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Summary 

Unsustainable exploitation of natural resources is increasingly affecting the highly biodiverse 80 

tropics [1,2]. Although rapid developments in remote sensing technology have permitted more 

precise estimates of land-cover change over large spatial scales [3–5], our knowledge about the 82 

effects of these changes on wildlife is much more sparse [6,7]. Here we use field survey data, 

predictive density distribution modeling, and remote sensing to investigate the impact of resource 84 

use and land-use changes on the density distribution of Bornean orangutans (Pongo pygmaeus). Our 

models indicate that between 1999 and 2015 half of the orangutan population was affected by 86 

logging, deforestation or industrialized plantations. While land clearance caused the most dramatic 

rates of decline, it accounted for only a small proportion of the total loss. A much larger number of 88 

orangutans were lost in selectively logged and primary forests, where rates of decline were less 

precipitous, but where far more orangutans are found. This suggests that further drivers, 90 
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independent of land-use change, contribute to orangutan loss. This finding is consistent with studies 

reporting hunting as a major cause in orangutan decline [8–10]. Our predictions of orangutan 92 

abundance loss across Borneo suggest that the population decreased by more than 100,000 

individuals, corroborating recent estimates of decline [11]. Practical solutions to prevent future 94 

orangutan decline can only be realized by addressing its complex causes in a holistic manner across 

political and societal sectors, such as in land-use planning, resource exploitation, infrastructure 96 

development, and education, and by increasing long-term sustainability [12]. 

 98 

Results 

Bornean orangutan field survey data 100 

To model Bornean orangutan density distribution and derive metapopulation abundances we 

compiled orangutan field surveys. Estimates of orangutan density and abundance are usually 102 

derived from the observation of their nests [13,14] on line transects [15]. A total of 36,555 

orangutan nests were observed on 1,491 ground and 252 aerial transects that were surveyed 104 

between 1999 and 2015 throughout the Bornean orangutan range, with a total survey effort of 4,316 

km (ground: 1388 km, aerial: 2928 km), and a median of 86 transects (interquartile range (IQR): 28 106 

– 156 transects) per year. The cumulative area of land surveyed contained 1,234 km². During the 

study period, the average yearly encounter rate significantly decreased from 22.5 to 10.1 nests/km 108 

(parameter estimate = -0.06, SE = 0.02, z = -2.25, p = 0.04. The model contained the log-

transformed mean nest encounter rate per year as response, weighted by the number of transects per 110 

year and the year as predictor).  

 112 

Estimating change in Bornean orangutan density distribution 
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We built a predictive density distribution model to estimate Bornean orangutan abundance. The full 114 

model included survey year, climate, habitat cover and human threat predictor variables (see 

methods and key resources table) and explained orangutan density significantly better than the null 116 

model including only the intercept (likelihood ratio test, χ² = 1,440, df = 13, p < 0.001). Mean 

temperature, lowland and peatswamp forest cover had a significant positive relationship with 118 

orangutan density (Figure S1, Table S2). Study year, rainfall variability and human population 

density negatively affected orangutan density (Figure S1, Table S2). Intermediate levels of rainfall 120 

in dry months were related to higher densities of orangutans. Topsoil organic carbon content, 

estimate of orangutan killing and percentage of the population with hunting taboos were not 122 

significantly correlated with orangutan density. While the orangutan density was lower in areas with 

more montane forest cover, the cover of deforested areas around transects was slightly positively 124 

correlated, but its confidence limits included zero.  

With the aim of minimizing model uncertainty in spatial model predictions, we used multi-model 126 

inference and evaluated all possible combinations of covariates included in the full model (Table 

S2). The complete set of all fitted models was then used to estimate the orangutan density 128 

distribution across the range. The estimated distribution was mapped to metapopulations delineated 

by experts at the Population and Habitat Viability Assessment Workshop (PHVA) for Bornean 130 

orangutans. In this context, the term "metapopulation" was used to identify larger entities which are 

bound by dispersal barriers, such as rivers, major roads and areas without forests and include one or 132 

more orangutan subpopulations. Only 38 out of 64 identified metapopulations retained more than 

100 individuals and can thus be considered to contain viable subpopulations [16].  134 

The three largest metapopulations were found in Kalimantan, the Indonesian part of Borneo and 

have experienced a strong decline over the studied 16-year period (Figure 1).  136 
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Western Schwaner, the largest metapopulation, lost an estimated 42,700 individuals (95% 

confidence interval (CI): 12,700 – 73,400) since 1999, with 40,700 (95% CI: 30,000 – 57,200) 138 

remaining in 2015. The second largest population, Eastern Schwaner, lost 20,100 individuals (95% 

CI: 7,200 – 33,500), and was estimated to contain 16,800 (95% CI: 12,100 – 23,100) in 2015. In 140 

Karangan, the third largest population, 8,200 individuals (95% CI: 1,900 – 15,400) were lost and 

9,000 (5,900 – 14,200) remained in 2015. The total estimated loss of Bornean orangutans between 142 

1999 and 2015 amounted to 148,500 individuals (95% CI: 48,100 – 252,300). 

We used predictions of forest cover from Struebig et al. [17] for 2020 and 2050 to project future 144 

orangutan decline (Figure 2). To this end, we assumed that orangutans cannot survive in areas 

without tree cover. The orangutan abundance in the three largest populations was projected to drop 146 

further and reach 31,100 individuals (95% CI: 22,500 – 44,000) in the Western Schwaner 

metapopulation area, 14,700 individuals (95% CI: 9,600 – 19,600) in Eastern Schwaner and 6,100 148 

individuals (95% CI: 3,800 – 10,000) in Karangan by 2050. The total future loss for all 

metapopulations was projected to be 45,300 (95% CI: 33,300 – 63,500). This projected future 150 

decline is only based on the direct consequence of habitat loss. It does not consider the effects of 

orangutan killing for food and in conflict and is therefore most likely an underestimate. All 152 

estimates are rounded to the nearest hundred.  

 154 

Linking remotely sensed resource use and density distribution 

To identify possible causes for the estimated orangutan loss, we compared absolute abundance and 156 

density from the beginning and the end of the survey period between land-use types, and assessed 

differences in change over time. We differentiated areas, in which resource use had altered the 158 

environment and areas in which land-use remained unaltered during the study period. For land-use 

changes we considered deforestation, conversion to industrial plantations (oil palm and paper pulp) 160 
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and selective logging in natural forests. As stable land-use we considered primary and montane 

primary forest, regrowth forests, industrial plantations established prior to the study period and 162 

‘other’, comprising non-forest areas. 

By 2015, 50% of the orangutans estimated to have occurred on Borneo in 1999 were found in areas 164 

in which resource use had altered the environment. A comparison of distinct regions revealed that 

50%, 60% and 10% of the orangutans were affected by transformation into industrial oil palm or 166 

paper pulp plantations, deforestation, or selective logging in Kalimantan, Sabah and Sarawak, 

respectively. Rates of orangutan decline were highest in areas deforested or converted to plantations 168 

(63 - 75% loss) in both Kalimantan and Sabah (Figure 3). In Sarawak, there were almost no 

industrial plantations and deforested areas within the orangutan metapopulation range, together 170 

affecting only 0.4% of area and 2% of the orangutan population. Industrial plantations and 

deforestation contributed 7% (Kalimantan), 2% (Sabah), and less than 1% (Sarawak) to the overall 172 

estimated loss of orangutans in each of the three regions.  

