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ABSTRACT 

In this paper we estimate the term structure of daily U.K. interest rates using more flexible 

continuous-time models. A multivariate framework is employed for the dynamic estimation and 

forecasting of four classic models over the eventful period of 2000-2013. The extensions are 

applied in two stages to four- and five-factor formulations, allowing us to assess the potential 

benefit of gradually increasing the model-flexibility. The Gaussian estimation methods for 

dynamic continuous-time models yield insightful comparative results concerning the two 

different segments of the yield curve, short- and long-term, respectively. In terms of in-sample 

performance the newly extended multi-factor general model is superior to all the other restricted 

models. When compared to benchmark discrete-time models, the out-of-sample performance of 

the extended continuous-time models seem to be consistently superior with regards mainly to the 

short-term segment of the yield curve.  
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1.    Introduction  

Modelling and understanding the behaviour of interest rates is crucial to areas such as 

derivative pricing, risk management and monetary policy. In finance the key to the accuracy of 

any global macroeconomic model “are the yield curve models that forecast interest rates and 

upon which the determination of all other variables depends” (Dempster et al., 2014; p. 251).  

        In the aftermath of the last global financial crisis of 2007-2009, recent studies and financial 

regulators have suggested that the yield curve models used by market participants should allow 

for higher flexibility by increasing the number of factors included in the model. Basel II 

Committee on Banking Supervision (2010, p12) recommended that “banks must model the yield 

curve using a minimum of six risk factors”. What is the optimal number of factors to be included 

in the model is still an open question. By assuming multiple sources of uncertainty, multi-factor 

models are more realistic and therefore able to better capture the dynamics of the term structure 

of interest rates (hereafter TSIR). The overwhelming empirical literature on the TSIR offers 

mostly applications of two- and three-factor specifications, and only few studies (including 

Duffee, 2011; Filipovic et al., 2014) have considered testing four or five-factor models. 

Following a principal component analysis (PCA), Steeley (2014) identified the change in the 

volatility as an important fourth factor, responsible for changes in the shape of the yield curve.  

The empirical investigation conducted in this paper aims to test for the benefit of richer 

TSIR models in terms of both fitting the historical data and forecasting performance. Following 

Nowman (2003, 2006) we gradually extend the general Chan, Karolyi, Longstaff and Sanders 

(1992) (CKLS) model to four- and five-factors.  Also, we comparatively consider another three 

classic TSIR models nested in the CKLS framework, namely the Vasicek (1977), Cox, Ingersoll 

and Ross (1985) (hereafter CIR) and Brennan and Schwartz (1980) (hereafter, BS) models.  

In term of the estimation technique we apply the Gaussian estimation methods of 

continuous-time dynamic systems developed over two decades by Bergstrom (1983, 1984, 1985, 

1986, 1989, 1990) to daily U.K. interest rates over the period 2000 – 2013. The method yields 

quasi maximum likelihood (QML) estimates and its empirical application is justified by the 

considerable gain in the predictive power of continuous-time models compared with less 

efficient methods such as 2SLS (two stage least square) and 3SLS (three stage least square) or 

less sophisticated models such as discrete simultaneous equation systems and vector 

autoregressive (VAR) models.  

Another purpose of this study is the dynamic estimation and the forecasting of above models 

within comparative context. Although several studies (e.g. Duffee, 2002; Diebold and Li, 2006; 

Matsumura et al., 2011) have been dedicated to the forecasting performance of competing term-
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structure models, no previous empirical work  has explored the possibility of different predictive 

performance of the same models across different segments of the yield curve. We separately 

estimate the short- and the long-maturity segments of the U.K. yield curve by considering four 

and five cross-sectional points for each segment of the yield curve. We use the daily GBP-

LIBOR rates for the short end of the curve and the daily U.K. government nominal rates for the 

longer than one-year maturity segment.  

        The empirical results from the dynamic estimation of sixteen1 models provide the in-the-

sample estimates that are subsequently used to gauge the out-of-sample performance of the 

models. Two elements of forecasting analysis are brought together to construct a robust 

forecasting comparison framework: across six different forecasting methods (four continuous-

time models are compared with the first order AR(1) and vector-autoregressive VAR(1) discrete-

time models) and between  the two model-extensions  (four- and five-factors). We find that all 

the classic models are rejected in terms of goodness of fit against the general CKLS multi-factor 

model for both short- and long-term segments of the yield curve. However, for the long-term 

segment the Vasicek (1977) specification that admits negative interest rates seems to compete 

extremely well against the CKLS model. With regards to the out-of-sample performance, the 

LIBOR curve is best predicted by the CKLS model that clearly outperforms the parsimonious 

econometric models AR(1) and VAR(1).   

The structure of this paper is as follows: In Section 2 we present a brief literature review on 

the theoretical models of the TSIR. Section 3 presents the gradual extension of the multivariate 

CKLS model with feedback effects to four- and five-factors and the data sets. Section 4 reports 

the empirical results from the estimation of the continuous-time models. Section 5 presents the 

forecasting analysis and comparison between the models. Finally, the concluding remarks are 

summarised in Section 6. 

2.  Literature Review - A Taxonomy of Continuous-Time Interest Rate Models 

The current modern financial literature offers a profusion of interest rate models that 

evolved along distinct theoretical paths, hence the difficulty to develop a common framework in 

which the models could be classified into mutually exclusive categories (Gibson et al., 2010).  

 Depending on specific criteria term structure models could be classified in many different 

ways. In terms of calibration we can differentiate between two types of theoretical models no-

                                                           
1 We estimate eight models for each of the two extensions, four theoretical models for the short-term segment of the 

yield curve and the same four models for the long-term segment. 
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arbitrage and equilibrium models2. While the no-arbitrage models fit exactly the currently 

observed market data, providing a snapshot in time of the yield curve, the equilibrium models 

consider the current market prices as an output that only approximates the current term structure. 

While no-arbitrage and equilibrium term structure of interest rates models have strong economic 

appeal, more parsimonious purely statistical models such as the Nelson and Siegel (1987) and 

Svensson (1994) parametric models and their more recent dynamic extensions (Diebold and Li, 

2006; Laurini and Hotta, 2010) prove to possess superior predictive power.  

In general, the dynamics of a yield curve model is driven by the main state variable, the 

short rate, that can enter the model in different forms: as a state variable itself, as an affine 

combination of state variables, as a sum of the squares of the state variables, as an exponential of 

a state variables or just as a point on the forward curve. Trying to include as many as possible 

TSIR models James and Webber (2000) distinguish between six main categories of interest rate 

models: affine yield models such as Duffie and Khan (1994, 1996); whole yield curve models 

such as Heath, Jarrow and Morton (1992); market models such as Jamshidian (1997) and Brace, 

Gatarek and Musiela (1997); price kernel models like Constantinides (1992), Rogers (1997); 

positive models (log- r models) like Black and Karasinski (1991) and consol models such as 

Brennan and Schwartz (1979). More models can still be added to this impressive list of interest 

models; for example, most diffusion models can be jump-augmented where the resulting models 

accommodate for the recognition of jump existence in the dynamics of interest rates (Das, 2002; 

Johannes, 2004; Jiang and Yan, 2009; Kim and Wright 2014). 

With so many, sometimes overlapping classes of interest rate models, it is simpler and more 

relevant for our empirical investigation to broadly distinguish between two main types of interest 

rate models that have different practical implications. On one side, factor interest rate models 

bring essential information based on historical data about the pattern of future rates, hence they 

are more suitable for dynamic econometric and forecasting analysis and implicitly for interest 

rate risk management. The market or yield curve models on the other side are static, describing 

the position of the yield curve at one particular point in time and involving frequent 

recalibration; due to their facile calibration to observed market prices they are preferred by 

trading desks and other practitioners, making them extremely popular for pricing of interest rate 

contingent claims. However, given our purpose of dynamic estimation and forecasting, a multi-

factor model specification is considered more appropriate.  

