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We consider two coupled time-reversal-invariant helical edge modes of the same helicity, such as would occur
on two stacked quantum spin Hall insulators. In the presence of interaction, the low-energy physics is described
by two collective modes, one corresponding to the total current flowing around the edge and the other one
describing relative fluctuations between the two edges. We find that quite generically, the relative mode becomes
gapped at low temperatures, but only when tunneling between the two helical modes is nonzero. There are two
distinct possibilities for the gapped state depending on the relative size of different interactions. If the intraedge
interaction is stronger than the interedge interaction, the state is characterized as a spin-nematic phase. However,
in the opposite limit, when the interaction between the helical edge modes is strong compared to the interaction
within each mode, a spin-density wave forms, with emergent topological properties. First, the gap protects
the conducting phase against localization by weak nonmagnetic impurities; second, the protected phase hosts
localized zero modes on the ends of the edge that may be created by sufficiently strong nonmagnetic impurities.

DOI: 10.1103/PhysRevB.93.235436

I. INTRODUCTION

Symmetry-protected topological states of matter are char-
acterized by the invariance of their Hamiltonian under local
symmetries. These states are referred to as topological insu-
lators/superconductors. They possess gapless surface modes
that are protected by the gap in the bulk of the material, as
long as the symmetries are not broken. For noninteracting
particles, the topological classification is determined by time-
reversal (TR) and particle-hole (PH) symmetry [1,2]. Under
this classification, a two-dimensional insulator invariant under
TR symmetry can be either trivial or topological. While the
bulk conductivity vanishes at zero temperature in both cases,
a nontrivial topological insulator (TI) hosts gapless helical
edge modes [3,4]. A single helical edge mode consists of a
Kramers pair, connected by TR symmetry. The disorder that
does not break the TR symmetry cannot scatter between the
Kramers partners. Therefore, the system is protected against
localization as long as the gap in the bulk exceeds the disorder
potential and TR symmetry is preserved. The nontrivial TR
topological insulators, also known as quantum spin Hall
insulators (QSHIs), have been observed experimentally in
certain two-dimensional [5–7] materials with a strong spin
orbit. An analogous state occurs in three dimensions [8–10],
where the two-dimensional surface is conducting and cannot
be localized.

A TR TI in two dimensions is known as a Z2 topological
insulator, meaning that the number of protected topological
modes is either zero or one. This means that if one considers
a system with two helical edge modes, backscattering be-
tween non-Kramers pairs is allowed, leading to Anderson’s
localization of the edge modes. In this case, the system is a
topologically trivial insulator. Whether it is possible to find
an individual material exhibiting two (nonprotected) helical
modes or not is, as far as we know, an open question. However,
such a setup can certainly be engineered by considering a
stack of two QSHIs, sufficiently close that the conducting edge
modes may both hybridize and interact with each other via the

Coulomb interaction (top panel in Fig. 1). A dual stacking to
the one proposed here, where a topological insulator is placed
parallel to a normal insulator, has been discussed in [11].

The presence of electron-electron interactions can dramat-
ically change the properties even of single QSHIs [12–17].
In particular, as has been shown in Refs. [18,19], the topo-
logical protection of a single helical mode in the presence
of impurities is removed by sufficiently strong repulsive
interactions. The process involves coherent scattering of two
interacting electrons off a static impurity, a process allowed
by TR symmetry. As a result, the helical state is localized.
On the other hand, as shown in Ref. [20], moderate repulsive
interaction stabilizes the conducting phase for a TI with a
number of edge modes. Clearly these two mechanisms act in
opposite directions. In this work, we complete the analysis of
[20] and take into account two-particle scattering.

Beyond analyzing the system by considering general terms
allowed by symmetry [20–23], we focus on a microscopic
model of two helical edge modes, coupled by tunneling,
spin-orbit, and electron interaction. In the noninteracting limit,
this system is topologically equivalent to a trivial insulator. We
show that in the presence of interaction, the system may or
may not be topologically trivial depending on the strength
of interaction and tunneling amplitude. If the intermode
interaction is smaller than the interaction between Kramers
pairs, the system remains topologically trivial, with vanishing
conductance at zero temperature. In this case, the system is in
a spin-nematic phase [24–27]. In the opposite limit, where the
intermode interaction is stronger than the interaction within
each mode, the system remains conducting. This protection
against localization is a direct consequence of the spin gap. By
adding strong nonmagnetic impurities, the edge mode splits
into unconnected parts, each hosting a pair of localized zero
modes on its ends.

