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Abstract—There is a common observation that audio event
classification is easier to deal with than detection. So far, this
observation has been accepted as a fact and we lack of a
careful analysis. In this paper, we reason the rationale behind
this fact and, more importantly, leverage them to benefit the
audio event detection task. We present an improved detection
pipeline in which a verification step is appended to augment
a detection system. This step employs a high-quality event
classifier to postprocess the benign event hypotheses outputted
by the detection system and reject false alarms. To demonstrate
the effectiveness of the proposed pipeline, we implement and
pair up different event detectors based on the most common
detection schemes and various event classifiers, ranging from
the standard bag-of-words model to the state-of-the-art bank-
of-regressors one. Experimental results on the ITC-Irst dataset
show significant improvements to detection performance. More
importantly, these improvements are consistent for all detector-
classifier combinations.

I. INTRODUCTION

Audio event classification and detection (AEC/D) have been

an active field of research in recent years [1], [2], [3]. So far,

beside a majority of works focusing on the improving overall

performance in terms of accuracy [2], [1], [4], [5], many other

aspects have also been studied, including noise robustness [6],

[7], [8], overlapping event handling [9], [10], [11], [12], early

event detection [13], multi-channel fusion [14], as well as

generic representation [15]. However, little attention has been

paid to the important aspect of event detection systems on

continuous streams: false positive reduction. False positives,

i.e., event instances that are spuriously detected by a detection

system, and subsequently draw attention to them, are arguably

one of the most important problems faced by different ap-

plications like ambient intelligence and surveillance. To the

best knowledge of the authors, this is the first work explicitly

addressing this problem.

Previous research on audio event detection can be roughly

grouped into three different schemes. The first one is the

detection-by-classification where event classification models,

for example Support Vector Machines (SVMs), are learned and

then applied on test audio signals in a sliding-window fashion

[16], [17], [5]. The second scheme relies on automatic speech

recognition (ASR) frameworks where the states of frame-wise

features are modeled by Gaussian Mixture Models (GMMs)

followed by Hidden Markov Models (HMMs) to model the

distributions of the feature sequences given the state sequences

[18], [19], [20]. On testing, the target event is recognized

by maximizing the posterior probability on a local feature

vector sequence of a test audio signal. The third scheme is

based on the recently proposed regression approach [4], [13].

A regressor based on random regression forests is learned for

each target event category to model the relative positions of the

audio segments with respect to the event onsets and offsets. On

testing, the learned regressor is used to estimate the positions

of the event onsets and offsets (i.e. their boundaries) in a test

audio signal.

The goal of false positive reduction is obviously achiev-

able by improving the overall performance towards an oracle

system which makes no mistakes. This has inherently been

the main focus of many works since the task was introduced.

Nevertheless, our purpose is different from them in essence.

We aim to reduce the false positives of detection systems

given the state-of-the-art performance which is far from perfect

in practice. Our proposed detection pipeline is inspired by

investigating the performance gap between a detection system

on continuous streams and a classification system on isolated

events. More specifically, the classification task is much easier

to deal with and usually enjoys higher overall accuracy than

that of the event detection task. Based on this observation,

instead of making hard detection decisions early on, it is

reasonable to inject a verification step at the end of the

detection pipeline, where a trained classifier is used to classify

the detected hypotheses and reject those with mismatched

labels. Unlike the common detection-by-classification scheme

[16], [17], [1], this can be considered as a novel scheme to

utilize a trained event classifier for the detection task.

II. THE IMPROVED DETECTION PIPELINE FOR FALSE

POSITIVE REDUCTION

A. Why is audio event detection harder than classification?

There is a fact that the classification task is much easier than

the detection one. For example, on the ITC-Irst dataset [2] used

in this work accuracies of 98.9% and 93.1% are obtainable for

the classification and detection tasks, respectively (cf. Section

IV). This observation is also well-known in the CLEAR 2006

challenge [2]. This can be explained by the fundamental

difference between the tasks. The reason is two-fold. First and
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more obviously, the detection task needs to discriminate not

only the event categories of interest (as in the classification

task) but also the target event categories from highly rich

background sounds. Second, for the classification task, we

have access to the global context of the events while, in the

detection task, we do not know in advance boundaries of

the events and usually need to rely on unreliable local audio

features for inference.

