendicular to the strips) is 

 

          BTE,TM  =  4 (p/ Ȝ ) cos ș · [ ln cosec( ʌg/2p) + GTE,TM (p, g, Ȝ, ș )]                 (3) 

                       = 4 F(p, g, Ȝ, ș )                                                                                  (3a) 

check that when B is TE, TM   G is also TE, TM and not TM, TE 

These equations are valid at frequencies below the onset of the first grating lobe.  So 
periodic arrays of long conducting strips or grids (periodic in x and y) have potential as 
frequency selective surfaces but they have the disadvantage that the transition from 
reflection to transmission occurs very slowly with frequency - typically at rates less than 
6dB per octave.  This can be remedied by cascading two or more layers of strips to take 
advantage of the multiple reflections between them. 

 

Fig.3: Measured and predicted plane wave transmission responses of capacitive patches at 
45° incidence 
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A: 4 layers B: 1 layer 

As an illustration, Fig. 3 shows the transmission response of 4 layers of capacitive patches 
measured in the frequency range 12-40 GHz.  The transition between transmission and 
reflection occurs in the range 23-27 GHz, the ratio of the frequencies giving -10 dB and -
0.5 dB transmission losses being slightly less than 1.2.  The contrast with the slow fall of 
the superimposed curve for a single layer is clear.  The four layers are separated by 3.2 
mm, giving a structure which is almost a centimetre in depth.  Depth is required with these 
non resonant arrays to give sufficient differential path length amongst the multiply 
reflected signals to sharpen the transmission responses.  It is interesting to compare the 
transition rates provided by these multilayer structures with those typically available from 
waveguide plates of the same thickness. 

 

 

Fig.4 

Fig. 4 plots the quantity ʜǻʜ against the thickness t, where 

                                                  ǻ = ( f0.5 – f10 ) / fT                                                           (4) 

and f0.5, f10 and fT are the -0.5 dB, -10dB and mid frequencies respectively in the 
transmission curves. 

The two curves are similar. 
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2.2   Equivalent circuit models 

 

Fig.5:  Array of square loops and equivalent circuit 

 

Equivalent circuits are available for two complicated elements, the Jerusalem cross [18] 
and double square [19].  Fig. 5 shows the series LC equivalent circuit modelling the 
resonance of the simple square loop [25].  To compensate for the finite length d of the 
element segments and the gaps between them, the susceptance (eqn. 3a) at normal 
incidence is now 

                                             B = 4 (d / İr p) · F(p, g, Ȝ)                                                     (5) 

The reactance is 

                                             X =  (d / p) ·  F(p,2w, Ȝ)                                                       (6) 

where the effective width is 2w, twice that of the conductors. The transmission coefficient 
of the array is then 

                                              T = 2jz / (1+2jz)                                                                  (7) 

where z = X + B.  Table I shows the close agreement between the calculated and measured 
resonant frequencies of six arrays printed on a supporting dielectric substrate about 0.02 
mm thick.  The effective value of the relative permittivity İr in eqn. (5) was 1.1. 
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Table I:  Experimental and calculated results for arrays of square loops 

Array 

Dimensions 

mm 

Resonant frequency  

(normal wave incidence) 

 GHz 

p w d g Experimental LC model 

1 5.25 0.47 5.0 0.25 15.2 15.2 

2 4.15 0.30 3.95 0.20 18.0 17.9 

3 4.31 0.31 3.95 0.36 20.0 19.8 

4 4.35 0.18 4.06 0.29 16.0 16.3 

5 4.80 0.23 4.41 0.39 16.0 16.2 

6 4.35 0.30 4.07 0.28 18.2 18.0 

 

 

3.  Resonant structures as array elements: dipoles 

3.1  Linear dipoles 
 

 

Fig.6:  Linear and crossed dipoles 
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Arrays of linear dipoles (Fig. 6a) are amongst the simplest of configurations that have been 
used as frequency selective surfaces.  Breaking up the infinitely long inductive strips forces 
currents induced by incident fields to zero at the ends of the segments.  Although an 
equivalent circuit has been quoted [26] for these elements and is capable of giving an 
estimate of the transmission response, it is unable to describe the influence of one of the 
few variables associated with such simple arrays - the lattice geometry.  It is a model 
which regards a dipole of length L as an open ended section of transmission line of length 
L/2, giving an impedance for a free standing array with a square lattice of periodicity p of 

 

                                    X  =  -1.7j ( p2 / L2) · Ș0 cot( ʌL / Ȝ.)                                            (8) 