Both Kalimantan and Sabah had the highest orangutan abundance in selectively logged forests, 174 

followed by primary forest. In Sarawak, the highest orangutan abundance was found in primary 

forests. The rate of orangutan decline across the three regions and these two land-use classes was 176 

less precipitous, but still high (49 – 56%). The loss of orangutans in primary and selectively logged 

forests between 1999 and 2015 accounted for 67% of the total loss in Kalimantan (93,000 178 

individuals, 95% CI: 26,500 - 162,300), 72% in Sabah (6,100 individuals, 95% CI: 2,400 – 10,000) 

and 83% of the total loss in Sarawak (900 individuals, 95% CI: 250 – 1,600). 180 

 

Discussion 182 
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The unsustainable use of natural resources has caused a dramatic decline of Bornean orangutans. 

Only 38 out of 64 remaining metapopulations have more than 100 individuals, the assumed 184 

threshold for viability of Bornean orangutan populations [16]. Our findings suggest that more than 

100,000 individuals have been lost in the 16 years between 1999 and 2015. All three analytical 186 

approaches employed in this study, based on field survey data, spatial covariate modeling, and 

remote sensing, corroborated the concluded impact of resource use and resulting decline of Bornean 188 

orangutans. The results are also very consistent with the genetic signature of a recent collapse found 

in an orangutan population in Sabah [18] and evidence of large annual losses of orangutans through 190 

hunting and conflict killing in Kalimantan [8–10]. Our results substantiate the percentage loss 

estimated by Santika et al. [11] and reinforce the recent uplisting of the Bornean orangutan as 192 

Critically Endangered on the IUCN Red List [19]. The numbers reported here are larger than past 

estimates [11], but are in line with findings reported for other great ape taxa [20–23]. 194 

We have established the density distribution of Bornean orangutans with a model-based approach 

which uses the relationships between predictor variables and observed orangutan abundance to 196 

predict abundance for unsurveyed sites. These predictions are useful for deducing trends at the 

regional to landscape scale [24], but may be limited at a local scale, where additional demographic 198 

and behavioral drivers can influence orangutan density distribution, e.g., ranging behavior in 

response to local food resources or conspecifics. Thus, our findings reveal patterns at large spatial 200 

scales, but great care should be taken when inferring from predictions at specific sites.  

Another aspect of our study that requires critical assessment is the inference of orangutan 202 

abundance from nest counts. Nest decay time, an essential parameter to translate nest density into 

orangutan density, varies between survey sites. Although factors like rainfall, wood density and 204 

complexity of nest architecture are known to influence nest decay time [13,25,26], additional 

variability in decay time between sites is not fully understood [27]. We addressed this issue by using 206 



 

10 

all available datasets on orangutan nest decay, comprising information on the life span of more than 

thousand nests (see methods) across Borneo. If our findings of orangutan decline were an artifact of 208 

severely biased nest decay times, this would require nest decay time to have halved over the course 

of the study period. However, we found no indication of this, and so do not consider this to be a 210 

limitation of our study.  

Contrary to our expectations, the model coefficient for deforestation indicated a slightly positive 212 

relationship between deforestation in years prior to the survey and orangutan abundance. There are 

several possible explanations for this observation, suggesting that the model coefficient does not 214 

capture a causal relationship. First, surveys tend to be biased towards areas with known orangutan 

occurrence. Thus, our dataset possibly lacks sufficient variance for detecting the true impact of 216 

deforestation on orangutan density. Second, some studies have suggested that the number of 

orangutans in areas adjacent to deforested areas are temporally inflated, due to the displacement of 218 

individuals and subsequent refugee crowding [28,29]. Third, high dietary flexibility allows 

orangutans to be resilient in the face of some levels of disturbance [30,31]. This may delay the 220 

effects of deforestation on the observed density for several years, before populations eventually start 

to decline [28]. Irrespective of this, when we compare spatial model predictions and remotely 222 

sensed land-use change, the highest rates of orangutan decline were detected in areas with habitat 

removal (deforestation and conversion to industrial plantations). This shows that the predictive 224 

density distribution model has indirectly captured the deleterious effects of deforestation on 

orangutan abundance. Our finding suggests that deforestation and industrial oil palm and paper pulp 226 

plantations are responsible for about 9% (14,000 individuals) of the total loss of orangutan 

abundance. Whereas in the early years of the study it was mainly degraded land with low orangutan 228 

density that was converted to industrial plantations, after 2005 the conversion of forests to oil palm 

plantations has been increasing dramatically [32]. Some studies have suggested that orangutans can 230 
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occur in oil palm or paper pulp plantations, when they are managed well and adjacent forest 

fragments are maintained [33–35]. However, it is unclear whether this is just a transient effect or 232 

whether orangutans can indeed persist over the long-term [33–35]. 

The highest orangutan abundances were found in selectively logged forests in Kalimantan and 234 

Sabah and in primary forests in Sarawak. This finding is consistent with studies reporting that 

orangutans can occur in selectively logged or regenerating logging concessions, depending on the 236 

type and intensity of logging operations [36–39]. Consequently, successful orangutan conservation 

is necessarily situated in multi-functional landscapes [36,40], and recognizes the importance of 238 

degraded and logged forests as well as forest fragments in plantation matrices [33,34]. 

Effective partnerships with logging companies, whose concessions harbor the majority of 240 

orangutans, are essential to curb orangutan loss [41]. Similarly, partnerships with oil palm and paper 

pulp producers are important to promote best practice guidelines for management [33,35,42]. Such 242 

partnerships have already been reported e.g. by Meijaard et al. [43], and could potentially provide 

co-benefits for biodiversity conservation in general [37]. The Roundtable on Sustainable Palm Oil 244 

(RSPO) and the Forest Stewardship Council (FSC) are examples of certification schemes that 

incentivize these partnerships, by enabling consumers to favor responsible natural resource 246 

management [42].  

The pervasive decline of orangutans in more intact habitat is consistent with various studies 248 

identifying hunting as the main driver of biodiversity loss in the tropics [44,45], including Southeast 

Asia [2]. More specifically, our observation is supported by the results of extensive interview 250 

surveys in Kalimantan that show that, per year, on average 2,256 orangutans were hunted or killed 

due to conflict with humans [8–10]. The estimate of orangutan killing in the model is based on a 252 

Borneo wide projection of hunting pressure derived from these interview surveys [10]. In the model 

this predictor did not show an influence on orangutan density. Possibly, our dataset lacks sufficient 254 
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variance for detecting the impact of killing on orangutan density or the available layer does not 

represent well the actual hunting pressure. Human population density, on the other hand, had a 256 

significant negative influence on orangutan densities in the model and may have already captured 

the effect of orangutan killing. Orangutans are also present in the national and international wildlife 258 

trade. Traded orangutans are usually young orphans, and for each orphan adult individuals have 

been killed [46]. Due to the low reproductive rate of the species, even very low offtake rates of 260 

reproductive females (~1% per year) will drive populations to extinction [16,47]. In the absence of 

plausible alternative explanations for the observed loss of orangutans in seemingly intact habitats, 262 

such as the occurrence of widespread and highly lethal infectious diseases as observed among 

