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ABSTRACT  |  Antenna is one of the key components onboard 

small satellites as its design determines the performance of 

all the wireless systems including telemetry, tracking and 

control, high-speed data downlink, navigation, intersatellite 

communications, intrasatellite communications, wireless 

power transfer, radars and sensors, etc. This paper presents a 

review of recent development in advanced antennas for small 

satellites (MiniSat, MicroSat, NanoSat, CubeSat, etc.). A number 

of recent examples of antennas for small satellite applications 

are shown and discussed. A conclusion and future development 

in antennas for small satellites are given in the end.

KEYWORDS  |  Antennas; small satellites; CubeSat; MiniSat; 

MicroSat; NanoSat; PicoSat

I .   IN TRODUCTION

Small satellite is one of the fast growing sectors in space 
industries. Small satellites usually refer to satellites below 
500 kg, including minisatellite (100–500 kg), microsatellite 
(10–100 kg), nanosatellite (1–10 kg), picosatellite (0.1–1 kg), 
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and femtosatellite (<0.1 kg) [1]–[5]. Modern technology 
developments such as integrated circuits, miniaturization, 
and microelectricalmechanical systems (MEMS) have 
improved their capabilities, enabling satellites to become 
small and capable. During recent years, small satellites 
have become increasingly important for space industries 
due to the advantages of low mass, fast development, flexi-
bility, and low cost. There are numerous research programs 
on small satellite research and development world-
wide. For example, the National Aeronautics and Space 
Administration Small Spacecraft Technology Program 
(NASA SSTP) develops and demonstrates new capabili-
ties employing the unique features of small satellites for 
science, remote sensing of Earth, exploration, and space 
operations [1]. The Japan Aerospace Exploration Agency 
(JAXA) has conducted a series of research and develop-
ment programs on small low-cost satellites since the first 
small satellite “Micro-LabSat” was launched in 2002 
[6]. Similar programs exist in the United Kingdom and 
Europe where the U.K. Space Agency and the European 
Space Agency (ESA) have many programs on small satel-
lites and/or related technologies. One example is ESA’s 
“Fly Your Satellite!” program which allows student teams 
of ESA Member States to participate in the conception, 
development, and integration of a small satellite project 
ahead of testing and, eventually, launching into orbit [7]. 
Recently, small satellites, in particular the CubeSat, have 
shown explosive growth worldwide. As of January 2016,  
45 countries have launched <50-kg satellites.

Antennas are key components that enable small satellites 
to receive and transmit electromagnetic signals. Onboard 
small satellites, there are a number of antennas for different 
functions. Due to limited volume onboard small satellites, it is 
important to optimize the antenna designs, which directly 
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determine the performance of all wireless systems onboard 
satellites, such as telemetry, tracking, and control (TTC), high-
speed data downlink, navigation, intersatellite communications, 
intrasatellite communications, wireless power transfer, radars 
and sensors, etc. Table 1 summarizes some of the key challenges 
of small satellite antennas development and the reasons. As 
shown, it is necessary to achieve miniaturization of antennas 
with optimum performance while the use of materials in anten-
nas needs to take into account space environments.

This paper is organized as follows. Section I provides an 
introduction to small satellites and antennas. In Section II, 
several small satellite missions are explained. A number of 
recent examples of antennas for small satellite applications 
(MiniSat, MicroSat, NanoSat, CubeSat, etc.) are shown and 
discussed in Section III. A conclusion and future develop-
ment in antennas for small satellites are given in Section IV.

II .   SM A LL SATELLITE MISSIONS

There are several small satellite missions such as the Disaster 
Monitoring Constellation (DMC), Small Demonstration 
Satellite (SDS), NovaSAR, Constellation of Small Satellites 
for Mediterranean basin Observation (COSMO-SkyMed), 
The Gravity Recovery and Interior Laboratory (GRAIL) [8], 
etc. Some of them are summarized below.

