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• We propose a factor model for valuation of CDS, CDSI and CDO.
• The model is a first-passage distribution of Brownian motion continuous time-changed.
• The credit quality process is driven by a mean reverting Levy OU volatility process.
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• FFT computational tools are developed to calculate the distribution of losses.
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a b s t r a c t

A factor model is proposed for the valuation of credit default swaps, credit indices and CDO contracts.
The model of default is based on the first-passage distribution of a Brownian motion time modified
by a continuous time-change. Various model specifications fall under this general approach based on
defining the credit-quality process as an innovative time-change of a standard Brownian motion where
the volatility process is mean reverting Lévy driven OU type process. Our models are bottom-up and
can account for sudden moves in the level of CDS spreads representing the so-called credit gap risk. We
develop FFT computational tools for calculating the distribution of losses andwe show how to apply them
to several specifications of the time-changed Brownianmotion. Our line ofmodelling is flexible enough to
facilitate the derivation of analytical formulae for conditional probabilities of default and prices of credit
derivatives.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

One of the most blamed financial instruments in the aftermath
of the subprime crisis is the Collateralized Debt Obligation (CDO),
largely associated with the last financial crisis. Next to it, the Gaus-
sian copula model for pricing CDOs is argued to be the formula
that killed1 the Wall-Street (MacKenzie and Spears, 2014). Due to
this unfavourable perception of the instrument and tougher regu-
lation, the issuances of such instruments were greatly diminished
during and after the crisis. However, most of the negative con-
sequences associated with this instrument are born from a lack

∗ Corresponding author.
E-mail address: r.tunaru@kent.ac.uk (R. Tunaru).

1 It was the article ‘‘Recipe for Disaster: The Formula that KilledWall Street’’ from
February 2009 issue of Wired Magazine which popularised first this idea.

http://dx.doi.org/10.1016/j.insmatheco.2016.10.004
0167-6687/© 2016 Elsevier B.V. All rights reserved.
of understanding and misuse combined with simplistic modelling
approaches. We argue that the instrument itself has many merits
and, if used and understood properly, it can improve diversifica-
tion, customised risk transfer and hedging for credit portfolios.

While the subprime crisis affected negatively the issuances of
CDOs, there are still important outstanding CDO contracts on the
market that were issued before 2007 and that need to be properly
evaluated. The low interest rate levels revived the interest of
investors into the CDOmarket which responded with a substantial
increase2 of issuances both in Europe and US.

Given the renewed interest in this class of instruments there is
a need for further improvements to the current models for credit

2 See the Online Appendix for the total value of outstanding CDOs and the
volumes of new issuance (see Appendix C).

http://dx.doi.org/10.1016/j.insmatheco.2016.10.004
http://www.elsevier.com/locate/ime
http://www.elsevier.com/locate/ime
http://crossmark.crossref.org/dialog/?doi=10.1016/j.insmatheco.2016.10.004&domain=pdf
mailto:r.tunaru@kent.ac.uk
http://dx.doi.org/10.1016/j.insmatheco.2016.10.004
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risk and especially portfolio credit risk. In this paper, we aim to
propose a modelling methodology that allows pricing of single-
name credit contracts such as credit derivative swaps as well as
multi-name contracts such as credit indices, tranches of a credit
indices or CDOs. Investment banks routinely have to manage posi-
tions in both categories of credit instruments and managing port-
folio credit risk requires the ability to calibrate on the individual
components of the portfolio. Important recent contributions to
credit risk modelling are (Blanchet-Scalliet et al., 2011; Hurd and
Zhou, 2011; Cont and Minca, 2013; Gatarek and Jabłecki, 2013;
Packham et al., 2013; Kijima and Siu, 2014; Ballestra and Pacelli,
2014; Hao and Li, 2015; Wei and Yuan, 2016).

The evolution of credit spreads for individual obligors and
portfolio of obligors may be influenced by idiosyncratic effects
as well as contagion sector or industry effects, and also economy
wide events. Thus, several superimposed layers of informationmay
determine the ebbs and flows of credit spreads. There is a clear
empirical evidence that credit spreads exhibit jumps, see Dai and
Singleton (2003), Tauchen and Zhou (2011), Zhang et al. (2009)
and Schneider et al. (2010). These jumps are mostly positive being
caused by the arrival of bad news and they impact CDS contracts
across all maturities. Therefore, using Lévy processes will allow
us to capture these jump effects. Early research modelling the
credit quality process as a jump–diffusion or a Lévy process, see
Baxter (2007) and Cariboni and Schoutens (2007), was hindered by
the fact that computing first passage times was either intractable
or computationally very demanding. Hao et al. (2013) obtained
an analytical formula for the survival function and also for the
single-name CDS and they showed why the par CDS spread is not
negligible at very short maturities.