African apes [48], killing is the most likely explanation. From this perspective, our prediction of a 264 

further loss of 45,300 orangutans over the next 35 years, based solely on projections of forest cover 

change is most likely an underestimate. Furthermore, many individuals currently occur in 266 

fragmented, small populations which are assumed not to be viable and will most likely disappear in 

the near future. 268 

Knowledge about the density distribution of key species is essential to explore the consequences of 

land-use change, exploitation of natural resources, development of infrastructure, and climate 270 

change. It is also needed to evaluate which conservation interventions are most effective in reducing 

decline and loss of biodiversity. 272 

In essence, natural resources are being exploited at unsustainably high rates across tropical 

ecosystems, including Borneo. As a consequence, more than 100,000 Bornean orangutans vanished 274 

between 1999 and 2015. The major causes are habitat degradation and loss in response to local to 

global demand for natural resources, including timber and agricultural products, but very likely also 276 

direct killing. Our findings are alarming. To prevent further decline and continued local extinctions 

of orangutans, humanity must act now: biodiversity conservation needs to permeate into all political 278 
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and societal sectors and must become a guiding principle in the public discourse and in political 

decision-making processes.  280 

 

Acknowledgements: 282 

We would like to thank the governments of Indonesia and Malaysia, and their forest and 

environmental departments, for supporting this research. We also thank Herlina Hartanto, Purwo 284 

Kuncoro, Isabelle Lackman, Kisar Odom, Dessy Ratnasari, Adi H. Santana, Eddy Santoso, Iman 

Sapari, Ahmat Suyoko, Sri Suci Utami-Atmoko, Carel P. van Schaik and the field staff for 286 

collecting and contributing data, and all funding organizations for funding these surveys. We further 

thank Dirk Sarpe and Christian Krause for help with the scripts and implementation on the high-288 

performance cluster. We thank Florian Wolf for help with GIS programming. We thank Dr. 

Henrique Pereira and Dr. Isabel M. D. Rosa for helpful discussions and Sergio Marrocoli for 290 

providing comments on the manuscript. We thank the Max Planck Society and Robert Bosch 

Foundation for funding and support.  292 

 

Author Contributions 294 

Conceptualization, M.V., S.A.W., M.A., E.M., and H.S.K.; Software, M.V., S.H., R.M., and H.S.K.; 

Methodology, M.V., R.M., and H.S.K.; Formal analysis, M.V., R.M., and H.S.K.; Investigation, 296 

M.V., S.A.W., M.A., E.M., G.L.B., G.C.S., L.J.A., R.A.D., A.E., B.G., M.H., S.J.H., A.L., K.L.S., 

N.M., A.M., R.M., M., N., A.N., K.O., A.P., D.P., A.PR., P., A.R., A.E.R., J.S., S.S., A.T., and 298 

H.S.K.; Resources, N.A., D.G., J.M., T.S., M.S., and J.W.; Data curation, M.V., S.A.W., and E.S.R.; 

Writing – Original_draft, M.V.; Writing - Review & Editing, M.V., S.A.W., M.A., E.M., N.A., 300 



 

14 

G.L.B., B.G., S.H., M.H., A.J.M., J.M., R.M., M., A.E.R., T.S., M.S., E.S.R., K.A.W., and H.S.K.; 

Supervision, S.A.W., M.A., E.M., R.M., and H.S.K. 302 

 

Declaration of Interests 304 

The authors declare no competing interests. 

 306 

References: 

1. Gibson, L., Lee, T.M., Koh, L.P., Brook, B.W., Gardner, T.A., Barlow, J., Peres, C.A., 

Bradshaw, C.J.A., Laurance, W.F., Lovejoy, T.E., et al. (2011). Primary forests are irreplaceable 

for sustaining tropical biodiversity. Nature 478, 378–381. 

2. Harrison, R.D., Sreekar, R., Brodie, J.F., Brook, S., Luskin, M., O’Kelly, H., Rao, M., 

Scheffers, B., and Velho, N. (2016). Impacts of hunting on tropical forests in Southeast Asia. 

Conservation Biology, 972–981. 

3. Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, 

D., Stehman, S.V., Goetz, S.J., Loveland, T.R., et al. (2013). High-Resolution Global Maps of 

21st-Century Forest Cover Change. Science 342, 850–853. 

4. Gaveau, D.L.A., Sloan, S., Molidena, E., Yaen, H., Sheil, D., Abram, N.K., Ancrenaz, M., Nasi, 

R., Quinones, M., Wielaard, N., et al. (2014). Four Decades of Forest Persistence, Clearance 

and Logging on Borneo. PLoS ONE 9, e101654. 

5. Tyukavina, A., Hansen, M.C., Potapov, P.V., Krylov, A.M., and Goetz, S.J. (2016). Pan-tropical 

hinterland forests: mapping minimally disturbed forests. Global Ecology and Biogeography 25, 

151–163. 

6. Dirzo, R., Young, H.S., Galetti, M., Ceballos, G., Isaac, N.J.B., and Collen, B. (2014). 

Defaunation in the Anthropocene. Science 345, 401–406. 

7. Peres, C.A., Barlow, J., and Laurance, W.F. (2006). Detecting anthropogenic disturbance in 

tropical forests. Trends in Ecology & Evolution 21, 227–229. 

8. Meijaard, E., Buchori, D., Hadiprakarsa, Y., Utami-Atmoko, S.S., Nurcahyo, A., Tjiu, A., 

Prasetyo, D., Nardiyono, Christie, L., Ancrenaz, M., et al. (2011). Quantifying Killing of 

Orangutans and Human-Orangutan Conflict in Kalimantan, Indonesia. PLoS ONE 6, e27491. 

9. Davis, J.T., Mengersen, K., Abram, N.K., Ancrenaz, M., Wells, J.A., and Meijaard, E. (2013). 

It’s Not Just Conflict That Motivates Killing of Orangutans. PLoS ONE 8, e75373. 



 

15 

10. Abram, N.K., Meijaard, E., Wells, J.A., Ancrenaz, M., Pellier, A.-S., Runting, R.K., Gaveau, D., 

Wich, S., Nardiyono, Tjiu, A., et al. (2015). Mapping perceptions of species’ threats and 

population trends to inform conservation efforts: the Bornean orangutan case study. Diversity 

Distrib. 21, 487–499. 

11. Santika, T., Ancrenaz, M., Wilson, K.A., Spehar, S., Abram, N., Banes, G.L., Campbell-Smith, 

G., Curran, L., d’Arcy, L., Delgado, R.A., et al. (2017). First integrative trend analysis for a 

great ape species in Borneo. Sci Rep 7. 

12. Meijaard, E., Wich, S., Ancrenaz, M., and Marshall, A.J. (2012). Not by science alone: why 

orangutan conservationists must think outside the box. Annals of the New York Academy of 

Sciences 1249, 29–44. 

13. Schaik, C.P. van, Priatna, A., and Priatna, D. (1995). Population Estimates and Habitat 

Preferences of Orangutans Based on Line Transects of Nests. In The Neglected Ape, R. D. 

Nadler, B. F. M. Galdikas, L. K. Sheeran, and N. Rosen, eds. (Springer US), pp. 129–147. 

14. Kühl, H. (2008). Best practice guidelines for the surveys and monitoring of great ape 

populations (IUCN). 

15. Buckland, S.T., Anderson, D.R., Burnham, K.P., Laake, J.L., Borchers, D.L., and Thomas, L. 

(2001). Introduction to distance sampling estimating abundance of biological populations. 