Disaster Monitoring Constellation (DMC) consists of 
a system of remote-sensing minisatellites operated for the 
Algerian, Turkish, Nigerian, Chinese and U.K. govern-
ments. The DMC provides emergency Earth imaging for 
disaster relief. It can provide large areas of imagery within 

a short time, due to the use of multiple small satellites in 
orbit ready to cross over a point of interest, and the large 
images produced. This delivers the responsiveness needed 
for emergencies and for disaster support, with images pro-
vided across the internet from the responsive satellite and 
a member country’s ground station within one day or less 
after a request being made. The DMC has monitored the 
effects and aftermath of the Indian Ocean Tsunami (2004), 
Hurricane Katrina (2005), and many other floods, fires, 

Table 1  Key Challenges of Small Satellite Antennas Development and the Reasons

Fig. 1. DMC-3 satellite, courtesy of SSTL, U.K. [9].
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and disasters. It has progressed into its second generation 
since its first DMC satellite launched in 2002. Fig. 1 shows a 
DMC-3 satellite launched in 2015. This satellite has a mass 
of 447 kg and provides 1-m high-resolution imagery with 
high-speed downlink (320 Mb/s) and 45° off pointing [9].

Small Demonstration Satellite (SDS): SDS-4 is a fol-
low-on technology demonstration mission of SDS-1 herit-
age, based on the SDS standard bus of the Japan Aerospace 
Exploration Agency (JAXA). The main mission of the SDS-4 
microsatellite is to demonstrate the space-based automatic 
identification system (AIS) experiment, quartz crystal micro-
balance (QCM), flat-plate heat pipe on-orbit experiment 
(FOX), and In-flight experiment of Space materials using 
THERME (IST) technologies developed by a JAXA-CNES 
joint research project. In addition, the SDS-4 project seeks to 
demonstrate the various bus components which were devel-
oped for microsatellites, such as: OBC, PCU, TRx, the small 
MEMS rate sensor, and the QPSK communication technol-
ogy. Fig. 2 shows the SDS-4 microsatellite in deployed con-
figuration and in launch configuration [10]. AIS antennas 

and S-band antennas onboard SDS-4 satellite are indicated 
in Fig. 2. SDS-4 is JAXA’s first zero-momentum three-axis 
controlled 50-kg class microsatellite, launched in 2012.

Integrated Solar Array and Reflectarray Antenna 
(ISARA) is a mission funded by NASA SSTP with the goal 
of demonstrating >100-Mb/s data downlink capability on a 
3U (​10 × 10 × 34​ cm3) bus [11], [12]. Launched in November 
2017, the key enabling technology is a folded panel reflectar-
ray (FPR) high gain antenna that provides 33.5-dBi gain at 
26 GHz [13]. As shown in Fig. 3(a), the antenna comprises 
three 33.9-cm ​×​ 8.26-cm reflectarray panels and a microstrip 
patch feed. The panels are stowed by wrapping around three 
sides of the CubeSat bus and deployed by means of spring 
loaded hinges [Fig. 3(b)]. An important advantage of the 
ISARA design is that the FPR panels are stowed in the empty 
volume that exists between the launch rails and consequently 
do not use any spacecraft stowed volume. In addition, an 
array of solar cells mounted on the opposite side of the FPR 
panels provides more than 20 W of prime spacecraft power. 
Thus, ISARA technology enables high data rate telecom and 
provides spacecraft power while leaving available payload 
volume for science instruments. The mission demonstrates 
this by including a secondary payload known as the CubeSat 
Multispectral Observation System (CUMULOS) [14], an 
experimental Aerospace Corporation remote sensing payload 
used to test the performance of passively cooled commercial 
sensors for weather and environmental monitoring missions.

The ISARA technology, developed by the Jet Propulsion 
Laboratory (JPL), will be validated during a five-month 
mission that uses a spacecraft and ground station network 
developed by The Aerospace Corporation. The mission will 
perform a calibrated antenna gain and radiation pattern 
measurement by transmitting from LEO orbit to a Ka-band 
ground station at JPL. It is worthwhile to note that this mission 
includes a number of technical advancements, including the 
first reflectarray antenna flown in space, first demonstration 
of a high gain antenna integrated with solar panels, and the 
first space calibrated antenna gain measurement.

Radar in a CubeSat (RainCube) is a mission funded by the 
NASA Science Mission Directorate’s Research Opportunities 
in Space and Earth Science program with the goal of dem-
onstrating Ka-band precipitation profiling radar technology 
on a low-cost 6U CubeSat platform [15]. There are two key 
elements of the technology demonstration, both developed 
by JPL: a new architecture for miniaturized Ka-band radar 
and a deployable 0.5-m Ka-band parabolic reflector antenna 
that stows in 1.5U. The 35.75-GHz nadir-pointing radar will 
measure precipitation profiles up to 18 km above Earth with a 
horizontal resolution <10 km and vertical resolution ​<​250 m.  
Payload data and spacecraft telemetry are downloaded via 
ultrahigh-frequency (UHF) or S-band links. The RainCube 
antenna, a slightly modified version of the Ka-band antenna 
discussed in Section III-B, achieves 42.6-dBi gain and 52% 
aperture efficiency [16]. The RainCube mission, sched-
uled to launch after April 2018, is based on a 6U CubeSat 

Fig. 2. SDS-4 microsatellite in launch configuration (left) and in 
deployed configuration (right) [10].

