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Abstract

This paper has developed a solution algorithm for linear rational expectation models
under imperfect information. Imperfect information in this paper means that some decision
makings are based on smaller information sets than others.
The algorithm generates the solution in the form of

�t+1 = H�t + J�
t;S

�t = F�t +G�
t;S

where �t;S �
�
�Tt � � � �Tt�S

�T
. The technical breakthrough in this article is made by

expanding the innovation vector, rather than expanding the set of crawling variables.
Perhaps surprisingly, the H and F matrices are the same as those under the correspond-

ing perfect information models. This implies that if the corresponding perfect information
model is saddle path stable (sunspot, explosive), the imperfect model is also saddle-path
stable (sunspot, explosive, respectively). Moreover, if the minimum information set in the
model has all the information up to time t�S�1, then the direct e¤ects on the impulse re-
sponse functions last for only the �rst S periods after the impulse. In the subsequent dates,
impulse response functions follow essentially the same process as in the perfect information
counterpart.
However, imperfect information can signi�cantly alter the quantitative properties of a

model, though it does not drastically change its qualitative nature. This article demon-
strates, as an example, that adding imperfect information to the standard RBC models
remarkably improves the correlation between labour productivity and output. Hence, a
robustness check for information structure is recommended.
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1 Introduction

This paper has developed a solution algorithm for linear rational expectation models under im-
perfect information. Imperfect information in this paper signi�es that some decisions may be
made before observing some shocks, while others may be made after observing them. For exam-
ple, we can consider a variant of RBC model, in which labour supply is decided before observing
today�s innovation on productivity. In this variant, apart from the information structure (i.e., the
FOC w.r.t labour supply has an expectation operator), the equations that de�nes the equilibrium
is the same as in the standard RBC model.
Imperfect information is important for several reasons. First, imperfect information plays an

important role in many important classes of models such as sticky information models by Mankiw
and Reis (2001). Second, researchers often do not know a priori what information is available
when each decision is made. Hence, they may want to estimate the information structure by
parameterizing it, or may want to experiment on a model under several patterns of information
structure. It is easy to implement such robustness checks with the algorithm. Once structural
equations are obtained, then the additional input to the algorithm is only information structure.
Third, the obtained numerical result may not be robust for a small change in information struc-
ture. Indeed, imperfect information may signi�cantly alter the second moments and the shapes
of impulse response functions.
This paper o¤ers an easy-to-use MATLAB code to solve a general class of linear models under

imperfect information.1 The solution of imperfect information models has the form of

�t+1 = H�t + J�
t;S

�t = F�t +G�
t;S

�t;S �
�
�Tt � � � �Tt�S

�T
where �t and �t are the vectors of crawling and jump variables, respectively, and �t�s is the vector
of innovations at time t� s, for s = 0; � � � ; S, where S is such that the minimum information set
in the model includes all information up to time t� S � 1. ��;S is the vertical concatenation of�
���s

	S
s=0
. H, J , F and G are the solution matrices that are provided by the algorithm. The

algorithm is an extension of the QZ method by Sims (2002).
The most important breakthrough in this paper is the choice of state variables. The state

variables in this solution are �t and �
t;S. Imperfect information requires the expansion of the

state space, but this can be done either by expanding innovation vector or by expanding the set
of crawling variables. Note that the representation of state space is not necessarily unique. Our
choice of state variables works intuitively because, if past innovations are recorded, we can recover
the past crawling variables, and hence can recover the information available in past periods.2

By keeping the number of crawling variables unchanged, it can be shown that the dynamic
parts of the solution (i.e., H and F matrices) are the same as in the corresponding perfect
information model. Thus, it is clear that if the corresponding perfect model is saddle-path stable
(sunspot, explosive), then an imperfect information model is also saddle-path stable (sunspot,
explosive, respectively). That is to say, the information structure does not alter the dynamic
stability property.
Moreover, invariant H and F matrices imply that the direct e¤ects of imperfect information

on impulse response functions last for only S after an impulse, if the minimum information set at

1The set of Matlab codes is available upon request: k.shibayama@kent.ac.uk
2Hence, even though some decisions are made without observing �t, for example, economic models can be

formulated as in (2).
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time t in a model has all the information up to time t�S�1. In subsequent periods, the impulse
response functions follow essentially the same process as in the perfect information counterpart.
More speci�cally, if, S period after an impulse, the values of the crawling variables are �S, then
the following impulse response functions are the exactly same as those of the perfect information
counterpart that starts with �S and zero innovations. One such example can be found in Dupor
and Tsuruga (2005). They argue that the hump-shaped impulse response functions found in
Mankiw and Reis (2001) critically hinge on the assumption of Calve style information updating:
some agents, though their population decreases over time, cannot renew their information forever.
By constructing Taylor style staggered information renewal, Dupor and Tsuruga (2005) show that
impulse response functions jump to zero right after the last cohort renews its information set.
There are, at least allegedly, two existing treatments of imperfect information.3 The �rst

remedy for imperfect information is to de�ne dummy variables. For example, consider a variant
of the standard RBC model, in which labour supply Lt is determined without observing today�s
innovations. Then, the optimal labour supply is determined by

0 = Et�1 [�Lt + �Ct �Wt] (1)

where Ct and Wt are consumption and wage at time t, � and � are parameters provided by a
theory, and Et�1 [ ] is the expectation operator with all information up to time t � 1. De�ne
dummy variable L�t such that

0 = Et
�
�L�t+1 + �Ct+1 �Wt+1

�
Lt+1 = L�t

In this method, having additional crawling variable Lt, the set of crawling variables is expanded.
The problem of this method is that it cannot solve the model if some endogenous variables are
determined before observing some (not all) of today�s innovations but after observing the others.
The other possibility is a modi�cation of method of undetermined coe¢ cients. According to

Christiano (1998), his version of method of undetermined coe¢ cients, like ours, can deal with
models in which some endogenous variables are determined before observing some (not all) of
today�s innovations are observed but after observing the others. The most salient di¤erence
between his method and ours is in the speci�cation of information structure. Christiano (1998)
requires a user to provide only one matrix R that speci�es which innovations are included in the
information set of each expectation operator. Roughly speaking, matrix R relates equations to
observable innovations (i.e., information). In contrast, in the algorithm developed in this article,
a researcher must specify two matrices: one relates innovations to equations, and the other relates

3There are three types of methods for perfect information models.

1. King and Watson�s method (1998 and 2002) (see also Woodford (undated)) implements two stage sub-
stitution. First non-dynamic jump variables are substituted out, and then dynamic jump variables are
substituted out from the system of equations.

2. In the QZ method by Sims (2002) (see also Klein (2000)) the QZ decomposition is applied to matrices
on endogenous variables. Recognizing that (1) roots that correspond to non-dynamic jump variables are
in�nite, and (2) roots that correspond to dynamic jump variables are larger than one in absolute terms,
the transversality conditions eliminates both types of jump variables at once.

3. The method of undetermined coe¢ cients by Uhlig (1999) (see also Christiano (1998)) substitutes a guess
solution into the given system of equations; the resulting matrix polynomial is solved directly. In principle,
this method does not require that the give equations are �rst order di¤erence equations. Higher order
matrix polynomials can be numerically solved (see Appendix).
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innovations to variables. This di¤erence is crucial. To understand it, consider the above example
(1). It is clear that a researcher has to specify the information set of the expectation operator in
(1). However, in a given information set, there are generically three possibilities, namely that (a)
the representative household �xes labour supply before observing some of today�s innovations,
(b) it determines wage before innovations (sticky wage), or (c) it decides consumption before
innovations. Hence, one more matrix is necessary in our algorithm to specify which of Ct, Wt or
Ht is chosen without having full information. In general, the quantitative behaviour of a model is
totally di¤erent, depending on which variable are assumed to be decided before observing some
information. Indeed, in following section, it is demonstrated that the di¤erence between (a) and
(b) is very crucial.