Furthermore, this fundamental dissimilarity results in a

drawback of event detectors which are based on the com-

mon detection-by-classification scheme, such as those in [17].

These detectors attempted to build strong event classification

models and subsequently employ them to detect events in

continuous streams with a sliding window. Since the classifiers

are trained on complete events, they expect to be presented

with complete events to guarantee a good performance. How-

ever, due to high intra- and extra-class temporal variations of

audio events, it is almost impossible to decide a good-for-

all window length that exactly captures complete events. This

results in mismatch between training and testing data, which

significantly deteriorates the accuracy of the classification

models and subsequently the accuracy of detection systems.

Although one can circumvent this issue by training classifiers

on equal-sized segments of the events, such as those in [5],

[16], the problem remains unsolved. By dividing the events

into equal-sized segments, one has increased the complexity

of the data distribution. This makes the classification problem

harder to solve than the original one considering the entire

events as training examples. All of this, again, results in the

degeneration of the classification models.

B. The improved detection pipeline with a verification step

In order to mitigate the above-discussed shortcoming and

take full advantage of high-quality classification models for

the detection task, we propose to employ them in a completely

different manner. The idea is that we augment a detection

system with a verification step where a high-quality classi-

fication model will be applied to verify the detected event

hypotheses as in Fig. 1. At this step, an event hypothesis

with a class label cdetected outputted by the detection system

will be rejected when it is classified with a mismatched

label cclassified 6= cdetected by the classifier. Eventually,

instead of making hard decisions early on, the false positive

hypotheses outputted by a detection system will be rejected

by the verification step. As a result, the detection precision

will be enhanced, leading to improvements in overall detection

performance.

The rationale behind the proposed pipeline originates from

the difference between the classification and detection tasks

as discussed above. Since the detection task relies on local

features, the wrongly detected events are usually difficult

ones whose local features are not reliable and cause wrong

detections. However, after the detection step, we obtain the

estimated boundary of the detected events and therefore, have

access to their more or less global contexts. As a result, the

mismatch between training and testing data is mitigated and

AED System Verification

detected 

events

verified 

events

rejected 

events

Fig. 1. The improved audio event detection pipeline with the verification step
for false positive reduction.

an event classifier is expected to perform well. It should be

also noted that we achieve the goal of false positive reduction

by checking the consistency between the detection labels and

the classification ones. Our approach, therefore, differs from

that in [21] which relied on cascading classifiers.

III. THE EMPLOYED EVENT DETECTORS AND CLASSIFIERS

In order to verify the effectiveness of the proposed detection

pipeline, we implement three event detection systems and five

different event classifiers and study all possible combinations

of them in the proposed pipeline. These detectors are typi-

cal ones complying with three common detection schemes:

detection-by-classification, ASR-based, and regression. The

employed classifiers are chosen to be diverse enough, ranging

from the standard bag-of-words model to the one recently

reported state-of-the-art performance.

A. Audio event detectors

Detection-by-classification. This system conforms to the

common detection-by-classification scheme. It uses a sliding

window of one second and a shift of 100 ms on audio

signals for detection. The detection task is accomplished by

two RBF-kernel SVM classifiers: one for event/background

classification and the other for subsequent event classification.

For representation, each one-second segment is decomposed

into 25 ms frames with an overlap of 50%. A set of 60

features as used in [16] is then extracted for a frame: 16

log-frequency filter bank coefficients, their first and second

derivatives , zero-crossing rate, short time energy, four subband

energies, spectral flux calculated for each subband, spectral

centroid, and spectral bandwidth. In turn, a global feature

vector which consists of mean and standard deviation of frame-

wise feature vectors is used to represent each one-second

segment. Furthermore, a median filter of size 17 is applied

on the label sequences to eliminate too short silences or non-

silences [16]. Finally, an event hypothesis is excluded if its

length is less than the minimum length of training instances.

ASR-based. This system adheres to the ASR framework.

The audio signals are divided into short 20 ms audio frames

with a hop size of 10 ms as commonly used for speech.