This paper is organized as follows. In the first section,
we formulate the model. In the second section, we apply the
bosonization technique and analyze the low-temperature fixed
point using the renormalization-group (RG) approach. In the
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FIG. 1. Top: A stack of quantum wells, each realizing a helical
edge mode, becomes effectively a topological insulator with two
helical edge modes. Bottom: Experimental setup to measure the
conductance (see text).

third section, we study the stability of the conducting phase
against a single impurity and random disorder. We summarize
and discuss our results in the Conclusion.

II. TWO COUPLED HELICAL MODES

A. Motivation

It is well known [1] that in the case of vanishing interactions,
a putative TR TI with two helical edge modes (each of them
composed of a right mover and a left mover with opposite
spins projections), the topological protection, which is the
hallmark of the TR TI with a single helical mode, is no longer
present. This implies that in a real material, edge roughness
and/or a local spin orbit can localize the pair of helical edge
modes, causing the conductance in the system to tend to
zero at vanishing temperatures. In this section, we introduce
the minimal effective theory, valid at low temperatures, that
contains all the ingredients to analyze the effects of interactions
in an edge of a TI supporting two helical modes. Although
no such system has been found experimentally yet, such a
system is the natural generalization of a TI with a single
helical edge mode, and it is a candidate for the description
of the edge in a heterostructure (Fig. 1, top). Similar setups
were considered in the pioneering works of Wu, Bernevig, and
Zhang [21] and Tanaka and Nagaosa [22]. The noteworthy
aspect of our paper stems from taking into account the generic
spin orbit, which violates the conservation of the z component
of the spin. We thus keep the simplest most relevant term, in
a renormalization-group sense, generated by such interaction.
In this regard, a local interaction term is it known to capture

the basic physics [25]. The important effects of disorder are
considered in Sec. IV.

B. The model

We consider two interacting helical modes. Each one
is formed at the edge of two-dimensional TR invariant
topological insulators that are placed one next to the other;
see Fig. 1. The Hamiltonian of the clean system (disorder or
impurities will be added in Sec. IV) consists of four different
parts,

H = Hkin + Htun + HSO + Hint. (1)

Here Hkin is the kinetic energy,

Hkin =
∑
k,σ,a

εσ,a(k)c†σ,a(k)cσ,a(k), (2)

where c
†
σ,a(k) creates a fermion in a helical mode (a = 1,2)

with a given spin (σ =↑ , ↓) and momentum k; εσ,a(k)
is the dispersion relation of the noninteracting mode. The
helicity comes from the relationship between spin σ and the
dispersion—roughly speaking, spin up will correspond to a
right-moving mode, while spin down will be a left-moving
mode; this will be fully discussed below.

The tunneling between the two modes is described by

Htun = −t⊥
∑
k,σ,a

c†σ,a(k)cσ,ā(k), (3)

where we introduced the notation 1̄ = 2,2̄ = 1.
In a TI, spin-orbit coupling creates a band inversion in the

topological phase, which is responsible for the appearance of
edge modes in the first place. On top of this spin-orbit coupling,
which is present in the bulk of the system, the very presence of a
boundary in a generic system will induce a different spin-orbit
coupling potential near the edges, which could be caused by
an interplay between the Rashba and the Dresselhaus coupling
in crystals without inversion symmetry. As part of the model,
we consider spin-orbit coupling on the edge (which breaks
Sz conservation). While many previous works did this at a
phenomenological level (as TRS does not imply unbroken Sz

symmetry), we expand on a model originally proposed for a
single edge by Schmidt et al. [18]. In this model, the spin-orbit
coupling HSO is explicitly incorporated into the noninteracting
part of the model, as this is the physical process that leads to
broken spin-rotation symmetry. In the low-energy description,
the simplest coupling HSO has the generic form

HSO = αSO

∑
k,σ,σ ′,a

kc†σ,a(k)(σx)σ,σ ′cσ ′,a(k), (4)

with σx being the corresponding Pauli matrix.
Finally, the interaction between electrons is modeled by

Hint = U0

∑
x,a

na(x)na(x) + 2U
∑

x

n1(x)n2(x), (5)

where the Coulomb interaction is replaced by a local Hubbard
term, which contains the relevant physics at low energies. Here
U0 and U stand for interaction constants within the same mode

235436-2



PHASE DIAGRAM OF TWO INTERACTING HELICAL STATES PHYSICAL REVIEW B 93, 235436 (2016)

and between different modes consequently. Under generic
conditions, these two constants are different (U0 �= U ). The
fermion densities are

na(x) = c
†
↑,a(x)c↑,a(x) + c

†
↓,a(x)c↓,a(x), (6)

where, as usual, cσ,a(x) = ∑
k eikxcσ,a(k).

Throughout this work, we will use units where � = 1 and
a0 is the short-distance cutoff for the field theory. This may be
thought of as an effective lattice spacing for the helical modes;
however, in a full theory of the entire two-dimensional setup
of the QSHI, it is more closely related to the inverse of the
bulk gap. In either case, it is a nonuniversal constant in the
field theory that sets the overall energy scale.

