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Abstract We develop a novel strategy that supports software agents to make decisions on
how to negotiate for a resource in open and dynamic e-markets. Although existing negotiation
strategies offer a number of sophisticated features, including modelling an opponent and
negotiating with many opponents simultaneously, they abstract away from the dynamicity
of the market and the model that the agent holds for itself in terms of ongoing negotiations,
thus ignoring information that increases an agent’s utility. Our proposed strategy COncurrent
Negotiating AgeNts (Conan) considers a weighted combination of modelling the market
environment and the progress of concurrent negotiations in which the agent partakes. We
conduct extensive experiments to evaluate the strategy’s performance in various settings
where different opponents from the literature provide a competitive market. Our experiments
provide statistically significant results showing how Conan outperforms the state-of-the-art
in terms of the utility gained during negotiations.
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1 Introduction

Electronic marketplaces (e-markets) such as E-Bay and Amazon are inter-organisational
information systems that enable participating buyers and sellers to exchange information
about prices and product offerings online, and typically support all steps of the entire order
fulfilment process [9]. One problem with existing e-markets is that their participants must
monitor continuously how their activities progress. As the duration of some of these activ-
ities can be long, e-market participants may find it tedious and time-consuming to monitor
multiple, on-going activities [32]. Consider the following scenario:

Bob needs a second-hand laptop and joins an e-market to purchase it. Bob’s preferred
price range is between [700–900] and has a deadline to acquire it within five days.
He enters the e-market on a Monday and after a quick search, he finds his preferred
laptop being sold in an on-line auction. But as on-line auctions are time consuming
(indeed the auction’s expiration deadline is in a month’s time), he also searches for
individual sellers who allow items of interest to be negotiated on-line. He finds two
possible sellers: Alice and Tom. As shown in Fig. 1, Bob starts a negotiation with
both sellers at the same time, by making offers to each one of them separately for the
laptops they offer. Alice, sends a counter-offer first, followed by Tom. After evaluating
both counter-offers, Bob is inclined to buy the laptop from Tom. But, a new seller,
John, joins the e-market on Tuesday. Bob’s choices are now extended as the number
of alternatives increases because the market has dynamically changed. Should he (a)
buy from Tom? (b) negotiate with John risking to lose Tom’s offer? or (c) continue to
negotiate with all three, in which case what offer should he make to them?

Bob
Alice

(available
from Monday)

Tom
(available

from Monday)

John
(joins on
Tuesday)

offer(700)
Monday morning

offer(700)
Monday afternoon

offer(950)
Monday evening

offer(800)
Tuesday morning

offer(750)
Tuesday evening

request to reserve
Tuesday evening

offer(700)
Tuesday evening

Fig. 1 Buyer Bob negotiates concurrently with sellers Alice, Tom and John

123



Concurrent bilateral negotiation for open e-markets…

To answer the questions raised by our scenario, Bob needs a high-level plan, or strategy,
about which actions to take. This should consider his preferences, the nature of the e-market
and the lack of information about the strategies of the sellers, their deadlines or information
about possible competitors (other buyers who wish to buy the same laptop and may be
negotiating with Bob’s sellers at the same time as he is). For the dynamic part of the e-market
environment Bob’s strategy should also consider if current competitors leave the e-market
because their deadlines have been reached or if new competitors have entered the e-market,
while Bob is still negotiating. For the incomplete information part too Bob’s strategy should
consider different issues like how much longer will Tom remain in the market and if there
are competitors interested in Tom’s laptop, to have an idea of how much to propose to him
in his next offer.

Motivated by the above scenario, we study the problem of what kind of strategy should a
software agent use in order to represent a buyer’s needs in an e-market. We employ a multi-
agent systems approach [61] to deal with such dynamic and complex e-markets, whereby
agents negotiate bilaterally with others on behalf of their users. The idea here is that agents
can satisfy their users’ preferences by isolating emotions and feelings [22] as well as save
users time.We are interested in many-to-many negotiations that occur in pairs (bilateral) and
at the same time (concurrent). Supporting such negotiations is important because they can
enable practically automated buying and selling processes online, e.g. on E-Bay. As agents
are inherentlymulti-threaded, they can negotiate concurrently. The immediate advantage is to
eliminate one of the shortcomings of human negotiations, slowness, especially in applications
where the task of negotiation can be delegated to a software agent to save time. Another
advantage is to evaluate offers frommultiple sellers, which increases the chances of reaching
an agreement, thus maximising the agent’s utility [6,47,63]. Utility can be seen as a function
that is designed by the user to measure the performance of the agent during negotiation [36].
Moreover, concurrent negotiation provides the agent with negotiating power, which means
the agent can negotiate with many sellers at the same time, to acquire a stronger negotiation
stance relative to another seller [50,58].

Negotiation has gained attention in numerous multi-agent system applications [37], not
only in e-commerce [23,38,52], but also in other areas such as service-oriented systems [13,
45], formation of virtual organisations [43], supply chains [16,27], service grids [60] and
cloud computing [15]. In this context, many different aspects of negotiation strategies have
been studied, ranging from the introduction and evaluation of opponent models [19,28,39,
47,63,64] to encounter-based learning approaches [40,59]. Negotiation strategies based on
game theoretic approaches are often used for practical applications; however, they have been
critiqued in situations where one cannot have complete information about the negotiating
environment and the negotiation opponents [31,50]. Like [6], we are not assuming that agents
have complete information about the factors considered in our framework, which makes
agents’ reasoning even more difficult to compute optimal negotiation strategies. Therefore,
instead of formally modelling the negotiation process, we have followed a heuristic approach
that is experimentally tested and evaluated.

In addition, existing strategies abstract away from the e-market environment and its
dynamic nature and, as a result, how the environment affects the progress of ongoing negoti-
ations, which in turn lead agents to obtain lower utility. In addition, existing strategies do not
always have explicit measures of how well the agent itself is progressing during a negotia-
tion and, at times, they make strong assumptions about the domain, e.g. that deadlines of all
participants are public, thus constraining their applicability in a variety of practical negotia-
tion settings. Moreover, the concurrent negotiation literature does not tackle the problem of
different agreement zones during negotiation. In the literature, the intersection between the
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price ranges (known as agreement zones) is always implicitly assumed to be 100% of initial
and reservation prices of buyer, an assumption that is unrealistic in practical applications.
The reason for exploring different agreement zones is to show how negotiation can move
the positions of the agents closer to the areas of the zones where there is agreement and thus
improve their utility.

Another major issue related to building practical negotiation strategies for e-markets is
how to evaluate the performance of an agent’s strategy. While some researchers test their
agents theoretically [21], most agent developers use simulation platforms [18,29,39,48,63],
especially for evaluating heuristic-based strategies. However, some of these platforms limit
the types of strategies that can be tested and as a result there is scope for a standard-
ised simulation environment to provide fair and objective comparisons between negotiating
agents.

Given the limitations of existing work discussed above, our hypothesis is that: if an agent
models the e-market environment and the progress of itself in it as explicit parameters, then
the agent can capitalise on the fluctuations of these parameters to make offers that improve
the agent’s utility. To test this hypothesis we propose the Conan strategy, a heuristic-based
strategy that supports a buyer negotiate in open e-market environments, where agents not
only enter and leave at their own will, but also have diverse strategies that are unknown
to their negotiation opponents. Our metrics to evaluate our hypothesis is based on a novel
combination of environment and self-related factors, which to the best of our knowledge has
not been attempted in existing work. Moreover, we keep the deadline of negotiating agents
private, so that agents do not know when others will exit from the negotiation. Furthermore,
we experiment with a variety of realistic settings by using an agent platform that supports
changing the parameters of a simulation to evaluate the performance of Conan and other
state-of-the-art strategies. Our contribution can thus be summarised as follows.

– We formulate the Conan strategy, and we show how it can be specified declaratively
as part of an adaptive agent model for concurrent bilateral negotiations. Conan makes
concurrent bilateral negotiation suitable in applications where existing work imposes too
strong assumptions to be realistic.

– We build an open and complex negotiation environment to test the strategy. We then
design a series of experiments simulating negotiation scenarios between Conan and
opponent strategies from the literature, and we evaluate extensively their performance.

– We demonstrate that Conan significantly outperforms the state-of-the-art [63] in terms
of average utility gained from negotiations.

The rest of the paper is structured as follows. Section 3 formalises our concurrent negoti-
ation environment. Section 4 describes our negotiating agent, Conan. Section 5 explains our
experimental setting and evaluates the experimental results. Section 2 reviews the relevant
literature. Section 6 concludes with potential future directions for our work.

2 Related work

We review here related work according to the number of agents negotiating at a specific time,
giving rise to multiple concurrent bilateral negotiation models. Our review will focus on
addressing the following questions: (a) How an agent can behave in a dynamic environment
where there are both external changes (i.e. changes that are out of the agent’s control, namely
changes in the environment) and internal changes (i.e. changes in the agent’s intentions and
goals, namely changes in the agent’s mental state); (b) when and how an agent can change
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its strategy during negotiation; and (c) what information is available for an agent during the
negotiation to support the decision-making process. In addition, our review will also include
two of the concurrent alternating offers protocols that are similar to ours.

