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Abstract—Recent data breaches in domains such as healthcare
where confidentiality of data is crucial indicate that breaches
often originate from misuses, not only from vulnerabilities in
the technical (software or hardware) architecture. Current re-
quirements engineering (RE) approaches determine what access
control mechanisms are needed to protect sensitive resources
(assets). However, current RE approaches inadequately charac-
terize how a user is expected to interact with others in relation
to the relevant assets. Consequently, a requirements analyst
cannot readily identify misuses by legitimate users. We adopt
social norms as a natural, formal means of characterizing user
interactions whereby potential misuses map to norm violations.
Our research goal is to help analysts identify misuse cases by
formal reasoning about norm enactments. We propose NANE,
a formal framework for identifying such misuse cases using
a semiautomated process. We demonstrate how NANE enables
monitoring of potential misuses on a healthcare scenario.

Index Terms—Security requirements, sociotechnical systems

I. INTRODUCTION

Data breaches pose a major threat to stakeholders of modern
software systems. Healthcare IT systems are no exception, and
millions of patients have suffered from compromised health
records in the recent years [22], [26]. Although some breaches
arise due to vulnerabilities in the software, an increasing
number of them are caused by misuse. For example, a failure
to erase patient data contained on photocopiers’ hard drives
led to the disclosure of 350,000 patient files, and resulted in
a fine of $1.2 million from the US Department of Health and
Human Services (HHS). Example 1 describes a typical misuse.

Example 1. A physician, Alice, and a nurse, Don, are
reviewing the electronic health records (EHR) of a patient
together on Alice’s computer. Each of them is authorized to
review EHRs of patients they are treating, and prohibited from
reviewing the EHRs of other patients. Alice receives a call and
leaves the room without ending her EHR session. Don knows
that Alice is treating one of his neighbors. He accesses his
neighbor’s EHR using Alice’s session.

The leading current approach for implementing security
requirements is role-based access control (RBAC) [23], which
provides an effective way of protecting access to sensitive
resources (assets). In Example 1, in regular (nonemergency)
practice, the hospital software does not allow any staff member
to access the EHR of a patient he or she is not treating.

However, Don circumvents these technical controls by using
Alice’s computer. That is, a breach occurs here because Alice
fails to end her EHR session, thereby inadvertently giving
(otherwise prohibited) access to Don.

This example illustrates the key limitation of RBAC: it is
impossible to prevent misuse because it occurs outside of the
technical realm. The only way to tackle misuse is through
social mechanisms, specifically, by making users accountable
for correct use. For example, Alice should be accountable for
ending her EHR session when her computer is unattended.

Logging is the established computational means to support
accountability of users. We define an event as a discrete
occurrence such as a user action (e.g., a physician accessing
a patient’s EHR) or an environment condition (e.g., a medical
emergency) becoming true or false. Logging seeks to record
each relevant event and its time of occurrence. However, cur-
rent logging approaches suffer from two shortcomings. First,
they do not guarantee that all events necessary to assess misuse
are logged, thereby inadequately supporting accountability.
Second, they do not guarantee that only events necessary to
assess misuse are logged, thereby creating avoidable vulner-
abilities through the log data itself [1]. These shortcomings
arise because of a lack of a suitable formal model based on
which to log events.

Accordingly, we propose NANE (from the Turkish slang
for shenanigans), a framework for identifying misuse cases.
NANE is based on a sociotechnical conception [29] that brings
together technical considerations such as how users access
assets via RBAC and social considerations such as the norms
that characterize users’ expectations of each other. We define
an enactment as a possible history of the system, including all
events along that history. We adopt a formal model for norms
(including conditional commitments, authorizations, and pro-
hibitions, as explained below) that precisely describes (i) the
enactments in which each norm may be satisfied or violated,
and (ii) who is accountable for the norm. For example, Alice
accessing her patient’s EHR complies with the authorization
and prohibition of Example 1 for which she is accountable.

Our research goal is to help analysts identify misuse cases
by formal reasoning about norm enactments.

Usage: A typical NANE episode proceeds as follows. First, a
requirements analyst specifies norms based upon stakeholder



requirements. Second, NANE applies the formal semantics of
norms to generate all possible enactments of each stated norm,
differentiating between compliant and violating enactments.
For example, Don accessing his neighbor’s EHR is a violating
enactment of the norm that prohibits Don from accessing
EHRs of patients he is not treating. Third, an analyst modifies
the stated norms based on a review of these enactments.
Fourth, Nane produces formal representations of violating
enactments to enable the monitoring of potential misuses.

Contributions: We address two main questions.
RQ1 Identification: How can we systematically enumerate the

potential misuse cases of a software system?
RQ2 Monitoring: How can we formally represent violations

of norms so as to enable monitoring of potential misuses?
We give a formal representation of norms and misuse

cases in the Event Calculus [20], a first-order logic with
primitives for events and temporal reasoning. We provide a
semiautomated process for identifying misuse cases. A formal
representation of norms enables us to automatically determine
which of the possible enactments violate norms (potential
misuse). We demonstrate how NANE enables monitoring of
potential misuses based on the proposed representation. These
contributions differentiate our work from the literature on
misuse, as discussed throughout the paper.