C. Diagonalization of the noninteracting Hamiltonian

In a TR invariant system, the dispersion relation must satisfy
the constraint

εσ,a(k) = εσ̄ ,a(−k). (7)

The simplest dispersion relations describing gapless modes
are ε↑,a(k) = vF k and ε↓,a(k) = −vF k. Here we assume that
the Fermi velocity of the noninteracting helical modes is the
same. Introducing the vector of fermionic fields,

c†(k) = (c†↑,1(k),c†↓,1(k),c†↑,2(k),c†↓,2(k)), (8)

the noninteracting part of the Hamiltonian H0 = Hkin +
Htun + HSO becomes

H0 =
∑

k

c†(k)h0(k)c(k), (9)

with h0(k) the Hermitian matrix,

h0 =

⎡
⎢⎣

vF k αSOk −t⊥ 0
αSOk −vF k 0 −t⊥
−t⊥ 0 vF k αSOk

0 −t⊥ αSOk −vF k

⎤
⎥⎦ (10)

= δaa′
(
vF σ z

σσ ′ + αSOσx
σσ ′

)
k − t⊥τ x

aa′δσσ ′ . (11)

Here σx,y,z,τ x,y,z are the corresponding Pauli matrices in spin
and mode space, respectively. Using (11) we find that h0(k) is
diagonalized by a unitary transformation B, such that h0(k) =
B†D(k)B, with

B = 1√
2

⎡
⎢⎣

cos β sin β cos β sin β

− sin β cos β − sin β cos β

cos β sin β − cos β − sin β

− sin β cos β sin β − cos β

⎤
⎥⎦ (12)

=
(
τ z
aa′ + τ x

aa′
)

√
2

(
eiβσy )

σσ ′, (13)

FIG. 2. Single-particle energy spectrum. Kramers pairs are de-
picted by the same color.

and β = 1
2 tan−1( αSO

vF
). We therefore pass to the new basis

ψ(k) = Bc(k), ψ† = (ψ†
+,1,ψ

†
−,1,ψ

†
+,2,ψ

†
−,2), (14)

where the single-particle Hamiltonian (9) is diagonal,

H0 =
∑

k

ψ†(k)D(k)ψ(k). (15)

The eigenenergies are given by D(k) = diag(vk − t⊥, − vk −
t⊥,vk + t⊥, − vk + t⊥), where v =

√
v2

F + α2
SO is the renor-

malized Fermi velocity. These dispersion relations are shown
in Fig. 2.

It is worth emphasizing that while in the original basis
cσ,a,σ corresponded to the physical spin and a to the helical
edge in question, in the new basis ψσ,a,σ corresponds to
helicity and a to the band index. Thus the transformation
matrix (12) encodes the relationship between spin and helicity
that will be crucially important when potential disorder is
added in Sec. IV.

D. Interacting Hamiltonian in a rotated basis

In the new basis ψ , the interaction part of the Hamiltonian
becomes

Hint =
∑

x,σσ ′aa′

(
U+ψ†

σa(x)ψσa(x)ψ†
σ ′a′ (x)ψσ ′a′ (x)

+U−
∑
a1,a2

ψ†
σa(x)(τ x)aa1ψσa1 (x)

×ψ
†
σ ′a′ (x)(τ x)a′a2ψσ ′a2 (x)

)
,

with U± = (U0 ± U )/2. In the continuum limit, it is conve-
nient to rewrite the field operators in terms of slow modes near
each Fermi point [25,27,28]:

ψ+,1(x) → R1(x)eik1
F x, ψ−,1(x) → L1(x)e−ik1

F x,

ψ+,2(x) → R2(x)eik2
F x, ψ−,2(x) → L2(x)e−ik2

F x .

Here the Fermi momenta k
1,2
F are given by (εF ± t⊥)/v. The

noninteracting Hamiltonian can be written in terms of the slow

235436-3
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modes in a standard way,

H0 = −iv

∫
dx

∑
a

(R†
a∂xRa − L†

a∂xLa). (16)

The interaction Hamiltonian acquires the form

Hint = U+
2

∫
dx

∑
a

(R†
aRa + L†

aLa)2 (17a)

+U−
∫

dx(R†
1R1R

†
2R2 + L

†
1L1L

†
2L2) (17b)

+U−
∫

dx(R†
1R2L

†
1L2 + L

†
2L1R

†
2R1) (17c)

+U−
∫

dx(R†
1R2L

†
2L1e

2i
kF x + H.c.), (17d)

with U± = U0 ± U and 
kF = k1
F − k2

F = 2t ⊥ /v.