Each frame is represented by twelve Mel-Frequency Cepstral

Coefficients (MFCCs). Each event is described by a three-

state HMM. All of the HMMs have a left-to-right topology

and use output probability densities represented by means of

128 Gaussian components with diagonal covariance matrices.

HMM training was accomplished through the Baum-Welch

training procedure. Finally, the optimum event sequence is

obtained by the Viterbi decoding algorithm.
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Fig. 2. The audio event detection system based on the regression approach.

Regression. This system follows the regression approach

which was recently proposed for event detection and demon-

strates state-of-the-art results [4], [13]. We show the system

pipeline in Fig. 2 to ease the explanation not only for this

detector itself but also the event classifiers (i.e. BoR and

HoDW in Section III-B) which are derived from this pipeline.

The audio signals are decomposed into 100 ms long segments

with an overlap of 90 ms. We utilize the feature set used in the

detection-by-classification scheme to represent each segment.

Out of C event categories of interest, we trained a regression

forest Fc for each category c ∈ {1, . . . , C}. The binary

segment-wise classifier Mbg is used for event/background

classification. The event segments are subsequently classi-

fied by the multi-class event classifier Mev . The segments

classified as class c will then be presented to regression

forests Fc for event onset and offset estimation. In addition,

the estimation is weighted by the classification probabilities

obtained from Mev . Class-wise detection thresholds searched

by cross-validation are eventually applied to the estimation

scores to determine event onset and offset positions. Both Mbg

and Mev were trained using random forest classification [22]

with 200 trees each. The regression forests were trained with

the random forest regression algorithm as in [4], [13].

B. Audio event classifiers

We implemented the following event classifiers to play the

role of the verifier in the proposed detection pipeline.

Bag-of-words (BoW). BoW models have been widely used

for audio event classification [23], [17]. Using this model,

an audio event is represented by a histogram of codebook

entries. The isolated events were divided into 50 ms long

segments each of which is represented by the feature set

used in the detection-by-classification detector. We used k-

means for codebook learning. The entries were obtained as

the cluster centroids, and codebook matching was based on

Euclidean distance. We varied the codebook size in the set

of {50, 100, . . . , 250}. The system with the best performance

was kept.

Pyramid bag-of-words (PBoW). As an improvement of the

BoW models, we extracted and combined BoW descriptors on

different pyramid levels [24] to encode the temporal structure

of the audio events as in [17]. We exploited {2, 3, 4} pyramid

levels and the best one was retained.

Bank-of-regressors (BoR). This system utilizes the class-

specific regression forests Fc in the regression-based detector

in Fig. 2 and stacks them into a bank for feature extraction

as in [25]. An audio event is then transformed into a compact

descriptor φ = [φ1, . . . , φC ]
T ∈ R

C
+ where φc is the mean

of maximum onset and offset estimation scores outputted by

the regressor Fc. Each entry φc was normalized to φc

maxφc
,

where maxφc
is the maximum value of φc in the training

events. This descriptor is compact since its dimensionality is

equal to the number of target event categories. Intuitively, the

descriptor measures how the audio event aligns to the temporal

configurations of different event categories modeled by the

regressors.

Histogram of discriminative words (HoDW). This classi-

fier also utilizes a component of the regression-based detector,

the event classifier Mev , in Fig. 2 for feature extraction. An

event consisting of N audio segments (xn;n = 1, . . . , N) is

represented by the descriptor ϕ = [ϕ1, . . . , ϕC ]
T ∈ R

C
+ where:

ϕc =
N
∑

n=1

1

N
P (c | xn,Mev). (1)

In (1), P (c | xn,Mev) is the probability that the segment xn is

classified as class c by the classifier Mev . These features can

be thought of being a discriminative and compact variant of the

BoW models where Mev plays the role of the discriminative

codebook matcher. In addition, opposed to the BoR descriptor,

this one is unstructured and expected to be good for weakly

structured events.