It is well known that assuming single-factor models to describe the evolution of the yield 

curve over time is rather unrealistic and the theoretical framework implying perfect correlation 

                                                           
2 No-arbitrage models include Ho and Lee (1986), Hull and White (1990), Black et al. (1990), Duffie and Kan 

(1994), while equilibrium models include Vasicek (1997), Cox et al.(1985) 
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among the bond returns across all maturities contrasts with the empirical evidence. The early 

empirical literature3 explores single-factor models and provides us with mixed results about 

important features observed in the dynamics of interest rates such as mean-reversion and the 

degree of dependence of the local volatility on the level of interest rates. While some studies 

imply the sensitivity of the empirical results to the choice of data sets and empirical methods (see 

Ioannides, 2003; Lo, 2005) other developments point to the particular choice of parametric 

functions for the drift and the volatility. In this regard, Ait-Sahalia (1996) rejects many classic 

models with a linear drift, whereas the volatility expression as a function of the interest rate level 

is considered too simplistic. Studies such as Brenner et al. (1996) and Koedijk et al. (1997) 

among others argued for a more complex combination of the level-effect and a new feature 

(volatility clustering and high persistence) that emerged from the discrete-time generalised auto-

regressive conditional heteroscedasticity (GARCH) modelling.  Recognizing the stochastic 

nature of the volatility constituted the first intuition towards multi-factor models. Moving from 

single-factor to multi-factor interest rate models was mainly achieved along two approaches 

facilitated by the affine framework illustrated in Duffie and Kan (1994). The first approach 

considers an additive structure of latent factors for the short rate (e.g. Pearson and Sun, 1994; 

Duffie and Kan,1996; and Babbs and Nowman,1999), while the second approach presents the 

model in terms of the lagged short rate and other state variables (e.g. Chen,1996; Balduzzi et al., 

1996; Backus et al., 2001).  

It is important to note that the framework used in our empirical investigation is rather 

different from both of these approaches. The state variables involved are neither short rates nor 

they can be interpreted in terms of level, slope and curvature as in Litterman and Scheinkman 

(1991). Over a series of articles Nowman (2001, 2003, 2006) estimated several two- and three-

factor models such as CKLS, Vasicek and CIR models, for U.K. and Japan. Initially no 

feedbacks were considered, and the two factors were the short-term and the long-term interest 

rates for the two factor models; Nowman (2003) introduced feedback effects in the conditional 

mean component of the models for Japanene interest rates. The results selected Vasicek model as 

a better model compared to CIR based on the likelihood ratio test against the unrestricted CKLS 

model. Ait-Sahalia and Kimmel (2010) estimated all nine Dai and Singleton’s (2000) canonical 

affine multi-factor interest rate models using U.S. treasury data and a new estimation technique 

for a closed form approximation of the maximum likelihood (ML) function. Based on simulated 

and real data, they demonstrated that the new technique produces highly accurate estimates, 

reducing at the same time the computational burden due to the analytical closed form obtained.  

                                                           
3 See Chan et al. (1992), Tse (1995), Dalquist (1996); Episcopos (2000), Sanford and Martin (2006) among others 
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After the recent financial crisis, the interest rates have decreased and kept stable to near zero 

level. This observation can be translated into the collapse of the two first factors - level and slope 

- into a single factor, with the former factor disappearing. Kim and Priebsch (2013) considered 

shadow-rate model where the short rate is constraint to respect the zero lower bound. They found 

that the three-factor shadow-rate model outperforms the three-factor affine-Gaussian model, 

which produces larger estimated fitting errors and unrealistic long-horizon forecasts of the short 

rate. Recently, Filipovic et al. (2014) empirically analysed a particular specification – the linear 

rational square-root (LRSQ) model, suggesting that five-factors (three term structure factors and 

two unspanned factors) seemed to capture well the dynamics of both, term structure and the 

volatility of interest rate changes after the 2007-2009 global financial crisis. Traditional TSIR 

frameworks assume, based on economic principles, that interest rates are positive, an imposition 

that is no more supported by recent data on both, government and commercial bond markets, 

where persistent negative yields occurred since 2012. In this environment one could not reject 

the classic Vasicek model due to its “positivity” problem. Recently, Jarrow and van Deventer 

(2015) presented the conceptual framework needed for the validation of the Heath, Jarrow and 

Morton (1992) HJM model and argue that an economically and statistically valid model should 

allow for negative interest rates and multiple factors.  

 

3. Methodology and Data  

3.1. The Theoretical Modelling Framework  

The theoretical modelling framework is presented in terms of the CKLS specification as it 

nests the other models as particular cases regarding the level-effect parameter.  It is of 

importance to emphasize that the analysis involves three distinct theoretical models. First, there 

is the basic (underlying) continuous-time model; second is the approximate/modified 

continuous-time model introduced in finance by Nowman (1997) by considering local 

homoscedasticity, and finally we have the exact multivariate discrete-time model proposed by 

Bergstrom (1983, 1984) as a discrete analogue to the modified continuous-time model. It is the 

third discrete model that will be estimated using the discrete data available.   

3.1.1. The Continuous-Time Multi-Factor Interest Rate Models with Feedbacks  

The well-known single factor CKLS (1992) short-term interest rate model is given by the 

following stochastic differential equation: 

                         ( ) [ ( )] ( ) ( ),dr t r t dt r t dZ t          for any 0t                            (1) 
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where ( )r t  is the short-term interest rate;     and    are the drift and mean-reversion constant 

parameters;    is the proportional linear factor for the volatility of the short-term interest rate 

and     is the proportional conditional volatility exponent known as the level-effect parameter. 

The disturbance term ( )dZ t   is usually defined by a Wiener process ( )Z t , however according to 

Bergstrom (1983) a more realistic model should allow for a more general type of randomness. 

Over a series of articles, Bergstrom (1983, 1985, 1986, 1989, 1990) developed the Gaussian 

methods of estimating continuous-time linear stochastic differential systems based on discrete-

time data.  

The true continuous-time multi-factor CKLS short-term interest rate model with n  factors 

and feedbacks can be written within the general framework4 provided by Bergstrom (1984) as 

the following system of stochastic differential equations: 

 

 

1 1 11 1 12 2 1 1

2 2 21 1 22 2 2 2

1 1 2 2 ,

( ) [ ( ) ( ) ... ( )] ( )

( ) [ ( ) ( ) ... ( )] ( )

( ) [ ( ) ( ) ... ( )] ( )

n n

n n

n n n n n n n n

dr t r t r t r t dt dt

dr t r t r t r t dt dt

dr t r t r t r t dt dt

    

    

    

     

     

    

     (2)                                       

or in vector-form as:  

                               ( ) [ ( )] ( ),      for any 0t r t dt dt tdr                                 (3) 

where 1 2( ) [ ( ), ( ),..., ( )]nr t r t r t r t 
 
is the vector of the observable  variables, 1 2[ , ,..., ]n     is 

the vector of the drift-level parameters, 
1 ,{ }ij i j n    is the feedback matrix whose elements are 

assumed non-zero5, as implied by the  close relationship between interest rates of different 

maturities, and
1 2,[ , ..., ]n     is a vector of correlated random measures such that

[ ( )] 0iE dt   for all 1,...,i n  and [ ( ) ( )] ( ) ( , ),E dt dt dt r t      where 
1 ,( , ) { }ij i j nr t      is a 

positive definite matrix, with 22 ( )i

ii i ir t
   and ( ) ( )ji

ij ij i j i jr t r t
     for any  i j  , 

, 1,...,i j n . The parameter i  measures the dependence of the volatility of the interest rate  ir  on 

                                                           
4 This is a more general model as the innovations are random measures and therefore the system allows for more 

complex sources of randomness, for example a combination of both, Brownian motion and Poisson processes. 
5 Including feedbacks allows for a causal relationship among all the variables within the system.  
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its own level, 
ij  represents the correlation coefficient between any two distinct factors ( )ir t and 

( )jr t , and i  is the proportional volatility factor for the conditional volatility of ( )ir t .  

In a theoretical paper, Bergstrom (1983) demonstrated the existence of a unique solution for 

the true/basis continuous-time model under the assumption of constant volatility. However, in the 

context of interest rate modelling this is rather unrealistic. Nowman (1997) relaxed this 

assumption and proposed a new continuous-time model that approximates well the basic model, 

by modifying only the diffusion component and therefore reducing temporal aggregation bias.  

The volatility is changing in a discrete manner only at the beginning of each observation interval 

and remains constant during the interval. As a result, the approximate continuous model is 

defined by a different/adjusted variance-covariance matrix * *

1 ,( , ) { }ij i j nr t     , with

2* 2 ( 1)i

ii i ir t
   

 
and   * ( 1) ( 1)ji

ij ij i j i jr t r t
        , where t    is  the smallest integer such 

that 1t t t    .  

 In our comparative analysis, the continuous-time models considered are different only in the 

way the various model specifications measure the level-effect by assuming certain values for the 

volatility exponent parameter  .  For the Vasicek model we have the vector parameter 0  , for 

the CIR model 0.5   and for BS model 1  . Therefore, each model will assume a specific 

adjusted matrix * *

1 , 4( , ) { }ij i jr t     for measuring the autocorrelation in the innovations, with a 

special case of a time-invariant matrix for the Vasicek model.  