The plan of this paper is as follows. In Section 2, we de�ne the problem and derive the
solution. There are two key observations. First, if the k-th time t variable yk;t is determined
without observing the i-th time t� s innovations �i;t�s, then yk:t cannot respond to �i;t�s, given
�t�S. Second, if the expectation operator in the j-th equation has an information set that includes
�i;t�s, �i;t�s cannot be the source of the expectation error in the j-th equation. It turns out that
these two restrictions are enough to determine the unique solution coe¢ cients. In Section 3,
we discuss the assumptions that are necessary to guarantee the existence of a solution. Each of
them has some economic meaning. The existence condition is slightly tighter under imperfect
information than under perfect information. In Section 4, the main features of the solution of
imperfect information models are brie�y discussed. Most of them are direct consequences of the
invariant H and F matrices. In Section 5, we demonstrate the e¤ects of imperfect information
on the otherwise standard RBC model as an example. The �nal section concludes the discussion.

2 Derivation of the Solution

Essentially, our algorithm is an extension of the QZ method used in Sims (2002). Our problem
is to obtain the state space representation of a solution that satis�es two key zero restrictions.
For the details of matrix notation, see Appendix.

2.1 De�nition of the problem

The inputs and outputs of the algorithm are de�ned.

2.1.1 Given models

Following Sims (2002), we formulate the linear rational models with expectation errors as follows.

0 = Ayt+1 +Byt + C�t +D�t+1 + E�
t;S (2)
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where

E =
�
E0 E1 � � � Es � � � ES

�
=

264 E0;11 � � � E0;1N
...

. . .
...

E0;M1 � � � E0;MN

� � �
Es;11 � � � Es;1N
...

. . .
...

Es;M1 � � � Es;MN

� � �
ES�1;11 � � � ES;1N
...

. . .
...

ES�1;M1 � � � ES;MN

375
y =

�
�t
�t

�
, �t;S =

0B@ �t
...

�t�S

1CA
yt is the vector of all endogenous variables, in which �t is the vector of crawling variables and �t
is that of jump variables. Stock variables are all recorded at the beginning of each period. M is
the number of equations, which is equal to the number of endogenous variables, N is the number
of innovations, and S is such that the minimum information set includes �t�S�1.
�t�s is a column vector of iid innovations at time t � s. Limiting �t to iid is not restrictive

since we can add the law of motions of serially correlated shocks to the system of equations and
treat the shocks themselves as crawling variables.4.
A, B and C are proper coe¢ cient matrices, which are provided by an economic theory. D

and E represent the expectation errors. D is non-zero even for the perfect information models,
because of the dynamic jump variables (e.g., expectation error in the Euler equation). An
economic theory must specify the positions of zero elements in D and E, while the values of
non-zero elements are calculated by the algorithm. �t�s can be the source of expectation errors
because some endogenous variables are decided without observing it.

2.1.2 Goal of the algorithm

Our objective is to obtain the state space representation of (2).5

�t+1 = H�t + J�
t;S (3a)

�t = F�t +G�
t;S (3b)

where

J �
�
J0 J1 � � � Js � � � JS

�
�

264 J0;11 � � � J0;1N
...

. . .
...

J0;M�1 � � � J0;M�N

� � �
Js;11 � � � Js;1N
...

. . .
...

Js;M�1 � � � Js;M�N

� � �
JS;11 � � � JS;1N
...

. . .
...

JS;M�1 � � � JS;M�N

375
G �

�
G0 G1 � � � Gs � � � GS

�
�

264 G0;11 � � � G0;1N
...

. . .
...

G0;M�1 � � � G0;M�N

� � �
Gs;11 � � � Gs;1N
...

. . .
...

Gs;M�1 � � � Gs;M�N

� � �
GS;11 � � � GS;1N
...

. . .
...

GS;M�1 � � � GS;M�N

375
4See Woodford (undated). This simpli�es the algebra and computation signi�cantly.
5S = 0 does not imply perfect information. If an endogenous variable does not observe only today�s innovation

�t, then S = 0. In a sense, J0 and G0 consist of the direct e¤ects of �t through C�t in (2) as under perfect
information models, and the e¤ects of expectation errors due to �t through E�t.
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2.2 Two key observations

This subsection shows two key zero restrictions. The algorithm seeks the solution that satis�es
them.

2.2.1 Repeated substitutions

To obtain the representation of �t and �t as functions of �t�S and �t�� for � = 0; � � � ; 2S � 1,
repeat the substitution of vertically concatenated "guess solution" (3) into itself.�

�t+1
�t

�
=

�
H
F

�
�t + ~��

t;S =

�
H
F

� �
HS�t�S +

PS
k=1H

k�1J�t�k;S
�
+ ~��t;S

=

�
H
F

�
HS�t�S +

�
�0�t�0 + �1�t�1 + � � �+ �S�t�S

�

+

�
H
F

�0BB@
H1
�
J0�t�1 + J1�t�2 + � � �+ JS�t�1�S

�
+H1

�
J0�t�2 + J1�t�3 + � � �+ JS�t�2�S

�
+ � � �

+Hs�1 �J0�t�s + J1�t�s�1 + � � �+ JS�t�s�S�+ � � �
+HS�1 �J0�t�S + J1�t�S�1 + � � �+ JS�t�S�S�

1CCA
=

�
H
F

�
HS�t�S +�0�t +�1�t�1 + � � �+�s�t�s + � � �+�S�t�S

+ terms with �t�� for � � S + 1 (4)

where ~� �
�
�0 � � � �s � � � �S

�
with �s �

�
JTs GTs

�T
, and

�0 � �0 =

�
J0
G0

�
�1 � �1 +

�
H
F

�
J0 =

�
J1 +HJ0
G1 + FJ0

�
�2 � �2 +

�
H
F

�
(J1 +HJ0) =

�
J2 +H (J1 +HJ0)
G2 + F (J1 +HJ0)

�
, � � �

�s � �s +

�
H
F

� �Ps�1
k=0H

s�1�kJk
�
=

�
Js +H

Ps�1
k=0H

s�1�kJk
Gs + F

Ps�1
k=0H

s�1�kJk

�
, � � �

�S � �S +

�
H
F

��PS�1
k=0 H

S�1�kJk

�
=

�
JS +H

PS�1
k=0 H

S�1�kJk
GS + F

PS�1
k=0 H

S�1�kJk

�
In the recursive representation,

�0 = �0 =

�
J0
G0

�
�s = �s + ~H�s�1 for s = 1; � � � ; S

where
~H �

�
H 0
F 0

�
(6)

Intuitively, the j; k-th element of �s is the e¤ect of �k;t�s (the k-th innovation at time t� s) on
yj;t (the j-th endogenous variable at time t). Thus, given �t�S, �s;jk, which is de�ned as the
j; k-th element of �s, is zero if yj;t is determined without observing �k;s.
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In the matrix representation
� =M��� (7)

where

� �
�
�T0 � � � �Ts � � � �TS

�T
(8a)

� �
�
�T0 � � � �Ts � � � �TS

�T
(8b)

M�� �

26664
I 0

� ~H I
. . . . . .

0 � ~H I

37775 (8c)

This matrix plays a key role in the following. M�� is clearly invertible.

2.2.2 Zero Restrictions

Throughout this paper, we exploit the following two observations.

1. If the k-th set of variables yk;t does not observe the i-th set of time t� s innovations �i;t�s,
given �t�S and �t�� for � = s + 1; � � � , @yk;t=@�t�s = 0. Simply put, any decision cannot
respond to unobserved innovations. Hence, �s;ki = 0.

2. If the information set of the expectation operator in the j-th set of equations includes the
i-th set of time t�s innovations �i;t�s, then the realization of the j-th set of equations must
hold for any realization of the i-th set of innovations. The expectation errors only occur
only due to innovations that are not included in the information set. Thus, Es;ji = 0.

For example, suppose that labour supply Lt (k-th variable, yk;t) is decided on before observing
today�s technology shock (i-th shock, �i;t), but after today�s preference shock (l-th shock, �l;t),
both of which are iid. If the FOC w.r.t. Lt is the j-th equation,

�0;ki = 0 (�0;i does not a¤ect yk;t)

E0;jl = 0 (�0;l does not cause expectation error in j-th eqn)

Roughly speaking, E0;jl = 0 means that if the expectation operator of the j-th equation is
eliminated, still it holds in terms of �0;l.
It is the duty of a user to specify the positions of these zero elements in � and E.6

2.3 Sketch of Derivation and Key Equations for Computation

The fully detailed derivation is given in Appendix. This subsection brie�y describes the skeleton
of the derivation and lists the minimum results necessary for computation.