Structure: Section II reviews the relevant background.
Section III describes temporal norms and their enactments.
Section IV describes the details of the NANE framework and
how misuse cases are generated. Section V demonstrates how
NANE is used for monitoring of misuses. Section VI describes
the limitations of our work. Section VII reviews the relevant
literature. Section VIII presents future directions.

II. BACKGROUND

We review the necessary background for developing our
formalization on misuse cases, and demonstrating how this
formalization enables monitoring of potential misuse.

A. Temporal Reasoning

We use first-order logic to represent and reason about
misuse cases. Event Calculus (EC) [20] is an extension of
first-order logic to interpret and reason about events in time.
Table I summarizes the domain-independent axioms of EC.

TABLE I
DOMAIN-INDEPENDENT AXIOMS OF THE EVENT CALCULUS.

Predicate Description

happens(E, T) Event E happens at Time T
initially(F) Fluent F is true at Time 0
holds at(F, T) Fluent F is true at Time T
broken(F, Ts, Te) Fluent F is made false between times Ts and Te
initiates at(E, F, T) Event E initiates fluent F at Time T
terminates at(E, F, T) Event E terminates fluent F at Time T

The happens predicate records events and the time points at
which they occur. The initially predicate specifies fluents that

hold at the beginning of time. A fluent is a predicate whose
value can be changed in time due to the occurrence of events.
The holds at predicate queries the happened events to check
whether a fluent holds at a given time. The broken predicate
checks whether a fluent is made false (i.e., terminated) during
a time period (Ts and Te are both exclusive). The initiates
predicate states that an event makes a fluent true at a given
time. The terminates predicate states that an event makes a
fluent false at a given time. Briefly, a normative temporal
theory in EC consists of the following components:

• the domain-independent axioms of EC (Table I);
• the domain-independent normative theory that describes

the norm lifecycle (Section III-A);
• a domain model that describes which events initiate or

terminate which fluents in the domain; and
• an enactment given in the form of a list of happens

assertions (Listing 1) that describes what has occurred.
Note that the normative theory is relevant only to norm-

based EC formalizations like ours. The domain model contains
a list of initiates and terminates rules, e.g., the event of
a patient leaving a physician’s office terminates the fluent
regarding patient’s visit. An enactment in our formalization
corresponds to a narrative in the EC literature. Listing 1
demonstrates a sample enactment in EC.

Listing 1
SAMPLE ENACTMENT IN EC.

1 happens(give_consent(drBob, john), 1).
2 happens(access_EHR(drBob, john), 4).
3 happens(visit(drBob, john), 5).
4 happens(emergency(hospitalNC), 12).
5 happens(access_EHR(drBob, kate), 13).
6 happens(access_EHR(drAlice, adam), 13).

Each event is represented with a happens predicate describ-
ing the event and when the event happened. For example,
patient John gives physician Bob consent to view his EHR
at Time 1 (Line 1), or there is an emergency at hospitalNC at
Time 12 (Line 4). EC supports concurrent events in discrete
time. That is, multiple events can happen at the same time
point. For example, physicians Bob and Alice access patients’
EHR during the emergency (Lines 5–6). Such an enactment
can be extracted using the logs of EHR software (see the open
source OpenEMR project [2] for an example).

B. Norms

We capture the interactions among users via social norms.
Definition 1 describes a norm. We adopt Singh’s [29] model of
social norms, and extend it with temporal constraints. Below,
N is a placeholder for C, A, P, signifying a commitment,
authorization, and prohibition, respectively.

Definition 1. A norm N(SUBJECT, OBJECT, antecedent, conse-
quent) is a directed relationship between its subject and object
about its consequent to be satisfied when its antecedent holds.

Table II describes the formal syntax of norms. For sim-
plicity, we describe norm syntax and semantics via exam-
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Fig. 1. Lifecycle of norms. Double rectangles represent terminal states (i.e., the norm’s lifecycle ends in those states). To highlight the differences, we use
the same layout of states in each diagram.

TABLE II
SYNTAX OF NORMS.

Norm → Commitment | Authorization | Prohibition
Commitment → C(ROLE, ROLE, Expr, Expr)
Authorization → A(ROLE, ROLE, Expr, Expr)
Prohibition → P(ROLE, ROLE, Expr, Expr)
Expr → true | φ | never Expr | ¬Expr | Expr ∧ Expr

ples. Below, PHYSICIAN, HOSPITAL, and PATIENT represent
roles to be instantiated with actual agent names at run time.
Authorization A(PHYSICIAN, HOSPITAL, treat(PHYSICIAN,
PATIENT), access EHR(PHYSICIAN, PATIENT)) means that
physicians are authorized by a hospital to access their pa-
tients’ EHR. Commitment C(PHYSICIAN, HOSPITAL, true,
operate(PATIENT)) means that a physician is (uncondition-
ally) committed to the hospital to operating upon patients.
Prohibition P(PHYSICIAN, HOSPITAL, ¬consent(PHYSICIAN,
PATIENT), access EHR(PHYSICIAN, PATIENT)) means that a
physician is prohibited from accessing a patient’s EHR without
consent in regular practice (nonemergency) mode.