3.1.2. The Discrete-Time Multi-Factor Interest Rate Models with Feedbacks  

Bergstrom (1983,1984) demonstrated that the basic continuous-time model has a unique 

solution that satisfies the following discrete stochastic difference equation (Phillips, 1972):  

 
1( ) ( 1) ( ) ( )r t e r t e I t                1,2,...,t T      (4) 

 where   1( ) [ ( )]i i nr t r t  
  , 1( ) [ ( )]i i nt t   

  , 
1( )i i n   


      

         1

1

!

k

k

e I
k

 




     and  
1

*

0

[ ( ) ( )] ( , ) ( , )r rE t t e r t e dr r t  
       

The complete vector of structural parameters is 
1 ,( , , , , )i ij i i ij i j n       

 
comprising   

2(3 5 ) / 2n n  single-value parameters. As in Nowman (2003, 2006) the elements of  will be 

estimated by maximizing the Gaussian likelihood function or equivalently minimizing the 
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following expression ( )L   which is equal to minus twice the logarithm of the Gaussian 

likelihood function:  

                                   1

1 1

( ) log(| ( , ) |) ( , )
T T

t t

t t

L r t r t  

 

       (5) 

There will be sixteen discrete-time analogue models to be estimated, eight specifications 

(four models for 4n   and 5n  , respectively) for each segment of the yield curve.  

 

3.2. The Data  

The development of theoretical models of the TSIR involves financial instruments with 

homogeneous characteristics such as term to maturity and level of credit risk. Therefore, it is 

important to consider empirical variables that match the conceptual framework of the models 

proposed. In line with this argument, this study employs data from the London interbank (LIB) 

market and the U.K. government bond market over an extensive period including the financial 

crisis of 2007-2009. From the multitude of markets functioning inside any modern financial 

system the interbank and bond markets play crucial roles. Interbank markets provide a platform 

for central banks for monitoring their policy interest rates and their liquidity is of paramount 

importance to financial intermediation efficiency (Furfine, 2002).  Bond markets are 

indispensable to any economy, being a very important mechanism used by governments around 

the world to meet capital needs and to finance their public debt. 

       To estimate the short end of the TSIR for the U.K. we employ daily London Interbank Offer 

Rate (LIBOR) of five maturities:  one week, one, three, six and twelve months, collected from 

the Datastream.  The time-interval covered starts from 3rd of January 2000 to 29th of March 2013 

leading to a total of 3,455 daily observations.      

        The dataset for the long end of the TSIR focuses on daily nominal (spot) rates of tenor one, 

seven, ten, fifteen and twenty-five years, spanning the period from 4th of January 2000 to 28th of 

March 2013 with a total of 3,346 daily observations.  The spot rates provided by Bank of 

England (BoE) have been estimated using the variable roughness penalty (VRP) model, a spine-

based technique specifically designed to obtain a smooth curve for monetary policy analysis 

(Anderson and Sleath, 2001). The descriptive statistics of the data are presented in Table 1.  

[Insert Table 1 Here] 
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4. The Estimation Results  

    The econometric estimation of the proposed continuous-time models is conducted in two 

stages corresponding to the two extensions, four- and five-factor models. All the models 

incorporate a linear mean-reversion drift by recognising feedback effects in all directions among 

the factors included in the model. Another way to explain the connection between different 

maturity rates along the yield curve is by assuming that the stochastic components, more 

specifically the individual Brownian motions are correlated as defined by the covariance 

matrices presented in section (3.1.1).  Therefore, the parameters of most interest are the level-

effect vector-parameter  , the feedback matrix   and the correlation coefficients 
1 , 4(5)( ) .ij i j  

  

4.1. Estimation Results for the Four-Factor Continuous-Time Models  

The QMLE estimates of the parameters are grouped in the solution-vector   to the 

optimization problem of maximizing the respective objective function and are presented in the 

two-panel Table 2 for the LIBOR rates and in Table 3 for the U.K. nominal interest rates. The 

vector parameter   has thirty-four components under the general model CKLS and thirty under 

any of the restricted models. The estimates are presented separately, with the drift parameters in 

the panel A and the diffusion parameters in the panel B. The restricted models are tested for their 

explanatory power against the general CKLS model using the likelihood ratio test (LR).   

4.1.1. Estimation Results for the Four-Factor Continuous-Time Models – The LIBOR Curve 

The estimation results are discussed with a focus on the CKLS model with its two, the drift 

and the diffusion components. Regarding the drift parameters, the results reported in Table 2 

(panel A) suggest that there is weak evidence of mean reversion in the four-factor TSIR models; 

most of the intercept estimates i  are statistically significant, although very close to zero. With 

regard to the feedback matrix, fourteen out of sixteen parameters are significant; however, there 

is evidence of only small feedback in multiple directions. The feedback matrix in the more 

general CKLS model seems to have more significant elements when compared to the restricted 

models. This may suggest that the increased flexibility provided by the CKLS specification by 

not restricting the level-effect parameter  , may render also a more complex relationship among 

the factors that is captured in the drift component.  

The estimates of the diffusion parameters are presented in Table 2 (panel B). The results 

show that the four estimates of the level-effect vector parameter  , are all over unity, implying a 

strong dependence of the volatility of the interest rate changes on the level of the interest rate 

itself.  As a result, the best nested model should be the BS model and this is confirmed by its 
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highest likelihood function value, after the CKLS model. The BS model is followed in terms of 

explanatory power by the CIR and then Vasicek models. The estimates for the correlation 

coefficients are all positive under the CKLS model for all LIBOR rates.  The estimation results 

for the correlation coefficients indicate that the six-month and twelve-month rates are most 

highly correlated with the value of the correlation coefficient 34  between 0.88 and 0.93 across 

the models, confirming empirically the importance of these maturities in the money markets. 

The other pairs of highly correlated short-term interest rates are for the maturities of one-month 

with six-month and one-week with one-month. Based on the likelihood ratio (LR) test, the 

validity of all the nested models is rejected at the 1% level of significance.   

 

[Insert Tables 2A and 2B Here] 

 

4.1.2. Estimation Results for the Four-Factor Continuous-Time Models – The U.K. Nominal 

Curve 

In the case of the bond market data, the estimates regarding the drift components, under the 

CKLS are presented in Table 3 (panel A). The estimates of the intercept parameters i  are very 

small, whereas the feedback matrix has only five statistically insignificant elements, hence we 

conclude 12 24 34 41 44 0.          The estimation results regarding the diffusion 

parameters are rather different from the LIBOR curve results, with much lower level-effect 

estimates and a different correlation structure given the behaviour of the long-term end of the 

yield curve. As it can be seen in the Table 3 (panel B), the components of vector   are estimated 

within the range (0.00004, 0.22), suggesting a much weaker sensitivity of the conditional 

variance with respect to the level of interest rate; and only  1 0.22   is statistically different 

from zero. Therefore, for longer maturities the conditional variance does not depend on the 

interest rate level.   As expected the correlations coefficients are higher between the spot rates 

corresponding to the flatter end of the term structure with 34 230.95,  0.94    and 24 0.82  . 

As in the case of the LIBOR data, all the restricted models are rejected against the unrestricted 

CKLS model. However, the order in which the nested models explain better the data is reversed 

with the Vasicek model first, followed by the CIR and BS model. 

 

[Insert Tables 3a and 3b Here] 
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4.2. Estimation Results for the Five-Factor Continuous-Time Models  

In the second stage of the estimation we extended the four continuous-time models (CKLS, 

Vasicek, CIR and BS) from four to five factors. As the fifth factor, we added the three-month 

LIBOR and the 10-year U.K. nominal rate time series for the short end and the long end of the 

yield curve, respectively. The number of parameters to be estimated increased to fifty for the 

CKLS model and to forty-five for the restricted models. Relatively to the four-factor 

specifications, the five-factor models gain naturally more explanatory power models and the 

ranking among the continuous-time models in terms of goodness of fit has remained unchanged.  

 

4.2.1. Estimation Results for the Five-Factor Continuous-time Models – The LIBOR Curve 

As in the case of four-factor models the feature of mean-reversion is supported by the 

estimation results presented in Table 4 (panel A). Under the CKLS model the drift vector 

parameter has most of its components statistically significant, while results for the feedback 

matrix   of twenty-five components produce evidence of feedback in most directions. 

Regarding the correlation between the five LIBOR rates, the new factor – the three-month 

LIBOR rate - appears to have a very high positive correlation with the adjacent maturity rates the 

six-month 34( 93%)   and one-month LIBOR rate 23( 84%)  respectively. However, the six-

month LIBOR rate seems to be the main factor along the money market spectrum, with two   

highest correlation coefficients 
34 45( 93%).    For the shortest maturities, one-week and 

one-month the correlation coefficient is much lower (see Table 4, panel B). In conclusion the 

last three factors, the three-, six- and twelve-month LIBOR rates move closely together implying 

that if any twists were to be existent in the term structure of interest rates over the period 2000-

2013, they should have occurred outside this three-twelve month maturity zone. Out of the 

nested models the best fit is provided by BS model, followed by CIR and Vasicek models. Based 

on the likelihood ratio tests, all the restricted models are rejected against the CKLS model. 

