Observer-Based Fuzzy Integral Sliding Mode
Control For Nonlinear Descriptor Systems

Jinghao Li, Qingling Zhang, Xing-Gang Yan,

Abstract—This paper investigates observer-based stabilization
for nonlinear descriptor systems using a fuzzy integral sliding
mode control approach. Observer-based integral sliding mode
control strategies for the T-S fuzzy descriptor systems are
developed. A two step design is first developed to obtain the
observer gains and coefficients in the switching function using
linear matrix inequalities, and the results are used to facilitate
the development of a single step design approach, which is seen
to be convenient but introduces some conservatism in the design.
The potential application to a class of mechanical systems is
also considered. Since the descriptor system representation of
mechanical systems is adopted, it is shown that in contrast to the
existing fuzzy sliding mode control methods based on the normal
system representation, the resulting T-S fuzzy system does not
contain different input matrices for each local subsystem and
the required number of fuzzy rules is consequently markedly
reduced. Finally, the balancing problem of a pendulum on a car
is numerically simulated to demonstrate the effectiveness of the
proposed method.

Index Terms—Observer-based stabilization, T-S fuzzy descrip-
tor systems, integral sliding mode control, mechanical systems.

I. INTRODUCTION

The Takagi-Sugeno (T-S) fuzzy model [1] has been ex-
tensively utilized as a popular and convenient tool to deal
with complex nonlinear systems. With the T-S fuzzy model,
nonlinear systems with smooth nonlinearities can be exactly
represented in a compact set of the state space by a set of linear
subsystems connected by corresponding normalized weighted
coefficients. Then approaches to systematic analysis and syn-
thesis for the resulting T-S fuzzy systems can be developed
within the frame of conventional control technology and fuzzy
logic control. As a result, this T-S fuzzy approach has attracted
significant attention from the control community [2]-[12].
Despite the superiority of the T-S fuzzy model, the fuzzy rules
will exponentially increase with the nonlinearities arising in
the system representation. This increase in the number of fuzzy
rules can produce a linear matrix inequality (LMI) condition
which is infeasible or unnecessarily complicated. Recently,
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[13] presented a T-S fuzzy descriptor model which can be
regarded as a generalization of the T-S fuzzy normal model
(E = I). The advantages of the T-S fuzzy descriptor model are
a reduction in the number of fuzzy rules and a tighter nonlinear
system representation [14]. Over recent years, a great deal of
effort has been devoted to the study of T-S fuzzy descriptor
systems and many significant results have been achieved in
diverse areas, for example, stability and stabilization [15]-[23],
observer-based control [24]-[25], guaranteed cost control [26]-
[27], Ho and dissipative control [28]-[31], and fault-tolerant
control [32].

Sliding mode control (SMC) [33]-[36], as an effective robust
control approach, has been widely applied to control and
observe complex practical systems. The attractive features of
SMC are its strong robustness properties and fast response.
Recently, [7] gives a first attempt to remove the assumption
that each local subsystem model shares the same input matrix
in the sliding mode control problems for T-S fuzzy systems.
Subsequently, by dividing the state space into several regions,
the T-S fuzzy system is transformed into a linear uncertain
system in each region. Then, using the sliding mode control
method for each linear system and considering the continuity
of the state trajectories over the region border, a piecewise in-
tegral sliding mode control for T-S fuzzy systems is presented
in [8] to relieve the assumption pointed out in [7]. However,
it is not a straightforward task to implement this sliding mode
control strategy due to its high complexity. [11] formulates
new states by incorporating the inputs and presents a dynamic
integral sliding mode strategy to remove the assumption that
each local subsystem shares the same input matrix for T-S
fuzzy systems as pointed out in [7], but the dimension of the
closed-loop system increases since the inputs are also a subset
of the new states. Consideration of mechanical systems shows
that they are generally in the form of nonlinear descriptor
systems with a constant input matrix. The traditional approach
[2], [7], [9], [35], [36] to the control of mechanical systems
is to transform the system to an equivalent nonlinear normal
system (E = I) by performing the inverse operation of the
derivative-term coefficient. This inverse operation will make
the input matrix of the equivalent nonlinear normal system
become nonlinear. When a T-S fuzzy model is used, the
corresponding T-S fuzzy system will contain different input
matrices for each local subsystem. A motivational example to
illustrate this is the balancing problem of a pendulum on a cart
in [7]. From this observation, it can be seen that the different
input matrices of certain T-S fuzzy systems may not be an
inherent system characteristic, but may be introduced artifi-
cially as a result of the modelling paradigm. In this paper, the



first motivation is to study sliding mode control problems for
mechanical systems in descriptor form. Mechanical systems
are always described by T-S fuzzy descriptor systems where
the derivative-term coefficients are different for each local
subsystem [23]. In this case, the sliding mode control methods
in [19], [31] for T-S fuzzy descriptor systems that share the
same derivative-term coefficient for each local subsystem can
not be directly applied. Moreover, the sliding mode control
methods in [19], [31] are based on state feedback designs.
In practice, it may be expensive or sometimes impossible to
obtain precise measurements of all the system states. For the
purpose of controller design, only the outputs are accessible
[37]-[39]. In this case, an alternative approach is to use a state
observer [40]-[41] to reconstruct the system states. It should be
emphasized that when the T-S fuzzy descriptor systems contain
parameter uncertainties, the separation principle usually does
not hold [25], [32]. As a result, designing an observer-based
sliding mode control strategy for T-S fuzzy descriptor systems
with parameter uncertainties is the second motivation. To the
best of the authors’ knowledge, the observer-based sliding
mode control problem for nonlinear descriptor system using a
T-S fuzzy model has not been previously studied.

This paper is concerned with observer-based integral sliding
mode control problems for nonlinear descriptor systems based
on a T-S fuzzy model. Then an observer-based sliding mode
control strategy is designed for the T-S fuzzy descriptor
system. It is shown that the observer gains and coefficients in
the switching function can be obtained by a proposed single-
step or two-step design approach, where although the single-
step design approach may introduce some conservatism in
the design, it is more convenient than the two-step design
approach. Moreover, the proposed methods in this paper are
also utilized to control a class of mechanical systems. Since
the nonlinear descriptor system is adopted to represent the
mechanical system, the inverse operation of the derivative-
term coefficient of the nonlinear descriptor system is avoided.
It is shown that, compared with the existing fuzzy sliding
mode control methods [7], [9], [12], the resulting T-S fuzzy
system does not contain different input matrices for each
local subsystem and the required number of fuzzy rules is
consequently markedly reduced. The contributions of this
paper are threefold: 1) a systematic way to design an observer-
based controller for a T-S fuzzy descriptor system with pa-
rameter uncertainties is presented via integral sliding modes;
2) considering that the separation principle is usually not
satisfied for T-S fuzzy descriptor systems containing parameter
uncertainties [25], [32], in this paper, a single-step approach
and two-step approach are respectively proposed to evaluate
the observer gains and coefficients in the switching function;
3) based on the proposed methods in this paper, an alternative
way to control mechanical systems is presented. It is seen
that with the descriptor representation, each subsystem of the
resulting T-S fuzzy descriptor system shares the same input
matrix and the artificial introduction of the different input
matrices of each subsystem is avoided.

The paper is organized as follows: Section II defines the
problem under consideration and gives some essential def-
initions and lemmas. Section III focuses on observer-based

sliding mode control for T-S fuzzy descriptor systems. Section
IV considers a class of mechanical systems and with the
descriptor representation and the proposed methods in Section
III, a new fuzzy integral sliding mode control method is
presented for this class. Section V provides three examples
to show the validity of the results proposed. Finally, Section
VI concludes the paper.