2.1 Multiple concurrent bilateral negotiation models

In this context Nguyen and Jennings [46,47] developed and evaluated a heuristic concurrent
bilateral negotiation model for e-commerce purchasing. The model consists of a coordinator
and a number ofnegotiation threads. The coordinator is responsible for deciding and changing
the negotiation strategy for each thread and updating the lowest utility value of an offer that
is considered acceptable by the agent. The coordinator also employs the negotiation strategy
according to (a) the probability distribution of seller, determining whether the seller is one
of conceder or non-conceder; (b) the percentage of success matrix, describing the chance of
reaching an agreement when the buyer agent applies a specific strategy to negotiate with a
particular type of seller; and (c) the payoff matrix, measuring the average utility value of an
agreement reached in similar situations. The success and payoff matrices are initially set to
a common value and updated after the negotiation finishes.

While Nguyen and Jennings [46,47] model is very relevant to our study, it is not directly
applicable to our negotiation setting. This is due to their strict assumption about the knowl-
edge of the opponent types, negotiation success and payoff matrices before the negotiation.
Moreover, their model is based on a Bayesian learning approach requiring prior knowledge
about the environment as well as the opponents. The Conan strategy presented later in this
paper is more open than that of Nguyen and Jennings as it does not deal only with two types of
sellers, agents can come and go during negotiation, and it does not require prior information
about the opponents and the environment in the form of success and payoff matrices.

An et al. [7] proposed a strategy for deciding what proposal to make and when to make it,
in multiple concurrent negotiations. The limitation of this strategy is that compared with our
strategy, the negotiation situations of different negotiation threads are calculated according
to the minimum offer received from all sellers, while in our case, we analyse each negotiation
thread based on how the negotiation with the opponent progresses. Also, in the An et al.
strategy, there are no rules to decide when to accept an offer, but in our strategy there are.
Moreover, their strategy does not employ a concurrent protocol, as we do. Furthermore, An
et al. did not benchmark their strategy against other state-of-the-art strategies, while in our
strategy we do.

Li et al. [39] presented a strategy for bilateral negotiations about one issue (i.e. price).
Their strategy is composed of sub-strategies about single-threaded negotiations where one
buyer and one seller are assumed; synchronised multi-threaded negotiations where there are
multiple threads in the buyer account for negotiating with different sellers; and dynamic
multi-threaded negotiations where the uncertainty of new sellers joining in the future is
factored in to the buyer’s strategy. The sub-strategy that is most related to our setting is that
of dynamic multi-threaded negotiations in the presence of other opponents. One limitation
of the strategy is that it adopts only the basic time-dependent negotiation strategy, viz., the
concession rate of the offer only depends on the negotiation time. Furthermore, the work
does not provide implementation details on how the authors set up their empirical evaluation.
In addition, the strategy assumes the availability of prior information about opponents (e.g.
the estimated reservation price of an opponent), which is again not appropriate for practical
negotiation settings like ours.

Kolomvatsos et al. [33] adopted particle swarm optimisation (PSO) and kernel density
estimation (KDE) for each thread in the concurrent negotiation to find the proposed prices in
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every round of the negotiation. Similarly to our strategy, they focused on the buyer side and
they studied concurrent negotiations between a buyer and a set of sellers. In this setting, the
buyer utilises a number of threads, with each thread following a specific strategy that adopts
swarm intelligence techniques for achieving the optimal agreement. The PSO algorithm is
adopted by each thread. What is interesting in their approach is that their strategy requires
no central coordination. Their strategy does make some assumptions about the opponents.
However, their experimental results focused on the time interval where an agreement is pos-
sible and were not compared with the current state-of-the-art (as we did). Also, Kolomvatsos
et al. [34] used an artificial bee colony (ABC) algorithm to find the optimal agreement
when negotiating with a group of sellers; however, the model has the same limitations
as [33].

Williams et al. [63] proposed a negotiation strategy for concurrent negotiations in which
the agent negotiates with multiple opponents about one item with multiple issues. This is
the most similar existing research with respect to our setting. As with Nguyen and Jennings,
the Williams et al. strategy has two components: a set of negotiation threads and a coordi-
nator. Each negotiation thread is responsible for two tasks: (a) performing Gaussian process
regression to predict the future utility of its opponent and (b) calculating the concession rate
for an offer by taking into account the best time and best utility values from the coordinator.
The coordinator is responsible for determining the best time and utility for each thread to
reach an agreement. Williams et al. [63] developed two versions of their strategy. The first
assumes that each thread has a different utility function from the others, while the second
presupposes that all threads should have the same utility function.

However, there are weaknesses in the Williams et al. strategy: (a) both the agent and
its opponents have the same deadline (and are aware of each other’s), which is not realistic
for most practical problems; (b) they model the openness of the market by having agents
using the same break-off probability (likelihood of leaving the negotiation) which is prior
knowledge that is not applicable in real e-markets where buyers and sellers are concurrently
negotiating with each other; and (c) their negotiation setting is not completely open since they
only allow agents to leave the environment, but not to enter during run-time. We will use the
Williams et al. strategy to benchmark our strategy, as it represents the current state-of-the-art
in multiple and concurrent bilateral negotiation.

Table 1 compares existing work in concurrent negotiation according to functionality: (a)
continuous time—where real time is used during negotiation instead of using negotiation
rounds or discrete time; (b) private deadline—where the buyer’s and sellers’ deadlines are
unknown to each other in advance; (c) asynchronous negotiation—where the agent does not
wait for all the sellers’ counter-offers to reply; (d) environment model—where the buyer
has a model of the market’s environment in terms of the number of sellers, its competitors
and other parameters that formulate the market’s dynamics; (e) unknown opponents—where
the buyer has no information about the strategy of the sellers; (f) incomplete information—
where there is no a priory knowledge about the negotiation environment and the agents in it;
(g) model of open market—where a negotiation agent is capable of modelling how agents
enter and leave to/from the market at a time; (h) explicit decisions—where clear conditions
about when to offer, accept, reqToReserve, cancel and exit are specified; (i) different price
ranges—where the agent is tested against three classes of intersections between the price
ranges (i.e. agreement zones) [IPb,RPb] and [IPsi ,RPsi ]: 10, 60 and 100%; (j) opponent
model—models the behaviour of the opponents; and (k) multi-issue negotiation—where
buyers/sellers negotiate multiple issues like price and warranty.
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Table 1 Functionality comparison of the existing work in concurrent negotiation

Nguyen and
Jennings [47]

An et al. [7] Li et al. [39] Kolomvatsos
et al. [33]

Williams et
al. [63]

Conan

Continuous time ✗ ✓ ✗ ✓ ✓ ✓

Private deadline ✗ ✓ ✗ ✗ ✗ ✓

Asynchronous
negotiation

✗ ✓ ✗ ✗ ✗ ✓

Environment
model

✗ ✓ ✓ ✗ ✗ ✓

Unknown
opponents

✗ ✓ ✓ ✗ ✓ ✓

Incomplete
information

✗ ✓ ✗ ✓ ✓ ✓

Model of open
market

✗ ✗ ✗ ✗ ✗ ✓

Explicit decisions ✗ ✗ ✗ ✗ ✗ ✓

Different price
ranges

✗ ✗ ✗ ✗ ✗ ✓

Opponent model ✓ ✗ ✗ ✓ ✓ ✗

Multi-issue
negotiation

✓ ✗ ✗ ✗ ✓ ✗

2.2 Alternating offers protocol

We study a practical concurrent negotiation setting where a buyer agent engages in multiple
bilateral negotiations in order to acquire a good. In doing so we experimented with the
alternating offers protocol [54] due to its simplicity and wide use [37]. As shown in Fig. 2, in
this protocol a buyer and a seller take turns to negotiate with possible actions: offer, accept
and reject. The negotiation terminates either because an agreement is reached (buyer/seller
accepts) or the negotiation has terminated (buyer/seller reaches their deadlines).

There have been two previous attempts to extend the alternating offers protocol. In [4],
a con f irm action is allowed after an accept ; a buyer cannot cancel from confirmed offers.
In [63], Fig. 3, a concurrent protocol is proposed and the possible actions are:

A = {offer[x], accept, exit, confirm, de-commit}
The limitations in this method are that: (a) when the buyer makes a deal via a confirm

action, the deal will be completed and the buyer will obtain the item under negotiation and the
seller will receive the money for that item, so if the buyer cancels the deal (via a de-commit
action), it results in a more complex situation where the buyer has to return the item back to
the seller and the seller has to return the money back to the buyer, which can be inefficient in
real-time applications; and (b) only the buyer can cancel the deal (via a de-commit action),
which is not fair for the seller if the seller receives a better offer from other buyer. Moreover,
the de-commit action is not explicitly shown in the state diagram of [62]. Furthermore, it
implies that the protocol goes with a de-commit action from a final state (an agreement) to
another final state (a conflict deal), which is logically problematic.

We will adopt the model of a percentage of the deal penalty to enable a fair comparison
with the benchmark strategy of Williams et al. [63].
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Fig. 2 Alternating offers state diagram

Fig. 3 Williams’ concurrent alternating offers state diagram
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3 Concurrent negotiation setting

Given a domain of application such as buying and selling in an e-market place, automated
negotiation is normally viewed as a mechanism [53] that relies upon two main elements:

– Negotiation protocol defines the space of possible agreements that agents can achieve and
the legal actions that negotiating agents can make (i.e. the rules of encounter), including
the process they need to follow to achieve these agreements. A protocol is public, viz.,
every agent knows the rules of negotiation in advance.

– Negotiation strategy determines an agent’s behaviour during the negotiation process and
specifies when and how to act. A strategy is private to the agent, i.e. we cannot assume
that agents will know of the other agents’ strategies.

A negotiating agent makes proposals defined by its protocol using its strategy. Negotiation
proceeds as a series of rounds, and each roundmay involve one ormore proposals.Negotiation
terminates when agents reach an agreement, or a deadline is reached, whichever is earlier.
Next, we describe the skeleton of our negotiation framework and the protocol used.