III. BOSONIZATION AND RG ANALYSIS

To account for the effects of the interaction, it is natural
to proceed to the bosonic description of fermionic fields. The
fermionic fields are represented by the vertex operators

Ri = κi√
2πa0

ei
√

4πφR
i , Li = κi√

2πa0
e−i

√
4πφL

i . (18)

The bosonic fields satisfy the equal-time commutation
relations

[
φR

i (x),φL
j (x)

] = i

4
δij (same point), (19)

[
φ

η

i (x),φη′
j (y)

] = i

4
ηδij δηη′sgn(x − y). (20)

After bosonization [25,27,28], the noninteracting part of the
Hamiltonian (16) combines with (17a) and (17b) into the
quadratic bosonic Hamiltonian

Hquad = v

∫
dx

∑
a

[(
∂xφ

R
a

)2 + (
∂xφ

L
a

)2]

+ g

∫
dx

∑
a

(
∂xφ

R
a + ∂xφ

L
a

)2

+ g′
∫

dx
(
∂xφ

R
1 ∂xφ

R
2 + ∂xφ

L
1 ∂xφ

L
2

)
. (21)

Here g = (U0 + U )a0/2π , g′ = (U0 − U )a0/2π , and a0 is the
lattice constant. The interaction Hamiltonian also generates the
backscattering terms

Hbs = − g′

πa2
0

∫
dx

(
ei

√
4π (φL

1 −φR
1 −φL

2 +φR
2 ) + H.c.

)

+ g′

πa2
0

∫
dx

(
ei

√
4π(φL

1 +φR
1 −φL

2 −φR
2 )ei
x + H.c.

)
. (22)

In terms of the new bosonic fields,⎡
⎢⎢⎢⎣

ϕ+
θ+
ϕ−
θ−

⎤
⎥⎥⎥⎦ = 1√

2

⎡
⎢⎢⎢⎣

1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

φL
1

φR
1

φL
2

φR
2

⎤
⎥⎥⎥⎦, (23)

the full Hamiltonian (16)–(17d) splits into two commuting
parts H = H+ + H−. The Hamiltonian H+ is given by

H+ = u+
2

∫
dx

[
(∂xϕ+)2

K
+ (∂xθ+)2K

]
, (24)

where u+ = √
(v + g′)(v + g′ + 4g) and the Luttinger param-

eter is K =
√

v+g′
v+g′+4g

. The second part of the Hamiltonian,

H−,

H− = u−
2

∫
dx[(∂xϕ−)2 + (∂xθ−)2]

− g′

πa2
0

∫
dx(cos(

√
8πθ−) − cos(

√
8πϕ− + 2
kF x)),

(25)

with u− = v − g′. Note that due to the helical nature of the
fermionic modes, the bare Luttinger parameter K− of the
Hamiltonian H− equals unity. The RG equations depend on
the ratio between the running scale to the tunneling amplitude.

For energies above t⊥, one can ignore the oscillating part
2
kF x in the second cosine, and the model is equivalent to
the bosonized form of the XYZ chain, naturally tuned to be
on a Z4 plane in the phase diagram (see, e.g., Ref. [25]). The
RG equations are

∂K−
∂�

= 0,
∂g̃

∂�
= 0. (26)

Here � = ln �0/� (with � being a running energy scale),
and g̃ = g′/u− = a0(U0 − U )/2πu−. Clearly, neither the Lut-
tinger parameter nor the amplitude of the cosines renormalizes
in this regime. The Luttinger parameter therefore remains unity
and the theory remain gapless, as shown by refermionization
back to the original fermionic degrees of freedom.

However, below the energy scale t⊥, the presence of the
oscillations 2
kF x in the second cosine term in (25) becomes
important, and therefore averaged over long energy scales this
entire cosine term can be neglected in the RG flow at these
energy scales [29]. One is then left with the well-known sine-
Gordon model; the RG equations in this case read [25,28]

∂K−
∂�

= −g̃2,
∂g̃

∂�
= (1 − K−)g̃. (27)

We see that both K− and g̃ always flow to strong coupling
as the energy scale is reduced (� → ∞). Therefore, the term
cos(

√
8πθ−) opens a gap in the mode described by φ−,θ−. In

this situation, the system flows to one of two strong-coupling
fixed points depending on the sign of g′. We note, however, that
the other mode, φ+,θ+, always remains gapless in the absence
of any umklapp scattering.
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At this point, it is also worth emphasizing the importance of
interchain hopping t⊥ �= 0 in the above result. In its absence,
t⊥ = 0, one would never enter the second range of RG flow,
and Eq. (26) would be valid until arbitrarily low temperatures.
Thus the interchain hopping is necessary for a strong-coupling
phase to occur (for weak interactions). We now proceed to
characterize the two strong-coupling phases by looking at
potential local order parameters. As one of the modes remains
gapless, these local order parameters are never nonzero in
the thermodynamic limit, rather the phase is identified as the
order parameter with the slowest decaying correlations; see,
e.g., Refs. [30,31].