Notation: The notation used throughout this paper is quite
standard. R™ represents the n-dimensional Euclidean space,
and R™*™ represents the set of all m X n real matrices.
The superscripts 7" and —1 denote matrix transposition and
matrix inverse respectively. RT represents the set of positive
real numbers. || - || denotes the Euclidean norm of a vector or
the induced norm of a matrix. The notation P > 0 (P > 0)
implies that P is a real symmetric and positive definite (semi-
positive definite) matrix. He(A) stands for A+ AT The star x
in a matrix block implies that it can be induced by symmetric
position. Matrices, if their dimensions are not explicitly stated,
are assumed to be compatible for algebraic operations.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a class of uncertain nonlinear descriptor systems
which can be represented by the following uncertain T-S fuzzy
descriptor system

S ukl=(0) (Ex + AE)i()
k=1

- i hi(z()(A; + AA)x(t) + Bu(t) (D
i=1

y(t) = Cx(t)

where z(t) € R™ is the state vector, u(t) € R™ is the
control input vector, y(t) € R! is the measurable output vector.
z(t) = [z1(t), z2(t), -+ , 2p(¢)] is the premise vector and is
measurable. vg(z(t)), k = 1,2,--- ,r. and h;(2(t)), i =
1,2,--- ,r, are fuzzy membership functions in the left side and
in the right-hand side, respectively. E, k =1,2, - ,re, and
A;, B,C,i=1,2,---  r,are constant matrices of appropriate
dimensions defining the kth right-hand side subsystem and the
ith left-hand side subsystem of the T-S fuzzy descriptor system
respectively. AE = MpFgr(t)Ng and AA = MaF4(t)Ny
with FL(t)Fr(t) < 0, FI(t)Fa(t) < 0 are parameter
uncertainties. It is assumed that >, v (2(t)) (E)x + AE)
is nonsingular.

Remark 1: The T-S fuzzy descriptor system (1) has a wide
range of applications in the domain of mechanical systems
and electro-mechanical systems [35]. A class of mechanical
systems in descriptor form will be considered in Section IV
to justify the potential applications of the T-S fuzzy descriptor
system (1).

Define n(t) = [27(t) #7(¢)]7, the T-S fuzzy descriptor
system (1) can be rewritten by its equivalent representation
[14]

Te T

Bit) = 30 on(=(0)hil=(0)) (Ani + AA)(t)
k=1i=1 )
+ Bu(t)

y(t) = Cn(t)



where E =

0
ploc=

0 0
My —Mg

M F(t) N
Define sets H = {1,2,---,r}, V. = {1,2,--- ,r.} and
W ={1,2,--- ,rr.}, and the bijection ¢ VeoH - W
where ® is the Cartesian product operator. Then the T-S fuzzy
descriptor system (2) can be transformed into the following
system

TTre

)= (o witet
4(0) = Gl

where w;(2(t)) > 0,i=1,2,--- ,rre, is the normalized fuzzy
membership function with the property > /" w;(z(t)) = 1.

Remark 2: Without loss of generality, the bijection ¢ can be
defined as j = ¢(k,i) =i+ (k—Dre, j=1,2,--+ ,17¢, k=
1,2,---,re, © = 1,2,---,r, and the fuzzy membership
function is defined as w;(z(t)) = wvi(2(t))hi(2(t)) with
(k,i) = ¢~1(j). It is straight forward to check that w;(z(t)) >
0 and Y75 w;(2(t)) = 1.

Based on the definition of multiple sum in [23], the follow-
ing definitions can be formulated, see [23] for further details.

A + AA) n(t) + Bu(t) 3

Definition 1: (Multiple sums) Multiple sums with
nyga terms in  h(z(t)) and nya terms in  v(z(¢))
at time ¢ are of the following form Apga =
it Dipm1 7 i =1 i () hia (2(0) - b, (2(0))
A7,17,2~~anA’AVA _231 12]2 17 Zgn A—lv.h(z(t))

0 (2(®) v ((O)Ajigp, . where HY =
{0,0,---,0} and VA = {0,0,---,0} are multisets.
N—— S——

A Ny A

The cardmahty of a multiset H, |H| = ny is defined as the
number of elements in H. The union of two multisets A 4 and
Apis Ac = AyUApg, such that ny, = max{na ,,na, }. The
intersection of two multisets A4 and A is Ac = Ay N AR,
such that np, = min{na,,na,}. The sum of two
multisets Ay, and A is A¢ = As ® Ap, such that
NA, = Na, + nay- The index set of a multiple sum Ag
is Iy = {ilig"'inH Dl,%9, = 1,2,"',7“}, the
set of all indices that appear in the sum. An element i is
a multiindex. The projection of the index i € Iy, to the
multiset Hpg, priHB, is the part of the index that corresponds
to the index in H4 N Hp.

Based on Definition 1, define WA = {0}, the descriptor
system (3) is further rewritten as

Ej(t) = (Aya +AA)n(t) + Bu(t)
y(t) = Cn(t)

Lemma 1: (Finsler’s Lemma) [42] Let x € R", Q =
O ¢ R™", W € R™*", The followings are equivalent:
D 2TQx < 0,V Wze = 0,z # 0; 2)3IX € R™™:
Q+XW+WTXT <o.

yIng

“4)

Lemma 2: [28] Suppose a piecewise continuous matrix
A(t) € R™™™, and a matrix X € R™*" satisfy the following
inequality A(t)TX + XTA(t) < —al for all ¢t and some
positive number «. Then the following statements hold: 1)
A(t) is invertible; 2) ||A71(¢)|| < a for some a > 0.

III. OBSERVER-BASED SMC FOR T-S FuzzYy DESCRIPTOR
SYSTEMS

In this section, an observer-based sliding mode control
strategy is developed for the T-S fuzzy descriptor system
with parameter uncertainties, where a two step design method
and a single step design method are respectively proposed to
determine the observer gains and coefficients in the switching
function.

To estimate the states of the system (4), the following state
observer is designed

Eij(t) = Awai(t) + Bu(t) + Ly (y(t) — Ci(t))  (5)

where Ly is the observer gain which will be determined
later.
Define e(t) = n(t) — 7j(t). Then the error system can be

obtained as

Construct a sliding surface based on the state estimates from
the observer (5) as follows

S ={n(t) : s(t) = SEq(t) -

t
- s/ (Awa + BKy X, ) A(r)dr = 0}
0

SE(0)
)

where Kyyx, Xyyx are the coefficients in the switching func-
tion to be determined, and S is a parameter matrix satisfying
det(SB) # 0.

As e(t) = mn(t) — 7(t), then s(t) = s,(t) —
se(t) where  s;(t) = SEn(t) — SEn(0) -—
Sfo (Aywa +BKWKX %) n(r)dr  and se(t) =
SEe(t) — SEe(0 Sfo (AWA +BKyx X,k ) e(r)dr.

Therefore, the shdlng surface (7) defined in the space 7j(t)
can be described in the augmented space by

§={(n(t).e(t) : s)(t) ~se() =0} (&

When the system exhibits an ideal sliding mode, it is
necessary that s, (t) — s.(t) = 0 and $,(t) — $.(t) = 0. Based
on (4), (6) and (8), it can be computed that

$(t) = SBu(t) — SBKy« X, xn(t)

9
—+ SBKwKXWXC( ) + SLV[/L C@(t) ( )

Next, the reachability problem will be solved in order to
determine the sliding mode controller.