C. Requirements

We consider three types of requirements [7]: Must, Must
Not, and May. A Must requirement indicates a commitment for
its user. Consider the following requirement from HIPAA [32]:
a physician must obtain consent before accessing the patient’s
EHR. A Must Not requirement indicates a prohibition for its
subject (e.g., regarding security and privacy). Consider the
following: a physician must not disclose a patient’s protected
health information (PHI), which means that physicians are pro-
hibited from performing any action that discloses the patient’s
PHI. A May requirement indicates an authorization. Consider
the following: a physician may access a patient’s EHR without
consent in emergencies. We assume that the requirements are
explicit, and do not tackle requirements elicitation.

III. TEMPORAL NORM ENACTMENTS

We describe how to formalize norms and their enactments.

A. Temporal Norms

We incorporate deadlines in all norm types, extending
previous work on commitments [9], [16]. Listing 2 provides
the rules defining a norm’s lifecycle (as Figure 1 shows).

Listing 2
NORM LIFECYCLE IN THE EVENT CALCULUS.

1 %%% states %%%
2 conditional(N, T):-
3 holds_at(status(N, conditional), T).

5 expired(N, T):-
6 holds_at(status(N, expired), T).

8 detached(N, T):-
9 holds_at(status(N, detached), T).

11 satisfied(N, T):-
12 holds_at(status(N, satisfied), T).

14 violated(N, T):-
15 holds_at(status(N, violated), T).

17 %%% transitions %%%
18 terminates(E, status(N, conditional), T):-
19 expire(E, N, T).

21 initiates(E, status(N, expired), T):-
22 expire(E, N, T).

24 terminates(E, status(N, conditional), T):-
25 detach(E, N, T).

27 initiates(E, status(N, detached), T):-
28 detach(E, N, T).

30 terminates(E, status(N, detached), T):-
31 discharge(E, N, T).

33 initiates(E, status(N, satisfied), T):-
34 discharge(E, N, T).

36 terminates(E, status(N, detached), T):-
37 violate(E, N, T).

39 initiates(E, status(N, violated), T):-
40 violate(E, N, T).

Listing 2 considers four norm states: conditional, detached,
satisfied, and violated. Each state is described via a status
predicate (Lines 2–15). Transitions among states are described
via initiates and terminates predicates. An expire event ter-
minates the conditional state (Lines 18–19), and initiates the
expired state (Lines 21–22). A detach event terminates the



conditional state (Lines 24–25), and initiates the detached
state (Lines 27–28). A discharge event terminates the detached
state (Lines 30–31), and initiates the satisfied state (Lines 33–
34). A violate event terminates the detached state (Lines 36–
37), and initiates the violated state (Lines 39–40). Note that
the lifecycle rules of Listing 2 apply to all norm types. The
lifecycle operations expire, detach, discharge, and violate are
specified for each norm type according to the lifecycle of that
norm type (Figure 1).

Listing 3
PROHIBITION LIFECYCLE IN THE EVENT CALCULUS.

1 expire(E,p(S,O,Ant,[Ts,Te],Con,Tc),T):-
2 conditional(p(S,O,Ant,[Ts,Te],Con,Tc),T),
3 T > Te.

5 detach(E,p(S,O,Ant,[Ts,Te],Con,Tc),T):-
6 conditional(p(S,O,Ant,[Ts,Te],Con,Tc),T),
7 initiates(E, Ant, T),
8 T >= Ts, T =< Te.

10 discharge(E,p(S,O,Ant,Ta,Con,[Ts,Te]),T):-
11 detached(p(S,O,Ant,Ta,Con,[Ts,Te]),T),
12 T > Te.

14 violate(E,p(S,O,Ant,Ta,Con,[Ts,Te]),T):-
15 detached(p(S,O,Ant,Ta,Con,[Ts,Te]),T),
16 initiates(E, Con, T),
17 T >= Ts, T =< Te.

Listing 3 describes the lifecycle operations that are specific
to a prohibition. A prohibition is expired (Line 1) if no event
that satisfies its antecedent happens within the antecedent
deadline, i.e., Te passes (Line 3) when the prohibition is
conditional (Line 2). This corresponds to the “never ant”
transition shown in Figure 1(c), i.e., the antecedent is never
initiated before the deadline. An event detaches a prohibition
(Line 5) if the prohibition is conditional (Line 6), the event
initiates the antecedent of the prohibition (Line 7), and the
event happens within the antecedent deadline [Ts, Te] (Line 8).
A prohibition is satisfied (Line 10) if no event that satisfies its
consequent happens within the consequent deadline, i.e., Te
passes (Line 12) when the prohibition is detached (Line 11).
This corresponds to the “never con” transition shown in
Figure 1(c), i.e., the consequent is never initiated before the
deadline. An event violates a prohibition (Line 14) when
the prohibition is detached (Line 15), the event initiates the
consequent of the prohibition (Line 16), and the event happens
within the consequent deadline [Ts, Te] (Line 17). Lifecycle
operations for commitments and authorizations are analogous.

With respect to a prohibition, a commitment reverses the
transitions from detached to satisfied and violated. An au-
thorization is violated when the antecedent holds but the
consequent fails to hold. A subject who is authorized for
performing a consequent is not committed to doing so. Im-
portantly, whereas the subject of a commitment or prohibition
is accountable to its object, it is the object of an authorization
that is accountable to its subject. This understanding of au-

thorizations as privileges of the authorized party agrees with
established approaches [29], [33].