Our main contribution is an improved credit risk model that
works well with single-name contracts as well as withmulti-name
contracts. Our techniques are based on defining the credit-quality
process as an innovative time-change of a standard Brownian
motion where the volatility process is mean reverting Lévy driven
OU type process. The factor model we propose for the evolution
of probability of default for single-names is a bottom-up approach
to model the evolution of credit portfolios. Packham et al. (2013)
conceptualised the default of a company as the first-passage time
of a processmodelling the credit worthiness of the company, being
able in this way to capture credit gap risk and to provide an
intuitive understanding of the hedging. We develop in this paper a
multivariate extension, preserving the properties of the univariate
model while adding the capability of modelling the time evolution
of dependence between the defaults of different obligors, which is
important for pricing multi-name credit contracts.

Our second contribution is to improve the computational
tools that are necessary to calculate the distribution of losses at
given maturity. Our FFT approach is better suited for this type
of calculations than Panjer recursion and it applies to several
specifications for the time-changed Brownian motion. We are also
able to derive analytical formulae for conditional probabilities of
default and credit derivatives. The advantage here is that one can
investigate easily the sensitivity of our formulae to various model
parameters. This is not always possible in general with all credit
risk models, see Cont and Savescu (2008) and Bielecki et al. (2010),
where numerical methods are required.

The remaining of the article is structured as follows. The mod-
elling set-up is described in Section 2. In Section 3 we derive the
formulae for default probabilities and portfolio loss. A particular
feature of ourmodelling, the volatility of the credit quality process,
is discussed in Section 4. The credit derivatives prices formulae are
detailed in Section 5 while the calibration is exemplified in Sec-
tion 6. Last Section summarises our findings.
2. Default modelling

In this section we propose a factor extension for the model
of default of a company proposed in Packham et al. (2013). The
default is represented as the first passage time of a time-changed
BM. The location of the BM represents the credit quality of the
company while the time-change models the arrival of information
on the market that are relevant for the survival of the company.
The model has the capability of modelling credit gap risk, being
useful for pricing exotic credit derivative contracts and provides an
intuitive understanding of the hedging. Themultivariate extension
of the model, proposed in this section, maintains the properties of
the univariate model while adding the capability of modelling the
time evolution of dependence between the defaults of the names
in the portfolio by introducing a common factor driving the arrival
of information affecting all names, which is important for pricing
multi-name credit derivative contracts.

2.1. Informational setting

We consider an economy represented by a stochastic basis
(Ω,F , F,P) where P is a risk neutral probability measure. In
order for our model to be well defined and to reflect reality, the
filtration F = (Ft , t ≥ 0) has a multi-structure design. First, we
have the sub-filtration B = (Fθ , θ ≥ 0)which is the filtration of a
(possibly multivariate) BrownianMotion (BM) Bθ . The second sub-
filtration H = (Ht , t ≥ 0) is incorporating information about the
common factor {Ht}t≥0, and the last sub-filtration G = (Gt , t ≥ 0)
is the filtration incorporating information about the idiosyncratic
name specific factors {Gi

t}t≥0 where i denotes the name i. Hence,
F = B∨G∨H and we assume that all processes defined below are
adapted with respect to at least one of the sub-filtrations above.

2.2. Default model

For modelling the default of companies in a portfolio of N
obligors we start with three mutually independent processes
{Bt}t≥0, {Σ

G
t }t≥0 and {ΣH

t }t≥0, where the first two processes are
N-dimensional and the last one is a unidimensional process.3 The
process B is a standard Brownian Motion (BM) with independent
components, while ΣG and ΣH are positive processes. For any
t ≥ 0 we define ΣΓ

t = ΣG
t + βΣH

t , with β a vector of factor
loadings. Now, using B and ΣΓ we can define the credit quality
process {Xt}t≥0 as the stochastic integral:

Xt =

 t

0
ΣΓ

s dBs =

 t

0
ΣG

s dBs + β

 t

0
ΣH

s dBs. (2.1)

The default probabilities are driven not only by the location of the
Brownian motion but also by the level of volatility.4 In order to
capture this salient feature of the credit quality process one key
insight in our modelling is expressing Xt as a time changed BM:

Xt = WΓt = WGt+βHt (2.2)

where {Wθ }θ≥0 is a BM on the scale θ and Γt is a continuous time
change;

Γt =

 t

0
ΣΓ

s ds =

 t

0
ΣG

s ds + β

 t

0
ΣH

s ds

= Gt + βHt . (2.3)

3 Other combinations are possible where more factors are considered or
homogeneous groups of names are modelled by the same model.
4 We thank an anonymous referee for indicating this improved explanation.
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The two processes G and H are integrated variance processes5
and they capture the impact of company specific and respectively
market specific information on the volatility of the credit quality
of the names in the portfolio. Due to the common factor H the
credit quality processes in the portfolio will move together when
the market information creates volatility movements, generating
dependence between the credit quality of the names.