Theorem 1: Assume that matrices Xj, i € Iwy, Kj, j €
Iwy, Lk, k € Iy, satisty Theorem 2 or Theorem 3 and
€ > 0. The sliding mode controller

u(t) = KyxXphi(t) — (SB) ™

(10)
X ([[SLwe (y(t) —9(2)) | +€)




can drive the T-S fuzzy descriptor system (4) to the sliding
surface (7) and maintain a sliding motion.

Proof: Choose the Lyapunov function candidate
V(s(t)) = 3s7(t)s(t). The time derivative of V(s(t)) along
with (9) is

V(s(t)) = s (t)(SBu(t) + SLyyr (y(t) — (1)) (11
— SBKyyx X (1) < —¢lls(t)
Furthermore, it follows from (11) that
dlls@)] _ sT@®)st) _
i~ sl < (2

which implies that ||s(¢)|| is decreasing function on time ¢.
Assume that it takes time ¢, to reach the sliding surface (7),
integrating (12) from 0 to ¢, gives ||s(ts)] — [|s(0)|| < —ets.
Thus, the time taken to reach the sliding surface (7) satisfies
ty < ls (E)” Note that s(0) = 0, then ||s(0)|| = 0, therefore,
the sliding surface (7) is attained from the beginning. ]
In the sliding phase, $,(t) — $.(f) = 0 holds and conse-
quently, the equivalent control can be obtained as
Ueq(t) = KXy (t) — Kww Xy ke(t)
— (SB) " 'SLy,LCe(t)
Substituting (13) into (4), the ideal sliding mode dynamics are
En(t) = (Awa +AA + BKyx X, /x) n(t)
—B(KyxX/x + (SB) " 'SLyLC)e(t)

13)

(14)

Eé(t) = (Awa — Ly C)e(t) + AAn(¢)
Due to 7j(t) = n(t) —e(t), then by the following nonsingular
transformation
A | _ L =L ] )
[e(t)}_[o I][e(t)}’ (15)
——

T
the stability of the system (14) is equivalent to that of the
following system

Ei(t) = (Awa +BKpxX; %) 0(t)
n (I _B(SB)™! s) Ly Ce(t) (16)
Eé(t) = (Awa + AA — Ly Ce(t) + AAR(E)

Next, the stability of the ideal sliding mode dynamics will
be proved and the two steps in determining the observer gains
and coefficients in the switching function are provided.

Theorem 2: The system (1) has an asymptotically stable
sliding motion with respect to the sliding surface (7) if the
following two conditions hold:

1: there exist positive definite matrix R;, a set of matrices
Ry, Yy, and scalars ¢F, (A k=1,2,-+ ,re, i = 1,2, 1
such that the following LMIs hold for £k = 1,2,--- 7., i =
1,2, ,r

He (R A; — Y3C) + ({ENTNa
Ry — EgR;; + R?;Al - Y. C

MYR,
T
Mg Ry (17)
* * *
—He (RTEk) + C,ENTNE * * 0
MTR, Ao« | S
~MLR, 0 —CET

with Ly, =

The observer gains in the observer (5) can be obtained
as Lyt = T

0 oy B
LVEHA R4 Yki, kE =
,r, HA = {0}, VF = {0};

2: for a given constant 7 > 0, there exist positive def-
inite matrices P, @)1, a set of matrices Psi;, Piri» (36,
E ¢A

Qui, X1k, Xow, X3i, Xas, Kirs, Kok, and scalars &5, &ipys

1a27"' yTes 7’21727

k=1,2,---,r., ¢t =1,2 ---  r such that the following LMIs
hold for k=1,2,--- 1o, i=1,2,--- ,r
He (X3;) * * *
A1 A2 * *
A3 A4 —7He (Pl) *
As Ag —T Pay; Az
0 Ag 0 TAg
0 0 0 0
NaXy NaXop 0 0
NigXs3; NgXy 0 ) 0 (18)
* * * *
* * * *
* * * *
* * * * 0
He (le) * * * <
Ag A10 * *
NaQ1 0 —&AT *
NgQ3;  NgQu 0 ehT |
where A1 = Aink — EkX:)n' + XZ; + BKlkis A2 =
He (A;Xo, — By X4 + BKayi), A3 = Xy — P+
TX3i, Ay = Xop + 7Xy, As = X3 — Py +
T (AiX1k — ExX3i + BK1i), A6 = X4 — Py +
T (A Xop — ExX4; + BKoyi), Ar = —7He (Pyri), As =

Q1CTLL, BT, Ag = (A; — LiiC) Q1 — ExQsi + QL. Aig =
~He (EQu) + MM + IMaML. B = - BB,
and Ly;, k = 1,2,--- ,r., ¢ = 1,2,---,r, are obtained
from condition 1. Then coefficients in switching function

(7) are KwK = [KIVEHA K2vEHA ] and wa =
leE szE
X3HA X4HA

Proof: Suppose that there exist matrices and scalars
satisfying (17) and (18) in Theorem 2, the asymptotic stability
of the sliding motion (16) will be derived. Define R =

Ry Opxn CVE HAI 0

Ry Ry %= | 0 (Bt YWY
YVEHA _ Pl Onxn —
Yy e ga ] Pwe = [PWEHA Pyyega > Qwe =
Ql 0n><n :| |: féEHAI 0 :|
9 - 9 S -
Qzga  Qama Ewe 0 8oyl
B™*. (17) and (18) are equivalent to
He (RTAwa — Yy~ C) + NTCwe N« ] _
MR ~Cw, I
(19



and
He (AwAXWX =+ BKwK) *
—7He (PwP)_
QcTLT §7 QYo C LY, S7
NX % 0
(20)
* *
= <o
i) *
NQwa —&w,.!

where 21 = Xyx — Pyre + 7 (ApaXpyx + BKyk),
Z; = He((Aya — Ly C) Qua) + Méy, M7, S=1-
B(SB)™!S, Wy = WAUWY and W = (WA EBWX) U
WEKuUWPuU(WAUWY) e WQ).

The observer gain L. = R™7 Yy can be solved by (19)
which is a sufficient condition for the asymptotic stability of
the following system

Ec(t) = (Awa + AA — LyyC) e(t) 21)

The asymptotic stability of the system (21) can be similarly
derived from that of sliding motion (16) and thus is omitted.
In the sequel, it will show that if (20) holds, the sliding motion
(16) is asymptotically stable.