3.1 Skeleton of a concurrent negotiation

We assume that a market environment contains a set of buyers B where |B| = n (n ≥ 1)
and a set of sellers S = {s1, . . . , sm} (m ≥ 1) that wish to negotiate over a set of resources
R = {r1, . . . , rl} (l ≥ 1) using a protocol p. We develop a strategy for a buyer agent b ∈ B,
who negotiates concurrently with multiple sellers over a resource r ∈ R using the protocol
p. Negotiation advances in real time t (t ∈ R

+) where agents take decisions to make offers.
At any time t during a negotiation, we identify the following information.

Sellert
b is the set of seller agents negotiating with b at time t , where Sellert

b ⊆ S.
Ct

b is the set of competitor agents for b at time t , where Ct
b ⊆ B\{b}.

The negotiation starts at time Ts . Once started, the negotiation can potentially last for time
Tb, which is the maximum duration of time that b can negotiate for. We also refer to Te as
the deadline of negotiation for b, where Te = Ts + Tb. We assume that b does not know the
sellers’ deadlines, and that the sellers do not know Tb.

b has
∣
∣Sellert

b

∣
∣ negotiation threads, one for each seller si ∈ Sellert

b.
δt

ag j →agk
is a negotiation action from ag j communicated to agk at time t , where either

(ag j = b ∧ agk ∈ Sellert
b) or (ag j ∈ Sellert

b ∧ agk = b), and δ ∈ {offer(x), reqToReserve,
reserve, cancel, confirm, accept, exit} where offer(x) is a term that contains the price x
of the resource r under negotiation at time t .

IPb and RPb represent the initial and reservation prices of buyer b, while IPsi and RPsi

represent the initial and reservation prices of seller si . In the literature, the intersection
between the price ranges (i.e. agreement zones) [IPb,RPb] and [RPsi , IPsi ] is always implic-
itly assumed to be 100% of [IPb,RPb], a very difficult assumption to make when dealing
with practical applications. So, in order to make our setting more realistic, we adopt three
classes of intersections for the aforementioned price ranges: 10%, 60% and 100%. The reason
behind this is that we want to capture situations where we can obtain higher utility, which
was not previously possible without using negotiation. However, we do make the assumption
that at any time t if ∀si ∈ Sellert

b (IPb ≥ IPsi ) holds, then there is no need to negotiate. This
is a much softer assumption to make.

EGb ∈ [0, 1] represents the eagerness of buyer b, viz., specifying the willingness of b to
obtain a resource; this is specified by the user. For instance, if the user needs to buy a laptop
to use it in his project in the next week, then the user has a high eagerness to buy a laptop.
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On the other hand, if the user needs to move to a house in the next two years, then he has a
low eagerness to buy a house.

Ub(x) : R+ → [0, 1] is the utility function that agent b uses to determine the utility of an
offer x made either by b or si as follows:

Ub(x) = (RPb − x)/(RPb − IPb) (1)

Since our focus is on a concurrent negotiation setting where a buyer agent b engages
in multiple bilateral negotiations with multiple sellers si ∈ Sellert

b in order to acquire a
single resource, we need a protocol that determines rules of negotiation that are appropriate
for concurrent negotiation. The agent needs two types of protocols to rule the concurrent
negotiation: the individual bilateral negotiation protocol and the overall negotiation protocol.

3.2 Bilateral protocol

In order to decide which protocol p is allowed in our negotiation market, we experimented
with the alternating offers protocol [54] because it is simple and widely used. However,
this protocol is not sufficient to handle the complexity of concurrent negotiations due to its
limited actions (i.e. offer(x), accept and reject). The following two cases show the difficulty
in using the alternating offer protocol as is in a concurrent negotiation.

(i) While Bob is negotiating with Tom and about to send an accept to Tom’s offer, a new
seller John enters the market. This creates a new opportunity for Bob. As a result of
using the alternating offers protocol, Bob needs to make a decision on how to proceed
in the negotiation, either by: (a) buying from Tom without exploring what John has to
offer; or (b) negotiating with John and thus risking to lose all exchanges between him
and Tom that led Tom produce his current offer.

(ii) At time t1, Bob is negotiating concurrently with Alice, Tom and John. At time t2 Alice
sends a counter-offer to Bob, while at time t3 Tom sends back an offer to Bob. At t4
Bob sends back a counter-offer to Alice and an accept to Tom. Also at t4 Bob receives
an accept from John. Since Bob needs to buy one item only, the problem now arises at
t5 of how will Bob deal with two accepts and whether Bob will continue the negotiation
or not.

As shown in Fig. 4, we extend the protocol to allow for the additional actions: req-
ToReserve, reserve, cancel, confirm and exit. At negotiation time t , these actions can be
described as follows.

– offer(x): represents an offer made either by b (or si ), proposing price x for resource r ;
– reqToReserve: provides b with the opportunity to hold a preferred offer from a seller

si until a better offer is made by another seller s j . The reason for reqToReserve actions
is that b cannot accept an offer directly because maybe a new seller will enter the market
with a lower price. reqToReserve action is also useful because apart from helping to
keep a good seller, there is a cancellation penalty which prevents the seller from exiting
the negotiation. b can send a reqToReserve to si at any time t if b receives an accept
from si or b receives an offer from si .

– reserve: gives si with the opportunity to agree on holding a preferred offer from a buyer
b. si can send a reserve action to b if si receives a reqToReserve action from b.

– cancel: allows b or si or both to cancel from their reserved offers, which means that
they retract or withdraw from existing reserved agreements. The cancelling agent pays a
penalty Penalty to the other agent involved in the cancelled agreement, to ensure fairness
and avoid unnecessary cancellation. We will discuss later how to deal with penalties.
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Fig. 4 Conan concurrent alternating offers state diagram

– confirm: enables b and si reach an agreement about the resource r under negotiation
being sold at the price of the most current offer at time t . b can send an confirm to si at
any time t if si accepts an offer from b.

– accept: permits b and si reach an agreement about the resource r under negotiation being
sold at the price of the most current offer at time t . b can send an accept to si at any time
t if: (i) b reaches its deadline tb and has a reserved offer with si ; and (ii) b accepts an
offer from si . In addition, si can send an accept for any offer made by b.

– exit: supports b or si to withdraw from the course of negotiation at any time, even without
notifying other agents. This implies that the negotiation between b and si has failed.

3.3 How To negotiate concurrently

Our protocol will be used by the buyer to communicate with multiple sellers concurrently.
Negotiation starts when the buyer sends an offer to a seller and then waits for the seller’s
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response. As soon as it receives a response from the seller, the buyer evaluates the seller’s
offer based on its strategy. If the buyer does not agree on the offer, it will send a counter-offer.
The buyer and the seller continue to exchange offers until either agent exits the negotiation,
an offer is reserved, or they reach an agreement. We assume that the agent has to reply to all
pending offers and that messages received never expire. If the seller likes the buyer’s offer it
will send an accept action and wait for the buyer to:

– confirm the seller’s accept, in which case the negotiation terminates with an agreement.
The reason for this is to avoid the situation where b receives accepts from two different
sellers;

– reqToReserve to the seller’s accept, which implies that the buyer and seller move to
the reservation request state and the buyer will continue to search for other better offers.
However, the seller is not allowed to reqToReserve to the buyer’s offer since we assume
that the seller has large numbers of the same resource to sell; or

– exit from the negotiation with a seller and thus forcing negotiation to fail.

Likewise, if the buyer likes the seller’s offer, it can either:

– accept the seller’s offer and the negotiation terminates with an agreement; or
– reqToReserve to the seller’s offer, so the buyer and sellermove to the reservation request

state and the buyer will continue to search for other better offers.

In the reservation request state the following may happen:

– the seller can exit from the reservation request state without paying any penalty. This
move would be allowed only when the seller does not want to reserve the item and exits;

– the seller sends a reserve action agreeing to the reqToReserve from the buyer;
– the buyer or the seller cancel from the reserved state, which results in a penalty being

paid by the participant who initiates the cancel; or
– the buyer can accept the reserved offer and the negotiation ends with an agreement.

3.4 Overall negotiation protocol

This protocol governs the communication between agents in the e-market. The overall nego-
tiation starts when the agent b enters the e-market and finishes either when:

E1. b accepts or confirm an offer from a seller si ; thus, agreement is reached and the
negotiation succeeds; or

E2. b exits from all bilateral negotiations with all sellers; thus, no agreement was reached,
b exits the e-market, and the negotiation fails.

An agent now needs a strategy to make decisions during negotiation. Such a strategy is
protocol-dependent in that participating agents need to conform to the protocol’s actions for
progress to be made during negotiation. For this work we assume that agents are protocol
conformant, i.e. that they will follow the protocol and will never breach it during negotiation.

3.5 Example run

Togive an example of howagents interactwith our overall negotiation protocol consider Fig. 5
depicting an example run using the protocol. The run shows the exchanges between agents
for the scenario presented in the introduction. Each box corresponds to a bilateral negotiation
between the buyer agent Bob and the seller agents Alice, Tom and John. Bob starts first with
the two sellers Alice and Tom and, while he is negotiating with them, observes that a new
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Fig. 5 An example run of concurrent bilateral negotiation in CONAN

seller John is available, so he decides to negotiate with him too. This example shows that the
difficulties that Bob had under the alternating offers protocol in Sect. 3.2, case (i), can be
overcome mainly because Bob now is able to handle negotiations with Alice, Tom and the
new seller John at the same time.More precisely, Bob can now send a reqToReserve to Tom
to hold a good offer and at the same time start negotiating with John to explore what is it that
John has to offer, thus improving his options to improve his utility during the negotiation.
Eventually, the example shows that the bilateral negotiations of Bob with Alice and John
fail, but Bob’s negotiation with Tom succeeds. For a buyer like Bob, bilateral negotiations
are separate concurrent threads that encapsulate their own initial states and form part of the
buyer’s overall internal state. Interactions within threads are viewed as state transitions that
follow the protocol of Fig. 4. S1, S2, . . . S6 are state labels for the state of the buyer. The
state transitions of the buyer are then caused by negotiation actions of the form δt

ag j →agk
(as

discussed earlier).