 

[Insert Tables 4a and 4b Here] 

 

4.2.2. Estimation Results for the Five-Factor Continuous-time Models – The U.K. Spot Curve  

For the U.K. spot rates the five-factor models estimation results consolidate the findings of 

the four-factor framework. The estimates of the level-effect parameters are very close to zero 

implying a homoscedastic conditional variance for all the factors, see Table 5B. Out of the five 

level-effect parameters only 1 0.19   is statistically significant. Therefore, the Vasicek model is 
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the most appropriate restricted model, fact indicated by its second highest log-likelihood 

function value and a close to acceptance LR statistic value. The drift coefficients ( 1,...,5)i i   

are all insignificant-see Table 5 (panel A), while among the elements of the feedback matrix 

there is evidence of highly significant feedbacks in both directions between three pairs of 

factors. They are the (7-year, 10-year) pair with the highest feedback coefficient from the 10-

year to 7-year spot rates of 23 0.11326   ; (7-year, 15-year) and the (10-year, 25-year) pair 

with a stronger feedback coefficient from the 10-year to the 25 year of 23 0.11326   . 

 

[Insert Tables 5a and 5b Here] 

 

 The correlation coefficients estimates are all highly significant and positive with the highest 

values ( 23  and 34 ) being realised consistently for two pairs of maturities, 7-year with 10-year 

and 10-year with 15-year, respectively. This observation is consistent with the feedback results 

and highlights the importance of the new factor introduced in the models - the 10-year maturity 

spot rates, which corresponds to a crucial position on the term structure of interest rates given 

the fact that the 10-year U.K. discount bond market is one of the most liquid one.  

 

5. The Forecasting Analysis 

The forecasting analysis is conducted across six different forecasting methods, using two 

popular metrics for the evaluation of the forecasting accuracy based on 250 out-of-sample 

observations (02 April 2013 to 25 March 2014). The two measures are the statistical  root-mean- 

square-error (RMSE) measure and the economic percentage-change-in-direction (CDIR) 

measure. Moreover, the out-of-sample performance of the competing models is formally tested 

using the Clark-West (2007) and Diebold-Mariano (1995) for nested and non-nested 

specifications, respectively.  Four continuous-time models (CKLS, Vasicek, CIR and BRSC) 

and two benchmark discrete-time models (VAR(1) and AR(1)) are estimated based on the time 

series data sets described in section 2.3. The choice of the mentioned discrete-time models as 

benchmarks is consistent with the specification of the discrete analogue model implied by 

Bergstrom’s methodology, where for a -k th order linear stochastic differential system the 

discrete analogue model is a  , 1VARMA k k  model.  The continuous-time models considered 
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for estimation in this study correspond to the particular case of 1k  , hence their discrete 

analogues are VAR(1), with the following vector-specification: 

 
1( 1) ( ) ( ) ( )r t e r t e I t           (6)                                    

Important to note is that, while in the basic continuous model the coefficients are linear in 

elements of the feedback matrix  , the coefficients of the discrete-time model are exponential 

functions of the feedback matrix  , carrying some potential causal predictive value from the 

other factors, which is consistent with the financial theory of correlation among interest rates of 

different maturities. The corresponding VAR(1) models have been  estimated in Eviews by OLS 

method together the univariate AR(1) models  for each individual time series. Once all six types 

of models have been estimated for each extension, the corresponding daily optimal ex-post point 

forecasts are evaluated.  

 

5.1. The Dynamic Forecasting Algorithm 

Assuming parameter stability and given the property of infinite memory of the general 

autoregressive models, the dynamic optimal forecasts are generated by “the chain rule”. 

Accordingly, for an AR(1) model the h -step-ahead optimal forecast is given by the intercept 

plus the coefficient of the one-period lagged variable multiplied by the previous ( 1h  )-step-

ahead optimal forecast. The origin observation used in the forecasting analysis is the last 

observation Tr  ( 3,455)T   from the in-the-sample data set. The one-step-ahead optimal forecast 

is defined as 
,1 1|( )T T Tf E r  , i.e. the conditional expectation of r  at time 1T   given all the 

information available up to and including time T .  

Therefore, by applying the conditional expectation operator to equation (24) , the one-, two- 

and the h-step-ahead optimal forecasts are derived as follows: 
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  (7) 

In order to determine the forecasting accuracy of the models, the forecast errors are 

aggregated using various statistical and economic forecasting metrics. Over the last two decades 

the literature on measures of forecast error still portrays a controversial picture documenting 
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their various limitations6 . Moreover, choosing the right loss function is relative to the particular 

purpose at hand as forecasts can be used in various decision environments either by trading 

desks or government officials. Acknowledging the controversy around the choice for a suitable 

forecasting measure, this forecasting analysis employs two standard stylized statistical and 

economic metrics: the RMSE (root mean squared error) and the CDIR (percentage change of 

direction) to evaluate the accuracy of the forecasts across the models considered. To compute 

these metrics the following formulae have been used: 

  

 
 2
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1
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i

t Ti
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              (9) 

( )ar t  and ( )fr t  are the actual and the forecasted value at time t , respectively. 

5.2. The Comparative Forecasting Results for the Four- and Five-Factor Model  

The forecasting results for the four- and five-factor extensions are organised across the 

forecasts methods and horizons for each maturity interest rate time series of each data set. We 

report the values normalised to the values of the benchmark VAR(1) model. Hence, for the 

RMSE, a ratio lower than one indicates an improved forecast. The opposite is true for the CDIR 

measure, the larger than one the reported ratio is the better the forecast.  

One general positive result that can be observed from the Tables 6-7 below is that for the 

CKLS model that was statistically accepted as the best in terms of goodness of fit, increasing the 

model flexibility resulted also in an improvement of the forecasting accuracy. Moreover, the 

CKLS model outperformed the benchmark models especially in the LIBOR curve case.   

 

[Insert Tables 6 and 7 Here] 

 

For GBP-LIBOR rates the forecasting results for the four-factor models indicate that the 

CKLS model performs best, with a smaller RMSE for all maturities except 12-month for the 

five-factor specification. However, for the CDIR measure, the Vasicek forecasts are better for 

                                                           
6 

The forecasting measures can often become infinite or undefined given the nature of real data.
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longer maturity rates of 6-month and 12-month GBP-LIBOR rates under five-factors and 1-week 

under four-factor.  

In the case of the U.K. nominal spot rates the forecasting performance results are mixed and 

they also change when we move from four- to five-factors. While for the four-factor 

specifications the RMSE overall forecasting performance is dominated by the Vasicek and CIR 

models, for the five-factor models there is limited improvement due to continuous-time models. 

Relative to the CDIR performance measure, the five-factors forecasts indicate some 

improvement, but mainly for the 7-year maturity.  

 

5.3. Statistical Significance of Out-Of-Sample Forecasts 

 

The statistical significance of the out-of-sample forecasts can be tested formally with the 

Diebold-Mariano test (Diebold & Mariano, 1995).  The test is carried out under quadratic error 

loss. We follow the approach outlined in Diebold (2015) where we compare the forecasts 

produced by the various models and not the models themselves7. Hence, we are interested in 

comparing the forecasts and test for significance between different series of 250 forecasts. Each 

series of forecasts is identified by the same name of the model used to generate the forecasts. 

Diebold (2015) discussed why the Diebold-Mariano test works well when we compare the 

forecasts and not the models as data generating processes. If one takes into consideration models 

as well some corrections may provide a better insight. For nested models, one technical problem 

with the Diebold-Mariano test is that under the null hypothesis that the parsimonious model is 

assumed to generate the data and therefore the larger model, in finite samples, is contaminated in 

terms of estimation because of additional unnecessary parameters. Clark and West (2007) 

provided an adjustment for the Diebold-Mariano tests such that their test statistic has 

approximately zero mean under the null hypothesis. Moreover, Clark-West test is a one sided 

test while the Diebold-Mariano is a two sided test. We are going to employ the Clark-West test 

for the nested models in the CKLS family as well as for the four-factor versus five-factor models 

of the same specification (e.g. four-factor Vasicek versus five-factor Vasicek) and Diebold-

Mariano tests for the remaining pairs of models. 