Using the Schur complement, (20) holds if and only if the
following is satisfied

=+ M7 &, M + NT¢, N <0 (22)
where ﬁ = [ 0 0 MT }, N =
[ NXyx 0 NQpa |,

He (AwAXWX + BKwK) *
== "‘ —THe (Pwp)
QT QCTLT ST TQT QCTLT ST
*
*

He ((Aya — Ly.C) Qpe)

Note that He (MF(t)N) < M&y, MT+NT§V—V}EN, simple
algebraic manipulation on (22) implies

E+4 <0 (23)
0 0 0
where X; = He 0 0 0
AAXyx 0 AAQpa
Pre- and post—multlplymg (23) by

diag{XWx, PWp, QWQ} and its transpose yields

Xo+He (X3 [ Aywa + BKyxX, 'x —I SLytC ]) <0

(24)

0 % *

where Xo = | 0 O *

0 0 He(Q,q(Awa+AA—Ly.LC))
0 * ok X 7
+ P 0 x|, A3=| 7P,/ 1
QuelAA 0 0 O
When (24) holds, it follows from Lemma 1 that

' X7 <0 (25)

for Vz = [2T 1 xg] # 0 satisfying

= (Awa + BKyxXyk) 21 +SLyeCay  (26)

Substituting (26) into (25), by congruent transformation,

it is obtained that for Vi = [« z3]" # 0, #7T& < 0,
He (P} (AWA+BKWKX %)) *

where T = 4

(SLWLC) b+ QuaAA 0

0 * . . .
[ 0 He (Q;VTQ (Awa + AA — LWLC)) , which implies

T<0 (27)
Define
Al A} M (t)
A BKyyxX L =] 51 2 At = | 1
WA + WK WX |: Aglg Azll :| ’ 77( ) [ 772(t) )
- A2 A2 A3 A3
SL LC:|:A1 A2:|7AA=|:A1 A2:|7
v A3 A3 Ay A}
At A4 e1(t)
A AA — Ly C=| &1 22 =1 1!
wa W [Aé Aﬁ]’e” [ez(t)
(28)
where Al € R*7, A2 ¢ RP<n, A3 ¢ Rxn, A4 € RP*,

ﬁl(t) c R"™, el(t) e R".
Substituting (28) into (27), by Lemma 2, it can be proved
that G4 is invertible and ||G;'| is bounded where Gy =

Al A2 A Al A2
fé /1% . Furthermore, define G5 = [ /1% A% }, from
(16) and (28), it is shown that
7i2(t) A—14 | M(t)
= -G, G 29
{em} ‘ 3[61(@ &

Now, the asymptotic stability of the system (16) will be
derived. Select the Lyapunov function candidate as follows

V(i (t),e(t)) = ﬁlT(t)P_l (1) + el (HQ7 ex(t)
7T (OETPLei(t)
+el (ETQpqe(t)

The time-derivative of the Lyapunov function along with
the systems (16) can be obtained as

a) = [0 01|

From (27), then V (711 (t),e1(t)) < 0. Based on Lyapunov
stability theory [1], (71(f), e1(t)) is asymptotically stable.
Note that |G| and ||Gs|| are bounded, by (29), the asymp-
totic stability of (7)2(t), ex(t)) can also be proved. Therefore,
if the conditions (19) and (20) in Theorem 2 are solvable
simultaneously, the system (16) is asymptotically stable, then
the asymptotic stability of the ideal sliding mode dynamics
(14) is proved. |

Remark 3: It is noteworthy that the observer gains and
the coefficients in the switching function for observer-based
sliding mode control of T-S fuzzy descriptor systems (1)
can be determined by the two-step approach in Theorem 2.
Since the redundancy of derivative matrix E is used in this
paper, the block matrices Psyepga, Pyyega in Pye are
dependent of membership functions vy (z(t)) and h;(2(t)), the

(30)

A(t)

V(ﬁl (t> ’ e(t)

} 3D



conservativeness will be consequently reduced. Furthermore,
by Finsler’s Lemma, the system matrices and the Lyapunov
matrices are decoupled, which facilitates the design.

Remark 4: It is noted that each local subsystem of the T-S
fuzzy descriptor system shares the same input matrix and out-
put matrix, when considering the resulting LMI conditions, the
condition with one sum in vg(z(¢)) and one sum in h;(z(t))
is used due to its simplicity. When more sums in vg(2(t))
and h;(z(t)) are considered, the solution space will enlarge,
but more variables and LMIs will be involved. Therefore,
Theorem 2 only provides the criterion by considering one sum
in vi(2(t)) and one sum in h;(z(¢)).

Consider the T-S fuzzy descriptor system in the form of (4),
from the proof of Theorem 2, the following corollary can be
obtained.

Corollary 1: The system (4) has an asymptotically stable
sliding motion with respect to the sliding surface (7) if the
following two conditions hold:

pr];/VY’ C_]vj S HWC sat-
isfying (19) with We = WAUWY and R = Ry Onxn

Rs Ry
with Ry > 0. The observer gains can be obtained from
LjY = RfTYjY, jY € p’l‘]Wy, je HWC;

2: for a given constant 7 > (, there exist matrices P;p,
if ¢ pr%{vp, X;x, iX € pr{/vx, Kk, i¥ € priWK, Qia,
i® € priq. & i € Iy, satisfying (20) with S = I —
B(SB)_ls, El = wa —PwP +7 (AwAXWX + BKwK),
E2 = He ((AwA — LwLC) qu) + MSWQMT, PWP =

Pl _ Ql Onxn .
[Pswp Pyye ]’QWQ{ lWIthP1>

Qswa Quwa
0and Q1 > 0, Weg = (WhaWX)uwkKuwPu
(WA UWE) @ WQ), and the observer gain Lyv defined

from condition 1.

1: there exist matrices R, Yjv, j¥ €

OTLXTL

Remark 5: Based on the definition of multiple sums in [23],
Corollary 1 provides a general framework of the conditions
with multiple sums for T-S fuzzy descriptor systems (4) in
continuous time. By selecting the numbers of zeros in the
multisets WR, WX WP WQ, conditions with different
conservativeness will be obtained. The more zeros the mul-
tisets WR, WK, WP WQ contain, the less conservative the
conditions will be, but at the same time, the more decision
variables and LMIs will be involved. For the design purpose,
only one sum in w;, ¢ = 1,2,--- , 77, is considered.

Although Theorem 2 (or Corollary 1) presents an LMI-
based method to determine the observer gains and the coeffi-
cients in the switching function, the two-step design approach
[3] seems less convenient than the single-step approach [5].
However, when uncertainties are involved in the system matri-
ces of the system (1) (or system (4)), the separation principle
does not hold [10]. As a result, by appropriately applying
Finsler’s Lemma, the following single-step design approach
for the observer-based stabilization problem is given.

Theorem 3: The system (1) has an asymptotically stable
sliding motion with respect to the sliding surface (7) if for a
given constant 7 > 0, there exist positive definite matrices Py,
@1, a set of matrices Psyi, Pagi, Q3zir Quir X1k, Xog, X34,
Xy Kikir Koki, Yii RY, R3,,, RY.. Riss Ragi, Rag;, and

scalars £F, €A, k = 1,2,--+ ,re, i = 1,2,---,r, such that
the following LMIs hold for k = 1,2,--- ,re, i =1,2,--- |71,
[ He(X3;) * * * *
11, 11, * * *
H3 H4 H5 * *
H(; H7 —Tngi Hg *
0 Hg 0 THg He(Qgi)
0 0 0 0 JNETY
0 UHg 0 TUHg ng
0 0 0 0 IIy5
NaXie NaXox 0 0 NaQ:
NpX3; NpXy 0 0 ) NEQ3i 32)
* * * * *
* * * * *
* * * * *
* * * * *
* * * * *
1141 * * * * <0
H13 H14 * * *
IIie Iy g * *
0 0 0 —f@[ *
NgQsu 0 0 0 —¢5T |

Where H1 = Aink — EkX3i + XZ; —+ BKU“', H2 =
He (A; X2, — Ex X4 + BKoy;), 1Is = Xip — P1 + 7X3,,
H4 = ng —+ ’TX41', H5 = —’THe(Pl), H6 = Xgi —
Py + 7 (AiX1, — Ex X3y + BKi), Iy = X4 — Py +
T (AiXop — Ex Xy + BKoy,), 1l = —7He (Py), 1y =
YIBT, Thy = AiQ1 — Y — ExQs + QL, Iy =
—He (EkQ4¢)+§,5MEM£+§,ﬁMAM£, ILip = Q1 —URy,
3 = —vYE —URo;, 14 = —vHe (UR11i), 15 = Q3 —
Rayi, e = Qui— Ragis iy = —v (Rak; + RY,UT), Iis =
—vHe (Ry;), B=1-BB*, U= | ¢T (CcT)™" ¢+ |