6The algorithm automatically �nds the positions of zero elements in D matrix based on the speci�cation of
jump and crawling variables (Only dynamic jump variables can be the sources of expectation errors). A user is
required to specify which variables are crawling variables and which are jump.
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2.3.1 QZ Decomposition

In order to introduce notations, this subsection brie�y reviews the QZ decomposition (or gen-
eralized Schur decomposition). For matrices A and B (2 Cn�n), there exist unitary matrices Q
and Z such that

QHAZ = 
A

QHBZ = 
B

where 
A and 
B are both upper triangular matrices, and superscript H indicates a conjugate
transpose. A unitary matrix U satis�es UHU = UUH = I. Let akk and bkk be the k-th diagonal
elements in 
A and 
B, respectively. Assuming that akk and bkk are not zero at the same time,
then �k � bkk=akk for k = 1; � � � ; n are the generalized eigenvalues of the matrix pencil B��kA.7
The basic idea is that by applying the QZ decomposition to (2) as in Sims (2002), the

algorithm separates unstable roots from stable roots.

0 = Ayt+1 +Byt + C�t +D�t+1 + E�
t;S

= 
AZ
Hyt+1 + 
BZ

Hyt +Q
HC�t +Q

HD�t+1 +Q
HE�t;S

=

�

Ass 
Asu
0 
Auu

��
st+1
ut+1

�
+

�

Bss 
Bsu
0 
Buu

��
st
ut

�
+

�
QHs:
QHu:

�
C�t +

�
QHs:
QHu:

�
D�t+1 +

�
QHs:
QHu:

�
E�t;S

where �
st
ut

�
� ZH

�
�t
�t

�
By transversality conditions (TVCs), all unstable roots are set to be equal to zero (Remember
that all innovations are assumed to be iid). All unstable roots must be zero under imperfect
information as under perfect information, which is guaranteed by the iterated linear projection.

2.3.2 Notations for the Outputs of QZ Decomposition

For later use, we de�ne submatrices as follows

ZH �
�
ZHs:
ZHu:

�
�
�
ZHs� ZHs�
ZHu� ZHu�

�
, Z �

�
Z�s Z�u
Z�s Z�u

�
, QH �

�
QHs:
QHu:

�
(9a)


A �
�

Ass 
Asu
0 
Auu

�
, 
B �

�

Bss 
Bsu
0 
Buu

�
(9b)

where subscripts u and s implies unstable and stable roots. Note that 
Ass and 

B
uu are both

invertible by construction.

7See Appendix for a brief review of the relationship between the system of �rst order di¤erence equations and
generalized eigenvalues.
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Also, we de�ne four matrices as

�As� � 
AssZ
H
s� + 


A
suZ

H
u� (10a)

�As� � 
AssZ
H
s� + 


A
suZ

H
u� (10b)

�Bs� � 
BssZ
H
s� + 


B
suZ

H
u� (10c)

�Bs� � 
BssZ
H
s� + 


B
suZ

H
u� (10d)

Note that all the matrices de�ned here are obtained from the outputs of the QZ decomposition.

2.3.3 Matrix Subscripts

We introduce the following notation rule for subscripts on matrices. For a matrix A,

� A:x is columns x of a matrix A.

� Ax: is rows x of a matrix A.

� A::x is the columns remaining after the elimination of columns x.

� A:x: is the rows remaining after the elimination of rows x.

where x is the name of a set of columns or rows. This notation makes certain matrix operations
extremely simple. See Appendix for further details.

2.3.4 Zero Restrictions

As a result of some manipulation of matrix equations, it is shown that

0 = � +M�E (E +C) (11)

M�E � (My�M��) nQ (12)

where

� �

0B@ �0
...

�S�1

1CA , E �
0B@ E0

...
ES�1

1CA , C � � C0
0

�
, Q �

264 Q 0
. . .

0 Q

375 (13a)

My� �

2666664
� �0A 0

� �0A

. . . . . .
0 � �0A

�

3777775 , � �
�

Ass=Z�s �Bs�
0 
BuuZ

H
u�

�
, �0A�

�
0 �As�
0 
AuuZ

H
u�

�
(13b)

and XnY = X�1Y . Bear in mind that � and E are still "undetermined coe¢ cients," while, once
H and F are obtained, M�E is computable from the outputs of the QZ decomposition.
E and� are computed column by column. It is important to remember due to zero restrictions

some elements in � and E are zero. Thus, for the i-th column (or equivalently for the i-th

9



innovation),

0 =

0BBBBB@
�1;i
...

�k;i (= 0)
...

�M(S+1);i

1CCCCCA+M�E

0BBBBB@

0BBBBB@
0
...
Eji
...
0

1CCCCCA+
0BBBBB@
C:i
0
...
...
0

1CCCCCA

1CCCCCA (14)

where M is the number of equations and hence M (S + 1) is the number of rows in �.
From the k-th set of equations in (14)

0 =
�
M�E

�
kj
Eji +

�
M�E

�
kj
Cji +

�
M�E

�
k:j C:ji (15)

which gives the values of non-zero elements of E. From the rest of the equations in (14),

0 = �:ki +
�
M�E

�
:kj Cji +

�
M�E

�
:k:j C:ji (16)

�
�
M�E

�
:kj

��
M�E

�
kj
n
�
M�E

�
k:j C:ji +Cji

�
which gives the non-zero elements of �.
The existence of the inverse of [M�E]kj is assumed. In general, however, it is not necessarily

invertible and an economic meaning of its invertibility is discussed later.

2.3.5 Solution

The solution algorithm computes key matrices sequentially. The basic structure is as follows.

1. Obtain submatrices form the outputs of QZ decomposition (9 and 10).

2. Obtain H and F from (17).

3. Obtain M��, My� and M�E from (8c, 13b and 12).

4. Obtain E and � from (18 and 19)

5. Obtain G and J from (20).

H and F : As in (Sims (2002)), the H and F matrices are derived independently from the G
and J matrices based on the coe¢ cient on �t (see Appendix for details). Therefore, they are
exactly the same as in perfect information models.

F = �ZHu�nZHu� = Z�s=Z�s (17a)

H = �Z�s
�

Assn
Bss

�
=Z�s (17b)

E and �: From (15) and (16), the non-zero elements of E and � are

Eji = �
�
M�E

�
kj
n
�
M�E

�
k:j C:ji �Cji (18)

�:ki = �
�
M�1
�E

�
:j:k nC:ji (19)

where M�E can be obtained from (8c) and (13) with the solution of H and F . Note that H and
F can be computed without referring E, � or M�E. Since [M�E]kj is assumed to be invertible,�
M�1
�E

�
:j:k is also invertible (see Appendix for the proof).
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J and G: From the de�nition of � (8a),

� �

2666664
J0
G0
...
JS
GS

3777775 =M��� (20)

Non-zero elements of M�� are recovered from (19).

D: From a given economic model (2) it is obvious that

D = �A
�
0
G0

�

3 Assumptions

In this section, we discuss three assumptions. Assumptions 1 and 2 in the following are the same
as in the solution method for perfect information models, while assumption 3 is speci�c to im-
perfect information models. This subsection omits discussion about Blanchard-Kahn condition,
which is automatically satis�ed by assumption 1.

3.1 Assumption1: ZHu� is invertible

Klein (2000) shows that this assumption is a generalization of the condition derived in Blanchard
and Kahn (1980). Boyd and Dotsey (1990) makes clear that the Blanchard-Kahn condition which
counts and compares the numbers of unstable roots and jump variables is a necessary (but not
su¢ cient) condition for the existence of a unique solution; they provide a counter example that
satis�es the Blanchard-Kahn counting condition but does not have a stable solution. Intuitively,
invertible ZHu� means that we can always �nd the values of jump variables that guarantee ut+1 = 0
(TVCs) in any states. Remember that ZHu� maps jump variables to unstable roots, and its inverse
maps unstable roots to jump variables. See King and Watson (1995) for an intuitive exposition.
The existence of the right inverse of ZHu� entails the existence of jump variables, but the

non-existence of its left inverse implies non-uniqueness of jump variables. See Uhlig (2000) for a
treatment of non-uniqueness.