Fig. 3. ISARA antenna: (a) key components; and (b) illustration of 
reflectarray panel stowage and deployment.
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bus developed by Tyvak Nanosatellite Systems, who is also 
responsible for mission operations. RainCube is expected to 
be the first space flight demonstration of a CubeSat radar and 
will succeed in raising the technology readiness level (TRL) 
from the current 4–5 to 7. Fig. 4 illustrates an artist concept 
of the RainCube spacecraft and the antenna.

Following the successful demonstration by JPL [17] of 
the 0.5-m RainCube reflector concept, it has been planned 
to evolve the design for the next generation of CubeSats. 
Challenging Ka-band remote sensing applications require an 
antenna aperture of at least 1 m, spurring on a collaborative 
effort between NASA, JPL, and the University of California 
at Los Angeles (UCLA) in targeting a next generation of 
large aperture high-gain CubeSat mesh reflector anten-
nas. Mechanical constraints coupled with millimeter-wave 
(mm-wave) frequency sensitivities prohibited scaling of the 
0.5-m umbrella reflector designs, mainly because an effi-
cient 1-m reflector design requires more than 30 ribs, which 
greatly increases the risk of rib jamming during deploy-
ment. Attempts were subsequently made to develop a com-
pletely new 1.0-m reflector design that stows in roughly a 3U  
(​10 × 10 × 34​ cm3) CubeSat volume.

Though a symmetric reflector configuration has its advan-
tages, the feed deployment mechanism also becomes com-
plex since the feed has to deploy and face either the reflector 
or the subreflector. To balance these tradeoffs, a single offset-
fed reflector configuration was chosen. The offset configu-
ration alleviates some of the difficulties encountered during 
the deployment of symmetric reflectors. Fig. 5(a) shows an 
illustration of the offset deployable mesh reflector concept 
developed by Tendeg [18].

A challenge for the CubeSat system is designing a feed 
that optimally illuminates the reflector while satisfying the 
mechanical constraints imposed by the CubeSat standard 
at a reasonable cost. In order to ensure minimum spillover, 
the sidelobes and backlobes of the horn must be minimized. 
Further, the S11 must be as low as possible. A novel spline-
profiled smooth walled horn design (developed at UCLA) was 
employed to strike a balance between ease of fabrication, cost, 
desired radiation characteristics, and overall volume [19]. 

Particle swarm optimization (PSO) [20]–[21] was used to 
obtain the optimal design for the horn.

The goal has been to package the entire antenna system 
into a roughly 3U volume for a 12U CubeSat, as illustrated 
by the artist’s rendition in Fig. 5(a). The offset reflector 
geometry uses an F/D of 0.75 with a clearance height of 
0.13 m. These design values are a nice compromise between 
mechanical complexity, RF performance, and feed design 
simplicity. A photo of the first prototype reflector mounted 
in the JPL antenna range is shown in Fig. 5(b). This antenna 
achieved a measured gain of 49.2 dB at 35.75 GHz, cor-
responding to a 59% aperture efficiency. The antenna has 
nearly equal E-plane and H-plane half-power beamwidths 
(HPBWs) of 0.57° and 0.53°, respectively. A representative 
E-plane far-field pattern comparison between the measure-
ment and simulation is shown in Fig. 5(c). Excellent agree-
ment is observed.

Fig. 4. Illustration of RainCube spacecraft with 0.5-m deployable 
mesh reflector antenna.