3.6 Implementation

We build a negotiation framework usingRecon [2], an experimental simulation platform that
supports the development of software agents interacting concurrently with other agents in
negotiation domains. Unlike existing simulation toolkits [42], Recon also supports declara-
tive strategies to enable agents explain their decisions to a user, if necessary. Our buyer agent
is implemented according to KGP agent model [57] with the specialised agent architecture
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discussed in [3]. Recon is built on top of GOLEM 1 [12] suitably specialised with infras-
tructure agents to manage an e-market and extract statistics from the negotiations that take
place. A tutorial video on Recon is available online.2

4 CONAN

We study the development of a heuristic negotiation strategy for a buyer agent in a concur-
rent negotiation market setting. Existing work [47,63] provides answers only about when to
offer or accept and what to offer, but does not explicitly represent reqToReserve and can-
cel actions in a concurrent negotiation dialogue. In addition, offers are computed using an
opponent’s model and do not take into account the environment and/or self models [47,63].
Moreover, some existing work assumes complete and certain information about the negotia-
tion environment and the opponents [47]. In most approaches the agent strategy is an isolated
component without clear illustration of how the model is designed and how different compo-
nents interact with each other [47,63]. To develop an adaptive negotiation decision-making
model in a dynamic environment, wemust support an agent to deal with an enormous number
of environmental and attitude changes at the same time. To address this issue, we develop the
Conan strategy. Since our buyer agent needs to acquire a resource when negotiating with
multiple sellers at the same time, the agent will use Conan to decide (1) what actions to take
during negotiation and when to take them; and (2) whether the action is an offer, then how
to generate an offer. Algorithm 1 gives an overview of Conan.

Algorithm 1: Reaching agreements via concurrent negotiation
Input: Tb: negotiation duration,
IPb: buyer’s initial price,
RPb: buyer’s reservation price.
Output: offer (offer > 0 if agreement, offer = 0 if no agreement)

1 Te = Ts + Tb
2 Repeat
3 Get active sellers Sellertb
4 Calculate the CRt,si for each seller si ∈ Sellertb
5 Generate b’s next offer for each si
6 Compute δt

b→si
= {exi t, reqT oReserve, cancel, accept, con f irm, of f er}.

7 Send δt
b→si

for each si

8 Until t = Te || δt
b→si

= accept || δt
b→si

= con f irm

9 if δt
b→si

= accept || δt
b→si

= con f irm then
10 Return offer (agreement)
11 else
12 Return 0 (no agreement)

Conan takes Tb, IPb and RPb as an input from the agent user and returns either an
agreement or no agreement to allocate a resource as output. Conan starts by initialising
its deadline, then calculates the concession rate CRt,si , generates the next offer and decides

1 http://golem.cs.rhul.ac.uk/.
2 https://youtu.be/PmuHhxgFqpc.
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which action to proceed with for each seller si . The designs of each heuristic are discussed
in sub-sections below.

4.1 Heuristics to calculate the concession rate

Conan generates offers offert,si at time t for seller si based on the following equation [18]:

offert,si = IPb + (RPb − IPb) ∗ CRt,si (2)

where

– IPb: is the initial price;
– RPb: is the reservation price;
– CRt,si : is the concession rate at time t for seller si . CRt,si ∈ [0, 1] and offert,si ∈

[IPb,RPb].
Our evaluation of the concession rate depends on the environment and self factors:

CRt,si =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, if t = Ts;
0.99, if t = Te − α where α = time to complete one

negotiation round;
CRt−1,si , if CRt,si − CRt−1,si < 0;
CRt−1,s j ∗ 0.9, if offer of CRt−1,s j reserved and j 	= i;
wEnvt Et + wSelf t St , otherwise

(3)

where

– Et : is the effect of the environment factor where Et ∈ [0, 1];
– St : is the effect of self factor where St ∈ [0, 1];
– wEnvt , wSelf t : are the environment and self weights, normalised in the following sense:

wSelf t , wEnvt ∈ [0, 1] and wSelf t + wEnvt = 1.

Before explaining the environment and self factors Et and St , we demonstrate how we
calculate each case of the concession rate CRt,si in Eq. 3 above.

Case 1 When b starts the negotiation, it will offer its initial price first.
Case 2 When time is α time units close to the deadline and the buyer b has no reserved
offer, then it needs to secure an offer even if it is near to its reservation price. Therefore,
b concedes near to its reservation price by setting the concession rate CRt,si = 0.99.
Case 3 When b generates an offer that is non-monotonically increasing (i.e. CRt,si −
CRt−1,si < 0) at t , then, to ensure its own rationality, b will actually offer its previous
offer CRt−1,si . This case needs a first generation of the value CRt,si with cases 1 or 5.
Case 4 If b has a reserved offer at t − 1, there is no need for b to concede more to other
sellers. Thus, b will generate an offer which is less than 10% of its reserved offer. This
case needs a first generation of the value CRt,si with cases 1 or 5.
Case 5 Otherwise, b will generate an offer that takes into consideration the environment
and self factors. To give a flavour of these, the following are some special cases illustrating
how environment and self factors affect the concession rate.

(a) Adding and/or removing a seller to/from the negotiation: while agent b is negotiating
with agent s1 and agent s2, a new seller agent s3 enters the market and starts a new
negotiation thread with b. This creates a new option for b. As a result, b will decrease its
concession rate to see how the negotiation process proceeds with agent s3. On the other
hand, when s1 exits the negotiation, it means b loses an option; thus, it has to increase
its concession.
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(b) Adding and/or removing negotiation competitors: consider agent b negotiating with
agents s1 and s2 as before, but now b perceives that a competitor c1 is negotiating
with agent s1. Hence, b may concede by a larger amount to attract s1 to sell the resource.
In contrast, if c1 leaves the market, b may concede by a smaller amount since it has no
other competitors while negotiating with s1.

(c) Change in the negotiation situation: if b is in a bad negotiation situation (a notion to be
defined by a function when we explain the self factor St ), then b has to concede more
in order to secure the resource before the deadline. On the contrary, when in a good
negotiation situation, b has a higher chance of winning the negotiation, which in turn
leads to b reducing its concession rate.

Now, we will explain the self and environment factors St and Et .

4.1.1 Self factor

Given a concurrent negotiation setting, the self factor is an indication of how well the agent
is doing at a specific time. In Conan, we address this point heuristically by studying a self
factor St ∈ [0, 1] that depends on how many reserved offers (RO) the agent has made so far,
the agent’s negotiation situation (NS) representing progress with all negotiation threads (i.e.
how well opponents respond to our offers and how opponents concede over time), the effect
of the passage of time (TE) and the eagerness (EGb) of our buyer agent to obtain the item
under negotiation. We compute the self factor as:

St =
(

1

RO + 1
+ NS + TE + EGb

)

/4 (4)

As we expect each sub-factor RO, NS, TE, EGb ∈ [0, 1], we divide the final sum by 4 to
ensure that the value for St ∈ [0, 1]. We are now in the position to explain each sub-factor in
detail.

RO: is the number of reserved offers, obtained from the set of reserved offers ROt at
time t and evaluated as |ROt |. ROt (and as result RO) is updated every time the buyer
reserves an offer or cancels a reservation. If the number of reserved offers increases, then
the agent decreases the concession rate for generated offers. We normalise RO ∈ [0, 1].
NS: is the negotiation situation for all threads. The evaluation of the negotiation situation
in each thread is used to decide the next offer for each thread. It is calculated using the
following two criteria: Opponent’s response time and Concession rate. These criteria are
based on combinations of time-dependent factors (for the opponent’s response time) and
behaviour-dependent factors (for the opponent’s concession rate), which are inspired by
the works described in [18,20].

Opponent’s response time is the time taken for the opponent to make a counter-offer given
the time the buyer b has available to negotiate. More specifically, given an offer from the
buyer b to seller si at time tl , denoted as δ

tl
b→si

, and a response to that offer from si to b at

time tm (tm > tl ), denoted as δ
tm
si →b, then Opponent’s response time is as described below:

Opponent′s response time = (tm − tl)/Tb (5)

Opponent’s response time ∈ (0, 1]. The actual value for the response time of an opponent
during negotiation classifies opponents into three distinct classes: compatible, moderately
compatible or incompatible. Each opponent class is obtained by dividing the possible values
of the Opponent’s response time (0, 1] into three equal sub-intervals shown below:
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Table 2 Mapping procedure
using the Borda method

Range Qualitative decision Score

(0, 1
3 ] Compatible 1

( 13 , 2
3 ] Moderately compatible 2

( 23 , 1] Incompatible 3

– compatible ∈ (0, 1
3 ];

– moderately compatible ∈ ( 13 ,
2
3 ];

– incompatible ∈ ( 23 , 1].
The smaller the response time, the more compatible an opponent is. These three notions of
compatibility are used here as a heuristic way to classify the behaviour of opponent responses
in relation to the expectations of the buyer agent. The intuition is that this classification is
sufficiently discriminating if compared with the bipolar alternative compatible/incompatible,
while at the same time it is equally simple to explain and has the added advantages of
distinguishing behaviours that lie in the middle.