 

which is in turn regarded as a lumped element across a line with free space characteristic 
impedance, as before.  On the empirical basis used to construct LC equivalent circuits of 
more complicated elements, it is difficult to recognise capacitive components accurately. 
Dipole arrays are therefore often analysed using the modal technique.  This requires more 
computer resources but once adopted gives a description of a greater range of array 
properties, including the current distribution within the elements and the state of 
polarization of the scattered fields.  Linear dipoles offer the advantage over more 
complicated elements of requiring a minimal number of basis functions to synthesize the 
induced currents.  Their relative simplicity has enabled factors such as the influence of 
supporting substrates or the effects of the finite sizes [27] of arrays in practice to be studied 
without making excessive demands on computer time. 

 

 

One obvious limitation is their singly polarized structure.  This can be overcome in the 
case of patch elements [5] by using crossed dipoles (Fig. 6b), at the expense of introducing 
more complicated current modes and their consequent modification of the transmission 
response (section 3.2, and reference 28).  These modes represent current flows between the 
two orthogonal arms of the cross and can be attenuated by uncoupling the arms - for 
example by printing them on opposite sides of a thin dielectric substrate.  This expediency 
is not available though in the case of their Babinet complements - arrays of slots in 
conducting sheets.  Another factor, which can be a disadvantage when the required 
operating frequency bands are spread over a wide range of the surface transmission 
characteristic, is the relatively large lattice unit cell size in relation to their resonant 
wavelength [29], resulting in a small separation between the main reflection resonance and 
the frequency at which grating responses occur.  We return to this question later. 
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Fig.7:  Transmission response of linear and crossed dipole arrays 

a: linear dipoles, TE   b: linear dipoles, TM   c: crossed dipoles, TM 

Solid curves: normal incidence 

broken curves: 30° 

curves with dots: 450 

 

A further problem which is also shown to different degrees by other element 
configurations, and is typical of frequency selective surfaces generally, is their instability -
the dependence of the transmission/frequency curves on the state of incidence of 
electromagnetic waves.  Fig. 7 illustrates this effect well.  It shows the transmission 
response of an array of linear dipoles with length L =  4.2 mm, arranged on the square 
lattice of side p = 6.0 mm sketched in Fig. 6a.  The ratio L/p  =  0.7.  They are printed on a 
supporting substrate of thickness 0.8 mm with İr = 2.3.  At normal incidence (with the E 
field parallel to the dipole axis) there is a reflection null at fr just above 31 GHz, where the 
elements are approximately Ȝ/2 in length.  At low frequencies the surface is transparent. 
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The -0.5 dB band edge occurs at ft ~ 20 GHz, giving a band separation ratio fr/ft  = 1.6.  As 
the angle of incidence increases, Fig. 7a shows that for TE incidence the resonance drifts 
downwards in frequency, to about 27 GHz at 45°.  At the same time, the ratio fr/ft 

increases.  The consequence can be serious for practical applications of such an array: 
there is no frequency band common to the three curves at the -10 dB level, which would 
represent the - 0.5 dB edges of the reflection band.  The incidence would probably vary 
over this range across the surface of a Cassegrain subreflector.  At 31 GHz, parts of the 
surface would reflect while others nearer the edges would not.  This angle dependence is 
turned into an advantage and put to use in angle filters.  Mailloux and colleagues [1] have 
used them to improve the sidelobe levels of antennas, attenuating signals at high angles. 

In contrast, there is comparatively little drift in TM (Fig. 7b).  The major effect is a 
narrowing of the reflection band.  A characteristic property of conducting resonant 
elements is the narrowing of this band in TM and a broadening in it.  The latter is masked 
in Fig. 7a by the proximity of the onset of grating responses.  There, at normal incidence 
they occur at 50 GHz, but at 45° they appear at 29 GHz, (i.e. in the region of the reflection 
band), producing the initial sharp peak (related to a Wood’s anomaly [15] near this 
frequency, but at higher frequencies removing energy from the main response.  The 
shallowness of the TM 450 curve in Fig. 7b has a similar origin. 

 

3.2 Crossed dipoles 
The crossed dipole (Fig. 6b) is a more symmetrical element and offers the possibility of 
dual polarized operation.  When arranged on the same lattice as before, their transmission 
response at normal and TE incidence is the same as that for linear dipoles, in Fig. 7a.  But 
in TM the response is modified.  A second null appears just above the main reflection 
resonance, near 35 GHz in Fig. 7c.  Although the tangential component of the incident 
electric field is still parallel to the original dipole, at this additional resonance current now 
flows in the second arm of the element.  The structure is excited in the asymmetrical mode 
sketched in Fig. 8. 