3.2 Assumption2: akk and bkk are not zero at the same time

If akk and bkk are zero at the same time, it implies that there exist row vectorsX such that 0 = X�.
One of such examples is the k-th row of Q. The existence of such row vectors generically implies
either of the following.
(a) If X� is indeed zero, then some equations are not linearly independent from the others.

Essentially there are fewer equations than endogenous variables. At least one of equation can be
expressed as a linear combination of others, and such a linear combination is shown by X.
(b) If X� is not zero, clearly there is an internal contradiction (i.e., a system of equations

(2) is internally inconsistent). One of such examples is 2 equation and 2 variables non-dynamic
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model with no state variables

�1;t = ��2;t + �t
�1;t = ��2;t + �t + �t

Obviously both do not hold at the same time for non-zero �t. Since QZ decomposition is merely
a linear transformation, this implies that there is an internal inconsistency in the original system
of equations (2).
Rephrasing the above arguments as follows might be more intuitive:

If akk and bkk are zero at the same time, there are fewer equations than endogenous
variables in the non-stochastic steady state.

This is simply because in the non-stochastic steady state it must be the case that X� = 0.
See Sims (2002) as well.

3.3 Assumption3: [M�E]kj is invertible

This condition is speci�c to imperfect information models, though it is analogous to the equation
(40) in Sims (2002).8 Intuitively, if it is not invertible, then the information structure is not
consistent. Note that the inverse of [M�E]kj, if it exists, maps expectation errors to innovations
that some endogenous variables cannot respond. Hence, if the inverse of [M�E]kj exists, then
expectation errors can equate both sides of the equations for any realization of innovations.
A non-invertible [M�E]kj appears in the following example. Suppose that all production

factors and all demand components are decided before observing today�s technology shock. In
this case, output varies depending on the realization of technology, while demand cannot respond
to it. Thus, the goods market does not clear at any price. One important lesson is that a
researcher has to construct consistent models. An arbitrarily speci�ed information structure
may have internal inconsistency.

4 Properties of the Solution

The solutions computed by the algorithm have the following properties. Properties 1 and 2 are
simply the basis of the algorithm and properties 3 and 4 are the direct consequences of invariant
H and F .

1. If a variable yk;t is decided without observing an innovation �i;t�s, then �i;t�s does not a¤ect
yk;t. I.e., @xt=@�i;t�s = 0, given crawling variables �t�S.

2. If �i;t are included in the information set of expectation operators in the j-th equation,
then �i;t cannot be the source of the expected error in the j-th equation.

3. The dynamic parts of the solution (H and F ) are the same as in the perfect information
models. Thus, imperfect information does not change the number of stable and unstable
roots. As a consequence, if a model under imperfect information exhibits saddle-path
stability, for example, then the corresponding model under perfect information must also
exhibit saddle-path stability.

8However, note that Sims�condition is related to time t + 1 expectation errors, while our discussion in the
following is related to time � expectation errors (� < t).
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4. Invariant dynamic parts also imply that the direct e¤ects of imperfect information last
only S period after an impulse. In the subsequent periods, they essentially follow the
same dynamics as under perfect information. More speci�cally, let ~�t+S be the values of
crawling variables S period after an impulse. Then subsequent impulse response functions
are the exactly same as those under perfect information starting with ~�t+S with setting all
innovations equal to zero.

The properties 3 and 4 show that qualitatively an imperfect information model inherits key
properties of the corresponding perfect information model. But as shown in the next section,
imperfect information can have quantitatively signi�cant e¤ects.
The following points are also important.

� In our representation of solutions, the set of state variables at time t is
�
�t; �t; �t�1; � � � ; �t�S

	
.

Namely, today�s crawling variables and current and past innovations. Roughly speaking,
crawling variables correspond to state variables under perfect information. Past innovations
are necessary to describe the economy, because they recover past information sets.

� If �t�j and �t�j;S are observable, from (3a), the economic agents in a model can infer �t�j+1.
The algorithm does not accept illogical information structure. For example, information set�
�t�1; �t�2; � � � ; �t; �t�1; � � �

	
(without �t) is not allowed because, observing �t�1 and �

t;S,
economic agents must know �t. Similarly,

�
�t; �t�1; � � � ; �t; �t�3; �t�4; � � �

	
(without �t�1 or

�t�2) is not acceptable. On the other hand, the algorithm can deal with information set�
�t�2; �t�3; � � � ; �t; �t�3; �t�4; � � �

	
, though it is hard to interpret economically.

The algorithm only requires the positions of zero elements in � and E matrices, both of
which are coe¢ cient matrices on �t;S. This means that the algorithm detects S from the zero
elements of� andE. The minimum information is deemed to be

�
�t�2; �t�3; � � � ; �t; �t�3; � � �

	
if S = 2.

� The maximum possible information set at time t (perfect information) is
�
�t�j; �t�j

	1
j=0
,

though some of these elements are redundant (i.e., some of them are not state variables).
This implies that the algorithm does not allow inference.

If the information set of economic agents in a model includes all current and past variables�
yt�j; �t�j

	1
j=0
, then the economic agents can infer most hidden information, which reduces

an imperfect model to the corresponding perfect information model in most cases. For
example, if households observe all production factors and output, they can infer today�s
productivity correctly.

One natural interpretation of imperfect information is that agents have to make future
decision in the current period, like in sticky price models.

� The algorithm cannot deal with parameter uncertainty.

� The algorithm can deal with noisy information models easily. Suppose an AR(1) shock
process At follows

lnAt+1 = � lnAt +
p
1� ��obt +

p
��uot (21)

where �obt and �uot are the observable and unobservable components of innovation, and
(1� �)=� is the signal to noise ratio. This technique allows us to parameterise the extent
of imperfect information.
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5 An Example

5.1 Standard RBC Model

To demonstrate the quantitative e¤ects of imperfect information, we consider the standard RBC
model under imperfect information, focussing on impulse response functions and second moments.
The main economic motivation is to address an overly high Corr (Yt �Ht; Yt) in the standard

RBC model. Under the plausible parameter range, the standard RBC model predicts almost
perfect correlation between labour productivity Yt � Ht and output Yt, but in the data the
correlation is only slightly positive.
Hence, we modify the standard RBC model by adding imperfect information related to the

labour market. The relevant equations are

0 = bHt �Wt � �t (22a)

0 = Yt �Ht �Wt (22b)

where Yt, Ht, Wt, �t are output, working hours, wage and the marginal utility of consumption,
respectively. All endogenous variables are measured as deviations from their steady state values
in % terms. b is a constant, which represents (a multiple of ) the elasticity of marginal disutility
of labour. The �rst equation is the FOC w.r.t. labour supply; the second shows that the
marginal product of labour (Yt �Ht) is equal to wage.9 The set of state variables under perfect
information is fKt; At; �tg, where Kt and At are capital and technology at the beginning of time
t, respectively, and �t represents the innovation on technology. Note that At is regarded as an
endogenous crawling variable, and there is only one iid exogenous variable �t. That is to say, At
is treated as a stock variable.
Assuming that today�s innovation a¤ects today�s output,

Yt = At+1K
�
t H

1��
t

lnAt+1 = � lnAt + �t

where � is a parameter that governs the persistence of technology shock.

5.1.1 Case I: HH decides labour supply before observing innovations

In this case (22a) does not hold. Instead, the labour supply decision is governed by

0 = E
h
bHt �Wt � �t j

�
Kt�j; At�j; �t�j

	1
j=S+1

i
Since Ht cannot react to past innovations, for s = 0; 1; � � � ; S,

@Ht
@�t�s

= 0 given Kt�S; At�S

9Note that since all endogenous variables are represented as log-deviations from their steady state, Yt � Ht
is the deviation of "output divided by labour hour" (i.e., labour productivity). The Cobb-Douglas production
function implies that the marginal product of labour is (1� �) times labour productivity, which means that the
% change of labour productivity is exactly the same as that of the marginal product of labour. In other words, in
the Cobb-Douglas production function, Yt �Ht represents both the % deviation of labour productivity and the
marginal product of labour.
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Figure 1: Impulse response functions to a positive technology innovation of the standard RBC
model in which labour supply is determined 5 periods in advance.
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Figure (1) shows the impulse response functions with S = 5, which means that the household
decides its labour supply 5 quarters in advance.
There are several of points worth noting here.