16. Utami-Atmoko, S., Traylor-Holzer, K., Rifqi, M.A., Siregar, P.G., Achmad, B., Priadjati, A., 

Husson, S., Wich, S., Hadisiswoyo, P., Saputra, F., et al. (2017). Orangutan Population and 

Habitat Viability Assessment: Final Report. IUCN/SSC Conservation Breeding Specialist 

Group, Apple Valley, MN. 

17. Struebig, M.J., Fischer, M., Gaveau, D.L.A., Meijaard, E., Wich, S.A., Gonner, C., Sykes, R., 

Wilting, A., and Kramer-Schadt, S. (2015). Anticipated climate and land-cover changes reveal 

refuge areas for Borneo’s orang-utans. Glob Change Biol 21, 2891–2904. 

18. Goossens, B., Chikhi, L., Ancrenaz, M., Lackman-Ancrenaz, I., Andau, P., and Bruford, M.W. 

(2006). Genetic Signature of Anthropogenic Population Collapse in Orang-utans. PLOS 

Biology 4, e25. 

19. Ancrenaz, M., Gumal, M., Marshall, A.J., Meijaard, E., Wich, S.A., and Husson, S. (2016). 

Pongo pygmaeus. The IUCN Red List of Threatened Species 2016: e.T17975A17966347. 

Available at: http://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS.T17975A17966347.en. 

[Accessed June 15, 2017]. 

20. Campbell, G., Kuehl, H., N’Goran Kouamé, P., and Boesch, C. (2008). Alarming decline of 

West African chimpanzees in Côte d’Ivoire. Current Biology 18, R903–R904. 

21. Kühl, H.S., Sop, T., Williamson, E.A., Mundry, R., Brugière, D., Campbell, G., Cohen, H., 

Danquah, E., Ginn, L., Herbinger, I., et al. (2017). The Critically Endangered western 

chimpanzee declines by 80%. Am J Primatol. 

22. Plumptre, A.J., Nixon, S., Kujirakwinja, D.K., Vieilledent, G., Critchlow, R., Williamson, E.A., 

Nishuli, R., Kirkby, A.E., and Hall, J.S. (2016). Catastrophic Decline of World’s Largest 



 

16 

Primate: 80% Loss of Grauer’s Gorilla (Gorilla beringei graueri) Population Justifies Critically 

Endangered Status. PLOS ONE 11, e0162697. 

23. Walsh, P.D., Abernethy, K.A., Bermejo, M., Beyers, R., De Wachter, P., Akou, M.E., Huijbregts, 

B., Mambounga, D.I., Toham, A.K., Kilbourn, A.M., et al. (2003). Catastrophic ape decline in 

western equatorial Africa. Nature 422, 611–614. 

24. Elith, J., and Leathwick, J.R. (2009). Species Distribution Models: Ecological Explanation and 

Prediction Across Space and Time. Annual Review of Ecology, Evolution, and Systematics 40, 

677–697. 

25. Ancrenaz, M., Calaque, R., and Lackman-Ancrenaz, I. (2004). Orangutan Nesting Behavior in 

Disturbed Forest of Sabah, Malaysia: Implications for Nest Census. International Journal of 

Primatology 25, 983–1000. 

26. Mathewson, P.D., Spehar, S.N., Meijaard, E., Nardiyono, Purnomo, Sasmirul, A., Sudiyanto, 

Oman, Sulhnudin, Jasary, et al. (2008). Evaluating Orangutan Census Techniques Using Nest 

Decay Rates: Implications for Population Estimates. Ecological Applications 18, 208–221. 

27. Marshall, A.J., and Meijaard, E. (2009). Orang-utan nest surveys: the devil is in the details. 

Oryx 43, 416–418. 

28. Husson, S.J., Wich, S.A., Marshall, A.J., Dennis, R.D., Ancrenaz, M., Brassey, R., Gumal, M., 

Hearn, A.J., Meijaard, E., and Simorangkir, T. (2009). Orangutan distribution, density, 

abundance and impacts of disturbance. Orangutans: Geographic variation in behavioral ecology 

and conservation, 77–96. 

29. Abram, N., and Ancrenaz, M. (2017). Orangutan, Oil palm and RSPO: Recognising the 

importance of the threatened forests of the Lower Kinabatangan, Sabah, Malaysian Borneo 

(Ridge to Reef, Living Landscape Alliance, Borneo Futures, Hutan, and Land Empowerment 

Animals People. Kota Kinabalu, Sabah, Malaysia). 

30. Russon, A.E., Kuncoro, P., and Ferisa, A. (2015). Orangutan behavior in Kutai National Park 

after drought and fire damage: Adjustments to short- and long-term natural forest regeneration. 

Am. J. Primatol. 77, 1276–1289. 

31. Wich, S.A., Utami-Atmoko, S.S., Setia, T.M., Djoyosudharmo, S., and Geurts, M.L. (2006). 

Dietary and energetic responses of Pongo abelii to fruit availability fluctuations. International 

Journal of Primatology 27, 1535–1550. 

32. Gaveau, D.L.A., Sheil, D., Husnayaen, Salim, M.A., Arjasakusuma, S., Ancrenaz, M., Pacheco, 

P., and Meijaard, E. (2017). Rapid conversions and avoided deforestation: examining four 

decades of industrial plantation expansion in Borneo. Sci Rep 6. 

33. Ancrenaz, M., Oram, F., Ambu, L., Lackman, I., Ahmad, E., Elahan, H., Kler, H., Abram, N.K., 

and Meijaard, E. (2015). Of Pongo, palms and perceptions: a multidisciplinary assessment of 

Bornean orang-utans Pongo pygmaeus in an oil palm context. Oryx 49, 465–472. 



 

17 

34. Meijaard, E., Albar, G., Nardiyono, Rayadin, Y., Ancrenaz, M., and Spehar, S. (2010). 

Unexpected Ecological Resilience in Bornean Orangutans and Implications for Pulp and Paper 

Plantation Management. PLOS ONE 5, e12813. 

35. Spehar, S.N., and Rayadin, Y. (2017). Habitat use of Bornean Orangutans (Pongo pygmaeus 

morio) in an Industrial Forestry Plantation in East Kalimantan, Indonesia. Int J Primatol, 1–27. 

36. Ancrenaz, M., Sollmann, R., Meijaard, E., Hearn, A.J., Ross, J., Samejima, H., Loken, B., 

Cheyne, S.M., Stark, D.J., Gardner, P.C., et al. (2014). Coming down from the trees: Is 

terrestrial activity in Bornean orangutans natural or disturbance driven? Scientific Reports 4. 

37. Deere, N.J., Guillera-Arroita, G., Baking, E.L., Bernard, H., Pfeifer, M., Reynolds, G., Wearn, 

O.R., Davies, Z.G., and Struebig, M.J. (2017). High Carbon Stock forests provide co-benefits 

for tropical biodiversity. J Appl Ecol. 

38. Morrogh-Bernard, H.C., Husson, S.J., Harsanto, F.A., and Chivers, D.J. (2014). Fine-Scale 

Habitat Use by Orang-Utans in a Disturbed Peat Swamp Forest, Central Kalimantan, and 

Implications for Conservation Management. Folia Primatologica 85, 135–153. 