A. Intramode interaction stronger than intermode
interaction (g′ > 0)

For positive g′, the minimum of −g′ cos(
√

8πθ−) takes
place at θ− = √

π
2 n with n ∈ Z. In this case, the order

parameter [with k̄F = (k1
F + k2

F )/2 ≡ εF /v]

OI = i(e2ik̄F xψ
†
+,1ψ−,2 + e−2ik̄F xψ

†
−,1ψ+,2 − H.c.)

= 1

πa0

[
cos

√
4π

(
φR

1 + φL
2

) + cos
√

4π
(
φR

2 + φL
1

)]
= 2

πa0
cos(

√
2πθ−) cos(

√
2πϕ+) (28)

becomes dominant as 〈cos
√

2πθ−〉 �= 0. In terms of the
original helical fermions cσ,a , this order parameter reads

OI = cos 2k̄F x
∑

σσ ′aa′
c†σa(τ y)aa′[cos 2βσx − sin 2βσ z]σσ ′cσ ′a′

− sin 2k̄F x
∑

σσ ′aa′
c†σa(τ y)aa′(σy)σσ ′cσ ′a′ . (29)

To understand the structure of this order parameter, we can
rotate the spin-quantization axis in the xz plane by defining the
rotated fermionic operators c̃σ,a = ∑

σ ′(ei(β−π/4)σy

)σσ ′cσ ′,a . In
this basis,

OI =
∑

σσ ′aa′
c̃†σa(τ y)aa′[cos 2k̄F x σ z − sin 2k̄F x σ y]σσ ′ c̃σ ′a′ .

(30)

The τ y in this order parameter means that a pattern of currents
is flowing between the two spin edges. The presence of σx

and σy (rather than σ 0) means that these are spin currents; the
spatially dependent part in brackets describes a spiral for the
axis of quantization of these currents.

We should be very clear here that this order parameter is not
proportional to a spin density, but rather a spin current [24–27].
Such a state goes by a number of different names, such as
spin-nematic [24] or triplet D-density wave [26]. The present
order parameter is somewhat more intricate than those cited,
as the quantization axis for the current is spatially varying in
a spiral. Nevertheless, we will concisely refer to this phase as
spin nematic, after Ref. [24], where this type of order parameter
was first considered.

B. Intermode interaction stronger than intramode
interaction (g′ < 0)

For negative g′, the minimum of −g′ cos(
√

8πθ−) occurs at
θ− = √

π
2 (n + 1

2 ) with n ∈ Z. In this case, the order parameter

OII = e2ik̄F x(ψ†
+,1ψ−,2 + ψ

†
+,2ψ−,1) + H.c.

= 1

πa0

[
sin

√
4π

(
φR

1 + φL
2

) − sin
√

4π
(
φR

2 + φL
1

)]
= 2

πa0
sin(

√
2πθ−) cos(

√
2πϕ+) (31)

becomes dominant as 〈sin
√

2πθ−〉 �= 0. In terms of the
original helical fermions cσ,a , this order parameter reads

OII = cos 2k̄F x
∑

σσ ′aa′
c†σa(τ z)aa′[cos 2βσx− sin 2βσ z]σσ ′cσ ′a′

− sin 2k̄F x
∑

σσ ′aa′
c†σa(τ z)aa′(σy)σσ ′cσ ′,a′ . (32)

Again, performing a rotation in the spin basis c̃σ,a =∑
σ ′(ei(β−π/4)σy

)σσ ′cσ ′,a , the order parameter can be written
in the familiar form

OII =
∑

σσ ′aa′
c̃†σa(τ z)aa′[cos 2k̄F x σz − sin 2k̄F x σ y]σσ ′ c̃σ ′,a′ .

(33)

0
>0

<0

Spin Nematic 

Spin Density Wave 

0-

0-
Topological
Phase 

Trivial

Phase 

FIG. 3. Dominant order parameter for two interacting helical
modes, for strong tunneling. Here g′ = (U0 − U )/2π , where U0 is
the interaction strength within a helical mode, whereas U is the
mutual interaction between the modes. Above the diagonal, the
dominant correlations are of the spin-density-wave type, while below
the diagonal, the dominant correlations are of the spin-nematic type.
H− remain gapless along the diagonal U0 = U .
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The only difference between this order parameter and that in
Eq. (30) is the replacement of τ y with τ z. This means that
instead of spin currents, one has a pattern of spins, with the
two different helical edges antiferromagnetically connected.
The state is therefore a spin density wave (SDW). Rather like
the spin nematic state previously considered, this SDW is not
simple as the axis of quantization slowly rotates in a spiral,
leading to an interwoven helical arrangement of the spins
between the two edges. The important physics we discuss,
however, comes not from the precise spatial structure of the
order parameter, but rather from the fact that it is proportional
to spin density rather than spin current; we will therefore
simply refer to this state as a SDW.