Fig. 5. Illustration of 1-m offset-fed deployable mesh reflector 
antenna. (a) An artist on-orbit rendition [18]. (b) Prototype antenna 
pattern test with gravity offload fixture at JPL near-field measurement 
facility. (c) A representative E-plane far-field pattern comparison 
between the measured and simulation results at 35.75 GHz.
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III .   A N TENNA S FOR SM A LL 
SATELLITES

A. Antennas for Small Satellite TTC Subsystems

Small satellite TTC subsystems require antennas to 
receive the uplink signals for telecommand purposes and 
transmit downlink telemetry signals. TTC antennas should 
achieve their performance whatever the attitude of the 
small satellite, thus the antennas need to have compact 
size, full spherical coverage, low loss, and high reliability. 
The full spherical coverage is often achieved by combining 
the radiation patterns of several antennas located at differ-
ent areas of small satellites, as one single antenna is una-
ble to provide the full spherical coverage. The frequency 
bands include very high frequency (VHF), UHF, S, X, Ku, 
and Ka bands. Since TTC data rates are generally low, nar-
row bandwidth antennas are acceptable. Typical antennas 
include monopoles, microstrip patches, helices, and turn-
stile antennas. For TTC of microsatellites and minisatel-
lites, microstrip patch antennas are often employed and 
Fig. 6 shows an S-band patch antenna [22]. The antenna 
is robust and can be easily integrated with satellite body. 
For TTC of CubeSats and NanoSats, monopoles are often 
employed, and one example is the deployable antenna sys-
tems from Innovative Solutions in Space (ISIS) which con-
tain up to four tape spring antennas of up to 55-cm length 
[23]. The deployment system relies on a thermal knife com-
posed of one wire and two redundant heating elements per 
tape. Radio-frequency (RF) phasing and balun circuitries 
tie the antennas together in a monopole and dipole con-
figuration. The antenna is useful for CubeSat TTC at UHF 
and/or VHF bands.

B. Antennas for Small Satellite High-Speed Data 
Downlink

After the satellite achieves stabilization, it will need 
the high-speed data downlink subsystem to download a 
large amount of data to the ground station. Compact-size 

high-gain antennas are usually required to achieve high-
speed data transmission.

High-gain antennas requires accurate pointing of their 
beams. Thus, for small satellites without high-precision atti-
tude determination and control system (ADCS), a medium 
gain (up to ​~​12 dBi) is often used. With the recent advances 
of ADCS for small satellites, antennas with much higher 
gain are expected to play roles in data downlink. To com-
pensate for the differences in free-space propagation losses 
caused by the curvature of Earth’s surface, the ideal radia-
tion pattern is an isoflux coverage. The frequency bands typ-
ically use S-band and X-band. Recent trends are to employ 
Ka-band and higher frequencies, due to the need for wider 
bandwidth for downloading more data at higher speed.

Figs. 7–9 show some antennas for microsatellites and 
minisatellites, while Figs. 10–13 show some antennas for 
CubeSats and NanoSats.

Fig. 7 shows the X-band high-gain horn antenna from 
SSTL [24]. The antenna can be mechanically steered toward 
the ground station while satellite is moving. This antenna 
can radiate either right- or left-hand circularly polarized 
signals by altering the position of the feed. It operates at 
X-band, providing a gain of 15 dBi at boresight and 3-dB 
beamwidth of 25°. The antenna can achieve a wide scanning 
range, is robust, and has low cost.

Planar antennas are attractive for small satellites as 
they can be easily integrated with the satellite body. Fabry–
Perot cavity can be employed to improve the gain of planar 
antennas, and one example of wideband circularly polar-
ized planar antenna using Fabry–Perot cavity is shown in 
Fig. 8 [25]. It has a two-layer partially reflective surface 
with positive reflective phase gradient which improves 
the gain bandwidth of the antenna. The X-band prototype 
demonstrates a 3-dB gain bandwidth of 28.3% from 8.8 to 
11.7 GHz with a peak gain of 14.7 dBi. The antenna has a 
low profile, a simple feed network, and low cost.Fig. 6. S-band patch antennas, courtesy of SSTL.

Fig. 7. Antenna pointing mechanism with horn antenna, courtesy 
of SSTL.
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Fig. 9 shows the antenna developed within the 
European project GaNSat funded by the European 
Commission [26], [27]. A parabolic reflector is fed by a 
planar active phased array integrated with high power 
amplifiers (HPAs) and low-noise amplifiers (LNAs) in 
GaN. Due to the advantage of high power density of GaN 
technology, the HPA module is significantly reduced 
in size and mass. The single GaN HPA chip obtains an 
output power of 10 W and a gain of 16 dB from 18 to  
20 GHz. The radiating element of the phased-array feed 
is wideband dual-CP stacked patches with multilayer con-
figuration. The patch is fed by two microstrip lines which 
are connected to the outputs of the branch line couplers 
printed in different PCB layers.