39. Wearn, O.R., Rowcliffe, J.M., Carbone, C., Pfeifer, M., Bernard, H., and Ewers, R.M. (2017). 

Mammalian species abundance across a gradient of tropical land-use intensity: A hierarchical 

multi-species modelling approach. Biological Conservation 212, 162–171. 

40. Meijaard, E., Abram, N.K., Wells, J.A., Pellier, A.-S., Ancrenaz, M., Gaveau, D.L.A., Runting, 

R.K., and Mengersen, K. (2013). People’s Perceptions about the Importance of Forests on 

Borneo. PLOS ONE 8, e73008. 

41. Struebig, M.J., Wilting, A., Gaveau, D.L.A., Meijaard, E., Smith, R.J., Abdullah, T., Abram, N., 

Alfred, R., Ancrenaz, M., Augeri, D.M., et al. (2015). Targeted Conservation to Safeguard a 

Biodiversity Hotspot from Climate and Land-Cover Change. Current Biology 25, 372–378. 

42. Meijaard, E., Morgans, C.L., Husnayaen, Abram, N.K., and Ancrenaz, M. (2017). An impact 

analysis of RSPO certification on Borneo forest cover and orangutan populations. (Borneo 

Futures, Bandar Seri Begawan, Brunei Darussalam). 

43. Meijaard, E., Nardiyono, Rahman, H., Husson, S., Sanchez, K.L., and Campbell-Smith, G. 

(2016). Exploring Conservation Management in an Oil-palm Concession. International Journal 

of Natural Resource Ecology and Management 1, 179–187. 

44. Benítez-López, A., Alkemade, R., Schipper, A.M., Ingram, D.J., Verweij, P.A., Eikelboom, J. a. 

J., and Huijbregts, M. a. J. (2017). The impact of hunting on tropical mammal and bird 

populations. Science 356, 180–183. 

45. Harrison, R.D. (2011). Emptying the Forest: Hunting and the Extirpation of Wildlife from 

Tropical Nature Reserves. BioScience 61, 919–924. 

46. Stiles, D., Redmond, I., Cress, D., Nellemann, C., and Formo, R.K. (2016). Stolen Apes - The 

Illicit Trade in Chimpanzees, Gorillas, Bonobos, and Orangutans. A Rapid Response 

Assessment. United Nations Environment Programme, GRID-Arendal. www.grida.no. 



 

18 

47. Marshall, A.J., Lacy, R., Ancrenaz, M., Byers, O., Husson, S.J., Leighton, M., Meijaard, E., 

Rosen, N., Singleton, I., and Stephens, S. (2009). Orangutan population biology, life history, 

and conservation. Orangutans: Geographic variation in behavioral ecology and conservation, 

311–326. 

48. Leendertz, S.A.J., Wich, S.A., Ancrenaz, M., Bergl, R.A., Gonder, M.K., Humle, T., and 

Leendertz, F.H. (2017). Ebola in great apes – current knowledge, possibilities for vaccination, 

and implications for conservation and human health. Mam Rev 47, 98–111. 

49. Thomas, L., Buckland, S.T., Rexstad, E.A., Laake, J.L., Strindberg, S., Hedley, S.L., Bishop, 

J.R., Marques, T.A., and Burnham, K.P. (2010). Distance software: design and analysis of 

distance sampling surveys for estimating population size. J Appl Ecol 47, 5–14. 

50. Wich, S.A., Gaveau, D., Abram, N., Ancrenaz, M., Baccini, A., Brend, S., Curran, L., Delgado, 

R.A., Erman, A., Fredriksson, G.M., et al. (2012). Understanding the Impacts of Land-Use 

Policies on a Threatened Species: Is There a Future for the Bornean Orang-utan? PLoS ONE 7, 

e49142. 

51. Johnson, A.E., Knott, C.D., Pamungkas, B., Pasaribu, M., and Marshall, A.J. (2005). A survey 

of the orangutan (Pongo pygmaeus wurmbii) population in and around Gunung Palung National 

Park, West Kalimantan, Indonesia based on nest counts. Biological Conservation 121, 495–507. 

52. Meijaard, E., Sheil, D., Nasi, R., Augeri, D., Rosenbaum, B., Iskandar, D., Setyawati, T., 

Lammertink, M., Rachmatika, I., Wong, A., et al. (2005). Life after logging: reconciling wildlife 

conservation and production forestry in Indonesian Borneo (Cifor). 

53. Miettinen, J., Shi, C., Tan, W.J., and Liew, S.C. (2012). 2010 land cover map of insular 

Southeast Asia in 250-m spatial resolution. Remote Sensing Letters 3, 11–20. 

54. Miettinen, J., Shi, C., and Liew, S.C. (2016). 2015 Land cover map of Southeast Asia at 250 m 

spatial resolution. Remote Sensing Letters 7, 701–710. 

55. Wich, S.A., Singleton, I., Nowak, M.G., Atomoko, S.S.U., Nisam, G., Arif, S.M., Putra, R.H., 

Ardi, R., Fredriksson, G., Usher, G., et al. (2016). Land-cover changes predict steep declines for 

the Sumatran orangutan (Pongo abelii). Science Advances, 2 : e1500789. 

56. Aiken, L.S., West, S.G., and Reno, R.R. (1991). Multiple regression: Testing and interpreting 

interactions (Sage). 

57. Laing, S.E., Buckland, S.T., Burn, R.W., Lambie, D., and Amphlett, A. (2003). Dung and nest 

surveys: estimating decay rates. Journal of Applied Ecology 40, 1102–1111. 

58. Buckland, S.T. (2004). Advanced distance sampling (Oxford University Press). 

59. Hedley, S.L., Buckland, S.T., and Borchers, D.L. (2004). Spatial distance sampling models 

(Oxford University Press, New York). 

60. McCullagh, P., and Nelder, J.A. (1989). Generalized Linear Models, no. 37 in Monograph on 

Statistics and Applied Probability (Chapman & Hall,). 



 

19 

61. Spehar, S.N., Mathewson, P.D., Wich, S.A., Marshall, A.J., Kühl, H., and Meijaard, E. (2010). 

Estimating orangutan densities using the standing crop and marked nest count methods: Lessons 

learned for conservation. Biotropica 42, 748–757. 

62. Ancrenaz, M., Gimenez, O., Ambu, L., Ancrenaz, K., Andau, P., Goossens, B., Payne, J., 

Sawang, A., Tuuga, A., and Lackman-Ancrenaz, I. (2005). Aerial Surveys Give New Estimates 

for Orangutans in Sabah, Malaysia. PLOS Biol 3, e3. 

63. Quinn, G.P., and Keough, M.J. (2002). Experimental design and data analysis for biologists 

(Cambridge University Press). 

64. Field, A. (2005). Discovering statistics using SPSS (2005) London (Sage publications). 

65. Forstmeier, W., and Schielzeth, H. (2011). Cryptic multiple hypotheses testing in linear models: 

overestimated effect sizes and the winner’s curse. Behav Ecol Sociobiol 65, 47–55. 

66. R Core Team (2017). R: A Language and Environment for Statistical Computing (Vienna, 

Austria: R Foundation for Statistical Computing) Available at: https://www.R-project.org/. 

67. Fox, J., and Weisberg, S. (2011). An R companion to applied regression (SAGE Inc., Thousand 

Oaks). 

68. Burnham, K.P., and Anderson, D. (2003). Model selection and multi-model inference Second 

Edition. (New York: Springer). 