Putting these two results together, the entire phase diagram
of the problem in the absence of disorder is depicted in Fig. 3.

IV. DISORDER

We now consider the response of the coupled edge system to
backscattering; first we consider the case of single impurities,
and then we go on to look at random disorder. We follow
closely methods previously developed for ordinary (nonheli-
cal) two-leg ladders [30–32]. Rather similarly to two-leg
ladders, we will find that one of the strong-coupling phases
is particularly susceptible to localization by disorder, while in
the other phase the system remains a ballistic conductor, even
when disorder is added (rather like the original helical edges
before they were coupled).

We then go on to show that the conducting phase actually
has emergent topological properties, namely zero-energy
boundary states, before discussing experimental signatures of
the results of the calculations in this section.

A. Single impurity

For isolated helical modes, nonmagnetic impurities cannot
localize the metallic state for moderate interaction. In the
noninteracting limit, the backscattering between counterprop-
agating modes is not allowed by the Kramers theorem. If
interaction within a helical mode is strong (K < 1/4), the
single impurity is a relevant perturbation. For the random
disorder, the localization occurs at K < 3/8 [18,19]. Here we
analyze the fate of the conducting state when two helical modes
are present. The presence of a nonmagnetic impurity at x = 0
generates the scattering processes [here cσ,a = cσ,a(x = 0)]

H ‖
imp =

∑
σ,a

μ‖
ac

†
σ,acσ,a, (34)

H⊥
imp = μ⊥(c†↑,1c↑,2 + c

†
↓,2c↓,1) + H.c. (35)

In general, for a TR invariant impurity potential, μ
‖
1,2 are real

numbers while μ⊥ = μ⊥
Re + iμ⊥

Im can be a complex number.
A finite imaginary part of μ⊥ implies the breaking of inversion
symmetry by the disorder potential. Let us note that inversion
symmetry is broken already at the level of the single-particle
Hamiltonian (1), as the helical modes break explicitly the right-
left symmetry due to their different spin projections. Writing
the real and imaginary parts of μ⊥, the impurity scattering

processes H⊥
imp read

H⊥
imp = μ⊥

Re

∑
σσ ′aa′

c†σa(τ x)aa′δσσ ′cσ ′a′

−μ⊥
Im

∑
σσ ′aa′

c†σa(τ y)aa′(σ z)σσ ′cσ ′a′ . (36)

In the basis (14), the forward part of the impurity scattering is
given by

H f
imp =

∑
σ,a

μaψ
†
σ,aψσ,a + μ

‖
−

∑
σ

(ψ†
σ,1ψσ,2 + H.c.)

+μ⊥
Im cos 2β

∑
σσ ′aa′

ψ†
σa(τ y)aa′(σ z)σσ ′ψσ ′a′ , (37)

with μ1,2 = μ
‖
1+μ

‖
2

2 ± μ⊥
Re and μ

‖
− = μ

‖
1−μ

‖
2

2 . The backscatter-
ing terms are accounted by

Hb
imp = μ⊥

Im sin 2β
∑

σσ ′aa′
ψ†

σa(τ y)aa′ (σx)σσ ′ψσ ′a′ .

The forward processes do not play any role in the Anderson
localization, and therefore they will be neglected. One is left
with the backscattering term

H b
imp = μ⊥

Im sin 2β
∑

σσ ′aa′
ψ†

σa(τ y)aa′ (σx)σσ ′ψσ ′a′ . (38)

After bosonization, this term reads

H b
imp = −iμ⊥

Im sin 2β[R†
1L2 + L

†
1R2 − R

†
2L1 − L

†
2R1]

= −2μ⊥
Im

πa0
sin 2β cos(

√
2πθ−) cos(

√
2πϕ+). (39)

For g′ > 0 when the system is in the spin-nematic phase, the
expectation value of cos

√
2πθ− is finite. This implies that the

scattering operator is determined by cos
√

2πϕ+. Under RG
its scaling dimension is K/2 < 1. Therefore, it is a relevant
perturbation, making the system an insulator. In the opposite
case, for g′ < 0 in the spin-density wave state, the expectation
value of cos

√
2πθ− is zero and the backscattering operator is

always irrelevant. Therefore, the system remains conducting.