Limited space available onboard small satellites is a key 
problem for high-speed data downlink and radar payloads. 
Recently, a variety of deployable antenna technologies have 
been developed to address this need. Deployable reflectors 
enable an antenna to be compact in stowed configuration 
and become fully deployed in orbit. Fig. 10 shows a 0.5-m 
mesh deployable parabolic reflector designed to fit in a 1.5U 
(​10 × 10 × 15​ cm3) CubeSat stowage volume [28]. The 
reflector surface consists of a knitted gold-plated tungsten 
wire mesh with a surface density of 40 openings-per-inch 
(OPI) that is supported by 30 hinged ribs. Deployment is 
driven by a motorized planetary gear system along with a 
spring loaded “pop out” feed and subreflector assembly. 

This antenna has been adapted for both CubeSat telecom 
and radar applications. The telecom version is compatible 
with NASA’s deep-space network (DSN) at the Ka-band 
downlink (31.8–32.3 GHz) and uplink (34.2–34.7 GHz) fre-
quency bands. It achieves 42.0-dBi gain and 57% aperture 
efficiency at 32 GHz. The radar antenna design has been 
fully flight qualified (i.e., thermal and vibration testing) and 
is planned to fly on the RainCube radar in mid-2018.

Folded panel reflectarray (FPR) technology provides 
another way to realize a deployable high gain antenna [29]. 
A reflectarray antenna consists of a special reflecting sur-
face along with an illuminating feed [30]. The reflecting sur-
face comprises an array of phase control elements, such as 
microstrip patches, printed on a circuit board using stand-
ard photo etching processes. The phase control elements are 
adjusted to collimate the reflected feed illumination, much 
as a parabolic reflector would. However, unlike a parabolic 
reflector, the reflectarray panels are flat, which permits them 
to be folded and stacked for compact stowage. FPR anten-
nas offer several notable advantages compared to deployable 
parabolic reflectors, including stowage efficiency, beam 
pointing and beam shaping flexibility, rapid development, 
and lower cost. Further, the printed circuit board construc-
tion readily accommodates solar cells, enabling integration 
of the antenna with solar array panels, either on the back 
side as done for ISARA [13] or on the reflectarray side by 
using optically transparent reflectarray elements [31]–[35]. 
However, FPR antennas are narrow band devices (typically 
a few percent bandwidth) and the aperture size is limited by 
the practical number of folds.

As an example, Fig. 11(a) shows the reflectarray antenna 
designed for the NASA Mars Cube One (MarCO) mission 
[36]. The MarCO CubeSat is planned to fly to Mars and pro-
vide a real-time bent-pipe telecom link during the InSight 
mission’s entry, descent, and landing (EDL) phase. Scheduled 
to launch in 2018, MarCO will likely be the first interplan-
etary CubeSat mission. The antenna design challenge was 
to develop a flight-qualified 28-dBi gain X-band antenna 
that used a small fraction of the 6U (​10 × 20 × 34​ cm3)  
CubeSat bus volume with less than 2-kg mass at low cost 

Fig. 8. Fabry�Perot cavity antenna for small satellites.

Fig. 9. Antenna in GaNSat. (a) Antenna configuration. (b) Feed 
structure and beam coverage on Earth.

Fig. 10. Deployable reflectors for CubeSats.
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in one year. To do this, a three-panel FPR was designed to 
fold onto the side of the 6U bus and fit between the bus and 
the launch canister [Fig. 11(b)]. A microstrip patch feed 
fits below the FPR and pops out during panel deployment. 
Compact spring-loaded hinges enable the unit to fold into 
a 1.25-cm-thick package which only consumes ​~​4% of the 
usable spacecraft payload volume with a mass of <1 kg. The 
antenna provides a gain of 29.2 dBic (an efficiency of ​~​42%) 
with right-hand circular polarization (RHCP).

There are several other notable methods to stow a 
high gain antenna. Inflatable antennas were the subject 
of research for many years as a way to create large (​>​5-m 
diameter) reflectors with very high stowage efficiency. 
However, only the 1996 Inflatable Antenna Experiment, a 
14-m diameter parabolic reflector, has flown in space [37]. 
The key challenges with inflatable antenna technology are 
surface accuracy and the method used to rigidize after infla-
tion so that gas leakage does not pose reliability problems. 
Although these problems were not adequately addressed for 
large reflectors, there is renewed interest in inflatables for 
small satellites resulting from their shorter mission lifetime, 
risk tolerance, and smaller apertures. Fig. 12 illustrates a 
recent example of a 1-m inflatable antenna for X-band [38]. 
Realizing the parabolic surface shape proved to be challeng-
ing, but a spherical reflector has shown promise [39].