69. Manly, B.F. (1997). Randomization, Bootstrap and Monte Carlo Methods in Biology (CRC 

Press). 

70. Gaveau, D.L.A., Salim, M., and Arjasakusuma, S. (2016). Deforestation and industrial 

plantations development in Borneo. Available at: http://www.cifor.org/map/atlas/. 

71. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., and Jarvis, A. (2005). Very high 

resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978. 

72. FAO, IIASA and ISRIC, ISSCAS (2012). JRC: Harmonized world soil database (version 1.2), 

in, 1.edited by: FAO. Available at: http://webarchive.iiasa.ac.at/Research/LUC/External-World-

soil-database/HTML/. 

73. Bright, E.A., Coleman, P.R., Rose, A.N., and Urban, M.L. (2012). LandScan 2011. Available at: 

http://www.ornl.gov/landscan/. 

74. Venables, W.N., and Ripley, B.D. (2002). Modern Applied Statistics with S Fourth. (New York: 

Springer). 

75. GDAL Development Team (2017). GDAL - Geospatial Data Abstraction Library, Version 2.1.3 

(Open Source Geospatial Foundation) Available at: http://www.gdal.org. 

76. QGIS Development Team (2009). QGIS Geographic Information System (Open Source 

Geospatial Foundation) Available at: http://qgis.osgeo.org. 



 

20 

77. Python Software Foundation (2016). Python Language Reference. Available at: 

http://www.python.org. 

 

 308 

Figure Legends 

Figure 1: Abundance of the three largest orangutan metapopulations between 1999 and 2015 310 

and projected abundance for 2020 and 2050.  

Orangutan abundance was estimated for the three largest metapopulations with a multi-model 312 

approach over the study period (1999 to 2015). Estimates of future orangutan abundance were 

based on forest cover projections for 2020 and 2050 by Struebig et al. [17] and are indicated by a 314 

hashed line. Shaded areas and error bars represent the 95% confidence intervals. On the y-axes the 

number “10,000” is highlighted in blue to show the scale difference between the three populations. 316 

The map shows all identified metapopulations in grey. The three largest metapopulations are 

indicated by their color. State labels are as follows: Br, Brunei; Sb, Sabah; and Sk, Sarawak in 318 

Malaysia; WK, West; EK, East; NK, North; SK South; and CK, Central Kalimantan in Indonesia. 

See also Figures S1, S2 and Tables S1, S2 and S3.  320 

 

Figure 2: Spatial distribution of estimated orangutan densities on Borneo for the year 1999 322 

and 2015, and projections to 2020 and 2050. 

Bornean orangutan density per 1 km² in the beginning and the end of the study period and for 2020 324 

and 2050. Between 1999 and 2015 high density areas (dark green) disappeared, while medium 

density areas (light green) declined. Low density areas (beige and purple) expanded. Future 326 

estimates are based on projected forest loss [17], therefore map representations between model 
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estimates and future projections differ. Areas in which forest was projected to be lost, also lose the 328 

resident orangutans. Hence, maps between 2015 and 2020 seem to lose many fragments inhabited 

by orangutans, but they already had low density before. Between 2020 and 2050 further areas were 330 

projected to lose forest, but the loss is less visible. See also Figures S1, S2 and Tables S1, S2 and 

S3.  332 

 

Figure 3: Linking remotely sensed resource use and density distribution. 334 

Percent area affected by resource use in orangutan metapopulations during the study period, forest 

and non-forest classes (pie charts), their spatial distribution (map) and total orangutan abundance 336 

and its change between the first study year (1999) and last study year (2015) (bar-charts). Total 

areas per province in km² is given in the lower right corner of the pie charts. Areas had either been 338 

transformed into plantations (oil palm and paper pulp), deforested or selectively logged between 

1999 and 2015, were covered with forest (regrowth, primary or montane primary forest), were 340 

plantations already before the study period or another unspecified non-forest class. The percent 

orangutan abundance loss in comparison to 1999 is highlighted in rectangles. The error bars 342 

indicate the 95% confidence interval. On the x-axes the number ‘2000’ is highlighted in blue to 

show the scale differences between the three areas. See also Figure S3.  344 
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Study area and orangutan data 352 

For this study we compiled three types of data: 1) line transect nest count data; 2) nest decay time 

data; and 3) polygons representing areas inhabited by orangutan metapopulations. Bornean 354 

orangutan (Pongo pygmaeus) nest count line transect data were compiled from surveys undertaken 

across Borneo between 1999 to 2015. Researchers reported the number of orangutan nests observed 356 

along line transects, which were either walked or flown with a helicopter (aerial and ground 

transects), respectively. The datasets were converted to a standard format to include the number of 358 

observed nests, total transect length, year of survey, and start and/or end coordinates of surveyed 

transect line. All ground transects with perpendicular distances (ppd) to nests were used for the 360 

Distance analysis [49] (number of nests = 15,858, 64% of total), to estimate truncation distance and 

effective strip width (ESW), that is, the perpendicular distance from the transect, below which an 362 

equal number of nests was missed as seen beyond [14]. For the predictive density distribution 

model we also considered aerial and ground transects without ppd and assumed estimated ESW to 364 

be representative. The cumulative area of land surveyed was calculated as the transect length 

multiplied by two times the effective strip width, excluding repeat sampling.  366 

There were only few transects from areas on Borneo in which orangutans are known to be absent. 

Thus, we added ‘virtual’ transects with zero nests randomly to expert-delineated areas of orangutan 368 

absence [50] to balance this bias in sampling. For each survey year, we set the number of transects 

in the area of known absences to 50% of the number of surveyed transects in the orangutan range in 370 

the given year. We tested the effect of varying the number of absence transects (30%, 50% and 80% 

density of surveyed transect), but the model proved to be robust and the resulting orangutan 372 

abundance estimate did not differ substantially (30% absence density in comparison to 50%: 

correlation coefficient > 0.99, maximum percent difference = 5.6%; 80 % absence density in 374 
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comparison to 50%: correlation coefficient > 0.99, maximum percent difference = 3%; n = 16 

years).  376 

We compiled nest decay information from four sites. For two locations (Sabangau in Central 

Kalimantan and Lesan in East Kalimantan) nest decay datasets included information from repeated 378 

visits about nest status from construction to disappearance. The dataset from Lesan included 88 

nests, which were visited between February 2005 and September 2006. In Sabangau 423 nests were 380 

visited between July 2001 and April 2011. For two other sites (Kinabatangan, Sabah and Gunung 

Palung, West Kalimantan) we used information about nest decay time, estimated by Ancrenaz et al. 382 

and by Johnson et al. [25,51].  

At the PHVA for Bornean orangutans held between the 24th and 27th of May 2016 in Bogor, 384 

Indonesia, 41 orangutan experts mapped 64 Bornean orangutan metapopulations [16]. The resulting 

metapopulation polygons covered areas between 6 and 58,157 km², amounting to a total area of 386 

333,250 km². Predictions were extrapolated to this area, and although only a small proportion was 

actually sampled (0.37%), the surveys were distributed well across the area. Only 23% of the 388 

metapopulation area was located outside the 95 % minimum convex polygon of transect locations.  