 

 

 

 

 

 

 

 

      

 

 

 

 

Fig.8:  Asymmetrical resonance of a crossed dipole at oblique incidence. 
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This feature illustrates a general tendency: the more complicated the element 
configuration, the more complicated the transmission response curve.  Once again this has 
its advantages and disadvantages.  It can be used to modify the band ratios available from a 
surface, as in the case of the double square element [19].  On the other hand, subsidiary 
responses are undesirable if the intention is to design a surface with a single passband, as 
might occur in radome applications. 

 

         The influence of the array lattice geometry on the stability of the transmission 
response has been discussed for crossed dipoles in reference 28, and for the 3-legged 
element called a tripole in reference [30]. 

 

Fig.9:  Crossed dipoles: transmission and reflection bands. 

 

Fig. 9 shows the transmission and reflection bands to the -0.5, -1.0 and -2.0 dB points for 
crossed dipoles with L = 4.2 mm, printed on a thin substrate (0.75 mm thick, İr = 2.3) and 
set on the lattices illustrated.  The linear dipoles in section 3.2 were on lattice 1. 

There is a tendency for the more tightly packed arrays to have wider reflection bands and 
larger band separation ratios fr/ft .  The split or double reflection band can be seen in some 
of these cases, and the improved performance of lattice 3 or the slightly rotated lattices 5 
and 6 is clear. Johansson in reference 6 describes the design of an offset dichroic 
subreflector using a lattice similar to no.5, while Agrawal and Imbriale [5] designed a 
subreflector separating 2 and 14 GHz using lattice 4. 
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3.3  Convoluted dipoles 
The instability of the reflection frequency fr to angle of wave incidence ș is partly related 
to its proximity to the grating frequency 

                                                           fg = c/p(1 + sin ș)                                  (9) 

in which c is the velocity of the waves.  In the modal analysis of the array the fields are 
expanded as a set of Floquet modes, all but one of which are evanescent below fg.  In the 
terms of a transmission line model the incident wave sees a reactance representing the 
array elements.  Coupled to this line are higher order components corresponding to the 
other Floquet modes, the lowest of which begins to be significant as fg is approached.  In 
fact the admittance of the lowest TM mode becomes infinite at fg . 

Reducing the resonant frequency while retaining the unit cell size and periodicity p (or 
retaining the resonant frequency while reducing the unit cell size) raises the prospect of 
five advances: 

(i)  an improvement in the stability of fr to angle of incidence; 

(ii)  the introduction of a usable transmission band above the reflection band; 

(iii)  increased separation of fr from complicated features in the transmission curve above fg  

- potentially useful in the Babinet dual, where a transmission window would be further 
separated from other transmission regions above fg; 

(iv)  easier drawing and less distortion of array elements on tightly curved surfaces - a 
topic which is not addressed in these notes. 

(v)  physically smaller unit cells – an advantage at long wavelengths. 

         One way in which this can be approached is to pack more resonant conductor length 
(and reactance generally) into the unit cell, i.e. by constructing a more complicated element 
(not forgetting the earlier remarks about the consequent possibility of further complicating 
the transmission curves). 

An example is the modified dipole shown in Fig. 10, which has four cycles of convolution. 

                                   

Fig.10:  Convoluted dipole. 
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Fig.11:  Measured transmission responses. 

a:  linear dipoles b:  convoluted dipoles 

Fig. 11 compares its measured transmission response with that of a standard linear dipole 
when both are set on a square lattice of periodicity p = 11.2 mm and printed on a substrate 
about 0.02 mm thick with İr = 3.  They are both 9.5 mm long (L) but the total length of 
conductor in the convoluted dipole is 23 mm.  The reflection frequency fr has fallen from 
14 GHz to 9.5 GHz, while the grating frequency fg remains at 16 GHz at 45° incidence.  
The angular stability has clearly improved.  In TM the reflection band still narrows as the 
angle of incidence increases but the much smaller drift of fr in TE (about I percent) results 
in a 0.5 GHz bandwidth common to both states of incidence up to 45° at the -10 dB points.  
In an early study Munk [31] noted an improvement in stability with dipole slots loaded 
with an inductive loop.  Note: this term ‘convoluted’ was coined and first used here and in 
reference 29 below. 