Opponent’s concession rate is the rate of change between two consecutive offers of the
opponent at time t = tk over the price range the agent has to negotiate. This is based on a
window of consecutive opponent offers φ > 1, containing first the last offer made to b by
si , denoted as offertk−1

si →b, and ending with offer
tk−φ

si →b. We can then compute the opponent’s
concession rate as follows:

Opponent′s concession rate (φ) = 1 −
(offer

tk−φ

si →b − offertk−1
si →b

RPb − IPb

)

(6)

For instance, if φ = 3 and the previous consecutive opponent offers of si to b at time tk
are 770, 790 and 800, then the concession will be (800 − 770)/3. We then normalise the
Opponent’s concession rate to a real number ∈ [0, 1] and map the result to incompatible,
moderately compatible and compatible, as with the Opponent’s response time.

From these two criteria, our goal is to derive a local situation σi for each negotiation
thread i (where i represents the negotiation of buyer b with seller si ), which also takes the
values incompatible, moderately compatible and compatible. To compute σi , we have cho-
sen the multi-criteria decision-making process known as the Borda method [11], giving a
value to every qualitative decision based on its position, as in Table 2. We select this method
because it: (1) supports proportional representation of the situation of each thread; (2) is
neutral and monotonic [10]; (3) produces a complete, transitive ranking for a set of alterna-
tives [17]; (4) preserves the decisiveness of labels (incompatible, moderately compatible and
compatible) [25]; (5) uses straightforward calculation; and (6) employs feasible computation.

Then σi sums up the scores Opponent’s response time and Opponent’s concession rate:

σi = Opponent′s response time + Opponent′s concession rate. (7)

Given the score combinations of Opponent’s response time and Opponent’s concession
rate, the domain of σi is [2, 6], with 2 implying that the opponent is compatible with our style
of negotiation and 6 implying that the opponent is incompatible. We then derive the global
negotiation situation σ for buyer b, which we calculate as the sum of all the local negotiation
situations σi , as shown in Eq. (8). However, σ needs to be normalised, so that we can use the
normalised value to generate the concession rate. So NS is the normalised global negotiation
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situation given by Eq. 9, where 2 and 6 are the minimum and maximum values that a thread
can score, respectively, while y is the number of sellers y = |Sellert

b|.

σ =
y

∑

i=1

σi (8)

NS = σ − (2 ∗ y)

(6 ∗ y) − (2 ∗ y)
= σ − (2 ∗ y)

4 ∗ y
(9)

TE: is the effect of the passage of time on the concession rate for buyer b. We use Eq. 10 to
normalise TE between [0, 1].

TE = t − Ts

Tb
(10)

EGb: is the eagerness of buyer b to obtain the resource and is specified by the user. Eagerness
means the degree of desirability of an item by the buyer. In practice, if the eagerness of the
buyer for an item sold by a seller is higher than that sold by another, then the buyer is willing
to concede more on the price of the more desired item, not only because of the deadline. As
discussed in Sect. 3, EGb is between [0, 1].

4.1.2 Environment factor

The environment factor allows a buyer agent using Conan to answer the question of how
suitable is the environment to the agent at a given time. As with the self factor, the environ-
ment factor is a heuristic originating from the social sciences based on the negotiation power
principle, which gives more power to the buyer to explore different alternatives when nego-
tiating with many opponents [22]. Given a dynamic market environment, the environment
factor Et ∈ [0, 1] depends on the number of sellers (Set ) that are available, the number of
competitor agents (Ct ) that are after our item and the demand/supply ratio (Rds).We compute
the environment factor as:

Et =
(

1

Set
+ Ct + Rds

)

/3 (11)

As we expect the sub-factors Set , Ct , Rds ∈ [0, 1], then we need to divide the sum of all
sub-factors by 3 to obtain a value for Et ∈ [0, 1]. We explain next each sub-factor.

Set : is the number of sellers that are actively negotiating with b. The value of 1/Set ∈
(0, 1] (see case 5(a)).
Ct : is the number of active competitor agents, other buyers who are trying to make a deal
with the sellers negotiating with b for the same resource. We assume that this number is
obtained from the market. The lower the number of competitors during negotiations, the
higher the possibility of b reaching an agreement by conceding less [see case 5(b)]. We
normalise the value of Ct between [0, 1].
Rds: is the demand/supply ratio calculated as the ratio of the number of buyers to the
number of sellers. The higher the ratio, the higher the price for the resource and, hence, the
more difficult it is to reach an agreement. There are many e-markets in the literature that
provide demand/supply ratios [55], including Tete-a-Tete, Kasbah, AuctionBot and the
Fisher market. If the e-market does not provide the agents with the demand/supply ratio,
then it can be calculated by dividing the number of sellers by the number of competitors.
For instance, E-Bay provides the user with the number of buyers that follow specific item
(number of competitors). We normalise the value of Rds between [0, 1].
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4.1.3 Assigning weights to factors

We develop a method to assign weights to the environment and self factors presented earlier.
First, in Eq. 12, we assign a weight to the self factor St depending on the value of the factor
itself. Then, in Eq. 13, we calculate the impact of the price range DM. The functions below
present this method. We classify the value of St as low, medium or high, where:

– low ∈ (0, 1
3 ];

– medium ∈ ( 13 ,
2
3 ];

– high ∈ ( 23 , 1].
The reason for the classification as low, medium or high is the same as that for choosing

to classify as incompatible, moderately compatible or compatible in Sect. 4.1.1. The buyer
always looks for its self factor St first, to see how satisfied it is with the current progress of
the negotiation. If the value of St is low, it means that the buyer only by looking on this factor
will concede less, which implies that the buyer is in a good negotiation position; focusing
on St only, b will concede only by a small amount. For this reason, b must put more weight
on the self factor, as it suggests that b should concede very little, which in turn implies that
the environment factor should be assigned a lower weight. As a result, a high weight will be
assigned to wSelf t . This is captured by Eq. 12, where if the value of St is low, we multiply by
0.75 to make it more important; if the value of St is medium, by 0.5 to make it indifferent;
and if the value of St is high, by 0.25 to make it less important. In this way, wSelf t is adjusted
according to the negotiation progress.

wSelf t =
⎧

⎨

⎩

DM ∗ 0.75, if St = low
DM ∗ 0.5, if St = medium
DM ∗ 0.25, if St = high

(12)

We also need to cater for the situation where the initial price of the seller is far away from
the reservation price of the buyer. In this case, even if St is low, b will need to concede more,
in order to close the price gap in fewer negotiation cycles. We therefore introduce a price
distance multiplier DM in Eq. 12, which measures the negotiation gap between b and si and
is defined by Eq. 13.

DM = (IPsi /RPb) ∗ TE (13)

The ratio estimated by the initial price of the seller IPsi and the reservation price of the buyer
Rb is multiplied by TE, which is the effect of time passage, to remove a small percentage
from the distance. The domain of TE is within the interval [0, 1]. We are now in a position
to evaluate the weight of the environment factor, as shown in Eq. 14.

wEnvt = 1 − wSelf t (14)

4.2 Cancellation penalty

The cancellation penalty is important to ensure fairness between negotiation participants, to
save money and resources and to allow the system to be stable in terms of avoiding unwanted
cancelled deals.

The penalty amount needs to be determined by the agent’s user before the start of the
negotiation in order to decide when to cancel from an offer. Penaltyb represents the total
amount of penalties for all the reserved offers. Thus, if the agent, during negotiation, finds
a better offer, then the agent will cancel from the least preferred offer (i.e. one cancel only)
and reqToReserve to the better offer. At the end of the deadline, the buyer accepts its most
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preferred reserved offer and cancels the rest of the reserved offers. The buyer keeps an MRO
(maximum number of reserved offers), which when it is reached the buyer cannot reserve
any further offer.

The penalty the buyer has to pay Penaltyb is calculated as the difference between the
amount of money the buyer has to pay to cancel any reserved offers and the amount of money
the buyer has already received from opponents that cancelled their reservations with the
buyer, i.e.:

Penaltyb,si
= Penaltysi ,b = D ∗ Pricereserved (15)

Penaltyb = (Penaltyb,si
∗ RO) − (Penaltysi ,b ∗ ROSellertb

) (16)

where Penaltyb,si
is the penalty paid by b to cancel an offer made to seller si , Penaltysi ,b is

the penalty paid by si to cancel an offer made by b, D is the percentage to be paid from the
cancelled offer ∈ [0 − 1], RO is the number of reserved offers so far, and ROSellertb

is the

number of cancelled offers that occur from sellers Sellert
b negotiating with b.

The reason for choosing D (a percentage of the reserved offer) is for fair comparison with
the benchmark, viz., the strategy used by Williams et al. [63].

4.3 Heuristics to decide actions

In order for the buyer b to decide which action to choose at each point in time, we developed
a rule-based strategy. We start with the reqToReserve and cancel and then discuss the
accept conditions. In these rules, we will use three parameters determined by the user: (a)
MRO—this is the maximum number of reserved offers; (b) D—this is the percentage of the
deal for cancelling from negotiation threads (more details in Sect. 4.2); and (c) MAN—this
is the maximum number of active threads (ensures that the agent has limited computational
resources).

4.3.1 Conditions to request to reserve

Agent b reqToReserve to si when:

– offer δt
si →b + Penaltyb ≤ δt+1

b→si
< any reserved offers and b is not near the deadline.