                                                           
7 Another line of inquiry would be to compare the models themselves on the basis of pseudo-out-of-sample 

forecasts. Clark and McCracken (2001) and Clark and McCracken (2013) highlight that the distribution of the test 

statistic can be very different when the null hypothesis makes use of the model specification and parameter 

estimation uncertainty is taken into consideration. The testing based on model specification needs then to 

distinguish between nested versus non-nested models. The model comparison and possible model averaging is 

outside the scope of this paper due to space limitation and it will be the subject of future research project. 
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The results of these two tests are reported in Table 8 and Table 9 for the four- and five -

factor models, respectively. While the results from the Clark-West test have a straightforward 

standard interpretation, for the Diebold-Mariano test statistic, a negative number indicates that 

the first series forecasts (produced by the model on the vertical column of the table) yield a 

significantly lower loss error than the second forecast series. The opposite interpretation is true 

for the positive values and significance is evidently subject to a threshold comparison with a 

two-sided normal test constructed appropriately. 

[Insert Tables 8 and 9 Here] 

 

First of all, all continuous-time-models forecasts dominate the benchmark forecasts 

generated by VAR(1), and also the AR(1) ones. For money markets, under both four-factors and 

five-factors the CKLS forecast dominates the Vasicek, CIR and BS forecasts. However, for spot 

rates, there are maturities for which the Vasicek forecasts and the CIR forecasts that dominates 

the other forecasts under both four-factors and five-factors, while also CKLS is sometimes 

producing superior forecasts. In addition, there are also spot interest rate maturities for which all 

forecasts are equally accurate, see Table 9. 

 We have also tests the forecasts produced by each model under four-factors and five-

factors. Evidently, AR(1) models being unidimensional are left out of this analysis. The results 

are depicted in Table 10. For the money market LIBORs the four-factors forecasts are 

dominating five-factor forecasts for all models except CKLS for 1-week rate and 6-month rate 

that gives equally accurate forecasting results. For the spot rates, remarkably, the four-factor 

forecasts are better than the five-factor forecasts under all continuous-time models, while for the 

benchmark model VAR there is a benefit for forecasting under a five-factor specification but 

only for the 7-year maturity. 

 

[Insert Table 10 Here] 

 

6. Conclusions  

        Despite a voluminous literature on interest rate models, there are still several open 

questions regarding certain aspects of interest rate modelling. The empirical study conducted in 

this paper tries to bring more light over two issues. The superiority of multi-factor interest rates 

term structure models relative to single factor formulations is well established in the relevant 

literature. However, until recently, following the PCA study by Litterman and Scheinkman 

(1991) very little empirical work has considered models beyond three factors. Events like the 
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financial crisis of 2007-2009 called for this threshold to be reviewed with a clear necessity of 

increasing the flexibility of the existent models. In line with these new recommendations four 

continuous-time term structure models (CKLS, Vasicek, CIR and BS) are extended to four and 

to five-factors, respectively, following Nowman’s  (2003, 2006) approach.  

         The empirical results of the dynamic estimation favour the five-factor models over the 

four-factor models, the addition of the fifth factor increasing substantially the goodness of fit. 

After a closer examination, the change from four to five-factor specifications suggests that the 

parameters measuring the dependence of volatility on the interest rates levels may be 

overestimated when the model is less flexible. 

        Another benefit of increasing the model flexibility is that one could observe the change in 

the structure of the variance-covariance matrix between the two extensions. This allows for a 

clearer identification of where the strongest connections among the factors are situated along the 

term structure. This feature of the analysis has important implications for investment decision 

making process; investors who focus on certain segments of term structure of interest rates could 

determine, given the structure of the estimated covariance matrix, the regions where a 

twist/inversion in the shape of the yield curve may occur or be absent. 

       Our forecasting performance analysis reveals that the CKLS forecasts for the period 

investigated outperforms overall the other forecasts in terms of RMSE and CDIR for LIBORs 

while for spot rates the Vasicek and CIR forecasts occasionally are better.  An analysis based on 

significance Diebold-Mariano and Clark-West tests seem to confirm these results. The CKLS 

forecasts outperforms overall the other forecasts for LIBORs, under both four and five-factor 

specifications. For the spot rates Vasicek and CIR forecasts are better but only for some 

maturities. Combining this conclusion with the result that four-factor specification of the same 

model seem to give superior forecasts that the five-factor specification of the same model we 

conclude that CKLS models are bringing superior modelling capabilities to the term structure of 

interest rates up to one year, while for the long-term segment simpler models like Vasicek and 

CIR may be more useful. 
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Table 1 

Summary Statistics for the LIBORs and Spot Yield Rates. This table reports the standard summary 

statistics for all the univariate time series of LIBOR and spot rates. Five distinct maturities are examined: 

one-week, one-, three-, six- and twelve-month LIBOR rates, respectively and one-, seven-, ten-, fifteen-  

and twenty-year government yield spot rates. The data was sampled daily over the period January 1, 2000 

to March 29, 2013, from Datastream. The difference in the number of observations is the result of how 

the two data sources Datastream and BoE have treated the entries of interest rates corresponding to bank 

holidays. The Datastream has equalled the interest rates on bank holidays to the level of the previous day, 

while the BoE kept them as unavailable. 

 

 

 

LIBOR- GBP LEVEL 

Maturity 1W 1M 3M 6M 12M 

Observations 3,455 3,455 3,455 3,455 3,455 

Mean 3.438 3.5237 3.6636 3.7855 3.9983 

Median 4.1369 4.0992 4.1891 4.39 4.5663 

Maximum 6.9409 6.75 6.9038 6.7988 6.8877 

Minimum 0.48 0.4913 0.5069 0.6013 0.9081 

Std. Dev. 2.0715 2.0955 2.0537 1.9732 1.8462 

Skewness -0.4511 -0.4429 -0.4214 -0.3926 -0.3388 

Kurtosis 1.5768 1.5958 1.6462 1.6562 1.6776 

Jarque-Bera 408.76 396.81 366.07 348.70 317.86 

Probability 0 0 0 0 0 

U.K. Spot LEVEL 

Maturity 1Y 7Y 10Y 15Y 25Y 

Observations 3,346 3,346 3,346 3,346 3,346 

 Mean 3.3274 4.0256 4.208 4.3472 4.3156 

 Median 4.2342 4.4636 4.5004 4.5239 4.3997 

 Maximum 6.3652 6.1509 5.7299 5.2352 5.0466 

 Minimum 0.1346 0.9909 1.5889 2.2856 3.0762 

 Std. Dev. 2.0136 1.2198 0.9389 0.6596 0.4055 

 Skewness -0.4447 -0.9565 -1.2547 -1.6127 -1.1542 

 Kurtosis 1.5894 2.9242 3.7589 4.8883 3.9158 

 Jarque-Bera 387.67 510.96 958.19 1947.49 859.88 

 Probability 0 0 0 0 0 
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Table 2 

The U.K. LIBOR Curve - Estimation results for the four-factor models. This table reports the parameter 

estimates for the CKLS, Vasicek, CIR and BS four-factor models. Panel A presents the drift coefficients, 

while Panel B presents the diffusion coefficients. The variables examined are the daily one week, one-, 

six- twelve-months LIBOR rates over the period January 1, 2000 to March 29, 2013. The likelihood ratio 

test (LRT) suggests that all the nested models are rejected against the unrestricted CKLS multi-factor 

model as the critical values is 
2(4 ,1%) 13.28df  . The level of significance is indicated as follows: 

*** for 1%, ** for 5% and * for 10%.  

 

Panel A CKLS Vasicek CIR BS 

1  -4.60E-07*** -6.62E-04*** -0.0001*** 4.16E-05*** 

2  3.05E-05*** -1.09E-04*** -0.0001*** -5.00E-07*** 

3  3.38E-05*** -2.72E-05*** -0.0001*** -1.98E-05*** 

4  4.50E-05*** 3.40E-05*** -0.0001*** -4.05E-05*** 

11  0.0144*** -0.0175* -0.1993*** 0.0600*** 

12  -0.0173*** -0.0032 0.2664*** -0.0424*** 

13  -0.0039 -0.0860*** -0.1434*** -0.0431*** 

14  0.0043*** 0.1155*** 0.0732*** 0.0238*** 

21  0.0216*** 0.0306*** 0.0160*** 0.0362*** 

22  -0.0196*** -0.0536*** -0.0068** -0.0348*** 

23  0.0015 0.0320*** -0.0378*** -0.0077*** 

24  -0.0039*** -0.0071* 0.0301*** 0.0059*** 

31  -0.0029*** 0.0049*** 0.0171*** 0.0073*** 

32  0.01334*** -0.0035*** -0.0043* -0.0076*** 

33  -0.0094*** 0.0003 -0.0447*** -0.0034** 

34  -0.0015** -0.0013 0.0336*** 0.0036*** 

41  -0.0135*** 0.0022 0.0111*** -0.0168*** 

42  0.0235*** -0.0073*** 0.003 0.0164*** 

43  -0.0055*** 0.0253*** -0.0413*** -0.0051*** 

44  -0.0053*** -0.0209*** 0.0284*** 0.0053*** 

 