 

3.4  Influence of supporting dielectric layers 
For mechanical strength the array elements normally have to be placed on or in a suitable 
supporting dielectric structure, although of course slots in a conducting sheet can provide a 
free standing waveguide FSS.  Even then, loading the slots with dielectric has the 
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advantage of lowering the cut-off frequency, increasing its separation from the onset of 
grating responses.  The presence of the dielectric can have a major effect on the 
transmission response of the array.  Aspects have been described by several authors, 
including Luebbers and Munk [32], Munk and Kornbau [33] and more recently in 
reference 34.  Inserting conductors into dielectric layers has been regarded as a means of 
tuning out reflections from radome walls [35].  Appropriate choice of the dielectric 
structure can help to reduce the angular instability of the resonance frequency and 
bandwidth. 

 

 

Fig.12:  Variation of resonance frequency with dielectric thickness (normal incidence) 
Continuous curves: dipole slots 

broken curves: dipole patches 

ǻ:  on              o :  in dielectric 

 

 

         Immersion of an array of conducting elements in an infinite dielectric of relative 
permittivity İr reduces the resonance and grating frequencies by a factor of √ İr so their 
ratio is unchanged. But mounting the elements on or in a dielectric layer of finite thickness 
introduces effects caused by the interaction of the fields adjacent to the conductors with the 
surfaces of the slab.  Trapped waves can be set up.  The most noticeable effect is the 
reduction of the resonance frequency and Fig. 12 shows its variation at normal incidence 
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for two arrays of dipoles and dipole slots as the thickness parameter t is increased, from 0 
to 10 mm. They are set on lattice c of Fig. 9a, with L/p = 1.0.  Here, İr = 4.  For elements 
on the substrate, t is the total thickness and the related curves are shown by the triangles.  
Initially, as the thickness increases fr declines rapidly in all four cases from the free space 
value of 20 GHz.  In this range, low order evanescent Floquet modes decaying 
exponentially with distance from the elements still have significant amplitudes at the 
dielectric boundary. 

 

The broken curve with circles shows that in the case of the conducting dipoles embedded 
in the layer, fr approaches a limiting value of 10 GHz  - i.e. fr

air /√ İr as expected.  The 
passband frequency of the slots (solid curve) also tends to this value but oscillates about 
the 10 GHz level.  Near t = 4 mm and 10 mm (total thicknesses 8 and 20 mm) the overall 
passbands are wide and are the consequence of passbands generated by the dielectric itself 
sweeping through the passband of the slots.  The difference between the two curves 
emphasises the fact that once the dielectric is present, the arrays are no longer Babinet 
complements.  When the elements are mounted on the substrate the resonant frequency 
tends to a higher limiting value as the thickness increases, roughly equivalent to that when 
in an infinite medium with t equal to the mean of those of the two semi-infinite media. 
Consequently it is closer to the frequency where grating effects begin to occur. 

              

 

Fig.13:  Transmission response of dipole slots in a dielectric layer of thickness 2t.   İr = 4. 

....  2t = ∞;    - - -  2t = 2mm;    —  2t = 7.5mm ;    - . - . - . -  2t = 15mm. 
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         Modification of the profile of the reflection or transmission band is an important 
effect of the dielectric slab.  Fig. 13 illustrates the tuning of the slot array passband when 
inserted symmetrically in layers 2 mm, 7.5 mm and 15 mm thick.  (The resonance 
frequency is relatively stable to angle of incidence for these values).  The curve for the 
array in an infinite medium of İr = 4 is also included.  As Fig. 12 suggests, fr is close to 10 
GHz in all these cases.  With the 2 mm thickness, the -10 dB bandwidth is less than for the 
infinite case, while a thickness of one half wavelength at fr (solid curve) gives a broad 
passband with a rapid roll-off at the edges, the -10 dB points being close to those for the 
infinite medium.  Half wave dielectric panels are of course well known as non-reflecting 
windows. 

 

3.5  Band spacings 
Finally, a few brief comments about the band spacings available from single layer arrays of 
these simple resonant elements.  If ft is defined as the -0.5 dB edge of the low frequency 
transmission region of patch arrays, then the band spacing ratio fr/ft is limited by the 
broadening of the reflection band at oblique incidence.  Fig. 9b gives a minimum value of 
about 2 for thin substrates, and nearer 2.5 when the thickness reaches 0.1 mm.  If the -0.1 
dB edge is chosen, then this ratio increases to 3 or more.  Similar ratios can be deduced 
from Fig. 13 for slots in dielectric layers, although working to the lower band edge of the 
passband for the half wave panel can reduce the ratio to below 1.3.  In general, complex 
elements or multiple layers must be used if small values are required, as described in 
section 2. 
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