5 Ri 0 —
Yii = [Yki Onx (n—1) ], Ry = [ Ri ZJX%(%;.U >
c? 7

. Moreover, the observer gain in the

O1xn
Rka ié?
2ki . . . .
observer (5) and coefficient in the switching function (7)
0

can be obtained as Ly = , Kyx =
_ leE szE
[ KlVEHA KQ\/EHA } and XWX = |: X3HA X4HA

with Ly = Vi (R ™ k= 1,2, 7o, i = 1,2, 7,
HA = {0}, VE = {0}

Proof: From the proof of Theorem 2, (23) is a sufficient
condition for the asymptotic stability of the ideal sliding mode
dynamics (14). Therefore, if (23) can be guaranteed by the
LMIs in (32), then the asymptotic stability of the ideal sliding
mode dynamics (14) will be proved.

Pl 0n><n
Define Pyr = { Pyvega Puepa }, Qe =
|: Ql 0n><n Roon — RIVEHA RQVEHA:|
QSHA Q4HA ’ W RSVEHA R4VEHA ’
€W = féEHAI 0 Yy v =
C 0 8.l YW

O U o -
|: (YVEHA ) 0277,)((277,71) :|’U_ |: O In :|’S_B s



simple matrix manipulation implies that (32) is equivalent to

He (AwA wa =+ BKV[/K) *
vy —7He(Pyp)
YI ST YT ST
UYV%VY ST UTYV%VY ST
NX 0
w (33)
* * *
* * *
U, * * <0
Vs —He (vVURyr) *
NQwa 0 —Ewel

where ¥y = Xpyx — Pye + T(AwAXWX +BKWK),
\112 = He (AWAQV[/Q - YwY) "‘ngwsMT, \113 = QwQ -
vYL, —~URyr,S =I-B(SB)~!S, W, = (WA &) WX)U
WwROWP U (WA aWQ)uUWYUWR. U satisfies CU =
[, 0].

By the Schur complement, (33) is equivalent to

U+ M7 M + N"¢ N <0 (34)
where M = [0 0 MT 0], N =
[ NXyx 0 NQua 0],

He (AwAXWX + BKwK) *
- 1 —7He (Py»)
N Y%Y s 7'Y$)1,ﬂY S”
’UYWyST 'UTYwY ST
* *
* *
He (AwA QwQ — YwY) *
U, —He (VURyr)
Note that AA = MF(¢)N, then (34) implies
U+ <0 (35)
0 0 0 0
0 0 0 0
where i =He | | \AX . x 0 AAQua 0
0 0 0 0
Since CU = [, 0]and Ypv = [ LyrRy 0| =
Ly. [ I 0 |Ryr, (35) can be rearranged as
He()5[CTL{,.S" 7CTL{,.S" — CTL{,. — 1)) 36)
+ W1+ <0
where V3 = [ 0 0 URyr vURpyr ]T and
He (AwAXWX + BKwK) *
T (AwAXWX + BKW}()
y2 _ < +XWx - PwP THe (Pwp)
0
0 0
* *
* *
He (ApyaQue) *
Qwe 0

If (36) holds, then the following can be obtained by Lemma
1

xT (V1 +d)x <0 (37)

T T

forvx =[ { i af af ]T # 0 satisfying

zy = CTLy,. 8"z + 7CTLY, .8 2y — CTLY L23 (38)

Substituting (38) into (37), the following result can be obtained
forvg=[ 2T 2 % ]"#0

TE+a)x<0

which implies that (23) holds. Then the asymptotic stability of
the ideal sliding mode dynamics (14) can be directly derived
from the proof of Theorem 2. Therefore, it suffices to know
that if the LMIs in (32) hold, the ideal sliding mode dynamics
(14) are asymptotically stable. [ ]

Based on the proof of Theorem 3, the following corollary
can be obtained for the T-S fuzzy descriptor system in the
form of (4).

Corollary 2: The system (4) has an asymptotically stable
sliding motion with respect to the sliding surface (7) if
for given constants 7 > 0, v > 0 there exist matrices
Pir, iP ¢ pr%/Vp, X;x, iX e pr%ﬂ,x, Kk, iK ¢ pri/VK,
Qiq, iQ pr{/vq, Rir, iR ¢ pr%/VR, Y;v, iy ¢ pri/vy,
&. i € Iw, satisfying (33) where S = I — B(SB)™'S,
U, = Xyx — Pyre + T(AwAX_WX +BKWK), Uy, =
He (AyaQua — Yyv) + Méw,M”, ¥3 = Qpa —
’UY%Y *URwR, YwY = [ Yle OQnX(Qn—l) ], Pwp =

Pl Onxn Q Q = Ql Onxn R r —
Pyye  Pyye |0 W Qzwa Quwa "W

R Oix2n-y - _
Rawr  Rupn with P > 0 and @Q; > 0, W =

WA e WX)UWKUWPU(WA o WRQUWYUWR. Uis
a nonsingular matrix such that CU = [ I, 0 ] The observer
gains can be obtained by Lyv = Y;;vR;', i¥ € pr%/vy,
ie HW&'

Remark 6: Theorem 3 (or Corollary 2) gives a single-
step design approach to simultaneously determine the observ-
er gains and coefficients in the switching function for the
observer-based stabilization of the T-S fuzzy descriptor system
(1) (or the T-S fuzzy descriptor system (4)). Compared with
Theorem 2 (or Corollary 1), the single-step design approach
in Theorem 3 (or Corollary 2) is more straightforward to
implement. It is also worth mentioning that since the matrix
R is selected as a lower triangular matrix, the single-step
design approach may be more conservative than the two-step
design approach. As a result, if the LMIs in Theorem 3 (or
Corollary 2) are infeasible, the two-step approach in Theorem
2 (or Corollary 1) can be applied.

When the states of the system (4) are accessible, construct
the following sliding surface

S={n(t): s(t) = SEn(t) — SEn(0)

K (39)
-8 / (Awa +BKyx X, K )n(r)dr = 0}
0
where Ky, Xyyx and S share the same meanings with that
in (7).
The sliding mode controller can be designed using the
following result.



Corollary 3: Assume that matrices Xj, i € Iy, Kj,
j € Iy satisfy Corollary 4 and € > 0. The sliding mode
controller
u(t) = Ky X 5n(t) = (ISM| [Nn(t)]| +€) (SB)

%II

can drive the T-S fuzzy descriptor system (4) to the shdmg
surface (39) and maintain a sliding motion.

The sliding mode dynamics are obtained as

En(t) = (Awa + BKpx X«

_1 (41)
+ (I - B(SB)"1S)AA)(t)

In this case, the unknown coefficients in the switching
function can be solved by the followings.