B. Random disorder

We now turn to another limit of disorder, where one
considers many weak nonmagnetic impurities. In this case,
the previous analysis should be modified. The disorder is
accounted for by Hdis = H

‖
dis + H⊥

dis with

H
‖
dis =

∫
dx

∑
σ,a

U‖
a (x)c†σ,a(x)cσ,a(x),

H⊥
dis =

∫
dx U⊥(x)[c†↑,1(x)c↑,2(x) + c

†
↓,2(x)c↓,1(x)] + H.c.

(40)

The components of random potential U⊥(x ′) are given by

U⊥(x) =
∫

dy U (x,y)χ1(y)χ∗
2 (y − d), (41)

U‖
a (x) =

∫
dy U (x,y)χa(y)χ∗

a (y), (42)
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where U (x,y) is the two-dimensional random potential gen-
erated by the impurities. The wave function of the helical
mode a in the direction perpendicular to the motion is χa(y).
The function χ (y) is peaked around zero, as the helical edge
modes are quasi-one-dimensional. The separation d between
the modes is assumed to be constant.

We assume that the disorder at different points is uncorre-

lated, i.e., U‖
a (x)U‖

b (x ′) = δabδ(x − x ′) and [U⊥(x)]∗U⊥(x ′) =
Dδ(x − x ′). As in the case of a single impurity, the disordered
Hamiltonian H

‖
dis in the single-particle diagonal basis ψ

contains just forward scattering terms, which do not localize
the system. We concentrate in H⊥

dis, which in the ψ basis
becomes

H⊥
dis =

∫
dx

∑
σσ ′aa′

(U⊥
Re(x)ψ†

σa(x)(τ z)aa′δσσ ′ψσa′(x)

+U⊥
Im(x)ψ†

σa(x)(τ y)aa′[�n(β) · �σ ]σσ ′ψσ ′a′ (x)), (43)

where U⊥
Re (Im) is the real (imaginary) part of the disorder

potential U⊥. The vector �n is unitary and explicitly given
by �n(β) = (sin 2β,0, cos 2β). Focusing on the backscattering
terms, we have

H b
dis = 1

2

∫
dx

∑
σσ ′aa′

η(x,β)ψ†
σa(τ y)aa′(σx)σσ ′ψσ ′a′ , (44)

with η(x,β) = 2U⊥
Im(x) sin 2β. Under bosonization, this term

becomes

H b
imp = − i

2

∫
dx η(x,β)[(R†

1L2 − R
†
2L1)e−iδx − H.c.]

= − 1

πa0

∫
dx η(x,β) cos(

√
2πθ−) cos(

√
2πϕ+ + δx),

(45)

with δ = 2εF /v. Averaging over disorder, one finds the
replicated action that is generated by the backscattering
term (45),

Sb,av
imp = D

(πa0)2

∑
αβ

∫
dx dτ1dτ2 cos(

√
2πθα

−) cos(
√

2πϕα
+)

× cos(
√

2πθ
β
−) cos(

√
2πϕ

β
+). (46)

Deep in the gapped phase, we can expand cos(
√

2πθ−)
around its minimum θ− = θmin + δθ . Integrating the massive
δθ mode, the model for the charge field ϕ+ maps to a
Giamarchi-Schultz [33] model with Luttinger parameter K ′ =
2K . Therefore, the random disorder is a relevant perturbation
for K < 3/4.

C. Conductance as a function of temperature

At energy scales above 
edge ∼ t⊥e−π/2|g̃|, the conductance
is dominated by the single-particle tunneling [20]. For the
moderate interaction strength, this perturbation is irrelevant,
and conductance increases upon lowering the temperature.
Below the energy scale 
edge, two-particle processes are
dominant, and they open the gap in the spin sector. In the
topological phase (g′ < 0), this gap protects the conducting
mode (for the charge sector) in the presence of a single

˜

FIG. 4. Nonmonotonic conductance as a function of temperature
for moderate interactions. At energies below the gap, 
edge ∼
t⊥ exp(− π2u−

a0|U−U0| ), the conductance renormalizes to zero in the pres-
ence of small concentration of impurities (blue curve) if g̃ = a0(U0 −
U )/2πu− > 0 (spin-nematic phase). For g̃ = a0(U0 − U )/2πu− <

0 (spin-density-wave phase), the conductance remains finite (black
curve). At energies above the gap, the conductance is dominated by
single-particle tunneling.

impurity, while in the topologically trivial phase (g′ > 0)
it does not. For random disorder, the topological phase
remains conducting for K > 3/4. A schematic dependence
of conductance on temperature is shown in Fig. 4.

D. Boundary zero modes in the protected phase

To reveal the existence of zero modes, we introduce a strong
nonmagnetic impurity that pinches off a section of the helical
modes. This discussion is then analogous to the one presented
in [34,35] for the case of nonhelical chains. These impurities
are modeled by

Uwell = ihw

∑
a,i

(R†
aLā + L

†
āRa)δ(x − xi) + H.c.