– si accepts the last offer from b and b’s last proposed offer + Penaltyb ≤ any reserved
offers and b is not near the deadline.

4.3.2 Conditions to cancel

Agent b cancels from:

– the least preferred offer when RO ≥ MRO;
– all reserved offers immediately after b has accepted an offer.

4.3.3 Conditions to accept

Agent b accepts:

– δt
si →b when offer δt

si →b + Penaltyb ≤ δt+1
b→si

< any reserved offers and b is nearing the
deadline.

– si ’s acceptance when si accepted the last offer from b and b’s last proposed offer +
Penaltyb ≤ any reserved offers and b is nearing the deadline.

– the highest utility reserved offer when b is nearing the deadline t = Te.
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4.3.4 Conditions to confirm

Agent b confirm:

– si ’s acceptance when si accepted the last offer from b and b’s last proposed offer +
Penaltyb ≤ any reserved offers and b is nearing the deadline.

4.3.5 Conditions to exit

We study next the conditions that the buyer b needs to check before exiting from an individual
thread or from the negotiation as a whole.

Conditions to exit from a thread
Agent b exits from:

– any thread if the deadline has been reached, i.e. t = Te;
– σi if seller si is incompatible (i.e. based on the evaluation NS mentioned above) and

there is a new seller s j and |Sellert
b| = MAN (which means that the current opponent

is incompatible and the buyer has a new opponent to negotiate with, but due to the
limited number of active negotiations, the agent has to terminate the negotiation with the
incompatible opponent).

– σi if si has accepted an offer, but a higher utility offer has been accepted at the same
time by s j (which means that the buyer receives two accept actions from two different
sellers at the same time, leading the buyer to choose the highest utility offer from s j and
exit from si ).

Conditions to exit from the whole negotiation
Agent b exits from the whole of the negotiation

– if the deadline has been reached, i.e. t = Te.
– if δt

b→si
= accept.

4.4 Representation of the strategy

In the context of our implementation discussed in Sect. 3.6, we represent the state of an agent
during negotiation as a temporal logic program implemented in Prolog, which we assume
the reader is familiar with. Prolog uses the convention that a constant is an identifier starting
with a lower-case letter, while a variable is an identifier starting with a upper-case letter. A
constant stands for a specific entity, and different constants stand for different entities. On
the other hand, a variable can stand for any entity, and different variables can stand for the
same entity. The predicate name must be a constant, while each argument can either be a
constant or a variable. A Prolog program can be used to answer queries, or to achieve goals,
the prompt “?-” denotes a query whose truth will be evaluated by the program.

The temporal part of the logic is represented using the Event Calculus (EC) [35], a logical
language for reasoning about actions and their effects. We will use a dialect of the EC based
on temporal variables known as multi-valued fluents due to the fact that these variables can
take different values at different times. At a time T a fluent is represented in the form F=V
to denote that it holds at T that F has value V [8]. For instance, to query that the initial price
of specific laptop, say laptop12, costs 1200 at the current time 15, we write:

?- holds_at(initial_price(laptop12) = 1200, 15).
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The state of the agent will generally containmany other fluents to represent information about
negotiation threads, information about other agents and knowledge about the environment.

From a representation of state such as the one above, we develop a strategy as an action
selection policy whose specification is defined by Prolog rules of the form:

select(Goal, Action, T):- Conditions [T].

An example of a part of the strategy is shown in Listing 1, showing how the buyer b can
reason about which action to select next.

� �

1 select(buyfrom(Si , Item , ao), offer(Si , Item , Offer), T):-
2 deadline(Deadline),
3 ourdeadline(StartTime),
4 Td is (StartTime + Deadline),
5 T < Td ,
6 calc_next_offer(buyfrom(Si , Item , ao), Offer , T).

8 calc_next_offer(buy(Si , Item , Ao), Offer , T):-
9 concession(buy(Si , Item , Ao), CA , T),

10 Offer is Min + (Max - Min) * CA.
� �

Listing 1 Extract from the declarative specification of the agent strategy in Prolog

Listing 1 assumes that the buyer has a goal to buy an item from the market, and has to
identify a seller Si, and create a thread of negotiation with that seller. This is done by the
buyer creating a sub-goal to buy the Item from Si using the concurrent alternating offers
protocol ao. The predicate representing the head of the rule

select(buyfrom(Si, Item, ao), offer(Si, Item, Offer), T)

(line 1) returns an offer (represented by the variable Offer) for the agent’s goal
(buyfrom(Si, Item, ao)), seller (Si) and item under negotiation (Item). This pred-
icate calls another predicate that acts as a function to generate the counter-offer at line 6 after
checking the buyer’s deadline. The predicate call

calc_next_offer(buy(Si, Item, Ao), Offer, T)

(line 8) generates the counteroffer at time T for seller (Si) based on the initial price (Min),
reservation price (Max) and concession rate (CA). The predicate call

concession(buy(Si, Item, Ao), CA, T)

(line 9) calculates the concession rate (CA) at time T for seller (Si) according to Eq. 3. The
remaining of the strategy is defined with similar rules that are called fromwithin a declarative
agent cycle. Details on how the strategy is incorporated in the buyer’s agent cycle are beyond
the scope of this paper and the interested reader is referred to our previous work [3], where
this issue has been discussed.

5 Empirical evaluation

In the previous sections we have presented the background that motivated the development
of Conan and the model itself. This section presents the experimental results of the work
and their evaluation. We proceed as follows. We outline first our negotiation simulation
framework Recon [2], which implements the negotiation agents and facilitates the way we
have generated our experimental results. We present two large experiments to test Conan.
We report their results and evaluate their significance.
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5.1 Experiment 1: comparing CONAN with the state-of-the-art

The aim of this experiment is to determine whether Conan can outperform the state-of-
the-art and if so, under what settings. This section starts by explaining the experimental
setting in detail, which includes the choice of opponents, the benchmark strategy that we are
comparing our work with, the parameters of the proposed experiments, and the performance
measurements characterising our results. After that, we report on the experimental results.

5.1.1 E-market setting

As discussed in Sect. 3.6, we implemented Conan agents using the architecture proposed
in [3]. Interaction between Conan and other agents is handled using inter-agent commu-
nication. As explained in Sect. 3, Recon supports both the imperative definition of agent
strategies in Java and the declarative specification of logic-based strategies in Prolog, within
the same environment. This feature is important, because we can develop simulations with
Conan developed declaratively and then compete with imperative agents, as those currently
representing the state-of-the-art in the negotiation literature, without any difficulties. In addi-
tion,Recon supports concurrent negotiation which, at the time of our experimentation effort,
other existing negotiation platforms did not support [42].

Choice of opponents For our evaluation, we developed extended versions of Faratin’s [18]
and ANAC 2011 (International Automated Negotiating Agents Competition) [24] strategies
that allow opponents (sellers) to concurrently negotiate with different buyers. In the simula-
tion, we divide these strategies into three groups:

– The first group, Faratin’s Sellers [18], contains three combinations of strategies which
we combine into one group. The first combination is called time-dependent strategies,
where the value of the counter-offers and the acceptance value for the offers depend on
the remaining negotiation time. The second and third combinations are the resource-
dependent and behaviour-dependent strategies. In resource-dependent strategies, sellers
concede more rapidly as the quantity of resources becomes limited. As in Faratin et
al. [18], resources are the number of buyers participating in the negotiation and the
negotiation time. In behaviour-dependent strategies, the seller imitates the behaviour of
the buyers, so the seller will compute the next offer based on the previous attitude of the
buyer.

– The second group is the ANAC Sellers [24]. We chose this group for fair comparison with
the benchmark strategy, which we will describe once we have completed this discussion
on opponents. In addition, the ANAC competition provides the most recent and most
competitive state-of-the-art practical negotiation agents. It is important to note that in
our experiments we noticed, in the 10% agreement zone (for more details see Sect. 3),
that three ANAC sellers were accepting offers with negative utility for them. This was
due to the fact that ANAC sellers always assume that there will be a 100% agreement
zone between them and the buyers. To make the comparison fair with ANAC sellers in
the 10% agreement zone, we adjusted their strategies to offer or accept only when they
obtained positive utility.

– The third group, All Sellers, is a combination of all Faratin’s Sellers and ANAC Sellers.

Each seller has two fixed private deadlines. The first is the deadline for how long it will
be staying in the market. The second is the deadline related to the negotiation with each
buyer. When a seller starts to negotiate with each buyer, it assigns a fixed duration for the
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Table 3 Simulation parameters

Variables Description

Buyer’s initial price Starting price IPb of buyer b

Buyer’s reservation price Maximum price RPb buyer b will offer

Seller’s initial price Starting price IPsi of seller si

Seller’s reservation price Maximum price RPsi seller si will offer

Market update time Elapsed time for the market to change (population and
demand / supply ratio due to new agents entering or
existing agents leaving the market)

Change in market population The rate in which the number of agents increases or
decreases

Change in demand/supply The rate in which the ratio of buyers to sellers increases
or decreases

Deadline Duration of the negotiation Tb for buyer b

Eagerness The eagerness Egb of buyer b

negotiation, for instance, three minutes. Hence, when the seller starts a new negotiation with
another buyer, it negotiates for a fixed time, three minutes only. The seller will exit the market
if (a) the seller sells all its resources, or (b) the seller reaches the deadline for staying in the
market, or (c) themarket forces the sellers to exit their negotiations to alter the demand/supply
ratio of the market.