Corollary 4: The system (1) has an asymptotically stable
sliding motion with respect to the sliding surface (39) if for
a given constant 7 > 0, there exist positive definite matrix
Py, a set of matrices Psg;, Paki, X1k, Xok, X3i» Xais K1kis
Kopi, and scalars €5, ¢4 k= 1,2, v, i =1,2,---,7,

such that the following LMIs hold for £k = 1,2,--- 7., i =
1,2, ,r
He(Xg,Z) * *
(I)l q)g *
‘1)3 (I)4 —7He (Pl)
5 g —T P
NaXyy NaXog 0
NgX3;  NgpXy 0 42)
* * *
* * *
* * *
(I)7 * * <0
0 —f,ﬁ] *
0 0 —5,’2]
where & = A; Xy, — EpXs + XZ: + BKik,
O3 = Xy — P+ 17Xz, ®u = Xop + 7Xy,
(O = He (AiXQk — Ep Xy + BKQki) +
B(EMpME + ¢ MAMY) BT, ©5 = X3 — Py +
T(Ai X1k — Ex X3 + BK1yi), ®7 = —7He(Puy) +

B ( EMpMEL + 5,@MAM£) BT, B = 1 - BB,
Qs = Xui — Puri + 7(AiXop — Ex Xy + BKog) +
B (EMpME + AEMAMT) BT Then coeffi-
cients in switching function (39) are Kyx =
[ KlVEHA KQ\/EHA ] and XWX = )X(V;;/Ij igz;i
Proof: The proof can be directly derived from that of
Theorem 2 and thus is omitted. ]

Remark 7: It is noted that when the T-S fuzzy descriptor
system (1) is considered, Corollaries 3 and 4 provide a propor-
tional and derivative feedback sliding mode control strategy
to stabilize the T-S fuzzy descriptor system (1). When the
derivatives of the states are unavailable, by setting Koy, = 0,
Xop =0, k=1,2,---,7r,, i =1,2,--- r, a proportional
feedback sliding mode control strategy can be obtained.

Remark 8: As pointed out in [20], a logarithmically spaced
search 7, v € {107%,107° ... /10°} is used in this paper to
avoid optimization technique to search for 7 and v.

IV. APPLICATION TO A CLASS OF MECHANICAL SYSTEMS

Consider a class of mechanical systems in the following
nonlinear descriptor system representation

(E(x(t) + AE)a(t) = (A(z(t) + AAr)a(t) + Bul(t)
y(t) = Cx(t)

where z(t) € R™ is the state vector, u(t) € R™ is the
control input vector, y(¢) € R! is the measurable output vector.
E (z(t)), A(z(t)) are smooth nonlinear matrix functions
defined in a compact set § of the state space containing the
origin and E (z(t)) + AE; is nonsingular for V z(t) € Q.
B and C are known constant matrices of full rank. AE; =
Mg, Fg,(t)Ng, and AA; = My, Fa,(t)N4, are parameter
uncertainties where F, (t)Fp, (t) <0, FJ (t)Fa,(t) <0.
In practice, some mechanical systems, such as, double
inverted pendulum model of human standing in [43], two-
wheeled self-balanced transporter in [44] and 2-DOF planar
parallel robot in [45], can be modelled as nonlinear descriptor
systems (43). Applying the established sliding mode control
methodology [7], [9], [12], [35], [36] to system (43) involves
transformatiom to the nonlinear normal system described by

i(t) = (E(z(t)) + AEy) " (A(z(t)) + AAy)(t)
+ (B(z(t)) + AE;) "' Bu(t)

Then the following T-S fuzzy representation of the nonlinear
normal system (44) can be obtained

sz

Since the input matrices arising in the system (45) are
different, the traditional sliding mode control strategy [4] for
a T-S fuzzy normal system can not be applied. Consequently,
[7], [8], [11] respectively presented effective ways to solve
this problem assuming that full state information is available.
For mechanical systems, this assumption may be restrictive
because it may be possible to only measure a sub-set of the
states in practice. It should be noted that the difference in the
input matrices in (45) results from the inverse operation of the
derivative-term coefficient E(x(¢)), which makes the sliding
mode control problem difficult. In addition, the descriptor
model of the system (43) has a more simple structure than
its normal model (44) and inverse operation of derivative-term
matrix is avoid.

Based on the methods proposed in Section III, a sliding
mode control synthesis for the class of mechanical systems
(43) can be developed without the requirement of the above
inverse operation and the availability of full state information.

Assume that there exist p. nonlinear functions on the left-
hand side and p nonlinear functions on the right-hand side.
Using the sector nonlinear approach, the p, nonlinear functions
in the left-hand side can be exactly captured in the compact set
) by the membership functions vg(z(t)), k = 1,2, ,2Pe,
and the p nonlinear functions in the right-hand side by the
membership functions h;(z(t)), ¢ = 1,2,---,2P. Define
re = 2P¢, r = 2P, the membership functions vy (z(t)) > 0,
k=127, and h;(2(t)) > 0,4 = 1,2,--- ,r, satisfy
S vk(2(t) = 1 and >0, hi(2(t)) = 1, respectively.

(43)

(44)

((Ai + AA)z(t) + (B; + AB)u(t)) (45)



Then the nonlinear descriptor system (43) can be exactly
represented in the compact set 2 by the T-S fuzzy descriptor
system (1).

Remark 9: As pointed out in [14], using the T-S descriptor
representation, the number of fuzzy rules will decrease so
that the number of LMI conditions for controller design is
significantly reduced. In this paper, the advantage of the
adoption of the T-S descriptor representation is that inherent
characteristics of the original system are kept and yet different
input matrices for each local subsystem of the T-S fuzzy
system are not introduced.

Remark 10: Since the sector nonlinearity approach is used
to exactly represent the nonlinear descriptor system (43) in
a compact set by a T-S fuzzy descriptor system (1), the
obtained T-S fuzzy descriptor system (1) is only a local
representation of the nonlinear descriptor system (43). When
the obtained results in Section III are applied to the mechanical
systems in Section IV, the resulting closed-loop system is
locally asymptotically stable. An alternative estimate of the
domain of attraction is the outmost Lyapunov level contained
in the domain of validity Q of the T-S fuzzy model. This
also coincides with the analysis and synthesis for a nonlinear
system that usually may not provide a global solution [46]-
[48].

V. EXAMPLES

In this section, three examples will be provided to show the
effectiveness and superiority of the results proposed. To avoid

the chattering, the term \|5Et§\| in the sliding mode controller

will be replaced by HS(t)TI(% for the simulation.
Example 1: Consider the problem of balancing the inverted
pendulum on a cart shown in Fig. 1. The equations of motion

are given by

(J +ml?) 0 + mi cos(0) = mgl sin()

. i . (46)
(M 4 m)x + mlf cos(0) = u + ml6? sin(0)
where 6 is the angular displacement of the stick from the
vertical position; & is the horizontal displacement of the cart;
u is the control force applied to the car; M and m denote the
mass of the car and the mass of the stick respectively; 2[ is the
length of the stick; J = M is the moment of inertia of the
stick with respect to its center of gravity; g is the acceleration
due to gravity;
Define z(t) = [w1(t) za(t) w3(t) za(t)]", 21(t) = 0,
xo(t) = 6, x3(t) = &, 24(t) = Z, the motion equation (46) can
be represented by the following descriptor nonlinear system

1 0 0 0
4ml?
8 8 (1) ml cosé:m(t)) i(t)
0 mlcos(z1(t)) 0  M+m (47)
1{2(75) 0
_ mgl 22((51(75)) + 8 u(t)
| mlz3(t) sin(zy(t)) 1

©) ©

Fig. 1. A car with an inverted pendulum

To make the motion equation (46) tractable, the traditional
method [2], [7] is transforms (46) into the following normal
form

I'Q(t)
gsin(z1(t))
41/3 — mla cos?(x1(t))

z4(t)
—magsin(2z1(t))/2

4/3 — macos?(x1(t))
0
—acos(x1(t))
g | A3 mlacos @iD) () + fla(e))
da/3
4/3 — macos?(z1(t))

(t) =

(48)

where a = ﬁ, f(x(t)) = mizd(t) sin(zy(t)).