Definition 2 describes the EC proof procedure. Queries
can be given in the form of (i) ground predicates such as
“holds at(consent(drBob, john), 3).” for which the solution
is either true or false, or (ii) nonground predicates such as
“holds at(consent(drBob, Patient), 5).” for which the solution
consists of all patients who have given Bob consent.

Definition 2. Given EC axioms Ax, a normative theory Th,
a domain model D, an enactment N , and a query Q, an EC
reasoner returns a solution set S, denoted S ⇐ EC(Ax, Th,
D, N , Q), based on the Prolog proof procedure [20].

B. Enactments

Definition 3 formally defines an enactment.

Definition 3. An enactment N is a finite set of 〈event, time〉
pairs {〈e1, t1〉, . . . , 〈em, tm〉}.

Recall that an EC formalization supports concurrent events.
Definition 4 describes a compliant enactment with regards to
an enactment (Definition 3) and the EC reasoner (Definition 2).
An enactment N of a norm n is compliant if the events
contained in N discharge n, i.e., n is satisfied at tm+1, which
is the next point in time after N ends.

Definition 4. Let N = {〈e1, t1〉, . . . , 〈em, tm〉} be an enact-
ment. Let tm+1 = max({t1, . . . , tm}) + 1 be the time point
immediately after N . Then N is a compliant enactment of a
norm n if and only if EC(Ax, Th, D, N , “satisfied(n, tm+1).”)

Consider P(PHYSICIAN, HOSPITAL, ¬consent(PHYSICIAN,
PATIENT) ∧ ¬emergency, access EHR(PHYSICIAN, PA-
TIENT)). Figure 2(a) shows the enactments of the above
prohibition. If the physician views a patient’s EHR without
consent, the norm is violated (S1). If the physician first obtains
consent, then views the EHR, this is a compliant enactment of
the norm (S2). If the physician views a patient’s EHR without
consent, the norm is violated (S3). If there is an emergency
and the physician views a patient’s EHR, this is a compliant
enactment (S4).

We extend such enactments with refinements of a norm.
Consider the following usual practice of viewing EHR:
“EHR is usually accessed during a nonemergency patient
visit.” We implement this practice as a refinement of the
original norm. A refinement of a norm is the general-
ization or specialization of its antecedent or consequent.
The above prohibition is refined into P(PHYSICIAN, HOSPI-
TAL, (¬consent(PHYSICIAN, PATIENT) ∨ ¬visit(PATIENT)) ∧
¬emergency, access EHR(PHYSICIAN, PATIENT)). Figure 2(b)
shows the enactments of the refined norm. Two new compliant
enactments are created where a patient visit precedes the
physician viewing EHR (S5 and S6). Both enactments are
compliant enactments according to the refinement of the norm.
Moreover, S4 remains compliant since the refinement does
not cover emergency situations. However, S2 now represents a
potential misuse since EHR is accessed without a patient visit.
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(a) Enactments of the original prohibition.
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(b) Enactments of the refined prohibition.

Fig. 2. Norm enactments. The left model shows enactments for the original prohibition P(PHYSICIAN, HOSPITAL, ¬consent(PHYSICIAN, PA-
TIENT) ∧ ¬emergency, access EHR(PHYSICIAN, PATIENT)). The right model shows enactments for the refined prohibition P(PHYSICIAN, HOSPITAL,
(¬consent(PHYSICIAN, PATIENT) ∨ ¬visit(PATIENT)) ∧ ¬emergency, access EHR(PHYSICIAN, PATIENT)). Circles represent alternative points in time that
correspond to various norm states. Edges represent events. The norm is satisfied in a double circle, and violated in a dashed circle.

Time

login(PHYSICIAN)Monday 1:30PM

access EHR(PHYSICIAN, PATIENT)Monday 1:45PM

visit(PATIENT)Monday 2PM

logout(PHYSICIAN)Monday 5PM S1

Fig. 3. Temporal enactments for norm C(PHYSICIAN, HOSPITAL, ac-
cess EHR(PHYSICIAN, PATIENT), logout(PHYSICIAN, one hour)). A dashed
circle represents a nonconformant event (potential misuse).

Having a formal refinement process can improve capturing
misuse cases. However, the enactments in Figure 2 rely
on ordering of events 〈e1, . . . , en〉, not absolute deadlines.
Because such a representation might miss important misuse
cases, we introduce explicit temporal enactments to capture
conformant events (formally described in Section IV). Figure 3
demonstrates an enactment regarding active EHR sessions.
Consider C(PHYSICIAN, HOSPITAL, access EHR(PHYSICIAN,
PATIENT), logout(PHYSICIAN, one hour)), which means that a
physician must logout from the active EHR session within an
hour of accessing a patient’s EHR. On Monday, the physician
logs in to the computer and views the patient’s EHR before
the scheduled visit with the patient. This is usual practice

for physicians to prepare for patient visits, and is compliant
with respect to the prohibition of Figure 2(a). However, the
physician does not log out of the computer after viewing the
patient’s EHR. This is a violation of the commitment, and the
late log out (at 5PM in S1) is a nonconformant event.