Benchmark strategy We will use the state-of-the-art strategy developed by Williams et
al. [63] as the benchmark strategy. Williams et al. also validated their strategy empirically.
The opponents’ strategy was obtained from ANAC Sellers only. They compare their strategy
with two other strategies: a random strategy and Nguyen and Jennings’ strategy [47]. Their
results show that their strategy outperforms both. Here, we compare Conan with the second
version of their strategy, where all negotiation threads have the same utility (see Sect. 2)
and this is due to our assumption that all the sellers provide the same identical resource to
be negotiated. We set the simulation parameters based on Williams et al. settings in their
empirical evaluation in terms of public deadline, break-off probability and penalties.

Simulation parameters The market allows the agents to enter and leave the market at any
time. The market simulates the entrance and the exit of the opponents. For each buyer, the
market announces the arrival of new sellers and the total number of buyers. The time of the
announcement is based on the parameter Market update time as shown in Table 4. Table 3
illustrates the variables used in a simulation. The number of new sellers and buyers added
will depend on the parameters Change in market population and Change in demand/supply
ratio. For instance, if the change rate in market population is 8 and the demand/supply ratio
is 1:1, and the market situation has 5 buyers and 7 sellers, then the market terminates 1 buyer
and 3 sellers to reach the correct desired change in the market. These terminated buyers and
sellers send an exit action to their opponents.
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Table 4 Simulation parameter values

Variables Values

Buyer’s initial price [300–350]

Buyer’s reservation price [500–550]

Seller’s initial price (agreement ratio wrt to
buyer’s reservation price)

10% [750-800]–60% [580–620]–100% [500–550]

Seller’s initial price (agreement ratio wrt to
buyer’s reservation price)

10% [450-500]–60% [380–420]–100% [300–350]

Market update time [2 s, 5 s,10 s]

Change in market population High [30, 40, 50], average [18, 23, 28], low [8, 10, 12]

Change in demand/supply High [10:1, 1:1, 1:10], average [5:1, 1:1, 1:5], low [2:1,
1:1, 1:2]

Deadline Short [30s–90s], average [91s–150s], long [151s–210s]

Eagerness [0.1, 0.3] [0.4, 0.7] [0.8, 1]

Performance measurements

To evaluate the performance of Conan and the state-of-the-art strategy, we use the following
performance measurements for a buyer agent.

– Average utility [18,47,63]: is the sum of all average utilities of that agent Uag(x) (see
Eq. 1) over the number of negotiation runs N :

Average utility =
∑N

i=1 Ui
ag(x)

N
(17)

– Percentage of successful negotiations is the total number of negotiation runs where the
agent reaches an agreement with one of the sellers over all runs.

Percentage of successful negotiations = number of successful runs

N
∗ 100 (18)

– Average number of rounds [30]: is the average number of negotiation rounds until the
accept agreement is reached.

Average number of rounds = number of rounds per run

N
(19)

Experimental set-up In our evaluation, we allow the demand/supply ratio and market popu-
lation to change during negotiation to create more realistic settings. In addition, as indicated
in Table 4, we set the eagerness for all threads to 0.5, the deadline to long [151s − 210s]
and the market update time to 10s. We set the same deadline for all buyers and sellers in the
e-market for fair comparison with the benchmark strategy since it assumes public deadlines.
(Both buyers and sellers have identical deadlines.) To test that Conan negotiates using pri-
vate deadlines, Conan does not know that buyers and sellers have the same deadline. Also,
as we explained in Sect. 4, we set the MRO = 1 and MAN = 100. We also set the penalty
D = 0.1 for fair comparison with Williams’s et al. [63] strategy.

Similarly, we choose three ranges for the sellers’ initial price and reservation price to create
three different agreement zones: 10, 60 and 100%. The reason for this choice is to simulate
real-life situations, where the buyer does not know the price range of the sellers. Conan and
the benchmark agent run concurrently within the same simulation as competitors, while in the
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Fig. 6 Average utility for Faratin’s Sellers

literature the buyer agents run separately in individual simulations. We run three agents for
each strategy (state-of-the-art and Conan) and run the simulation 100 times for 81 different
settings (3 different demand/supply ratio values * 3 different market population values * 3
price ranges * 3 opponent groups) = 8100 runs. We report the average utilities, percentage
of successful negotiations and average number of negotiation rounds for those simulations.
While some authors have not applied any statistical significancemeasures [7,33,47],we adopt
the standard statistical analysis approaches that has beenused in the negotiation literature [63].
We conduct t-tests to report the statistical significance between the utilities of Conan and
the state-of-the-art for each setting and use ANOVA test (analysis of variance) to calculate
the statistical significance of the resulting utility between each price range for each group of
sellers.

5.1.2 Results

The results for Faratin’s Sellers are shown in Fig. 6. In the top plot, market population is kept
at average and we change the rate for the demand/supply ratio. In the bottom plot, the rate
for the demand/supply ratio is kept at average and we change the market population. It can
be seen from the plots and from the p value < 0.05 that our strategy outperforms the state-
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of-the-art according to experimental evidence that is statistically significant. However, the
utilities of Conan and the state-of-the-art are stable during the changes in the demand/supply
ratio among the price ranges. On the other hand, the utility of Conan increases when the
market population increases,while the utility of the state-of-the-art decreaseswhen themarket
population increases. We can observe from Fig. 6 that:

– CONAN is independent from price range changes Conan obtains a significantly
higher utility than Williams et al. when negotiating in a high population market and a
60% agreement zone with Faratin’s Sellers. The most likely explanation for this result
is that Conan takes into consideration that the price ranges between buyers and sellers
may differ.

The next result is about negotiating with ANAC Sellers and is shown in Fig. 7. Our strategy
still outperforms the state-of-the-art (p < 0.05). The top plots indicate that each strategy
gains the same amount of utility when the rate of demand/supply ratio changes, while in the
bottom plots, when the market population is average, Conan has the highest utility. We can
observe from Fig. 7 that:

• CONAN has high utility in 60% agreement zone: Conan obtains significantly higher
utility than Williams et al. when negotiating in an average population market and 60%
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agreement zone with ANAC Sellers. We observed in the experiments that ANAC Sellers
cannot cope with high numbers of agents in the market, so as the number of agents rises,
they become slower in producing conceded offers. As a result Conan accepts offers from
the ANAC Sellers before the deadline since the utility of the offers > 0.

In the third group of sellers, All Sellers, the results are shown in Fig. 8. As before, Conan
outperforms statistically significantly the state-of-the-art (p < 0.05) within each setting and
for each group of settings. Conan obtains the highest utility when the market population is
high. We can observe from Fig. 8 that:

– CONAN is seller independent Conan outperforms the state-of-the-art in all price
ranges, demand/supply ratios and market densities when negotiating with Faratin’s Sell-
ers, ANAC Sellers and All Sellers;

– CONAN has high utility in average population Conan obtains significantly higher
utility than Williams et al. when negotiating in an average population market and 60%
agreement zone with All Sellers, as explained in observation 4.

We can see from Fig. 9 that Conan gains more successful negotiations than Williams et
al. in all the simulation settings when negotiating with All Sellers. The top plots indicate that
each strategy gains the same percentage of successful runs when the rate of demand/supply
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ratio changes, while in the bottom plots, when the market population is high, Conan has the
highest percentage of successful runs. We can observe from Fig. 9 that:

– CONAN has high successful negotiations Conan outperforms the state-of-the-art in
all price ranges, demand/supply ratios and market densities when negotiating with All
Sellers, especially in the 10 and 60% agreement zones. This is because it is hard for any
agent to get an agreement in the 10 and 60% zones, while it is easier to get an agreement
in the 100% zone, since in the 100% agreement zone, the buyer’s initial price ≥ the
seller’s reservation price so the utility > 0.

We can see from Fig. 10 that Conan conducts less negotiation rounds compared to
Williams et al. when negotiating with All Sellers. This is because Conan needs more time
to think than Williams et al. . Thus, Conan talks less but has more time to think about the
best agreement and the best opponent to negotiate with, which minimises the agent’s use of
communication resources.

The number of rounds is stable (around an average of 100 rounds at low population) for
every market population and every demand/supply ratio. On the other hand, Williams et al.
have a high number of rounds when the market population is low and a low number of rounds
when the e-market population is high.

123



B. Alrayes et al.

low avg hig
h

200

400

600

Williams et al. CONAN

low avg hig
h

Change in demand/supply ratio

low avg hig
h

low avg hig
h

200

400

600

10% agreement zone

N
um

be
ro

fn
eg
ot
ia
tio

n
ro
un

ds

low avg hig
h

60% agreement zone

Change in market population

low avg hig
h

100% agreement zone

Fig. 10 Number of negotiation rounds for All Sellers

• CONAN conducts less negotiation rounds Conan conducts less negotiation rounds
and has a stable number of negotiation rounds than the state-of-the-art in all price ranges,
demand/supply ratios and market densities when negotiating with All Sellers;

The following is a general observation about the results presented in Figs. 6 7, 8, 9 and
10:

– CONAN is market-independent Conan is a robust and adaptive strategy that is not
affected by changes in the market population and/or in the demand/supply ratio in any
price ranges. Experimental evaluation of the strategy produces statistically significant
results in terms of average utility compared to the state-of-the-art Williams et al. [63].
Conan also outperforms the state-of-the-art in terms of the percentage of successful
negotiations, with fewer rounds.Conan also achieves the highest utility when the change
in demand/supply ratio is low as a result of the market being less competitive, which
increases Conan’s opportunity to negotiate with more sellers. Also, in terms of market
population, Conan obtains the highest utility when the market population is high. As a
result of the number of sellers increasing, the buyer’s opportunity to get an agreement
also increases.
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5.2 Experiment 2: comparing CONAN with random and Faratin’s strategies

Given the results of Experiment 1, the aim for this experiment is to determine whether
Conan can outperform other negotiation strategies. In this experiment, we will benchmark
more strategies and we will keep the simulation parameters and the experimental set-up as in
Experiment 1 (Sect. 5.1). The reason for the second experiment is tomake the experimentation
more credible and convincing by checking the behaviour of Conan compared to other,
equally famous and competing strategies. We did not combine Experiments 1 and 2 because:

– Experiment 1 considers many performance measurements comparing Conan with the
key benchmark strategy ofWilliams etal. In Experiment 2we focus on a general overview
of Conan’s performance; thus, it has only one performance measurement.