Note that the coefficient matrices corresponding to
the input vector w(t) in the system (47) and the sys-
tem (48) are B; = [0001]" and By(z(t)) =

T

—acos(z1(t)) 4a/3 .
|:O 4l/3—mlacos12(ac1(t)) 0 4/3—macos2(z1(t)) | > respectlvely. It

can be seen that the inverse operation around the derivative-
term coefficient results in a nonlinear coefficient Ba(x(t)).
Therefore, the nonlinear coefficient Bo(xz(t)) arises purely
from mathematical operations required to obtain a specific
canonical form.

Due to physical limitations, it is reasonable to assume
z(t) € Q= {x(t) : =& < w(t) < &,—6 < 22(t) <
§2,—E& < w3(t) < &3, -8 < a4(t) < Eaf, where &, &,
&3 and &4 are bounded positive constants. Using the sector
nonlinearity approach, the nonlinear systems (47) and (48)
can be exactly represented by the corresponding T-S fuzzy
system in the compact set ). Note that there are 3 nonlinear
functions (m, sin(z1(t)), cos(x1(t))) in the
nonlinear system (48). This implies that the corresponding T-S
fuzzy system contains 8 = 23 fuzzy rules. While 2 nonlinear
functions (cos(x1(t)), sin(z1(t))) arise in the nonlinear system
(47), thus, only 4 = 22 fuzzy rules are required to represent

the system (47).

Define z1(t) = cos(z1(t)), 22(t) = sin(z1(t)),
z3(t) = mlxza(t)sin(z1(t)). Since the maximum and
minimum values of z(t), 22(t) and z3(t) in the
set Q are max,, ) 2i1(t) = b, ming ) 2(t) =
by, max,, (4 22() = cazi(t), ming ) 2(t) =
cow1(t), MaxXy, (1),.ay() 23(1) = d1, MiNg, (1) 2,0 23(1) = da.




z1(t), 22(t) and z3(t) can be respectively rewritten by
z1(t) = cos(z1(t)) = v1(z1(2))b1 + va(z1(t))ba, 22(t) =
sin(xl(t)) = h1(2’2(t))61.’];1(t) + hQ(ZQ(t))CQ.Tl(t), Zg(t) =
ditds ()2 = ds + oft)ds, where a(t) € [—1,1]
and the membership functions are calculated as
vi(z1(1) = 352 0a(21 (1) = 1-vi(21(t)), ha(2a(t)) =

z2(t)—co arcsin(z2(t))
(e aresim(z (D) 22(0) #0 . ha(22(1)) =
1, otherwise,

1-— hl(ZQ(t))

Therefore, the nonlinear descriptor system (47) can be
exactly represented by the following T-S fuzzy descriptor
system

)E hi( t)+ B
y(t)ZCﬁ(t)
where z(t) = a(t) c = 1000
T | n®) | = oo 1o0]
Na = [0 10 0] Fa(t) = a(t), E =
1 0 0 0 0 1 0 0
0 4B 0 mib |, mgle; 0 0 0
0 0 1 0 P 0 0 0 1}
0 mib; 0 M+m 0 d3 0 0
0 0
0 0
7,:172,32 0 ,MA— 0
1 dy

For the inverted pendulum model, the parameter values are
given by m = 2kg, M = 8kg, g = 9.8m/s%, | = 0.5m, & =
70°7/180°rad, & = 3rad/s . A state feedback sliding mode
control strategy and an observer-based sliding mode control
strategy will be developed.

Case 1: Assume that 6, 9, 7 and 7 are measurable. In
the compact set €, the nonlinear system (48) can be exactly
represented by the corresponding T-S fuzzy system with 8
fuzzy rules. By using the method in [7], the LMIs therein
are found to be infeasible. Whereas, X1, Xor, Kiri, Koki,
k,2 = 1,2 can be computed in terms of Corollary 4 with
7 = 1. By the obtained parameters, the sliding variable can
be obtained as follows

s(t) = 10x4(t) + x2(¢t) cos 1 (t) — 22(0) cos 21 (0)
— 10z 22 (r sinxq (7
102:(0) + | (@3(r)sins (7

v (2(7))hi(2(7)) K1 (50)

M-
1]

£l
Il
-
«
I
-

vk (2(7))) X1x) (7)) dr

X
—
(]

>
Il

1

Using Corollary 3, the following sliding mode controller can
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Fig. 2. Simulation results for Case 1 in Example 1 under the initial condition

z(0) = [30° 00 O]T. (a)-(d) States. (e) Sliding variable. (f) Sliding mode
controller.
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Fig. 3. Simulation results for Case 1 in Example 1 under the initial condition

z(0) = [68° 00 O]TA (a)-(d) States. (e) Sliding variable. (f) Sliding mode
controller.
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For different initial conditions, the time responses of the
resulting closed-loop system, sliding variable and sliding mode
controller are shown in Fig. 2 and Fig. 3. This shows that
the resulting closed-loop system is asymptotically stable even
when the initial angular displacement of the stick is 68°.
It can be seen in Fig. 2 and Fig. 3 that compared with
[7], the control forces seem somewhat larger, whereas, the
maximum horizontal displacement is much smaller and the
rate of convergence of the plant is faster. Moreover, the initial
angular displacement of the inverted pendulum that can be
stabilized by the method in this paper is much larger that that
by [7]. In addition, it can be observed that with the increase
of the initial angular displacements, the control forces that
stabilize the inverted pendulum are also increasing, which is
intuitively reasonable.

Case 2: When only the angular displacement of the stick 6
and the horizontal displacement of the cart & can be measured,
by designing T-S fuzzy descriptor observer (5) and applying
Theorem 2 with 7 = 1, The gain matrices Ly;, X1k, Xok,
X3, X4iy, Kiki, Kogi, k,© = 1,2 can be obtained. With these
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Fig. 4. Simulation results for Case 2 in Example 1 under the initial conditions

z(0) = [30°000]T,20) = [35°000]T. (a)-(d) States and their
estimate values. (e) Sliding variable. (f) Sliding mode controller.

parameters, the observer-based sliding variable can be obtained
as

s(t) = /O (3 () cos 21 (7) + 1034(7)
=D D ula(r

() (K 1ki Kol

I;:l; 1 (52)
O wk(z(r)ha(2(r)) { f(;k f(ik })1
k=1i=1 i i
) 1,
) { i(r) bd
where Z(t) = [2:1(t) ﬁg(t) G5(t) i4(mT and (1) =

21(t) Zo(t) 5(t) 9;34(15)] are the states of the observer (5)
with the parameters in this example.

By Theorem 1, the observer-based sliding mode controller
is defined by

u(t)
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s(t)
ls(®)ll

For different initial conditions, the time responses of the
resulting closed-loop system, the observer system, the sliding
variable and the sliding mode controller are depicted in Fig. 4
and Fig. 5. This shows that the resulting closed-loop system
is asymptotically stable and the states of the observer system
can track those of the original system asymptotically even
when the initial conditions of the original system and observer
system are different. It is noted that when only partial state
information is available, the methods in [7], [8], [11] cannot be
adopted because they are only applicable to state-based sliding
mode control problems.