 390 

Predictor variables of orangutan abundance  

We selected predictor variables based on their presumed importance for orangutan ecology, while 392 

guaranteeing data availability for the whole range and minimizing the correlation between them 

[24]. The final predictor variable set comprised layers depicting climate (mean daily temperature, 394 

yearly variation in rainfall, rainfall in dry months (May - September), habitat (topsoil organic 

carbon content, peatswamp, lowland and lower montane forest cover), and anthropogenic pressures 396 

on orangutans (deforestation, human population density, orangutan killing estimates, and percent 

population with religious hunting taboos). The predictor for orangutan killing estimates was based 398 
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on a Borneo wide model of orangutans killed in years prior to interview surveys [8] by Abram et al. 

[10]. We included percent Muslim population as a proxy for the proportion of the population that 400 

has hunting taboos, because it had been shown that hunting pressure on primates is lower in areas 

inhabited by a majority of Muslims [9,52].  402 

Before extraction, we reprojected all predictor layers to the Asia South Albers Equal Area Conic, to 

allow for accurate representation of metric distances. The layers were resampled to the same extent, 404 

origin and a resolution of 1 km, the coarsest available. Nearest neighbor resampling was used for 

categorical predictors. 406 

We extracted climate and habitat variables within a radius of 1 km around each transect, resulting in 

an area of at least 3.14 km², depending on the transect length. This approximates the size of the 408 

home range of female orangutans on Borneo and ensures that climatic and ecological predictors that 

have an effect on the population are appropriately represented. Variables indicating anthropogenic 410 

pressures were obtained within a distance of 10 km, approximating the distance over which human 

influence is most likely (E. Meijaard, unpublished observation). 412 

Information about habitat cover was available for three time points (2000, 2010 and 2015 [53,54]). 

We used the habitat cover information from 2000 for all transects surveyed between 1999 – 2005, 414 

the layer from 2010 for all transects surveyed between 2006 and 2012, and the layer from 2015 for 

transects sampled in 2013 to 2015. At the time of the analysis, deforestation maps were available for 416 

each year between 2000 and 2014 [3]. For each transect, we considered the percent area deforested 

in the years prior to the survey in a 10 km-buffer around the transect.  418 

When the start or the end-point of a transect was unknown, we extracted the predictor variables 

with a radius of half the transect length [sensu 55]. We determined the proportion of each class 420 

within the neighborhood for categorical and the mean value for continuous predictor variables.  
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We repeated the extraction for a 1 x 1 km grid covering the metapopulation areas, to enable the 422 

estimation of orangutan abundance over the whole range. It was visually verified that all predictors 

had an approximately symmetrical distribution, and human population density was subsequently 424 

log-transformed. We also ensured that the range of variable values extracted for the transect 

observations was broad enough to meaningfully allow prediction to the range of values extracted for 426 

the metapopulation areas by comparing the distribution of both. We found that the majority of 

predictors covered more than 75% of the predictor space to which estimates were extrapolated. The 428 

exceptions were the predictors deforestation (63% cover of sampled predictor range), mean 

temperature (50 % cover) and human population density (> 1% cover). For the predictor mean 430 

temperature the low values were not included. These occur in high elevation areas, which were 

sampled less as they are difficult to access and harbor fewer orangutans [28]. The surveys also did 432 

not include areas with high human population density. As the density of orangutans decreases to 

zero in high elevation areas and areas with high human population density, the extrapolation error 434 

cannot become large. Thus, we did not consider the low coverage for these predictors to be a 

limitation. The cover of predictor values was at most 3% lower, when excluding the absence 436 

transects, except for rainfall variability. For this predictor, the absence transects increased the cover 

of predictor values by 19%. Finally, all predictors were standardized to a mean of zero and a 438 

standard deviation of one to facilitate the comparison of model parameters [56]. 

 440 

Future orangutan abundance 

We used information about remaining forest cover on Borneo projected for 2020 and 2050 from 442 

Struebig et al. [17,41] together with the orangutan density distribution estimated for 2015 and 

predicted orangutan distribution 5 and 35 years after the last study year. Assuming that orangutans 444 
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will not be able to survive in the long-term in areas that are not forested, we excluded all individuals 

occurring in cells that were predicted to lose forest cover by 2020 and 2050, respectively. 446 

 

 448 

QUANTIFICATION AND STATISTICAL ANALYSIS 

As an analytical approach, we used a combination of negative binomial regression models [57] and 450 

design-based inference [15,58] to estimate the parameters necessary for building a spatial density 

distribution model for Bornean orangutans as proposed by Hedley et al. [59]. 452 

 

Calculating model offset 454 

In the predictive density distribution model, we used an offset term [60] to convert the number of 

orangutan nests per transect, into the number of individuals per square kilometer. It included the 456 

product of the area that was effectively sampled and the relationship between number of nests and 

number of orangutans. The area that was sampled is described by the length of each transect (l) 458 

multiplied by twice the ESW. 

The number of orangutans per observed nest was estimated using the proportion of nest builders in 460 

a population (p), the daily production rate of nests (r), and the nest decay rate (t), which represents 

the number of days for which a nest remains visible in the forest [13,14]. For these parameters we 462 

used p = 0.88 and r = 1.12 nests/day/individual from Spehar et al. [61], representing a combination 

of the most current nest life-history parameters for Bornean orangutan populations (see below how t 464 

was determined).  

 466 

Effective strip width 
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For the ground transects, the effective strip width (ESW) was estimated using Distance 6.0 [49]. We 468 

used a truncation distance of 27 m. The models were fitted to the observed data with and without 

grouping for different habitat categories, using various key functions and adjustment terms. The 470 

model fit was tested with χ2 statistics for which we set distance intervals under the “diagnostics” 

tab. The fit of the model using habitat specific detection functions was not better than the fit of the 472 

model that used a single detection function across habitats, as established by Akaike Information 

Criterion (AIC). As a consequence, we applied a global detection function and resulting effective 474 

strip width (ESW) to all ground transects. The model with the best fit, based on the lowest AIC and 

χ2 statistics, was one with a half-normal key function and a simple polynomial adjustment of order 476 

4.  

Nests with a ppd larger than the truncation distance were excluded from the dataset. We assumed 478 

that nests without ppd were distributed at similar distances along transects as the nests for which 

ppds were reported. Therefore, we truncated them by randomly excluding the same proportion of 480 

nests that were excluded from transects with known distances, leaving 34,415 nests in the dataset. 

The estimated ESW was 15.95 m, and nest detection probabilities for ground transects was 0.59. 482 

This is in line with reported detection probability for other ape surveys [55].  

Helicopter surveys did not contain information about the ppds from the transects to the nests. Thus, 484 

the ESW for those surveys was set to 75m, which corresponds to half of the maximum visibility 

from the helicopter to the sides of the survey line [62]. Yearly abundance estimates were tested for 486 

sensitivity to the assumed aerial ESW, but did not vary significantly (abundance estimate with aerial 

ESW = 100 m in comparison to 75 m: correlation coefficient > 0.99, maximum difference 2.127%, 488 

aerial ESW = 50 m in comparison to 75 m: correlation coefficient = 1, maximum difference 

3.904%, n = 16 years).  490 
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Estimation of nest decay rate and extrapolation 492 

We updated the nest decay rate for two sites in the Bornean orangutan range (Sabangau in Central 

Kalimantan and Lesan in East Kalimantan), using the modification of the approach from Laing et 494 

al. [57], used in Wich et al. [55]. Additionally, we used site-specific decay rates available from the 

literature for Kinabatangan, Sabah [25] and Gunung Palung, West Kalimantan [51]. For the 496 

calculation of the nest decay time we used logistic models (left-truncated with normalized intercept, 

log-transformed and reciprocal) [57] and nest age as the only predictor. The product of the daily 498 

decay probability and time since nest construction was summed over 2000 days to calculate mean 

decay time. The model estimates from the three approaches were model-averaged using their AIC 500 

weights. The time until nest decay for Sabangau was found to be 496.3 days (n = 423, 95% CI: 

453.1 to 542.9 days) and 582.5 days (n = 88, 95% CI: 461.2 to 753.1) for Lesan, which is similar to 502 

the nest decay rate estimated in Spehar et al. [61] for this area. We bootstrapped the data 1,000 

times and determined the 95% confidence interval by model-averaging the 2.5% and 97.5% lower 504 

and upper confidence limits.  