A tensioned membrane inflatable reflectarray offers an 
alternative antenna architecture that permits the use of a flat, 
instead of a curved, antenna surface [40]–[42]. This antenna 
concept uses two thin Kapton membranes which are pulled 
flat by a perimeter truss structure, similar to a drum head [43].  

The two surfaces are metallized to create a reflectarray. A 
flat surface is comparatively easier to fabricate, package, and 
maintain than a curved surface. The antenna can employ 
inflatable/self-rigidizable technology in its primary structural 
members, thus allowing the reflectarray antenna to be col-
lapsed and packaged into a small launch volume. This con-
cept has received interest as a potential high gain antenna for 
small satellites and was also used to successfully demonstrate 
an S-band microstrip patch array [44].

Fig. 13(a) shows a Ka-band lens antenna for CubeSats 
and nanosatellites [45]. A waveguide E-plane bend is used 
to couple the transmitting signal into a circular polarizer 

Fig. 11. MarCO antenna. (a) Spacecraft assembly illustrating 
deployed reflector antenna. (b) Illustration of reflectarray panel 
stowage.

Fig. 12. Inflatable antenna for CubeSats: Development of the 
X-band prototype [38], courtesy of JPL.

Fig. 13. Ka-band lens antenna, courtesy of SAGE Millimeter, Inc.
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and lens antenna for efficient power radiation. The antenna 
assembly has 23-dBi gain, which allows the transmitter mod-
ule to deliver over +50-dBm EIRP for the final transmitted 
signal. Fig. 13(b) shows the radiation pattern of the antenna. 
It demonstrates symmetric patterns in both E- and H-planes.

Other examples include the printed monofilar square 
spiral antenna [46], reconfigurable/deployable helix [47], 
polarization-reconfigurable cavity-backed slot antenna for 
CubeSat [48], shorted annular patches [49], etc.

C. Antennas for Synthetic Aperture Radars (SARs) 
Onboard Small Satellites

SAR has become increasingly important for small satellites 
due to strong needs of Earth observation during all days and 
nights and under all weather conditions. Small satellite SAR 
usually requires antennas to have multiple frequency bands, 
dual polarizations, electronic beam steering in both planes, 
high efficiency, beam-shaping capability, compact size, low 
mass, and low power. SAR antennas are typically quite large 
and require narrow azimuth and wide elevation beamwidths.

NovaSAR-S is a SAR mission operating at S-band and 
designed for low-cost programs [50]. It is a joint technol-
ogy demonstration initiative of SSTL, U.K., and Airbus, 
U.K. Fig. 14 shows the antenna in Nova-SAR [51]–[52]. 
The antenna array in the NovaSAR-S system is a microstrip 
patch active phased array consisting of 18 subarrays. The 
total size of the antenna array is 3 m​×​ 1 m. Multiple polari-
zations, including VV, HH, VH, and HV, can be achieved 
using this antenna system. To obtain electronic beam steer-
ing, the antenna is integrated with microwave phase shifters 
which are controlled by direct current (dc) voltages. GaN 
technology is employed in NovaSAR-S to reduce the size, 
mass, and cost of the SAR antenna system due to the high 
power density capability of GaN devices in comparison to 
conventional GaAs technologies.

Fig. 15 shows the 100-kg class SAR satellite from 
JAXA [53]. Fig. 15(a) shows both the stowed and the deployed 
configurations of satellites with the SAR antenna. The SAR 

system requires an antenna of several meters in orbit while 
the stowed size of the satellite should be ​< 0 . 7 × 0 . 7  
× 0 . 7  ​m​​ 3​​ for piggyback launch. The antenna employed is 
a deployable planar antenna using seven sections of single-
layer slotted waveguides. Fig. 15(b) shows one section of the 
antenna structure. The slot array antenna consists of dielec-
tric honeycomb core plate and metal skins, which work as 
a dual-plate guide for RF. Its size is about 70 cm ​×​70 cm​  
×​0.6 cm. The front surface with a slot array works as an 
antenna radiator. Waveguides are installed at two sides of the 
rear surface in order to feed positive-direction and negative-
direction traveling wave into the dual-plate through slots at 
the waveguide wall. Right-hand and left-hand circular polar-
izations are radiated through the slots at the skin. Thus, one 
aperture surface can work as a dual-polarization antenna. 
The antenna operates at 9.65 GHz with a bandwidth of  
130 MHz. An aperture efficiency of 55% is achieved.