� Labour hours do not move for the �rst S periods. That is, @Ht=@�t�s = 0 for s =
0; 1; � � � ; S.

� Labour productivity (Yt � Ht) and investment show "unusual" movements for the �rst S
periods. However, after S + 1 periods all endogenous variables follow (a linear combina-
tions of) AR(1) processes. This is one example of the proposition that the direct e¤ect of
imperfect information lasts only S period after an impulse.

� Corr (Yt �Ht; Yt) is lower than under perfect information, but only slightly (exact numbers
are not shown).

5.1.2 Case II: Firm decides labour demand before observing innovations

In this case (22b) does not hold. Instead, the labour supply decision is governed by

0 = E
h
Yt �Ht �Wt j

�
Kt�j; At�j; �t�j

	1
j=S+1

i
Since Ht cannot react to the innovations, for s = 0; 1; � � � ; S,

@Ht
@�t�s

= 0 given Kt�S; At�S

The results are not very interesting in terms of economics.

� The impulse response functions are almost the same as in the case I, except for wage (hence,
the �gure is omitted).

� Corr (Yt �Ht; Yt) is lower than under perfect information, but only slightly.

However, the important message in this experiment lies in computation: Simply specifying the
endogenous variables that are determined without observing perfect information is not enough
to �nd a solution. This is evident in that the results of Case I and Case II are not the same.

5.1.3 Case III: HH decides wage before observing innovations but accommodates
labour demand

This case can be regarded as a version of the sticky wage model. The representative household
�xes wages before observing innovations, and commits itself to supplying labour to accommodate
labour demand.
In this case (22a) does not hold. Instead, the labour supply decision is governed by

0 = E
h
bHt �Wt � �t j

�
Kt�j; At�j; �t�j

	1
j=S+1

i
Since Wt cannot react to the innovations, for s = 0; 1; � � � ; S,

@Wt

@�t�s
= 0 given Kt�S; At�S

The results are very interesting.
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Cooley and Prescott (1995)
Output Hours Consumption Investment Corr(Output,Outpu/Hours)

s.d 1.72 1.59 0.86 8.24 0.41
relative 1.00 0.92 0.50 4.79

s.d 1.35 0.47 0.33 5.95 0.98
relative 1.00 0.35 0.24 4.41

Imperfect information (RBC with Prefixed Wage)
Output Hours Consumption Investment Corr(Output,Outpu/Hours)

s.d 2.15 2.10 0.53 7.92 0.25
relative 1.00 0.98 0.25 3.69

Standard RBC

Data

Figure 2: Comparison among data, standard RBC and RBC with sticky wages.

� The volatility of labour is much higher.

� Corr (Yt �Ht; Yt) is much lower than under perfect information.

� Given standard deviation of the innovation, both output and labour are more volatile.

� The behaviours of most variables other than labour and labour productivity do not change
signi�cantly.

The intuition behind these results is quite simple. Without imperfect information, when
there is a positive productivity innovation, wage increases, which discourages �rms to hire more
labour. As a result, labour does not increase very much. Indeed, another failure of the standard
RBC model is that its prediction of labour volatility relative to output volatility is too small.
During a boom both Yt and Ht increase, while Yt�Ht increases because the increase in Ht is not
large enough. Consequently, both Yt and Yt�Ht increase in a boom, which is the (one possible)
mechanism behind a high Corr (Yt �Ht; Yt) in the standard RBC model.
However, if wage is determined without seeing a positive innovation, it does not change

quickly. Hence, �rms are not discouraged from using more labour. The e¤ect of imperfect
information is larger on labour than on output. Thus, in a boom both Yt and Ht increase, while
Yt � Ht does not increase very much because the increase in Ht is large enough. Indeed, the
standard RBC model with one-period wage stickiness predicts labour volatility relative to output
volatility that almost matches the data. Consequently, in a boom Yt increases but Yt �Ht does
not, which leads to low Corr (Yt �Ht; Yt). Indeed, in our parameter set, Corr (Yt �Ht; Yt) is
negative if S is larger than 2.
Figure (2) shows the summary table of the selected second moments for one-period wage

stickiness (S = 1). One-period wage stickiness improves the labour volatility and correlation
between labour productivity and output, while it slightly deteriorates the model performance in
terms of the relative volatility of investment.
Figure (3) shows the comparison of selected impulse response functions between perfect and

imperfect information models. The salient di¤erences appear only in the �rst period. In the
sticky wage model, both labour and output jump in the �rst period, and the size of the jumps
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Figure 3: Comparison of selected impulse response functions to a positive technology innovation
between standard RBC and RBC with wage stickiness.
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Figure 4: E¤ect of di¤erent degrees of imperfect information on selected second moments.

are the same. Hence, the labour productivity does not change in the �rst period. Note that
(22b) shows that the labour productivity is always equal to wage.
Figure (4) shows the relative volatilities and correlations for di¤erent degrees of imperfect

information (i.e., for di¤erent values of S). As S increases, Corr (Yt �Ht; Ht) decreases.
Case III also reveals one computational requirement: Simply specifying the information set

in each equation is not enough to �nd a solution. A researcher also has to specify which variables
are determined without observing perfect information. This is evident in that the results of Case
I and III are not the same.

5.1.4 Conclusion for RBC with Sticky Wage

Adding one-period wage stickiness is quantitatively enough to overcome the two drawbacks of the
standard RBC model, (a) labour volatility is too small and (b) the correlation between labour
productivity and output is too high, without signi�cantly deteriorating other dimensions of the
model performance. This example shows the possibility that the information structure of a model
has signi�cant quantitative e¤ects.
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6 Conclusion

This paper has developed an algorithm for linear rational models under imperfect information.
Imperfect information is important because it includes many interesting classes of models such
as sticky information and noisy signal models.
The algorithm exploits two observations: (1) if an endogenous variable yk;t is decided without

observing an innovation �i;t�s, then yk;t is not a¤ected by �i;t�s (i.e., @yk;t=@�i;t�s = 0); (2) if the
information set in the j-th equation includes �i;t�s, then �i;t�s cannot be the source of expectation
error in the j-th equation (Es;ji = 0). The solution is de�ned by these two zero restrictions, and
it turns out that they are enough to determine solutions.
The state space representation chosen in this algorithm is the set of crawling variables at the

beginning of the current period and current and past innovations. This representation reveals that
the dynamic parts of the solution (H and F matrices) are the same as under the corresponding
perfect information models. Invariant H and F imply that (a) the dynamic property, such as
sunspot or saddle-path stability is not altered by information structure, and (b) impulse response
functions are not (directly) a¤ected by the information structure after the �rst S periods, where
S is such that the minimum information set in a model has all the information up to time S.
These �ndings show that qualitatively imperfect information models inherit properties of their
perfect information counterparts.
However, as the RBC example demonstrates, quantitatively imperfect information may be

important. Hence, it is desirable to check robustness in terms of the information structure,
and our MATLAB algorithm o¤ers an easy way to conduct such experiments. Once structural
equations are obtained, then the additional inputs to the algorithm are only two zero restrictions.
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Appendix

A Generalized Eigenvalues and Linear Di¤erence Equa-
tions

The generalized eigenvalues �i and eigenvectors vi satisfy

�iAvi = Bvi (23)

Suppose we have homogenous (i.e., no exogenous shocks) linear di¤erence equations such as

Axt+1 = Bxt (24)

One possible solution is10

xt = vi�
t
i

Note that for a stable solution j�ij < 1. Also, note that xt+1 = vi�t+1i = �ivi�
t = �ixt.11 Hence,

substituting this solution back into (24), we can con�rm that our solution is

�iAvi = Bvi

Indeed, the primary motivation for studies on linear matrix pencils (23) is the dynamic system
such as (24). This is in parallel with the relationship between eigenvalues and di¤erence equations
such as xt+1 = Bxt. See the Wilkinson�s (1979) Introduction for linear di¤erential equations.