Panel B CKLS Vasicek CIR BS 

1  1.5940*** 0.0000 0.5000 1.0000 

2  1.2237*** 0.0000 0.5000 1.0000 

3  1.0308*** 0.0000 0.5000 1.0000 

4  1.3951*** 0.0000 0.5000 1.0000 

1  0.2059*** 0.0011*** 0.0056*** 0.0288*** 

2  0.0181*** 0.0003*** 0.0016 0.0079*** 

3  0.0074*** 0.0003*** 0.0013 0.0057*** 
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4  0.0282*** 0.0003*** 0.0015 0.0072*** 

12  0.5438*** 0.4956*** 0.5348*** 0.5993*** 

13  0.2577*** 0.1820*** 0.2214*** 0.0494*** 

14  0.2154*** 0.1379*** 0.1767*** -0.0988*** 

23  0.7774*** 0.7387*** 0.7573*** 0.5311*** 

24  0.6632*** 0.6037*** 0.6193*** 0.2644*** 

34  0.9331*** 0.9275*** 0.9282*** 0.8795*** 

LogLF 112,577.66 105,903.42 109,627.13 110,947.21 

LRTest 
 

13,348.48*** 5,901.06*** 3,260.90*** 
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Table 3 

The U.K. SPOT Curve - Estimation results for the four-factor models. This table reports the parameter 

estimates for the CKLS, Vasicek, CIR and BS four-factor models. Panel A presents the drift coefficients, 

while Panel B presents the diffusion coefficients. The variables examined are the daily one-, seven-, 

fifteen- and twenty-five years U.K. Nominal spot rates over the period January 3, 2000 to March 29, 

2013. The likelihood ratio test (LRT) suggests that all the nested models are rejected against the 

unrestricted CKLS multi-factor model as the critical values is  
2(4 ,1%) 13.28df  . The level of 

significance is indicated as follows: *** for 1%, ** for 5% and * for 10%.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Panel A CKLS Vasicek CIR BS 

1  -0.000256*** -0.000182*** 0.000377*** 0.000003*** 

2  -0.000069*** -0.000086*** -0.000001*** 0.000140*** 

3  -0.000001 0.000116*** 0.000130*** -0.000036*** 

4  0.000059*** 0.000285*** 0.000127**8 0.000006*** 

11  0.003367*** 0.007227*** 0.003633*** 0.006915*** 

12  -0.005046 -0.018494*** -0.021332*** -0.007371*** 

13  -0.014834*** 0.011987** 0.045019*** -0.003830 

14  0.022547*** 0.003393 -0.037905*** 0.005698*** 

21  0.008699*** 0.011430*** 0.008137*** 0.024932*** 

22  -0.030251*** -0.028597*** -0.019111*** -0.073313*** 

23  0.022878*** 0.020751*** 0.006231 0.095732*** 

24  0.000049 -0.001351 0.004190 -0.051469*** 

31  0.005311*** 0.007303*** 0.002824** -0.000621 

32  -0.021271*** -0.016580*** -0.006591* 0.001989 

33  0.015795*** 0.010809*** -0.001527 -0.000609 

34  0.000000 -0.003871 0.001778 -0.000532 

41  0.002037** 0.005679*** -0.000089 -0.013891*** 

42  -0.013323*** -0.016648*** -0.001589 0.029471*** 

43  0.011831*** 0.022238*** -0.001639 -0.011375* 

44  -0.002234 -0.017888*** -0.000247 -0.005900 
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Panel B CKLS Vasicek CIR BS 

1  0.2181*** 0 0.5 1 

2  0.0244 0 0.5 1 

3  4E-06 0 0.5 1 

4  0.0950 0 0.5 1 

1  0.825E-03** 0.371E-03** 0.0026* 0.0284*** 

2  0.5E-03 0.492E-03** 0.0029** 0.0176* 

3  0.477E-03 0.463E-03** 0.0024 0.0091* 

4  0.608E-03** 0.440E-03** 0.0022** 0.0101 

12  0.6670*** 0.6392*** 0.6550 0.6138*** 

13  0.5199*** 0.4722*** 0.5430 0.2942*** 

14  0.429*** 0.3786*** 0.4678 -0.0938*** 

23  0.9356*** 0.9294*** 0.9427 0.6793*** 

24  0.8203*** 0.8074*** 0.8342 0.0786*** 

34  0.9450*** 0.9421*** 0.9476 0.7479*** 

Log LF 105,776.12 105,661.29 104,941.82 100,376.30 

LRTest 

 

229.66*** 1,668.60*** 10,799.62*** 
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Table 4 

The U.K. LIBOR Curve - Estimation results for the five-factor models. This table reports the parameter 

estimates for the CKLS, Vasicek, CIR and BS four-factor models. Panel A presents the drift coefficients, 

while Panel B presents the diffusion coefficients. The variables examined are the daily one-week, one-, 

three-, six- and twelve-months LIBOR rates over the period January 1, 2000 to March 29, 2013. The 

likelihood ratio test (LRT) suggests that all the nested models are strongly rejected against the 

unrestricted CKLS multi-factor model as the critical value is
2(5 ,1%) 15.90df  . The level of 

significance is indicated as follows: *** for 1%, ** for 5% and * for 10%.  

          

Panel A CKLS  VASICEK CIR BS 

                 1   -0.015E-03*** -0.096E-03* -0.099E-03*** 0.135E-03*** 

                
2   -0.7E-05*** -0.041E-03*** 0.1E-04 0.032E-03*** 

                3   -0.032E-03*** -0.055E-03*** 0.013E-03*** 0.2E-05*** 

                
4   -0.012E-03*** 0.5E-05 0.117E-03*** 0.089E-03*** 

           
5   -0.014E-03*** 0.088E-03*** 0.290E-03*** 0.17E-03*** 

11   -0.0204*** -0.1993*** -0.3669*** -0.1849*** 

12  0.0372*** 0.3220*** 0.6183*** 0.2583*** 

13  -0.0606*** -0.3699*** -0.4424*** -0.0839*** 

14  0.0484*** 0.3282*** 0.1871*** 0.0152 

15  -0.0084*** -0.0821*** 0.0003 -0.0112** 

21  0.0193*** -0.0037 -0.0169*** -0.0021 

22  -0.0101*** 0.0175*** 0.0638*** 0.0174*** 

23  -0.0297*** -0.0481*** -0.0525*** -0.0153*** 

24  0.0250*** 0.0475*** -0.0068 0.957E-03 

25  -0.0048*** -0.0126*** 0.0121*** -0.0017 

31  0.0241*** 0.0138*** 0.0051*** -0.0006 

32  -0.0167*** -0.0083** 0.0212*** 0.0106*** 

33  0.0015*** -0.0091** 0.0093*** 0.0211*** 

34  -0.0231*** -0.182E-03*** -0.0608*** -0.0502*** 

35  0.0146*** 0.0048 0.0252*** 0.0188*** 

41  0.0178*** 0.0106*** 0.0024 -0.0027 

          
42    -0.0039*** -0.0075** 0.0207*** 0.0133*** 

          
43   -0.0241*** 0.0092*** -0.0019 -0.0140*** 

          
44   0.0096*** -0.0129*** -0.0158*** 0.0219*** 

          
45   0.734E-03* 0.713E-03 -0.0071*** -0.0199*** 

          
51   0.0117*** 0.0027 0.0049 0.0147*** 

          
52   0.0013 -0.0002 -0.0018 -0.0239*** 

          
53   -0.0140*** 0.0325*** 0.0364*** 0.0340*** 

          
54   -0.0043 -0.0342*** -0.0030 -0.783E-03 

          
55   0.0054*** -0.0022 -0.0409*** -0.0268*** 
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Panel B CKLS VASICEK CIR BS 

1  1.5881*** 0 0.5 1 

2  1.2221*** 0 0.5 1 

3  0.8683*** 0 0.5 1 

4  0.9292*** 0 0.5 1 

5  1.2779*** 0 0.5 1 

1  0.2050*** 0.0012*** 0.0067*** 0.0283*** 

2  0.0176*** 0.0003*** 0.0016*** 0.0086*** 

3  0.0040 0.255E-03*** 0.0010*** 0.0054*** 

4  0.0051 0.271E-03*** 0.0012*** 0.0056*** 

5  0.0185*** 0.339E-03*** 0.0017*** 0.0079*** 

12  0.5596*** 0.5466*** 0.6241*** 0.5806*** 

13  0.3044*** 0.3226*** 0.1759*** 0.3599*** 

14  0.2413*** 0.2430*** -0.0654*** 0.2168*** 

15  0.1895*** 0.1975*** -0.2249*** 0.0471*** 

23  0.8398*** 0.8448*** 0.6959*** 0.7314*** 

24  0.7520*** 0.7467*** 0.4051*** 0.3935*** 

25  0.6212*** 0.6085*** 0.1229*** -0.055E-03 

34  0.9266*** 0.9303*** 0.8662*** 0.8042*** 

35  0.7940*** 0.78430*** 0.6324*** 0.4563*** 

45  0.9273*** 0.9284*** 0.9044*** 0.8447*** 

LogLF 145,178.45 137,767.67 141,026.26 142,591.04 

LRTest   7,410.78*** 4,152.19*** 2,587.41*** 
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Table 5 

The U.K. Spot Curve: Estimates for the five-factor models. This table reports the parameter estimates for 

the CKLS, Vasicek, CIR and BS five-factor models. Panel A presents the drift coefficients, while Panel B 

presents the diffusion coefficients. The variables examined are the daily one-, seven-, ten-, fifteen- and 

twenty-five year U.K. Nominal spot rates over the period January 3, 2000 to March 29, 2013. The 

likelihood ratio test (LRT) suggests that all the nested models are rejected against the unrestricted CKLS 

multi-factor model as the critical value is 
2(5 ,1%) 15.90df  .  