BoR+HoDW. Since BoR and HoDW are expected to be

good for event types which expose strong and weak temporal

structures, respectively, it is reasonable to combine both types

of descriptors to take advantage of their strengths. In addition,

this is convenient since they are derived from the same pipeline

in Fig. 2. We combine two descriptors using an extended

Gaussian kernel [26]:

K(ei, ej) = exp



−
∑

k∈{φ,ϕ}

1

Ak
D(eki , e

k
j )



 . (2)

where D(eki , e
k
j ) is the χ2 distance between the audio events

ei and ej with respect to the k-th feature channel. Ak is the

mean value of the χ2 distances between the training samples

for the k-th channel.



TABLE I
OVERALL CLASSIFICATION ACCURACIES (%) OBTAINED BY DIFFERENT

CLASSIFICATION SYSTEMS.

BoW PBoW HoDW BoR BoR+HoDW

97.3 96.6 97.8 98.4 98.9

All final classifiers were trained using one-vs-one SVMs and

the hyperparameters were tuned via 10-fold cross-validation.

The χ2 kernel was used for the BoW, PBoW, BoR, and HoDW

classifiers whereas the kernel defined in (2) was used for the

BoR+HoDW one.

IV. EXPERIMENTS

A. Experiment setup

1) Dataset: We conducted experiments on the ITC-Irst

dataset [2]. It consists of twelve recording sessions with a

total duration of 1.7 hours. There are 16 semantic event

categories with approximately 50 events recorded for most of

the categories. To be consent with the CLEAR 2006 challenge

[2] and previous works [4], [13], we target twelve classes

for evaluation: door knock (kn), door slam (ds), steps (st),

chair moving (cm), spoon cup jingle (cl), paper wrapping

(pw), key jingle (kj), keyboard typing (kt), phone ring (pr),

applause (ap), cough (co), laugh (la). The rest are considered

as background. We used nine recording sessions for training

and three remaining sessions for testing. Only one channel

named TABLE 1 was used.

2) Evaluation metrics: We evaluate the performance of the

detection systems using F1-score metric. For completeness, we

also report the performance of the employed event classifiers

in terms of overall classification accuracy. Note that due to the

randomness of the system in Fig. 2, the experiments related

to the BoR, HoDW, and BoR+HoDW classifiers as well as

the regression-based detector were repeated five times and the

average performance is reported.

3) Experimental results: The classification performances

achieved by different systems are summarized in Table I. Both

the BoW and PBoW classifiers yield best performance with

a codebook size of 200. A pyramid level of 2 is optimal for

the PBoW classifier. Between the BoW and HoDW classifiers

which do not take into account the temporal structure of the

events, the latter one saw an absolute improvement of 0.5% in

classification accuracy, thanks to the discriminative codebook.

Likewise for the classifiers using structural features, BoR

outperforms PBoW by 1.8% absolute. This result explains that

the BoR descriptor appears to model the temporal information

of the events more efficiently than the PBoW one. Finally,

as expected, integration of both structural and unstructural

descriptors, i.e. BoR and HoDW, in the BoR+HoDW system

boosts the classification accuracy by 0.5% absolute compared

to that of the BoR classifier.

The overall detection results of the employed detection

systems, both with and without verification, are shown in

Table II. Without verification, the regression-based detection

system obtains 93.1% in terms of F1-score which significantly

outperforms the detection-by-classification and ASR-based

detectors by 9.4% and 8.7% absolute, respectively.

The detection results with verification demonstrate the ef-

fectiveness of the proposed detection pipeline. Overall, the

verification with all classifiers leads to improvements in overall

detection performance for all detection systems. The average

F1-score gains of 6.7%, 1.7%, and 0.9% are seen for detection-

by-classification, ASR-based, and regression detection sys-

tems, respectively.The principle is that the verifiers reject the

false positives, increasing the precision at the cost of decreas-

ing the recall. The reduction in recall is due to accidental

rejection of true positive hypotheses by the classifiers. This

side effect is explainable since the classifiers are not perfect

and the segmentation errors of the detected hypotheses cause

a certain degree of mismatch between training and test data.