Fig. 16 shows the antenna developed in the European pro-
ject DIFFERENT funded by the European Commission [54]. 

Fig. 14. Antenna in NovaSAR-S.

Fig. 15. Deployable waveguide slot antenna.

Fig. 16. Antenna of DBF-SAR in the DIFFERENT project.  
(a) Configuration of antenna system. (b) DBF feed.
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The antenna system is a deployable reflector fed by a highly 
integrated dual-band (Ka/X) digital beam forming (DBF) pla-
nar feed array. The parabolic reflector is defined in a Cartesian 
coordinate system where ​x​-axis coincides with an along-track 
(azimuth) and ​y​-axis with a cross-track (elevation) direction 
of the imaging platform, as shown in Fig. 16(a). To facilitate 
the DBF-SAR system, the X- and Ka-band radiation elements 
onboard are divided into separated channels, as shown in 
Fig. 16(b). As can be seen, the X-band and Ka-band radiation 
elements are interlaced with each other, sharing the same 
aperture. Each X-band element is connected to one channel 
whereas ​2 × 2​ Ka-band elements are combined as a subarray 
and connected to one channel. Both X- and Ka-band antennas 
operate at two orthogonal polarizations. The antennas employ 
crossed dipoles for X-band and dual-fed slot-coupled patches 
for Ka-band. The active circuits are fabricated in SiGe technol-
ogy, leading to low cost.

Recently, there have also been some developments of 
circularly polarized SAR for microsatellites (and unmanned 
aerial vehicles) [55]–[56]. In [50], a deployable mesh reflec-
tor at L-band is developed for SAR onboard a microsatellite 
for Earth observation.

D. Antennas for Intersatellite Links

Intersatellite links are very important for small satel-
lites. Swarms of many small satellites with intersatellite 
links can enable small satellite systems to achieve the func-
tions and capabilities far beyond that of one single small sat-
ellite. Antennas for intersatellite links usually need to have 
high gain, for overcoming the high loss due to radio propa-
gation over a large distance between small satellites. Also, 
the antennas need to have compact size and beam steering 
capability.

Researchers at the University of Hawaii (UH) recently 
developed a retrodirective array (RDA) based on a null-
scanning approach with several hardware and software 
optimizations motivated by size, weight, and power con-
straints [57]. The four-element, 1-D RDA was designed 
to fit within a 1.5U CubeSat structure, which measures  
10 cm ​×​ 10 cm ​×​ 15 cm, with a mass of no more than 
1.5 kg. The design consisted of two four-layer printed cir-
cuit boards: one dedicated to full-duplex communication, 
the other for power detection. The two boards were inter-
faced by the UH CubeSat Stackable Interface for digital 
and power signals, and Tensolite cables for RF signals. 
Full-duplex retrodirectivity was reported at 9.59 and 9.67 
GHz for transmit and receive, respectively. Fig. 17 shows 
the assembled CubeSat prototype with dimensions of  
4 cm ​×​ 10 cm ​×​ 14 cm. The RDA hardware has a mass 
of 186 g. The dc power consumption of the various com-
ponents of the CubeSat RDA prototype is 1 W, which is 
well within the power-generation capabilities of CubeSats 
equipped with either body-mounted or deployable solar 
panels, together with batteries for operation in eclipse.

Fig. 18 shows the “Bull’s Eye” antenna for CubeSat appli-
cations [58]. The antenna consists of a number of annu-
lar ring slots, and is fed by a subwavelength aperture in the 
center which is coupled to a WR-15 rectangular waveguide on 
the backside. It has a maximum side length of 100 mm and a 
thickness of 3.2 mm, thus suitable for integration with a 1U 
CubeSat. The antenna achieves 19.1-dBi gain at 60 GHz and ​
>​ 16.7 dBi over the 5.06-GHz bandwidth. The antenna has 
low cost and can be easily manufactured by milling machines.

Other antennas for CubeSat intersatellite links are also 
reported. In [59], a low-profile multibeam “Bull’s Eye” 
antenna is reported. Pinho et al. [60] present an antenna 
system for intersatellite links in the GAMANET project, 
which aims to create a large ad hoc network in space using 
ground stations and satellites as nodes with intersatellite 
links at S-band. In order to achieve complete coverage for 
intersatellite communications, the antenna system consists 
of multiple microstrip patch antennas with one patch per 
face of the CubeSat [60].