 

Panel A CKLS VASICEK CIR BS 

                 1   -0.012E-03*** -0.027E-03 0.019E-03 0.139E-03*** 

                
2   1E-08 1E-09 1E-06 -0.025E-03*** 

                3   -5E-06 -2E-06 -1E-06 -0.109E-03*** 

                
4   0.231E-03*** 0.0002*** 0.3E-03*** -0.042E-03*** 

           
5   0.390E-03*** 0.0003*** 0.651E-03*** 0.029E-03** 

11   0.432E-03 -0.0028*** -0.0023*** 0.256E-03 

12  -0.0018** 0.0014 0.0009 -0.0188*** 

13  0.006 0.0040 0.0026 0.0185** 

14  -0.0061** -0.0036 -0.0033 0.0082 

15  0.0014 0.923E-03 0.0003 -0.0140*** 

21  0.0013 -0.647E-03 -0.0020** 0.0017* 

22  0.0582*** 0.0580*** 0.0624*** 0.0228*** 

23  -0.1133*** -0.1090*** -0.1207*** -0.0641*** 

24  0.0552*** 0.0525*** 0.06*** 0.0412*** 

25  -0.0015 -0.46E-03 -0.0003 -0.0029 

31  0.0012 -0.0012 -0.0012 0.836E-03 

32  0.0257*** 0.0381*** 0.0262*** 0.0125*** 

33  -0.0315*** -0.0540*** -0.0318*** -0.0268*** 

34  -0.0138*** 0.0036 -0.0153*** -0.424E-03 

35  0.0188*** 0.0141*** 0.0223*** 0.0152*** 

41  0.093E-03 -0.0019** -0.0011 8E-06 

          
42    0.0101*** 0.0124*** 0.0094 0.686E-03*** 

          
43   0.287E-03 -0.024E-03 0.046E-03 -0.647E-03 

          
44   -0.0229*** -0.0224*** -0.0239*** -0.0130* 

          
45   0.0071*** 0.0083* 0.0086 0.0128*** 

          
51   0.0012 -8E-05 -0.392E-03 0.011E-03 

          
52   -0.0197*** -0.0175*** -0.0241*** -0.0100** 

          
53   0.0462*** 0.0405*** 0.0565*** 0.0076 

          
54   -0.0318*** -0.0232** -0.0357*** 0.0028 

          
55   -0.0052** -0.0077 -0.0118 -0.0024 
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Panel B CKLS  VASICEK CIR BS 

1   0.199*** 0 0.5 1 

2   
1E-06*** 0 0.5 1 

3   
1.57E-04 0 0.5 1 

4   
0.0095 0 0.5 1 

5   
0.0409 0 0.5 1 

1
  

0.739E-03*** 0.368E-03*** 0.0025*** 0.0263*** 

2   
5.12E-04 0.460E-03*** 0.0027*** 0.0173*** 

3   
5.23E-04 0.461E-03*** 0.0026*** 0.0144*** 

4   
5.10E-04 0.435E-03*** 0.0023*** 0.0118*** 

5   
5.30E-04 0.423E-03*** 0.0022*** 0.0106 

12
  

0.5665*** 0.5732*** 0.5815*** 0.5488*** 

13
  

0.4695*** 0.4531*** 0.4994*** 0.4899*** 

14
  

0.4055*** 0.3448*** 0.4380*** 0.4447*** 

15
  

0.3319*** 0.2153*** 0.3546*** 0.3682*** 

23
  

0.9831*** 0.9762*** 0.9821*** 0.9802*** 

24
  

0.9396*** 0.9033*** 0.9301*** 0.9200*** 

25
  

0.8344*** 0.7393*** 0.8073*** 0.7794*** 

34
  

0.9780*** 0.9640*** 0.9738*** 0.97061** 

35
  

0.8814*** 0.8176*** 0.8636*** 0.8459*** 

45
  

0.9491*** 0.9269*** 0.9436*** 0.9368*** 

LogLF 138,495.64 138,482.50 137,511.71 134,136.69 

LRTest  13.14 983.93 4,358.95 

The level of significance is indicated as follows: *** for 1%, ** for 5% and * for 10%. 
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Table 6 

The Forecasting Comparison Results for the LIBOR rates. This table reports the out-of-sample 

performance of the four- and five-factor continuous-time models versus the two discrete models 

VAR(1) and AR(1). RMSE is the root mean squared error and CDIR is the percentage change in 

direction accuracy measures calculated over the period 2 April 2013 to 25 March 2014. The results 

are presented for each individual time series (one-week, one-, six- and twelve-month maturity 

rates) as a ratio versus the benchmark taken as the VAR(1) model. 

 

GBP 

LIBOR CKLS VASICEK CIR BS AR(1) VAR(1) 

4 factors RMSE250 

1W 0.11 2.99 0.74 0.91 0.34 1.00 

1M 0.31 2.37 0.40 1.48 0.39 1.00 

6M 0.60 1.13 0.78 0.63 0.76 1.00 

12M 1.06 1.16 0.98 1.11 0.63 1.00 

4 factors CDIR250 

1W 1.58 1.71 1.00 1.00 1.00 1.00 

1M 0.73 1.00 1.00 0.73 1.00 1.00 

6M 0.80 1.00 1.00 1.00 1.00 1.00 

12M 0.81 1.00 0.99 1.00 1.00 1.00 

GBP 

LIBOR CKLS VASICEK CIR BS AR(1) VAR(1) 

5 factors RMSE250 

1W 0.31 2.00 0.48 1.08 0.42 1.00 

1M 0.43 1.46 1.29 0.57 0.52 1.00 

3M 0.26 1.12 1.24 0.53 0.56 1.00 

6M 0.95 1.21 10.99 18.53 1.37 1.00 

12M 1.92 0.96 11.86 5.81 0.65 1.00 

5 factors CDIR250 

1W 1.71 1.71 1.23 1.00 1.00 1.00 

1M 1.00 1.00 0.73 0.73 1.00 1.00 

3M 1.04 1.00 1.04 1.00 1.00 1.00 

6M 0.97 1.21 0.97 0.97 1.21 1.00 

12M 1.30 1.38 1.04 1.04 1.30 1.00 
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Table 7 

The Forecasting Comparison Results for the U.K. Spot Rates. This table reports the out-of-sample 

performance of the four- and five-factor continuous-time models versus the two discrete models 

VAR(1) and AR(1). RMSE is the root mean squared error and CDIR is the percentage change in 

direction accuracy measures calculated over the period 2 April 2013 to 25 March 2014. The results 

are presented for each individual time series (one-year,7-year, 15-year and 25-year maturities) as a 

ratio versus the benchmark taken as the VAR(1) model. 

 

U.K. 

SPOT CKLS VASICEK CIR BS AR(1) VAR(1) 

4 factors RMSE250 

1Y 1.01 1.02 0.99 1.03 1.00 1.00 

7Y 0.99 1.00 1.00 1.03 18.07 1.00 

15Y 1.00 0.99 0.99 1.02 2.09 1.00 

25Y 1.02 0.99 0.99 1.04 9.82 1.00 

4 factors CDIR250 

1Y 1.02 1.01 1.08 0.93 1.09 1.00 

7Y 0.99 0.99 0.99 0.94 0.94 1.00 

15Y 1.00 1.16 1.12 1.07 1.00 1.00 

25Y 1.01 1.02 1.01 0.96 1.01 1.00 

U.K. 