B Extension of Uhlig�s Theorem 3

Proposition 1 (Extension of Uhlig�s Theorem 3) To �nd a m � m matrix X that solves the
matrix polynomial

�nX
n ��n�1Xn�1 � � � � ��1X ��0 = 0

Given m�m coe¢ cient matrices f�n0gnn0=0, de�ne the nm� nm matrices � and � by

� =

26664
�n�1 � � � �1 �0
I 0 0

. . .
...

0 I 0

37775

� =

26664
�n 0 � � � 0
0 I 0
...

. . .
0 0 I

37775
10In general, a solution is a linear combination of vj�

t
j , and such a linear combination is speci�ed by the initial

condition.
11This implies that the generalized eigenvalue �i has an e¤ect analogous to the lead operator.
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and obtain the generalized eigenvalues � and the generalized eigenvector s such that ��s = �s.
Then, s can be written as

s =

0BBB@
�n�1x
...
�x
x

1CCCA
for some x 2 Rm, and

X = 
�
�1

where 
 = [x1; � � � ; xm] and � = diag(�1; � � � ; �m).

Proof. Almost the same as Uhlig (1999).

C Matrix Operations

To pick up and drop out columns and rows from a matrix, we de�ne

� [A]:x as columns x of a matrix A.

� [A]x: as rows x of a matrix A.

� [A]::x as the columns remaining after the elimination of columns x.

� [A]:x: as the rows remaining after the elimination of rows x.

where x is the name of a set of columns or rows. The brackets are used simply because they
often clarify the notation, and often can be omitted, i.e., [B]::y = B::y. The dot ":" implies all
rows or columns, e.g., B:: = B. It is quite easy to show the following formulae.

[AB] = [A]::x [B]:x: + [A]:x [B]x:
[AB]::y = [A] [B]::y
[AB]:x: = [A]:x: [B]

[AB]:x:y = [A]:x: [B]::y

An example for the �rst formula is�
a11 a12
a21 a22

� �
b11 b12
b21 b22

�
=

�
a11
a21

� �
b11 b12

�
+

�
a12
a22

� �
b21 b22

�
=

�
a11b11 a11b12
a21b11 a21b12

�
+

�
a12b21 a12b22
a22b21 a22b22

�
=

�
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

�
where x = 2.
Note that this notation is consistent with other matrix subscripts; for example, the rows of

Zs� is are related to stable roots s and its columns are to crawling variables �.
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D Invertible ZHu� Implies Invertible Z
H
s�

Proposition 2 For an invertible matrix Z, which is partitioned as

Z =

�
Z11 Z12
Z21 Z22

�
if Z11 is invertible, then [Z�1]22 is also invertible.

Proof. De�ne

ZL �
�

I 0
�Z21Z�111 I

�
ZR �

�
I �Z�111 Z12
0 I

�
Note that ZLZZR has full rank because all of ZL, Z and ZR have full rank, and note that�

I 0
�Z21Z�111 I

� �
Z11 Z12
Z21 Z22

� �
I �Z�111 Z12
0 I

�
=

�
Z11 0
0 Z22 � Z21Z�111 Z12

�
Hence, G � Z22 � Z21Z�111 Z12 must have full rank.
For a full rank matrix with an invertible upper left submatrix, the well-known formula tells us�

Z11 Z12
Z21 Z22

��1
=

�
Z�111 + Z

�1
11 Z12G

�1Z21Z
�1
11 �Z�111 Z12G�1

�G�1Z21Z�111 G�1

�
Note that the RHS exists since we know that both Z11 and G are invertible. Thus, [Z�1]22 is
invertible.
Since Z is unitary, Z�1 = ZH , which implies G�1 = [Z�1]22 = Z

H
22. Since Z

H
22 has full rank,

its conjugate transpose Z22
�
=
�
ZH22
�H�

also has full rank.

E Invertibility of Block Triangular Matrices

Due to the following introductory result, we know that 
Ass, 

B
uu, �, My� and M�� are all

invertible.
Consider a block triangular � which has invertible block diagonal submatrices �dd

� =

2666664
�11

. . .
�dd

. . .
�DD

3777775
� is either an upper or lower block diagonal. Then, � is invertible.
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To show this, focus on the upper left part �rst

det

�
�11 �12

�21 �22

�
=

�
det�11

� �
det (�22 ��21 (�11n�12))

�
=

�
det�11

� �
det�22

�
6= 0

Note that �21 (�11n�12) = 0 since either �21 or �12 is zero. We can repeat this process until it
shows det� 6= 0.

F Rank De�cient H Matrix and Expansion of Innovation
Vector

The representation of a solution under imperfect information is not necessarily unique. This
section shows the equivalence of two representations.
Consider the RBC model, in which labour supply is decided without observing today�s inno-

vation. The vector of crawling variables is

�t =

�
Kt

HS
t

�
where Kt and HS

t are capital and labour supply at time t, respectively. Then, the solution has
an H matrix that is rank de�cient.
We can decompose such an H matrix by using eigenvalue-eigenvector decomposition

V �t+1 = �V �t + V J�t

� =

�
�1 0
0 0

�
V =

�
V11 V12
V21 V22

�
From the �rst row

V11Kt+1 + V12H
S
t+1 = �1

�
V11Kt + V12H

S
t

�
+
�
V11J1 + V12J2

�
�t

where J is 2x1. From the second row

V21Kt+1 +H
S
t+1 =

�
V21J1 + V22J2

�
�t

HS
t+1 =

�
V22nV21J1 + J2

�
�t � V22nV21Kt+1

Under our assumption 3 (invertible [M�E]kj), V11 and V22 are non-zero. Hence,

Kt+1 = �1Kt + J1�t + �1

�
V12(V22nV21)J1+V12J2
V11�V12(V22nV21)

�
�t�1

Thus, it is shown that with a rank de�cient H matrix we can reduce the set of crawling variables
by increasing the number of innovations.
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G Full Derivation

This section provides the full derivation. For the notation, see the main text.

G.1 QZ Decomposition

Applying the QZ decomposition to (2)

0 = 
AZ
Hyt+1 + 
BZ

Hyt +Q
HC�t +Q

HD�t+1 +Q
HE�t;S

=

�

Ass 
Asu
0 
Auu

��
st+1
ut+1

�
+

�

Bss 
Bsu
0 
Buu

��
st
ut

�
+

�
QHs:
QHu:

�
C�t +

�
QHs:
QHu:

�
D�t+1 +

�
QHs:
QHu:

�
E�t;S (25)

where st and ut are stable and unstable roots, respectively, such that�
st
ut

�
�
�
ZHs� ZHs�
ZHu� ZHu�

��
�t
�t

�
G.1.1 Unstable Roots and Transversality Conditions (TVCs)

Imperfect information requires a slightly careful treatment of TVCs. Focusing on the lower half
of (25)

0 = 
Auuut+1 + 

B
uuut +Q

H
u:C�t +Q

H
u:D�t+1 +Q

H
u:E�

t;S (26)

Iterating it forward

lim
l!1

(�
�
Buun
Auu

�l
ut+l +

l�1X
s=1

�
�
Buun
Auu

�s �

BuunQHu:

� �
C�t+s +D�t+1+s + E

~�
t+s;S

�)

= �ut �
�

BuunQHu:

�
C�t �

SX
l=0

�
�
Buun
Auu

�l �

BuunQHu:

�
E�̂

t+l;S
(27)

where

�t+l;S =

0BBBBBBB@

�t+l
...
�t+1
�t
...

�t+l�S

1CCCCCCCA
= �̂

t+l;S
+ ~�

t+l;S
=

0BBBBBBB@

0
...
0
�t
...