E. Antennas for Navigation and Remote Sensing 
Applications

Antennas are also required for other applications such 
as navigation, remote sensing, AIS, intrasatellite links, wire-
less power transfer, and various science missions.

Fig. 17. Null-scanning retro-directive array antenna for CubeSat [52].

Fig. 18. V-band ªBull's Eyeº antenna for CubeSat applications.
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One example of antennas for navigation applications 
is the patch-excited-cup (PEC) antenna consisting of two 
metallic patches placed in a circular cup [61]. To achieve 
stable RF performance over the GNSS frequency bands, it 
uses a four-point feed with capacitive coupling of the bot-
tom patch and an isolated feed network. The antenna is 
suited for precise orbit determination applications, in which 
the stability of antenna phase center is critical. The antenna 
covers both L1 and L2 bands of GNSS frequencies. It has a 
wide coverage. The antenna has a mass of 345 g and a diame-
ter of 160 mm. For navigation application, it is important to 
achieve low backward radiation for multipath mitigation. A 
compact multipath-mitigation ground plane for multiband 
GNSS antenna is reported in [62].

For GNSS reflectometry and remote sensing applica-
tions, a multiband antenna with high gain and wide beam 
coverage is required. Maqsood et al. [63] report a dual-band 
beam-switching planar antenna which integrates a low cost, 
broadband, and low-loss beam switching feed network with 
a dual-band antenna array to achieve antenna gain >10 dBi 
and continuous beam coverage of ±25° around the bore-
sight at both L1 and L2 bands. Other antennas for GNSS 
reflectometry are reported in [3].

Some interesting antennas for CubeSat are summarized 
in [64]. The Special Issue on “Antenna Innovations for 
CubeSats and SmallSats,” published in the IEEE Antennas 
and Propagation Magazine in April 2017, contains some 
recent examples of antennas.

I V.   CONCLUSION A ND F U T U R E WOR K

This paper presents an overview of recent developments of 
antennas for small satellite applications. Many examples 
of antennas for various applications (TTC, high-speed data 
download, SAR, navigation, remote sensing) are discussed.

Looking into the future, the trends are to make anten-
nas “smaller, smarter, cheaper, and faster.” To make the 
antennas smaller, one possibility is to move into higher 
frequencies such as Ka- and V-bands and THz. To enable 
a single-antenna aperture to operate over an ultrawide-
frequency range, one promising technique is to employ 
“tightly coupled array” into reflectarray [65]. An alternative 
technique is to develop a shared-aperture multiband array 

antenna. One shared-aperture triband array antenna using 
Fabry–Perot cavity is reported in [66]. Another technique 
is to develop reconfigurable antennas with multiple func-
tions integrated. One example is the multifunctional min-
iaturized slot antenna system developed at EPFL [67]. The 
antenna makes use of the satellite structure allowing a high 
integration level within the satellite body. It can be recon-
figured to operate in three different modes for different 
functions. Another example is to integrate some circuitry 
functions (e.g., filtering, duplexing, and impedance match-
ing) with the antennas [68]–[69]. Active antennas which 
integrate antennas with active circuits (amplifiers, mixers) 
can further reduce the size, power consumption, and cost of 
RF front ends [70]. It will also be useful to consider the inte-
gration of antenna with other components such as solar sail, 
solar panels, or thermal radiators. To make the antennas 
smarter, the antenna needs to be electronically reconfigur-
able in radiation patterns, polarization, and frequency bands 
of operation. Traditional phased arrays are too expensive 
and power hungry for small satellite applications, thus low-
cost small smart antennas are needed [71]. A low-cost beam-
steerable reflectarray using 1-b phase shifters is reported 
in [72]. A dual-band electronically beam-scanning antenna 
using slot active frequency selective surfaces is reported in 
[73]. It is also necessary to investigate low-loss tunable mate-
rials (ferroelectric thin films, piezoelectric materials, liquid 
crystals, MEMS, etc.) and their integration with antennas 
for forming low-cost beam-steerable antennas. To make the 
antennas cheaper and faster, it is important to simplify the 
antenna structure and consider manufacturing technologies 
such as 3-D printing, which has the advantages of rapid pro-
totyping at low cost [74]. In order to achieve the optimum 
performance with minimum size and cost, future antenna 
engineers will need to have a clear understanding of both 
the RF system and the whole satellite system. To achieve 
this, efficient multiphysics/multiscale modeling and optimi-
zation of antennas with the satellite system (EM, thermal, 
mechanical, etc.) will be needed [75], [21].� 
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