Since the sector nonlinearity approach is employed in this
paper, the T-S fuzzy descriptor system can exactly represent
the nonlinear descriptor system in a compact set of the state

eni(degree)

Angular displacem

I velocity(mis)
Sliding variable Anguiar velocity(degreelsec)
° 2
3
Siiding mode controller

2030 4 10 2030 40
Time (sec) Time sec) Time (sec)

Fig. 5. Simulation results for Case 2 in Example 1 under the initial conditions
z(0) = [68°000]T,£0) = [60°000]T. (a)-(d) States and their
estimate values. (e) Sliding variable. (f) Sliding mode controller.

space including the origin. Then if the LMIs in Theorem 2 or

Corollary 4 are solvable, the proposed sliding mode control

strategy can stabilize the nonlinear descriptor system in such

a compact set. This example is provided as an academic study

to illustrate the obtained results, how to apply the results in

this paper to practical applications needs the further research.
Example 2: Consider the nonlinear system

(14 acosB(t)8(t) = —bd3(t) + cO(t) + du(t)  (54)
Introduce the state vector (t) = [x1(t) x2(t) x5(t)]" with

x1(t) = 0(t), zo(t) = 6(t) and z3(t) = 6(t), [16] describes
the nonlinear system 54) by the following descriptor model

(a(t))z(t) + Bul(t) (55)
1 00
where FE 0 1 0 |,A(=(t) =
0 0 O
0 1
0 0 ,B=
c —bx2 flfacosxl(t) d
When the variables 6,  and 6 are available, [16], [31]

stabilize the descriptor model with time-delay by state feed-
back controller and state feedback sliding mode controller
respectively. Whereas, from the nonlinear system, it is ob-
served that the available variable may be only 6. Since the
variable  is unavailable, the descriptor system (55) can not
be represented by the T-S fuzzy descriptor system in [16],
[31] and the state-based controllers [16], [31] are invalid.
Assume that 6, 6 and 6§ takes \{alues in the compact set

= {01 <0 < ¢1,—¢2 <0 < ¢2,—¢3 < 0 < g3}
where ¢1, ¢o and ¢3 are bounded positive constants. Using the
sector nonlinearity approach [1], the descriptor model (55) can
be exactly represented in the compact set Y by the following
T-S fuzzy descriptor system

Zh .Z‘l

((A; + AA) z(t) + Bu(t))

(56)
y(t) = Cﬂf( )
0 1 0
where A, = 0 0 1 L As —
—bp3/2 —1—a
0 1
0 0 1 S My = 0 ,AA =
—bp3/2 —1—acosp; b3 /2
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Fig. 6. Simulation results in Example 2 under the initial conditions z(0) =
[0.50.3 0], £(0) = [0.7 0.1 0]T". (a) States. (b) Estimate errors. (c) Sliding
variable. (d) Sliding mode controller.

MFi(t)N,N; = [010],C = [100],-1 < Fi(t) <
Ly (1)) = <D0 o (4 (1)) = 1= ha (a1 (1)).

For the purpose of simulation, it is assumed that a = b =
c=d =1, ¢1 = w/3, ¢o = 2. By checking the LMIs in
Corollaries 1 and 2, it is found that only the LMIs in Corollary
1 are feasible. The observer gains and controller gains are
obtained with 7 = 1 and S = [1 0 1] in Corollary 1. With
the above parameters, the following sliding variable can be
constructed

s(t) = 21(t) — 21(0)

t
+ / (hy(z1(7))[0.8564 19.4584 1.7661] (57)
0

+ ho (a1 (7))[1.6833 28.7538 1.3580])i(7)dr

where 2(t) = [#1(t) &2(t) &5(t)]" is the states of the observer
(5) with the parameters herein.

By Theorem 1, the observer-based sliding mode controller
can be designed as

u(t) = (hy(21(1))[~1.8564 — 18.4584 0.2339]

¥ oz (1))[~2.6833 — 27.7538 0.1420])2(t)
s(t)
s

The time responses of the resulting closed-loop system, the
error system, the sliding variable and the sliding mode con-
troller are shown in Fig. 6. It shows that the resulting closed-
loop system is asymptotically stable and the error system is
convergent to zero asymptotically. The control strategies in
[16], [19], [31] are based on the state feedback and are not
applicable when only output information is available.

Example 3: Consider the following T-S fuzzy descriptor
system

(58)

Ei(t) = Z hi (A; + AA) z(t) + Bu(t) (59)

y(t) = Cx(t)

where 2(t) = [x1(t) z2(t) 23(t)]", the membership func-
tions are hy(z1(t)) = cos(z1(t)), ho(zi(t)) = 1 —
cos(w1(t)), |z1(t)] < %, and the parameters are given
1 00 1.5 0 0
01 0].,4 =11 1 o1
0 0 0 1 05 -1

7A2 =

States

Siiding variable

0 2030 40 50 0 2% 40 50
Time t(sec) Time t(sec)

2030 a0
Time {(sec)

Fig. 7. Simulation results in Example 3 under the initial conditions x(0) =
[0.50.5 0]7,2(0) = [0.7 0.1 0]T". (a) States. (b) Estimate errors. (c) Sliding
variable. (d) Sliding mode controller.

25 0 0 1 0.2
15 -1 0 |,B = |ol|,m = |o03],
1 03 -2 0 0.2
1 00 .
Cc = 0 1 0],AA = Msin(z1(t))Ny, N1 =
[01 02 0.1].

By checking the LMIs in Corollaries 1 and 2, it is found
that both of them are feasible. Without loss of generality, the
observer gains and controller gains by Corollary 2 with 7 =
0.1 are used. With the above parameters, the observer-based
sliding variable is constructed by

s(t) = &1(t) — 21(0)
t
- / (cos 1 (7)[27.6402 70.1864 — 8.2461] (60)
0
+[-51.5620 — 130.3643 12.8378))d(7)dr

where 2(t) = [1(t) &2(t) &5(t)]" is the states of the observer
(5) with the obtained parameters.

By Theorem 1, the observer-based sliding mode controller
can be designed as follows

u(t) = (cosxy(t)[28.6402 70.1864 — 8.2461]
+[-54.0620 — 130.3643 12.8378])2 (1)
]

— (0.002 + ||(cos =y (t)[3.3345 4.6251 (61)

s(t)
sl

The time responses of the resulting closed-loop system,
the error system, the sliding variable and the sliding mode
controller are shown in Fig. 7. It is seen that the resulting
closed-loop system is asymptotically stable and the state
trajectories of error system asymptotically converges to zero.
Therefore, the single-step design approach in Theorem 2 is
effective to deal with the observer-based sliding mode control
problem for T-S fuzzy descriptor system.

+ [8.1272 9.8669))(y(t) — Cz(t))|])

VI. CONCLUSIONS

This paper has studied observer-based fuzzy control of
nonlinear descriptor systems via integral sliding modes. By
virtue of the T-S fuzzy descriptor system, the observer-based
sliding mode control strategy for nonlinear descriptor systems
was presented in terms of LMIs. The two-step approach and
the single-step approach were respectively used to determine



the observer gains and coefficients in the switching function.
Application of the proposed integral sliding mode control
to a class of mechanical systems was investigated and an
alternative approach to the sliding mode control of mechanical
systems in the form of nonlinear descriptor systems provided.
It was shown that with the descriptor system representation,
different input matrices of the resulting T-S system were not
artificially introduced and the number of fuzzy rules for the
corresponding T-S fuzzy system was reduced.
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