�t+l�S

1CCCCCCCA
+

0BBBBBBB@

�t+l
...
�t+1
0
...
0

1CCCCCCCA
where AnB = A�1B, and A=B = AB�1. There are many information sets, under each of which
TVCs must be satis�ed. That is, TVCs are (seemingly) tighter under imperfect information.
However, if the full information counterpart satis�es TVCs, corresponding imperfect information
models also satisfy them automatically due to the law of iterated linear projection.12

12There are two comments. First, (27) must hold for any realization of �t�1 and �t�s for s = 0; 1; � � � . Hence,
it is not possible that TVCs hold under imperfect information but not under perfect information. Second, if an
information set does not include, for example, �i;t�s then relevant expected value of ut+s is the RHS with setting
�i;t�s = 0. Hence, if TVCs hold for the full information set, they hold for non-full information sets as well.
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Thus, consider the perfect information case. Because
�
�
Buun
Auu

�l ! 0 as l ! 0 by con-
struction, the expected value of ut+l explodes for any non-zero value of the RHS of (27), which
contradicts the TVCs. Note that inside the limit operator in the LHS shows the expected value
of ut+l (the realization of ut+l plus expectation errors) times

�
�
Buun
Auu

�l
. Hence, the RHS of

(27) must be zero.
Therefore,

�
Buuut = �
BuuZHu��t � 
BuuZHu��t

= QHu:C�t + 

B
uu

SX
l=0

�
�
Buun
Auu

�l �

BuunQHu:

�
E�̂

t+l;S

= QHu:C�t +

SX
l=0

�
�
Auu=
Buu

�l
QHu:E�̂

t+l;S
(28)

Substituting our "guess solution" (3) into (28),

0 =
�

BuuZ

H
u� + 


B
uuZ

H
u�F

�
�t + 


B
uuZ

H
u�G�

t;S +QHu:C�t

+
SX
l=0

�
�
Auu=
Buu

�l
QHu:E�̂

t+l;S
(29)

G.1.2 Stable Roots

Similarly, from the upper half,

0 = 
Ass
�
ZHs��t+1 + Z

H
s��t+1

�
+ 
Asu

�
ZHu��t+1 + Z

H
u��t+1

�
+
Bss

�
ZHs��t + Z

H
s��t

�
+ 
Bsu

�
ZHu��t + Z

H
u��t

�
+QHs:C�t +Q

H
s:D�t+1 +Q

H
s:E�

t;S (30)

Again substituting (3) into (30), after some manipulation

0 =
�
�As�FH + �

A
s�H + �

B
s�F + �

B
s�

�
�t

+�As�G�
t+1;S +QHs:D�t+1 +Q

H
s:C�t

+
�
�As�FJ + �

A
s�J + �

B
s�G+Q

H
s:E

�
�t;S (31)

Though the de�nitions of �As�, �
A
s�, �

B
s� and �

B
s� are (10) in the main text, the following result

may be more useful. �
�As� �As�
�Bs� �Bs�

�
=

�

Ass 
Asu

Bss 
Bsu

� �
ZHs� ZHs�
ZHu� ZHu�

�
(32)
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G.2 Expansion of �t+1;S and �t;S

Expanding �t+1;S and �t;S in (31) and (29),

0 =
�
�As�FH + �

A
s�H + �

B
s�F + �

B
s�

�
�t

+
�
�As�G0 +Q

H
s:D

�
�t+1

+
�
�As�G1 +

�

Ass=Z�s

�
J0 + �

B
s�G0: +Q

H
s:E0: +Q

H
s:C

�
�t

+
�
�As�G2 +

�

Ass=Z�s

�
J1 + �

B
s�G1: +Q

H
s:E1:

�
�t�1 + � � �

+
�
�As�GS +

�

Ass=Z�s

�
JS�1 + �

B
s�GS�1: +Q

H
s:ES�1:

�
�t�(S�1)

+
� �

Ass=Z�s

�
JS + �

B
s�GS: +Q

H
s:ES:

�
�t�S

0 =
�

BuuZ

H
u� + 


B
uuZ

H
u�F

�
�t

+

SX
s=1

�

BuuZ

H
u�Gs +

�PS�s
k=0

�
�
Auu=
Buu

�k
QHu:Ek+s

� �
�t�s

+
�
QHu:C + 


B
uuZ

H
u�G0 +

�PS
k=0

�
�
Auu=
Buu

�k
QHu:Ek

� �
�t

Since these matrix equations must hold for any realization of �t, �t�� for � = �1; 0; 1; � � � ; S,

0 = �As�FH + �
A
s�H + �

B
s�F + �

B
s� (33a)

0 = 
BuuZ
H
u� + 


B
uuZ

H
u�F (33b)

0 = �As�G0: +Q
H
s:D (34a)

0 = 0 (34b)

0 = �As�G1 +
�

Ass=Z�s

�
J0 + �

B
s�G0 +Q

H
s:ES: +Q

H
s:C (35a)

0 = 
BuuZ
H
u�G0 +

 
SX
s=0

�
�
Auu=
Buu

�s
QHu:Es

!
+QHu:C (35b)

0 = �As�Gs+1 +
�

Ass=Z�s

�
Js + �

B
s�Gs +Q

H
s:Es for s = 1; � � � ; S � 1 (36a)

0 = 
BuuZ
H
u�Gs +

 
S�sX
k=0

�
�
Auu=
Buu

�k
QHu:Ek+s

!
for s = 1; � � � ; S � 1 (36b)

0 =
�

Ass=Z�s

�
JS + �

B
s�GS +Q

H
s:ES (37a)

0 = 
BuuZ
H
u�GS +Q

H
u:ES (37b)

G.3 Dynamic Parts (H and F )

Since (33a) and (33b) do not include G, J , D, E or �, these two matrix equations can be solved
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for H and F independently. Thus, assuming ZHu� has a (right) inverse,
13

F = �ZHu�nZHu� = Z�s=Z�s
H = �Z�s

�

Assn
Bss

�
=Z�s

Note that theH and F matrices are the same as in the corresponding perfect information model.14

G.4 Zero Restrictions on E and �

Vertically concatenating matrix equations (35a)-(37b) in pairs,

0 =

�
0 �As�
0 0

�
�1 +

�

Ass=Z�s �Bs�
0 
BuuZ

H
u�

�
�0 +

SX
k=0

�
0 0
0 �
Auu=
Buu

�k
QHEk +Q

HC(38a)

0 =

�
0 �As�
0 0

�
�s+1 +

�

Ass=Z�s �Bs�
0 
BuuZ

H
u�

�
�s +

S�sX
k=0

�
0 0
0 �
Auu=
Buu

�k
QHEk+s (38b)

for s = 1; � � � ; S � 1

0 =

�

Ass=Z�s �Bs�
0 
BuuZ

H
u�

�
�S +Q

HES (38c)

Note that

0 =

�
0 0
0 �
Auu=
Buu

�0BB@
�
0 �As�
0 0

�
�s+2 +

�

Ass=Z�s �Bs�
0 
BuuZ

H
u�

�
�s+1

+
PS�(s+1)

k=0

�
0 0
0 �
Auu=
Buu

�k
QHEk+s+1

1CCA
=

�
0 0
0 �
AuuZHu�

�
�s+1 +

S�sX
k=1

�
0 0
0 �
Auu=
Buu

�k
QHEk+s (39)

13Remember that an invertible ZHu� implies an invertible Z
H
s�.