However, the recall drops are sustainably smaller than the

precision gains, which leads to overall improvements in F1-

score. In addition, the gains are varied depending on detector-

classifier combination. For the detection-by-classification and

ASR-based detectors, the F1-score gains achieved by verifi-

cation with all five classifiers are almost the same, i.e. the

standard BoW model is as good as the best BoR+HoDW

one in this sense. However, for the regression-based detector,

the gains obtained by verification with the BoW and PBoW

classifiers are subtle (0.0% and 0.3%, respectively) while those

with the HoDW, BoR, and BoR+HoDW classifiers are more

significant (1.2%, 1.5%, and 1.4%, respectively). Furthermore,

these classifiers offer a unique advantage that using them

for verification purposes is much more convenient than the

other two since they utilize the existing components of the

regression-based detector for feature extraction.

The experimental results also help to reveal the behavior

of different detection systems. The detection-by-classification

system retains a lot of false positive hypotheses which are

explained by its high recall (87.7%) but low precision (80.1%).

In contrast, the ASR-based system is much more conservative,

maintaining relatively small number of hypotheses explaining

its high precision (87.4%) but low recall (81.5%). Conse-

quently, the verification step is able to reject a lot more false

positive hypotheses of the detection-by-classification detector

to boost the precision significantly (13.8% on average over

all five classifiers) whereas the precision gain of the ASR-

based system is more subtle (6.0% on average over all

five classifiers). Regarding the regression-based detector, even

though it obtains much higher precision and recall (i.e. the

retained hypotheses are of higher fidelity) than those of other

two detectors, the verification step can further help to reject

false alarms and yield significant gain in the precision, for

example 3.7% with the BoR classifier.

V. CONCLUSIONS

In summary, we studied what make audio event detection

harder than classification. We then leverage this observation

to study an important aspect of audio event detection systems

on continuous streams, namely false positive reduction. An



TABLE II
OVERALL DETECTION RESULTS OF DIFFERENT DETECTION SYSTEMS WITH AND WITHOUT VERIFICATION. FOR THOSE WITH VERIFICATION, THE

ABSOLUTE PERFORMANCE GAINS AND LOSSES COMPARED TO THOSE WITHOUT VERIFICATION ARE HIGHLIGHTED IN BLUE AND RED, RESPECTIVELY.

Detection-by-classification ASR-based Regression

F1-score precision recall F1-score precision recall F1-score precision recall

w/o verification 83.7 80.1 87.7 84.4 87.4 81.5 93.1 93.6 92.7

BoW
90.5

↑ 6.8

93.6

↑ 13.5

87.7

↓ 0.0

86.2

↑ 1.8

94.3

↑ 6.9

79.5

↓ 2.0

93.0

↑ 0.0

96.4

↑ 2.8

89.9

↓ 2.8

w
/

v
er

ifi
ca

ti
o
n PBoW

90.2

↑ 6.5

93.0

↑ 12.9

87.7

↓ 0.0

86.1

↑ 1.7

95.0

↑ 7.6

78.8

↓ 2.7

93.4

↑ 0.3

96.4

↑ 2.8

90.7

↓ 2.0

HoDW
90.6

↑ 6.9

93.8

↑ 13.7

87.7

↓ 0.0

86.1

↑ 1.7

91.9

↑ 4.5

81.0

↓ 0.5

94.3

↑ 1.2

96.6

↑ 3.0

92.1

↓ 0.6

BoR
90.5

↑ 6.8

95.2

↑ 15.1

86.3

↓ 1.4

85.7

↑ 1.3

92.9

↑ 5.5

79.5

↓ 2.0

94.6

↑ 1.5

97.3

↑ 3.7

92.1

↓ 0.6

BoR+HoDW
90.4

↑ 6.7

93.8

↑ 13.7

87.3

↓ 0.4

86.2

↑ 1.8

92.8

↑ 5.4

80.4

↓ 1.1

94.5

↑ 1.4

97.0

↑ 3.4

92.1

↓ 0.6

improved detection pipeline is proposed by appending a veri-

fication step to augment a detection system where an event

classifier postprocesses the outputted event hypotheses and

rejects the false positive ones. Three detection systems based

on different detection schemes were implemented and coupled

with various event classifiers which play the role of the verifier.

The detection results with the verification step show consis-

tent improvements on overall detection performance over all

detector-classifier combinations. These results demonstrate the

effectiveness of the proposed detection pipeline.
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