The sites, for which we had nest decay values, experience different environmental conditions. The 506 

respective values were thus used for different parts of the Bornean orangutan range, based on the 

location of transects within provinces and forest types: (a) Sabangau nest decay, 496.3 days (this 508 

publication), for peatswamp forests in Central Kalimantan; (b) Lesan nest decay, 583 days (this 

publication), for East and South Kalimantan; (c) Average of Gunung Palung lowland forest, lowland 510 

hill and mid-elevation nest decay, 276 days [51], for lowland forests in Sarawak, West and Central 

Kalimantan; (d) Gunung Palung montane forest nest decay, 321.3 days [51], for montane forests (> 512 

800 m above sea level (asl)) in Sarawak, West and Central Kalimantan; (e) Gunung Palung 

peatswamp forest nest decay, 399 days [51], for peatswamp forests in West Kalimantan and 514 

Sarawak; (f) Kinabatangan nest decay, 202 days [25], for Sabah. 
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 516 

Model structure and multi-model inference 

We used a Generalized Linear Model with a negative binomial error structure and log link function 518 

[60] to assess the effect of climate, habitat and anthropogenic pressures on orangutans and predict 

the density distribution across the range. The full model, including all predictor variables and the 520 

offset term, had the following structure: orangutan nest count on transect ~ year + mean temperature 

+ rainfall variability + rainfall in dry months + rainfall in dry months² + topsoil organic carbon 522 

content + peatswamp cover + lowland forest cover + lower montane forest cover + deforestation + 

human population density + orangutan killing estimates + percent population with religious hunting 524 

taboos + offset + dispersion parameter. It had been shown that higher orangutan densities occur in 

areas of intermediate levels of rainfall in dry months [11], therefore we included the squared rainfall 526 

in dry months. A negative coefficient indicates highest orangutan densities at intermediate values of 

rainfall. 528 

We tested for collinearity, which was not an issue (largest Variance Inflation Factor = 4.429, see 

also Table S1) and leverage values as well as DFBeta values did not indicate obviously influential 530 

cases [63,64]. The model was not strongly overdispersed (dispersion parameter: 1.675). 

As a test of the significance of the predictors, we compared the fit of the full model [65], as 532 

described above, to the null model, only including the intercept and the offset term. The comparison 

was based on a likelihood ratio test. We fitted the models in R (version 3.x, [66]) using the function 534 

glm.nb of the R package MASS and determined Variance Inflation Factors using the function vif of 

the R package car [67]. 536 

To minimize model uncertainty in spatial model prediction, we applied multi-model inference and 

assessed all possible combinations of covariates included in the full model (n = 6,144) [see also 55]. 538 

Out of all possible models, only 18 models were in the confidence set, combining 95% of the AIC 
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weight (Table S2). The best model was the full-model lacking the orangutan killing estimates and 540 

percent population with religious hunting taboos (Table S2 and S3). Predictions of all models were 

averaged, after weighting by the models' AIC weight [68] and used to predict the orangutan density 542 

for all 1x1 km cells across the range. We model averaged in link space and only after that 

exponentiated the averaged predictions to get the abundance estimate per grid cell. 544 

In the output of the density distribution models, all pixels outside the previously defined 

metapopulations were excluded to avoid overestimating Bornean orangutan density, assuming that 546 

all larger populations are known to date. Density estimates were summed for each metapopulation 

and land-use category of interest to retrieve total abundance per metapopulation or category [16].  548 

 

Parametric bootstrapping to estimate confidence limits 550 

The 95% confidence limits of the model predictions were estimated using parametric bootstrapping 

(n=1,000). The model-averaged fitted estimates and their standard errors (SE), as well as estimate 552 

and SE for the dispersion parameter, theta, were used to generate 1,000 new instances of model 

estimates by sampling from normal distributions with means and standard deviations being the 554 

model estimates and their standard errors, respectively. These bootstrapped estimates were then 

used, together with the model offset and the predictors, to sample an instance of the response from a 556 

negative binomial distribution with a mean and dispersion parameter determined by the 

bootstrapped estimates. 558 

We fit the models with the bootstrapped response, resulting in bootstrapped model estimates and 

AIC-values for each model. Using the bootstrapped model-estimates, a prediction was made for 560 

each grid cell and study year and from these, the confidence limits of the mean and total abundance 

of cells or groups of cells were determined using the percentile method [69].  562 
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 564 

Spatial overlap of orangutan density distribution and resource use 

With the aim of assessing the differences in the orangutan abundance and change in response to 566 

resource use during the survey period, we compared the orangutan density distribution from the first 

and last year of the survey period with maps for land-cover classes and area converted into 568 

industrial agriculture (oil palm and paper pulp plantations) [32,70]. The lack of repeat sampling 

through time in areas of land-cover change made it necessary to approach this study in two steps. 570 

First, we fitted the model using habitat cover and threat predictors and second, overlaid the 

estimated densities with independent maps of land-cover change to infer about patterns of 572 

orangutan loss. However, as these maps represent related information, we cannot entirely exclude 

potential circularity in the approach taken. The only approach that completely allows to avoid this 574 

problem is to systematically sample across gradients of land-use change through time. 

From the land-use layers we extracted three classes representing changes of orangutan habitat due 576 

to resource use (establishment of industrial oil palm and paper pulp plantations, deforestation, and 

selective logging) that occurred during the study period (1999 – 2015), three classes representing 578 

forested areas in 2015 (regrowth forest, primary forest, and primary montane forests ( > 750 m asl)), 

and two classes depicting non-forested areas in 2015 (industrial plantations established before 2000 580 

and ‘other’). Regrowth forests were areas that were non-forest in 1973, but had forest cover in 

2015. The category ‘other’ included scrublands, urban, agricultural and non-forest areas that were 582 

not contained in the other categories. It was possible that during the study period an area was first 

selectively logged or deforested, and then industrial plantations were established. In our analysis, 584 

we counted these areas only as industrial plantations, as this was the final stage of the land-use 

transition. We then pooled the average abundance and density in each land-use class or resource use 586 

category and calculated the 95% confidence interval.  
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 588 

DATA AND SOFTWARE AVAILABILITY 

All raw datasets used in this study can be requested from the IUCN SSC. A.P.E.S database 590 

(http://apesportal.eva.mpg.de/). The processed data and data underlying the figures were deposited 

under https://portal.idiv.de/owncloud/index.php/s/gU6BXYGoEWWdkyg. The code was deposited 592 

under https://git.idiv.de/mv39zilo/manuscript_code.git. 