IV. THE NANE FRAMEWORK

We adopt the conception of a sociotechnical system (STS).
An STS is a social organization [29], wherein autonomous
agents representing stakeholders interact with each other
through and about technical components. Figure 4 summarizes
our conception of the NANE framework based on STS ele-
ments: software components and social norms. Requirements
analysts specify norms based on requirements. Some norms
map to software implementations (e.g., RBAC policies). A
software controller realizes these policies, and produces logs
based on user actions and environment conditions. Other
norms regulate the interactions of users. For each norm, NANE
generates enactments that involve only the events relevant
to the norm’s antecedent and consequent. Enactments that
violate a norm are potential misuses. NANE presents each
norm along with any identified potential misuses to the analyst.
The analyst may refine a norm by weakening or strengthening
its antecedent or consequent.

NANE takes as input: (i) a domain model that consists of
misuse cases and RBAC mechanisms represented as temporal
rules, (ii) an enactment extracted from logs, (iii) the normative
theory that computes the progression of norms due to the
enactment, and (iv) a monitoring query. NANE then computes
whether the given enactment contains a potential misuse.
Section V presents details of how NANE enables monitoring of
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potential misuses. Next, we describe each phase of generating
misuse cases.

Step 1: Specification of norms from requirements
Norms formally capture requirements, as shown in Sec-

tion II-C. Let us review some requirements from HIPAA [31]:

“In most cases, parents are the personal representatives for
their minor children. Therefore, in most cases, parents can
exercise individual rights, such as access to the medical
record, on behalf of their minor children.”

We represent this requirement via the authorization
A(PARENT, HOSPITAL, representative(PARENT, MINOR), ac-
cess EHR(PARENT, MINOR)).

“A covered entity must disclose protected health information
to HHS when it is undertaking a compliance investigation.”

We represent this requirement via the commitment
C(COVERED ENTITY, HHS, investigation, disclose PHI).

“A covered entity may not disclose protected health in-
formation, except the individual who is the subject of the
information authorizes in writing.”

We represent this requirement via the prohibition
P(COVERED ENTITY, HOSPITAL, consent(PATIENT),
disclose PHI(PATIENT)).

Step 2a: Generation of norm enactments
Algorithm 1 generates all possible enactments of a norm

that involve the predicates occurring in the norm’s an-
tecedent and consequent. First, the algorithm initializes
the set of enactments E (Line 1), and extracts proposi-
tions from the antecedent and consequent of the norm
(Line 2). Then, the algorithm populates E with permuta-
tions of the set of extracted propositions P (Lines 3–4),
and removes impossible enactments according to the do-
main model (Line 5). For example, a patient visit cannot
happen before the patient is admitted to the hospital. Fi-

nally, the algorithm returns E (Line 6). Consider prohibition
P(PHYSICIAN, HOSPITAL, ¬consent, access EHR). There are
two propositions (consent and access EHR), and thus five
enactments (permutations(2,0) + permutations(2,1) + permu-
tations(2,2)): {〈 〉, 〈consent〉, 〈access EHR〉, 〈consent, ac-
cess EHR〉, 〈access EHR, consent〉}. There are no impossible
enactments in this set of generated enactments. Note that we
do not deal with enactments where an event can be repeated
an infinite number of times. Moreover, our generation process
explores one norm at a time, which reduces its complexity.

Algorithm 1: E ⇐ enactments(n)
Input: n: norm
Output: E: norm enactments

1 E ← ∅;
2 P ← propositions(n);
3 foreach i = 0 . . . size(P) do
4 E ← E ∪ permutations(P, i);

5 E ← prune(E);
6 return E;

Step 2b: Identification of misuse cases
Algorithm 2 identifies which enactments generated by Al-

gorithm 1 are misuse cases. First, the set of misuse cases M
is initialized (Line 1), and enactments are gathered (Line 2).
Then, we compute for each enactment whether it is a compli-
ant enactment of the norm (Definition 4). If the enactment is
not compliant (Line 4), then it is added to M (Line 5). Formal
representation of misuse cases in EC are given in Section V.
Finally, the algorithm returns M (Line 6). Algorithm 2 is run
for each norm to identify potential misuse cases.

Step 3: Refinement of misuse cases
An analyst goes through the stated norms, and specifies

necessary refinements. Let us revisit P(PHYSICIAN,
HOSPITAL, ¬consent(PHYSICIAN, PATIENT) ∧ ¬emergency,



Algorithm 2: M ⇐ misuse(n)
Input: n: norm
Output: M: potential misuses

1 M ← ∅;
2 E ← enactments(n);
3 foreach e ∈ E do
4 if !compliant(e, n) then
5 M ← M ∪ {e};

6 return M;

access EHR(PHYSICIAN, PATIENT)). One refinement
of this prohibition is P(PHYSICIAN, HOSPITAL,
(¬consent(PHYSICIAN, PATIENT) ∨ ¬visit(PATIENT)) ∧
¬emergency, access EHR(PHYSICIAN, PATIENT)). The
consequent of the norm remains the same, whereas its
antecedent is more specific with the inclusion of a patient
visit. This refinement generates additional misuse cases.