= 2hw

πa0
cos(

√
2πϕ+) cos(

√
2πθ−)

∣∣∣∣
x=L

x=0

, (47)

where x1 = 0 and x2 = L, and δ is a Dirac delta function. The
backscattering strength hw is assumed to be larger than any
other relevant energy scale in the problem. The potential well
(47) pins the field θ− to the value

√
π
2 m with m ∈ Z, close

to the boundary. In the bulk, the field θ− is pinned to either√
π
2 n for g′ > 0 or

√
π
2 (n + 1/2) for g′ < 0. This implies that

for g′ < 0 the field θ− has to change by ± 1
2

√
π
2 close to the

boundary (see Fig. 5). This kink in the θ−(x) field corresponds
to a spin-1/4 excitation near the edge. The two different ground
states correspond to configurations with kink and antikink pairs
that are shown in Fig. 5. Both configurations have the same
energy. This degeneracy of the θ− field at the edge of the
samples allows particles to tunnel in or out at the edges without
paying the energy cost of the gap. One may therefore describe
these modes as topologically protected localized zero mode at
the boundaries of the sample [34,35].

As we discussed in the previous section, for g′ < 0 the
system is protected against localization by a single impurity
due to the existence of the spin gap. Therefore, the spin-
density-wave phase in this model is indeed topological, being
protected against single-impurity backscattering and hosting
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FIG. 5. Spatial profile of the θ−(x) field in the topological phase
(g′ < 0). The two different ground states in a finite helical system
correspond to the two choices of kink-antikink in the boundary, where
the field has to minimize the backscattering potential. Different colors
represent different ground-state profiles for θ−(x).

fractionalized zero modes on its ends. By the same analysis,
we find that the spin nematic phase is topologically trivial.

E. Experimental signatures

There are several predictions we have made that can be
tested experimentally. First, the electric conductance studied
above can be measured in a two-terminal experiment. In this
measurement, one attaches Ohmic leads on the edge of the
sample, as shown in Fig. 1. Our theory predicts the dependence
of the two-terminal conductance on temperature; see Fig. 4.

Another type of experimental study involves a scanning
tunneling microscope (STM). We propose to perform such an
experiment after adding two nonmagnetic impurities to the
system. Provided that the amplitude of the impurities is bigger
than the size of the gap in bulk (
bulk), a finite part of the helical
mode is cut off from the rest of the system. If the system is in
a topologically nontrivial phase, we expect to find fractional
zero-energy modes at the end points of the constriction; see
Fig. 6. By scanning the tip of the tunneling microscope away
from the end points, one expected to see a hard gap in the
density of states of the size 
edge. The tunneling density of

STM
probe

Fractional
zero mode

Helical Modes

Strong Non-Magnetic Impurities

FIG. 6. Experimental setup for the detection of fractionalized
zero modes. By moving the tip of STM parallel to the edge, one
measures the tunneling current as a function of distance from the end
point (see text).

TABLE I. Phases of two interacting helical modes. The interac-
tion strength within the same helical state is U0 and between different
helical modes it is U .

U0 > U U0 < U

Topological protection No Yes
Order parameter Spin nematic Spin density wave
Zero modes No Yes

states in the topological phase scales as [31]

ν(ε)

ν0
∝

{(
ε
�

) 1
2K

−1
, close to the strong impurities,

θ (ε − 
edge), away from the impurities

(48)

where ν0 is a bare value of the density of states, ε is the energy
of the tunneling electron with respect to the Fermi energy, and
� is the ultraviolet cutoff. At low bias, the tunneling current
has a power-law zero-bias anomaly near the end points (see
Fig. 6), where the spin gap vanishes. Along the edge, but
away from the impurities, the tunneling density of states ν(ε)
vanishes at bias smaller than 
edge.

V. CONCLUSIONS

In this paper, we studied the low-energy physics of two
helical edge modes, coupled by tunneling and electron-
electron interaction. Our results are summarized in Table I.

We showed that the tunneling between the modes, in
the presence of repulsive interaction and generic spin-orbit
interaction, leads to the development of a spin gap. If the
interaction between Kramers partners is stronger than the
interaction between states not connected by TR symmetry,
the system is topologically trivial. The inclusion of weak
nonmagnetic impurities localizes the conducting mode. The
two-terminal conductance is a nonmonotonous function of
temperature.

In the opposite limit, the system is in topologically
nontrivial phase. The gap in the spin sector protects the
conducting phase against backscattering by weak nonmagnetic
impurities. The protected phase has a ground-state degeneracy
and possesses fractionalized zero-energy edge modes. The
latter can be observed in tunneling spectroscopy experiments.
The two-terminal conductance monotonously grows with
decreasing the temperature, reaching a value of 2e2/h at zero
temperature.
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