14For the F matrix, note

ZHZ =

�
ZHs� ZHs�
ZHu� ZHu�

� �
Z�s Z�u
Z�s Z�u

�
=

�
ZHs�Z�s + Z

H
s�Z�s ZHs�Z�u + Z

H
s�Z�u

ZHu�Z�s + Z
H
u�Z�s ZHu�Z�u + Z

H
u�Z�u

�
=

�
I 0
0 I

�
Looking at the lower left element

ZHu�Z�s + Z
H
u�Z�s = 0

�ZHu�Z�s = ZHu�Z�s

�ZHu�nZHu� = Z�s=Z�s

Also, remember that
Z�1�s = Z

H
s� � ZHs�

�
ZHu�nZHu�

�
and that 
Ass is invertible by the reordering of QZ decomposition.
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Subtracting (39) from each of (38),15

0 =

�
0 �As�
0 
AuuZ

H
u�

�
�1 +

�

Ass=Z�s �Bs�
0 
BuuZ

H
u�

�
�0 +Q

HEk +Q
HC (40a)

0 =

�
0 �As�
0 
AuuZ

H
u�

�
�s+1 +

�

Ass=Z�s �Bs�
0 
BuuZ

H
u�

�
�s +Q

HEk+s (40b)

for s = 1; � � � ; S � 1

0 =

�

Ass=Z�s �Bs�
0 
BuuZ

H
u�

�
�S +Q

HES (40c)

and again vertically concatenating these equations,

0 = My�� +Q (E +C)

� �

0B@ �0
...
�S

1CA , E �
0B@ E0

...
ES

1CA , C � � C0
0

�
, Q �

264 Q 0
. . .

0 Q

375

My� �

266666664

� �0A

� �0A 0
� �0A

. . . . . .
0 � �0A

�

377777775
� �

�

Ass=Z�s �Bs�
0 
BuuZ

H
u�

�
, �0A�

�
0 �As�
0 
AuuZ

H
u�

�
Note that since � is invertible, My� is also clearly invertible. Hence,

0 = � +My�nQ (E +C)
= M���+My�nQ (E +C)

where (7) is used to derive the second line. Hence,

0 = � +M�E (E +C) (41a)

M�E � (My�M��) nQ (41b)

In the following, we compute E and � column by column.

�:i =M�E (E:i +C:i)

Remember that some elements in �:i are zero due to imperfect information, while some elements
in E:i are non-zero. For example,

15Though this process is not necessary, it reduces the computational burden.
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0 =

0BBBBB@
�1;i
...

�k;i (= 0)
...

�M(S+1);i

1CCCCCA+M�E

0BBBBB@

0BBBBB@
0
...
Eji
...
0

1CCCCCA+
0BBBBB@
C:i
0
...
...
0

1CCCCCA

1CCCCCA (42)

G.4.1 E matrix

From the k-th set of equations in (42)

0 =
�
M�E

�
kj
Eji +

�
M�E

�
kj
Cji +

�
M�E

�
k:j C:ji

Hence, assuming
�
M�E

�
kj
is invertible,

Eji = �
�
M�E

�
kj
n
�
M�E

�
k:j C:ji �Cji

G.4.2 � matrix

From the other equations in (42), we eliminate the expectation errors Eji.

�:ki =

�
M�E

�
:kj

��
M�E

�
kj
n
�
M�E

�
k:j C:ji +Cji

�
�
�
M�E

�
:kj Cji �

�
M�E

�
:k:j C:ji

=
��
M�E

�
:kj

��
M�E

�
kj
n
�
M�E

�
k:j

�
�
�
M�E

�
:k:j

�
C:ji

= �
�
M�1
�E

�
:j:k nC:ji

The vector �:ki and �ki = 0 can be vertically merged to recover �:i, and the vector �:i are hori-
zontally concatenated to recover full � matrix. Note that invertible

�
M�E

�
kj
implies invertible�

M�1
�E

�
:j:k. Not surprisingly, Cji does not a¤ect the coe¢ cient matrix �:i, because the j-th

set of equations does not hold for the i-th innovation anyway. It only a¤ects the expectation
error Eji.

G.5 Other Matrices (J, G and D)

G.5.1 J and G matrices

To obtain the J and G matrices, from (7),

� �

2666664
J0
G0
...
JS
GS

3777775 =M���
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G.5.2 D matrix

From the A matrix in a given model (2),

D = �A
�
0
G0

�
which always satis�es (34a). It can be shown that the j-th rows inD are zeros if the j-th equation
does not include t+ 1 dynamic jump variable (see the next section).

H The D Matrix

The derivation of the D matrix is a bit tricky, and requires careful attention concerning non
square matrices �As� and Q

H
s: . We do not show the straightforward derivation of D, which is

perhaps not intuitive, but instead we simply shows our solution always satisfy (34a), which
reveals an important intuition.
First, we de�ne dynamic and non-dynamic jump variables.

�t+1 =

�
�dt+1
�nt+1

�
Note that the coe¢ cients of the non-dynamic jump variables �nt+1 in A matrix must be zero by
the de�nition of "non-dynamic".

Ayt+1 �

24 A�� A��d 0
A�d� A�d�d 0
A�n� A�n�d 0

350@ �t+1
�dt+1
�nt+1

1A
where �dt+1 is the vector of dynamic variables, such as consumption in the Euler equation. The
submatrices in G0 and QH are de�ned as

~G0 �
�
0
G0

�
�

24 0
G0;�d:
G0;�n:

35
QH �

�
QHs:
QH�:

�
, QHs: �

h
QHs� QH

s�d
QHs�n

i
, QHu: �

"
QH
uf�

QH
uf�d

QH
uf�n

QHui� QH
ui�d

QHui�n

#
where uf and ui imply �nite and in�nite unstable roots, respectively.
Focusing on the second term of (34a)

QHs:D = QHs:A
~G0 =

h
QHs� QH

s�d
QHs�n

i24 A�� A��d 0
A�d� A�d�d 0
A�n� A�n�d 0

3524 0
G0;�d:
G0;�n:

35
=

�
QHs�A��d +Q

H
s�d
A�d�d +Q

H
s�nA�n�d

�
G0;�d: (43)
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For the �rst term of (34a) note that �As� is the s�-th elements in 

AZH , i.e.,

�As� =
�

AZH

�
s�

=
�
QQH
AZH

�
s�
=
�
QA

�
s�

=

264
264 QHs� QH

s�d
QHs�n

QH
uf�

QH
uf�d

QH
uf�n

QHui� QH
ui�d

QHui�n

375
24 A�� A��d 0
A�d� A�d�d 0
A�n� A�n�d 0

35
375
s�

=

264
264 �

�
QHs�A��d +Q

H
s�d
A�d�d +Q

H
s�nA�n�d

�
0

� � 0
� � 0

375
375
s�

=
h �

QHs�A��d +Q
H
s�d
A�d�d +Q

H
s�nA�n�d

�
0
i

where � elements are irrelevant for our current interest. Hence,

�As�G0 =
h �

QHs�A��d +Q
H
s�d
A�d�d +Q

H
s�nA�n�d

�
0
i � G0;�d:

G0;�n:

�
=

�
QHs�A��d +Q

H
s�d
A�d�d +Q

H
s�nA�n�d

�
G0;�d: (44)

(43) and (44) show that (34a) holds. The key to the solution is a sort of a zero restriction: A
matrix has zero columns by the de�nition of "non-dynamic" variables.
A further question is the consistency of D, i.e. whether the computed D always has zeros at

the proper positions? Speci�cally, if the j-th equation does not have �dt+1, it should not have an
expectation error due to �t+1, and hence the row vector Dj: must be zero. This zero restriction
on D is analogous to that on E. For example, in the standard RBC model, all but the Euler
equation have zero rows in D. However, the j-th row of D = A ~G0 is always zero simply because,
by the construction of A, the j-th row in A is zero if the j-th equation does not include dynamic
jump variables �dt+1.
What this section discusses is the correspondence between expectation errors and the source

of such errors. If, for example, expectation errors with respect to full information up to time
�t appears in the equations without dynamic jump variables, then it is a logical contradiction
(which variable makes an expectational mistake?), and hence (34a) is not satis�ed. Conceptually,
the consistency of the D matrix is parallel to the invertibility of [M�E]kj. As mentioned in the
main text, the non-invertibility of [M�E]kj implies an incorrect speci�cation of the information
structure with respect to �t+� (� = 0; 1; � � � ; S). Similarly, an inconsistent D (or non-existence
of a consistent D) implies an incorrect speci�cation of the information structure with respect to
�t+1. Such inconsistency/non-existence happens, for example, if a researcher puts an expectation
operator on the evolution of capital, rather than on the consumption Euler equation.
Finally, note that

"A consistent D matrix exists", "Equation (40) in Sims (2002) holds"

Thus, it is now clear that equation (40) in Sims (2002) must always be satis�ed if expectation
errors appear only in the equations with dynamic jump variables, regardless of the dynamic
property such as saddle-path stable, sunspot, or explosive!
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