A refinement of the above norm does not capture how a
physician’s access to EHR is related to the time a patient visit
happened. Therefore, we need to specify additional temporal
rules to describe time-related properties of events. These
conformance rules check whether (i) an event happened at
an expected point in time (an absolute time temporal rule),
e.g., a conformant patient visit should happen during the day,
and (ii) an event happened at an expected point in time with
respect to another conformant event (a relative time temporal
rule), e.g., a conformant EHR access should happen within
two hours of a patient visit.

First, we describe a conformant patient visit using an abso-
lute time temporal rule. Consider the following expectation: “A
visit happens during normal office hours.” This is represented
with the rule in Listing 4. A patient visit is conformant if it
happens at Time T (Line 1), and T is between the normal
office hours (Lines 2–3). Office hours are given as 9AM to
5PM (Line 5).

Listing 4
CONFORMANCE WITH RESPECT TO AN ABSOLUTE TIME INTERVAL.

1 conformant(visit(Physician, Patient), T):-
2 office_hours(Ts, Te),
3 T >= Ts, T =< Te.

5 office_hours(9, 17).

Next, we revisit the requirement about accessing a pa-
tient’s EHR: “EHR is usually accessed during a patient
visit in nonemergencies”. We represent this requirement with
P(PHYSICIAN, HOSPITAL, true, access EHR(PHYSICIAN, PA-
TIENT, two hours before visit) ∨ access EHR(PHYSICIAN,
PATIENT, two hours after visit)). That is, the physician is
not supposed to access a patient’s EHR more than two hours
before or after the patient’s visit. We can represent this with a
relative time temporal rule as shown in Listing 5. An access to
a patient’s EHR is conformant with respect to a patient visit
if it happens at Time T (Lines 1–2), there is a conformant
visit from the patient at Time Tv (Lines 3–4), and T is close

enough to Tv (Lines 5–6). For example, two hours before or
after the visit is conformant (Line 8).

Listing 5
CONFORMANCE RELATIVE TO A REFERENCE EVENT.

1 conformant(
2 access_EHR(Physician, Patient),T):-
3 happens(visit(Physician, Patient), Tv),
4 conformant(visit(Physician, Patient), Tv),
5 close_to_visit(Tm),
6 T > Tv-Tm, T < Tv + Tm.

8 close_to_visit(2).

V. MONITORING MISUSE WITH NANE

We now describe how NANE enables monitoring of potential
misuses via temporal reasoning. A misuse corresponds to ei-
ther (i) a norm violation, which can be automatically identified
from an enactment, or (ii) a nonconformant event, as described
by other domain rules. Listing 6 demonstrates each rule. An
event is considered a misuse if it violates a norm (Lines 1–
4), or is not a conformant event (Lines 6–9). The \+ symbol
denotes negation as failure [12].

Listing 6
REPRESENTING MISUSE IN EC.

1 misuse(evt(Event, Te), T):-
2 happens(Event, Te),
3 violate(Event, Norm, Te),
4 Te =< T.

6 misuse(evt(Event, Te), T):-
7 happens(Event, Te),
8 \+ conformant(Event, Te),
9 Te =< T.

Definition 5 formally describes a monitoring task in EC. The
enactment includes a window of events that happened until
the time monitoring takes place. Window-based approaches
[6] are known to improve efficiency of run time tasks such
as monitoring. The purpose of monitoring is to find potential
misuses given such an enactment.

Definition 5. A monitoring task for a domain D is represented
as an EC reasoning task S ⇐ EC(Ax, Th, D, N , Q) at each
time point Tm, where

• N = {〈ei, ti〉 | Tm−w 6 ti 6 Tm}, where w is the window
size;

• Q = “findall(Misuse, misuse(Misuse, Tm), Misuses).”;
• S = {evt(e1, t1), . . . , evt(en, tn)}.

Now, let us revisit Example 1 and formalize its do-
main model in EC. Listings 5–8 constitute the domain
model. We have the following prohibition from earlier:
P(PHYSICIAN, HOSPITAL, ¬consent(PHYSICIAN, PATIENT),
access EHR(PHYSICIAN, PATIENT)), which means that physi-
cians are prohibited from accessing patients’ EHR with-
out consent. Moreover, we have the following commit-
ment: C(PHYSICIAN, HOSPITAL, access EHR(PHYSICIAN,



PATIENT), logout(PHYSICIAN)), which means that physicians
are committed to logging out from their EHR sessions.

Listing 7 describes a temporal rule for the above commit-
ment. A logout by a physician is conformant if it happens at
Time T (Line 1), there is an access to EHR by the physician
at Time Te (Line 2), and the physician is inactive only for
a short period of time in between Te and T (Lines 3–5). For
simplicity, we adopt one hour as the time of inactivity (Line 7).

Listing 7
CONFORMANT LOGOUT EVENT.

1 conformant(logout(Physician), T):-
2 happens(access_EHR(Physician,Patient),Te),
3 inactive(Physician, [Te, T]),
4 active_session(Ts),
5 T-Te < Ts.

7 active_session(1).

In addition to the temporal rules that verify whether an event
is conformant, we model domain facts and access control rules
via initiates and terminates predicates as shown in Listing 8.
The fluent logged in is initiated when a user logs in (Line 1),
and terminated when the user logs out (Line 2). A physician
can access a patient’s EHR only after logging in (Lines 4–
5). Some events are marked conformant using domain facts
(Line 7), and hence they are not misuses.