SPOT CKLS VASICEK CIR BS AR(1) VAR(1) 

5 factors RMSE250 

1Y 1.01 1.00 0.99 0.99 0.99 1.00 

7Y 1.03 1.01 1.00 1.01 18.10 1.00 

10Y 1.03 1.01 1.00 1.01 1.01 1.00 

15Y 1.01 1.00 1.00 1.00 2.09 1.00 

25Y 0.99 1.00 1.01 0.99 9.82 1.00 

5 factors CDIR250 

1Y 0.98 1.11 1.16 1.05 1.16 1.00 

7Y 0.97 1.02 1.02 1.02 0.95 1.00 

10Y 0.93 0.96 0.93 0.96 0.91 1.00 

15Y 1.07 1.06 0.99 1.11 0.98 1.00 

25Y 1.11 1.00 1.00 1.00 0.99 1.00 
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Table 8 

Diebold-Mariano and Clark-West tests results for the forecasts generated from four-factor continuous-

time models and VAR(1) and AR(1) models. This table reports the values of the Diebold-Mariano tests 

for all pairs of models and all interest rate maturities. The Clark-West results for the nested continuous-

time models are entered in italic font. The models in bold produced the best forecasting results over the 

period 2 April 2013 to 25 March 2014.  

LIBOR           Spot          
 

1W Vasicek CIR BS VAR AR1 1Y Vasicek CIR BS VAR AR1 

CKLS 190.39 65.90 77.40 -53.84 -20.04 CKLS -14.60 11.12 17.43 -2.23 -2.23 

Vasicek 

 

124.18 117.22 -53.78 -19.88 Vasicek 

 

-9.58 -18.66 -2.27 -2.26 

CIR 

  

-38.89 -53.84 -20.03 CIR 

  

5.78 -2.24 -2.23 

BS 

   

-53.84 -20.03 BS 

   

-2.27 -2.26 

VAR 

   

  57.15 VAR   

  

  0.37 

1M Vasicek CIR BS VAR AR1 7Y Vasicek CIR BS VAR AR1 

CKLS 197.81 28.42 135.02 -47.31 -21.93 CKLS 19.21 19.91 19.78 -8.37 -26.84 

Vasicek 

 

136.36 50.95 -47.29 -21.86 Vasicek 

 

-16.87 -20.56 -8.60 -26.84 

CIR 

  

-56.52 -47.31 -21.93 CIR 

  

-20.99 -8.55 -26.84 

BS 

   

-47.30 -21.89 BS 

   

-8.07 -26.84 

VAR 

   

  53.61 VAR   

  

  -26.76 

6M Vasicek CIR BS VAR AR1 15Y Vasicek CIR BS VAR AR1 

CKLS 30.56 15.50 10.87 -12.93 -9.79 CKLS -5.85 5.85 21.73 -9.33 -15.69 

Vasicek 

 

21.10 20.70 -12.93 -9.79 Vasicek 

 

1.33 -23.82 -10.08 -15.99 

CIR 

  

11.41 -12.93 -9.79 CIR 

  

-23.60 -10.09 -15.99 

BS 

   

-12.93 -9.79 BS 

   

-8.92 -15.47 

VAR 

   

  17.18 VAR   

  

  -12.20 

12M Vasicek CIR BS VAR AR1 25Y Vasicek CIR BS VAR AR1 

CKLS 11.61 3.56 10.05 -8.05 -9.79 CKLS -16.82 -15.32 23.16 -7.38 -29.97 

Vasicek 

 

6.22 7.68 -8.05 -9.79 Vasicek 

 

-6.69 -26.10 -8.60 -30.03 

CIR   

 

-5.67 -8.05 -9.79 CIR 

  

-27.15 -8.58 -30.03 

BS 

   

-8.05 -9.79 BS 

   

-7.53 -29.97 

VAR         5.89 VAR         -30.04 

The critical values are 1.645, 1.96 for Diebold-Mariano test and 1.282, 1.645 for Clark-West test at the 

90%, 95% confidence level, respectively. 
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Table 9 

Diebold-Mariano (for non-nested models) and Clark-West tests (for nested models) results for the 

forecasts generated from five-factor continuous-time models and VAR(1) and AR(1) models. The Clark-

West test results are entered in italic font. The models in bold produced the best forecasting results over 

the period 2 April 2013 to 25 March 2014.  

LIBOR5F           Spot5F         
 1W Vasicek CIR BS VAR AR1 1Y Vasicek CIR BS VAR AR1 

CKLS 55.44 21.39 120.42 -47.33 -20.04 CKLS 0.28 -0.52 -1.34 -10.13 -10.09 

Vasicek 

 

45.27 33.88 -47.31 -19.99 Vasicek 

 

0.92 0.74 -10.13 -10.09 

CIR 

  

-64.77 -47.34 -20.04 CIR 

  

0.48 -10.13 -10.09 

BS 

   

-47.33 -20.03 BS 

   

-10.13 -10.09 

VAR         53.20 VAR         0.49 

1M Vasicek CIR BS VAR AR1 7Y Vasicek CIR BS VAR AR1 

CKLS 97.72 58.57 26.85 -25.80 -21.93 CKLS -2.48 -1.80 -3.05 -8.66 -26.84 

Vasicek 

 

6.79 38.09 -25.79 -21.92 Vasicek 

 

2.39 -1.21 -8.66 -26.84 

CIR 

  

47.89 -25.79 -21.91 CIR 

  

-2.14 -8.66 -26.84 

BS 

   

-25.79 -21.93 BS 

   

-8.66 -26.84 

VAR         23.20 VAR         -26.76 

3M Vasicek CIR BS VAR AR1 10Y Vasicek CIR BS VAR AR1 

CKLS 69.97 -34.22 -14.34 -25.70 -15.43 CKLS -2.07 -1.35 -2.51 -9.48 -7.53 

Vasicek 

 

-3.49 19.94 -25.70 -15.43 Vasicek 

 

1.98 0.29 -9.48 -7.53 

CIR 

  

43.81 -25.69 -15.42 CIR 

  

-1.67 -9.48 -7.53 

BS 

   

-25.69 -15.43 BS 

   

-9.48 -7.53 

VAR         30.54 VAR         4.96 

6M Vasicek CIR BS VAR AR1 15Y Vasicek CIR BS VAR AR1 

CKLS 12.74 183.22 294.43 -7.49 -9.78 CKLS -0.65 0.11 -1.33 -10.14 -15.99 

Vasicek 

 

-85.69 -145.37 -7.50 -9.79 Vasicek 

 

0.97 1.72 -10.14 -15.99 

CIR 

  

-217.11 -7.41 -9.72 CIR 

  

-0.35 -10.14 -15.99 

BS 

   

-7.24 -9.60 BS 

   

-10.14 -15.99 

VAR         -7.44 VAR         -12.28 

12M Vasicek CIR BS VAR AR1 25Y Vasicek CIR BS VAR AR1 

CKLS -1.26 185.88 90.21 -8.10 -9.78 CKLS 1.72 3.31 1.11 -8.69 -30.03 

Vasicek 

 

-94.71 -45.48 -8.10 -9.79 Vasicek 

 

-1.60 0.93 -8.69 -30.03 

CIR 

  

141.82 -7.99 -9.45 CIR 

  

1.85 -8.69 -30.03 

BS 

   

-8.08 -9.70 BS 

   

-8.69 -30.03 

VAR         5.19 VAR         -30.05 

The critical values are 1.645, 1.96 for Diebold-Mariano test and 1.282, 1.645 for Clark-West test at the 

90%, 95% confidence level, respectively. 
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Table 10 

Clark-West Test Results for the Forecasts Generated from Four- and Five-factor Continuous-time 

Models and the discrete-time VAR(1) model. This table reports the values of the Clark-West tests 

for pairs of the same model under four and under five-factors. The models in bold produced the 

best forecasting results over the period 2 April 2013 to 25 March 2014. The critical values for 

comparing the test values are 1.645, 1.96 and 2.576 at 90%, 95% and 99% confidence level. 

         

 LIBOR 

4F/5F CKLS Vasicek CIR BS VAR 

1W 1.15 79.25 

  

26.99 4.06 47.75 

1M 31.86 210.30 32.81 138.34 35.25 

6M -9.36 30.86 15.63 10.80 23.86 

12M 8.27 11.77 2.99 9.91 4.79 

 Spot 

4F/5F CKLS Vasicek 

  

CIR        BS VAR 

1Y 14.10 17.48 10.49 19.33 -1.65 

7Y 13.87 12.83 20.86 21.42 1.58 

15Y 15.16 13.22 12.27 23.94 0.62 

25Y 17.52 17.40 13.45 25.86 0.14 

The critical values are 1.282 and 1.645 for Clark-West test at the 90% and 95% confidence level, 

respectively. 

 

 

 