– Experiment 1 makes sure that Conan outperforms Williams et al. by running 3 agents
for each. In Experiment 2, since we have many buyers to assess, we cannot run more
than one agent per strategy in order to keep the low population setting of the e-market as
low as possible.

– Experiment 1 tests the performance of Williams et al. and Conan with different groups
of opponents (Faratin’s Sellers, ANAC Sellers and All Sellers) since Williams et al. is
the key benchmark strategy. In Experiment 2, we need a general overview of Conan’s
performance since All Sellers represents both ANAC Sellers and Faratin’s Sellers.

5.2.1 E-market setting

As in Experiment 1, we use our negotiation simulator Recon with the following settings:

Choice of opponents For our evaluation, we use All Sellers strategies as in Experiment
1. The reason for choosing All Sellers is that it combines all the opponents that we have, to
give a general overview of the performance of Conan.

Benchmark strategy We use the Random strategy, and the extended versions of Faratin’s
strategies [18] as the benchmark buyers strategies, since there are no more concurrent strate-
gies that fit to our benchmark selection criteria based on the background review in Sect. 2.

– The Random strategy offer generation function is obtained from the GENIUS 3 platform.
The offer is randomly generated and the utility of the offer should be > 0.

– Faratin’s strategies: there are eight strategies proposed by Faratin et al. [18]: Linear,
Conceder, Boulware, Resource Dependent, Resource Time Dependent, Relative Tit-For-
Tat, Random Absolute Tit-For-Tat and Average Tit-For-Tat.

To make a fair comparison of these existing strategies with Conan, we extended the
Random and Faratin’s action selection methods to be able to use the concurrent negotiation
actions, which are reqToReserve and cancel. More precisely, the action selectionmechanisms
for Random and Faratin’s agents have been implemented as follows. The action selection
criteria for the offer, accept and exit actions are kept the same as in their original imple-
mentations. However, these original implementations are extended with reqToReserve and
cancel actions as implemented in the Conan strategy so that these agents can make fair use
of our concurrent negotiation protocol and to enable fair comparison with Conan.

3 http://ii.tudelft.nl/genius/.
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Fig. 11 Average utility for All Sellers with 10% agreement zone

5.2.2 Results

Figure 11 depicts the result of negotiation with All Sellers in the 10% agreement zone. As
in Experiment 1, in the top plot, market population is kept average and we change the rate
for the demand/supply ratio. In the bottom plot, the rate for the demand/supply ratio is kept
average and we vary the market population.

It can be seen from the plots and from the p value < 0.05 that our strategy Conan outper-
forms the Random and Faratin’s strategies according to experimental evidence that is statisti-
cally significant. From the results we can say that the utility of Conan, Random and Faratin’s
strategies is stable during changes in the demand/supply ratio. On the other hand, the utility of
Conan increases when themarket population increases, while the utility of Linear, Conceder,
Boulware and Resource Time Dependent decreases when market population increases.
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Figure 12 shows the result of negotiation with All Sellers in the 60% agreement zone.
As in Fig. 11, Conan still outperforms the benchmark strategies (p < 0.05) and the utility
of Conan, Random and Faratin’s strategies is stable during changes in the demand/supply
ratio. The utility of Conan increases when the market population increases, and the utility
of Random and Faratin’s strategies increases when the market population increases.

Figure 13 shows the results for negotiationwithAll Sellers in the 100%agreement zone.As
before, Conan outperforms significantly the benchmark strategies (p < 0.05) and the utility
of Conan, Random and Faratin’s strategies is stable during changes in the demand/supply
ratio. The utility of Conan increases when the market population increases, and the utility
of Random and Faratin’s strategies increases when the market population increases.

For this section we combine all the observations from Figs. 11, 12 and 13:
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– CONAN outperforms the Random and Faratin’s strategies Conan outperforms the
Random and Faratin’s strategies in the 10, 60 and 100% price ranges, demand/supply
ratios and market densities when negotiating with All Sellers;

– CONAN has high utility in 10% agreement zone Conan obtains significantly higher
utility than the Random and Faratin’s strategies (except Relative Tit-For-Tat) when nego-
tiating in a high population market in the 10% agreement zone in Fig. 11. As with the
Williams et al. strategy, this is because it is easy for any agent to negotiate in the 100%
agreement zone and get a better agreement rather than negotiating in the 10% agreement
zone, which is more difficult. Also, Conan obtains significantly higher utility than the
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Random and Faratin’s strategieswhen negotiating in a low populationmarket in the 100%
agreement zone in Fig. 13. This shows that Conan can perform well even in a simple
market setting where the number of agents is low in a 100% agreement zone.

6 Conclusions

We have presented Conan, a novel heuristic strategy for concurrent negotiating agents for
open, dynamic and complex negotiation settings. In this context, we have also discussed
how to extend the well-known alternating offers protocol to support concurrent bilateral
negotiations and how to use Conan to generate offers combining environment and self
factors. We have also shown how Conan decides when to accept and reqToReserve offers
and when not to further pursue a negotiation thread any more. We have implemented our
negotiation framework using the Recon platform [2] to evaluate our work, and we have
created realistic e-market experiments by varying parameters such as the market population
and the demand/supply ratio. Moreover, we have relaxed most of the assumptions made in
previous work, in particular how to deal with private deadlines and the idea of an openmarket
where buyers and sellers may come and go at any time.

We have evaluated the performance of Conan in various settings and showed that it per-
forms significantly better than the state-of-the-art [63], Random and Faratin’s strategies. We
have also shown that Conan’s utility is not affected by the changes in the market population,
the demand/supply ratio and the price range, including all of them together. Also, our work
contributes to the long tradition of practical agent technology in automated negotiation. As
our experimental results indicate, users who adopt the CONAN strategy when negotiating
(e.g. in e-Bay) will increase their profits compared to other users who adopt the current
state-of-the-art strategy.

The extensive experiments that we have performed in this work validate our approach
in the selected application domain of e-markets only. Still, the proposed model opens up
new possibilities for developing more realistic and flexible models for negotiating agents,
especially in areas where themetaphor of e-market [49] has a natural application.Wemention
here two areas where our contribution is generalisable: (i) service grids [56,60]—where the
price of a service by a provider is a single issue under bilateral negotiation with a service
client to form contracts, and (ii) cloud computing [5]—where our protocol, buyer strategy
and existing seller strategies can be used as a mechanism for allocation of a resource (e.g. a
storage) using bilateral negotiations over a single issue (e.g. storage price). Also, the GOLEM
agent platform [12] used to build our negotiation testbed RECON [2], has facilities that can
include humans as avatars in the experiments (see [14] for an example of user immersed in
an e-retailing agent environment), so our approach is generalisable for negotiations between
humans and agents [41]. However, a detailed discussion of these issues is beyond the scope
of this paper but covered by our plan for future work. This plan includes the following:

– Develop an algorithm to save computation time by determining themost promising sellers
as negotiation progresses, and gradually decrease the number of concurrent negotiation
threads. This is due to the limited computing resources of the agent, which consume time
to reply to all the sellers at the same time.

– Expand our agent model to be able to negotiate over multiple e-markets. Our model only
takes into consideration a single e-market. Considering multiple e-markets will facilitate
obtaining the item under negotiation faster, and it may increase the agent’s utility, since

123



B. Alrayes et al.

the agent will negotiate in different e-markets at the same time. In this context, taking into
account trust [44] in matching the buyer with different e-markets will also be beneficial.

– Extend our agentmodel to be able to negotiate overmultiple issues.Our current agent only
considers one issue (i.e. price) rather than multiple issues (i.e. price, warranty, colour…).
As a result of consideringmultiple issues wewill be better positioned to simulate real-life
applications, such as negotiating with users. For the simple case of independent issues
handled sequentially can be addressed straightforwardly by applying the same approach
on each issue—given suitable mapping functions for categorical variables. We will use
the item’s multiple issues to represent different values of the buyer’s eagerness EGb. For
instance, the buyer will have high eagerness to buy a red laptop rather than a blue laptop.
Eagerness will help the agent to differentiate between different items and then increase
the agent’s chance of buying the desired item at a good price.

– Develop a trader agent using Conan strategy where the agent acts both as a buyer and
seller at the same time in a competitive market by expanding the heuristics for deciding
actions (Sect. 4.3), in particular the reserve action. We will develop a social welfare
metric to measure the agent’s utility which combines the buyer’s utility and the seller’s
utility.

– In our experiments so far all participants have been automated software agents. However,
in practical applications not all people will choose agents to negotiate on their behalf.
As a result, exploring human avatars in GOLEM to negotiate with software agents will
be relevant and works such that of Rosenfeld et al. [51] to provide an agent that is
able to negotiate with agents and humans at the same time will be key. For this we will
need to create a flexible negotiation language for an agent to interact with both artificial
and human agents alike. In this context, we will also have to address the challenges of
designing decision-making strategies that handle social dependencies to other agents, as
in the Color Trails Game of Grosz et al. [26].
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