Listing 8
DOMAIN RULES AND FACTS.

1 initiates(login(User), logged_in(X), T).
2 terminates(logout(User), logged_in(X), T).

4 initiates(access_EHR(X, Y), ehr(X, Y), T):-
5 holds_at(logged_in(X), T).

7 conformant(login(X), T).

Next, we demonstrate how we can perform monitoring by
combining various pieces of the domain model. Listing 9
shows an enactment for a period of 72 hours (the window
size). The time points represent hours from the start of the
work week. For example, 1–24 represents Monday.

Listing 9
SAMPLE ENACTMENT FOR THE MONITORING SCENARIO.

1 % Monday
2 happens(login(drBob), 8).
3 happens(access_EHR(drBob, john), 9).
4 happens(logout(drBob), 10).
5 happens(give_consent(drBob, john), 16).
6 % Tuesday
7 happens(login(drBob), 32).
8 happens(access_EHR(drBob, john), 33).
9 happens(visit(drBob, john), 34).

10 happens(logout(drBob), 35).
11 % Wednesday
12 happens(login(drBob), 56).
13 happens(access_EHR(drBob, kate), 60).
14 happens(logout(drBob), 64).

We use the following query to find potential misuses related
to this enactment: “findall(Misuse, misuse(Misuse, 72), Mis-
uses).” That is, the EC reasoner finds all predicates Misuse that
represent a misuse (Listing 6) that happened before Time 72
(end of Wednesday), and puts them in the list Misuses. The
solution is the following: [evt(access EHR(drBob, john), 9),
evt(access EHR(drBob,kate), 60), evt(logout(drBob), 64)]. Let
us review each misuse:

• Physician Bob’s access to John’s EHR at Time 9 (Line 3)
is a violation of the prohibition because there is no
consent from John.

• Physician Bob’s access to Kate’s EHR at Time 60
(Line 13) is a violation of the prohibition because there
is no consent from Kate.

• Physician Bob does not log out (Line 14) until after four
hours of accessing Kate’s EHR at Time 60. Thus, logout
is a nonconformant event.

Note that physician Bob’s access to John’s EHR at Time 33
is a conformant event (Listing 5) because there is a conformant
visit from John one hour later. Thus, this access is not listed
as a misuse in the solution set.

VI. LIMITATIONS AND THREATS TO VALIDITY

NANE faces the following important limitations.

Modeling: Since NANE captures all and only the stated
norms, a missing norm might lead to a misuse being unnoticed.
Therefore, the correct identification of misuse cases depends
upon how well the requirements analyst captures the norms as
well as the domain model.

Tooling: We did not evaluate how well NANE scales with
increasing number of norms. Although NANE’s enactment
generation process is intended as a design time tool, ineffi-
ciency might be a concern.

Representation of conflicts: Not all norm violations are
misuses. Depending on the context, a norm violation might be
necessary. For example, the consent requirement for accessing
a patient’s EHR might be waived to save a patient’s life. NANE
does not deal with such conflicting norms [3], and may include
such norm violations as false positives in its solution set.

In light of our research goal, we can see that a threat to
validity of NANE achieving that goal is of its applicability.
Specifically, real-life misuse cases may be more subtle than we
can characterize and explore via NANE. An important future
direction, therefore, is to conduct case studies involving real-
life misuses and ideally in more than one domain.

VII. RELATED WORK

The sociotechnical aspects of requirements engineering have
been gaining prominence [10], [34]. NANE demonstrates a
computational approach that goes beyond the conceptual work
in previous approaches. Our recent approach, Revani [15],
provides a temporal logic approach for developing specifica-
tions of sociotechnical systems. NANE goes beyond Revani in
capturing misuse cases and determining what must be logged
to detect such misuses.



Brost and Hoffmann [8] discuss misuse in eHealth systems.
We plan to investigate real misuse incidents in healthcare
to evaluate NANE’s coverage of identifying those via norm
violations. Matulevic̆ius et al. [24] investigate misuse cases
for security modeling using the Information System Risk
Management (ISSRM) model. They propose a conceptual
model and template for representing misuse cases. However,
these works lack a rich temporal representation like ours or
support for monitoring of misuses. Moreover, we incorporate
autonomy and social interactions among users via norms.

Karpati et al. [17] perform an experiment on the usefulness
of misuse case maps (MUCMs). A MUCM extends a tradi-
tional set of use cases with vulnerabilities and exploit paths to
identify security threats. Karpati et al.’s results indicate that
a MUCM promotes understanding of scenarios (e.g., a bank
hacking case) better than system architecture diagrams. How-
ever, MUCMs do not perform significantly better than system
architecture diagrams in identifying vulnerabilities. Whereas
MUCMs are helpful for discovering technical vulnerabilities,
NANE extends MUCM by providing coverage of misuse on
the social level by investigating norm violations.

Jureta et al. [14] present a classification of requirements
for adaptive systems based on the expectations and needs
of stakeholders. They propose a formal method for moni-
toring requirements as well as weakening (relaxation) some
requirements when they cannot be satisfied all the time.
Jureta et al. discuss the details of their conceptual framework.
However, they do not provide its formalization in logic. In
contrast, NANE supports a nonmonotonic logic theory via
EC, and follows a normative approach for incorporating the
social aspects of software systems. Georg et al. [13] use
Activity Theory (AT) to identify the relations between the
elements of a sociotechnical system, and combine it with the
User Requirements Notation (URN) goal modeling tool to
elicit requirements. They do not consider norms for modeling
requirements. Moreover, we do not elicit requirements, but
rather use the stated requirements to identify misuse cases.
However, goal modeling techniques might help represent the
goals of an attacker as misuse cases.

Kafalı and Yolum [16] propose an approach for monitoring
an agent’s interactions to determine whether the agent is
progressing as expected. In particular, they verify whether the
agent’s expectations are satisfiable by its current state. Chesani
et al. [9] propose a monitoring approach for commitments
via the Reactive Event Calculus (REC). We support a more
general model of norms, and provide generation of expecta-
tions from norm enactments. Artikis et al. [6] propose a novel
dialect of EC, called RTEC, for efficient run time recognition
of events. Their approach is based on windowing techniques,
and provide a scalable implementation. RTEC can be used as
the EC reasoner for our monitoring task to enable experiments
on large streams of events.

Chopra and Singh [11] propose Custard, a language to com-
pute the states of norm instances based on happened events.
SQL queries can be generated based on their specification
(tuple relational calculus), and used to query the progression

of norms in a sociotechnical system. Chopra and Singh model
an additional norm, power, to describe institutional authorities
for granting or revoking other norms. Their treatment of events
is similar to ours. Unlike their formalization, we do not give
the details of how norm states are computed from events, but
rely on the EC proof procedure.

Having a formal representation and enumeration of misuse
cases helps establish correct forensic logging, i.e., determining
which user actions need to be logged [4], [21]. King et al.
[19] define a forensicability metric, and develop heuristics for
identifying logging requirements. They perform experiments
on iTrust, an open source electronic health records system.
Peisert et al. [27] propose a forensic logging model based on
the goals of an attacker. The attacker (according to their model)
performs a series of actions to achieve a set of intermediate
goals, which eventually leads to the ultimate goal. Their
framework works backwards from the ultimate goal with a
requires and provides (i.e., preconditions and postconditions)
capability model for goals. We, on the other hand, focus on the
temporal aspects of events without regard to goals. Moreover,
we take a sociotechnical view, where the ultimate goal of the
attacker corresponds to a norm violation. Some approaches
discuss the integrity of logs [35]—how a dishonest user can
modify the logs either to save a malicious user or to frame an
honest user. However, log integrity is beyond our scope.

Arasteh et al. [5] investigate how various attack patterns can
be detected via logs. Their model builds a lifecycle of attacks
as intrusion–compromise–misuse–withdrawal. Khodabandelou
et al. [18] propose Map Miner Method, which uses Hidden
Markov Models to extract users’ intentions from activity logs.
Sindre and Opdahl [28] propose five steps for the integration of
misuse cases into the security requirements elicitation process:
identify critical assets, define security goals, identify threats
(misuse), analyze risks, and define security requirements.
Our approach focuses on the misuse identification step and
provides a rich temporal model to capture such cases.

Amir-Mohammadian et al. [4] propose an audit model based
on information algebra (e.g., treating traces of programs as
information), implement logging specifications via program
rewriting, and prove the correctness of their model. They
provide a case study on the OpenMRS medical records sys-
tem. Their audit mechanism for medical emergencies should
provide the level of accountability equal to the strict access
control rules in regular practice. For example, a physician
is allowed to access any patient’s records, but all access is
logged. Marinovic et al. [23] propose a similar break-glass
access control language, Rumpole, to incorporate exceptions
(e.g., waive some of the access control rules). Rumpole reasons
based on knowledge of relevant facts to determine whether
there is an exception situation. Our model introduces the social
aspects that lack in these approaches via norms, which enables
us to systematically identify potential misuses that arise from
users’ interactions.



VIII. CONCLUSIONS

We proposed NANE, a temporal reasoning framework to
systematically generate norm enactments and identify misuse
cases. We demonstrated how NANE can be used for proactive
monitoring of potential misuses via logs. We identify the
following directions for future work.

Classification: A systematic classification of breaches re-
garding real healthcare incidents would help identify how
user-originated cases (misuse) differ from software-originated
cases. Maintaining such a repository of healthcare-related
incidents would enable us to perform an empirical evaluation
of NANE’s misuse identification process.

Scalability: NANE explores one norm at a time when
generating norm enactments so as to ensure that the generation
process is tractable for practical problems (e.g., norms with
fewer predicates in the antecedent and the consequent). We
will improve the generation process in future work by consid-
ering additional pruning techniques to reduce the number of
generated enactments. Implementations of EC, such as REC
[9], suffer from performance limitation in run time monitoring.
However, recent implementations of EC such as RTEC [6] sup-
port efficient event recognition for both retrospective analysis
(e.g., diagnosis) and monitoring. We will perform experiments
with RTEC to see whether it is helpful for our window-based
misuse monitoring process.

Reasoning: NANE can be extended with probabilistic rea-
soning [25] to calculate the likeliness of identifying a misuse
given a portion of the logs. Using a domain ontology [30]
would greatly simplify the requirements analyst’s effort in
refining norms. In addition, the process of norm extraction
from requirements can be automated via adopting a natural
language processing approach.
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