Given the credit quality process X and its representation as a
time changed BMwemodel as in Packham et al. (2013), henceforth
the (PSS) model, the univariate default as a first-passage time over
a fixed barrier bn with n = 1, 2, . . . ,N of the individual credit
quality process {Xn

t }t≥0, where τn = inf{t ≥ 0 : Xn
t ≤ bn}. Our

first result gives the individual probability of default.

Proposition 1. For the model described above the probability of
default is given by the formula

P(τn < s|Ft) = E

2N


bn − Xn

t
Γ n
s − Γ n

t

Ft


. (2.4)

The proof is almost identical to the proof of Proposition 3.3 in
(Packham et al., 2013) with the exception of the way condition on
the filtration for the volatility takes place.

The above default model can be characterised as a hybrid
‘‘first passage time model’’ where the default mechanism relies
on the first passage of a BM formula as in the Merton’s structural
model. However, Xn

t and bn are not interpreted as asset and debt
level of the company, which are assumed to be unobservable.
Given the representation of the credit worthiness process as a
time-change BM, employing the common volatility factors to
introduce dependence in the multivariate context becomes the
obvious choice and it brings economical interpretation as well as
computational tractability to the multivariate model. The factors
drive the uncertainty from various sources which adversely affects
the probability of survival of a certain company (higher volatility
implies less probability of survival). The formula (2.3) is similar to
the one obtained in Hurd (2009) where a more relaxed definition
of the first passage time of a time-changed BM is adopted. Due to
this similarities, the multivariate extension discussed in this paper
can be easily extended to such models.

3. Probability of default and portfolio loss

3.1. Computation of univariate probability of default

Without loss of generality we drop n from the notation Gn
t , τ

n
t

and bn when we only refer to one specific name. The default
probability can be expressed as

P(τ < s|Ft) = E


E

2N


b − Xt

√
Γs − Γt

Ft ∨ Gs ∨ Hs

Ft


=


R+


R+

2N


b − Xt

√
Gs + βHs − Gt − βHt


PGs(dz)PHs(dy).

The computation of this probability requires the existence of closed
form formulae for the densities of Gs and Hs, which are usually not
available.

For the special casewhere the credit worthiness process {Xt}t≥0
is driven by a Compound Poisson process as the Background
Driving Lévy Process (BDLP), see definition later in Section 4),

5 Note that the mutual independence assumed between B,ΣG and ΣH implies
that also W ,G and H are mutually independent (see Thm. 2.6 of Barndorff-Nielsen
and Shiryaev, 2010). Moreover, the processes W , G and H are adapted to the
filtrations B,G and H respectively.
one can use Panjer recursions to compute the probability of Gs
and Hs and then approximate the integrals by some quadrature
methods as described in Packham et al. (2013). However, this
approach does not work formore general processes of the variance
and hence, we propose here a faster and more general technique
based on the Fourier transform. Fast computational methods are
an imperative requirement for multi-name credit derivatives, like
derivative contracts on credit indices which have regularly more
than 100 names in their structure (iTraxx for example has 125
names).

We start by observing that the probability of default (2.3) can
be expressed in terms of a standard normal variable Z:

P(τ < s|Ft) = E[2P(Z
√
Γs − Γt − (b − Xt) ≤ 0|Γs)|Ft ]

= E[2P(Y − K ≤ 0|Hs,Gs)|Ft ]

= E[2P(V ≤ 0|Hs,Gs)|Ft ] (3.1)

where Z ∼ N(0, 1), Y = Z
√
Gs − Gt , K = b − Xt and V = Y − K .

Sincewe are interested only in companies that are not in default
at the time of computation of the probabilities of default, we focus
on the case where the credit worthiness process X starts from
above the barrier b, which implies that initially K < 0. The
characteristic function of V is just φV (u) = E[eiu(Y−K)

|Ft ] =

e−iuKφY (u) and the characteristic function of Y can be calculated
analytically as

φY (u) = E[eiuY |Ft ] = E[eiuZ
√
Γs−Γt |Ft ]

= E[E[eiuZ
√
Γs−Γt |Gs ∨ Hs]|Ft ]

= E

exp


−

u2(Γs − Γt)

2

Ft


= eu

2Γt/2E

exp


−

u2

2
Γs

Ft


= eu

2Γt/2φΓs(−u2/2)

= eu
2(Gt−βHt )/2φGs(−u2/2)φHs(−βu

2/2) (3.2)

where φGt (u), the moment generating function of Gt , and φHt (u),
the moment generating function of Ht , are assumed to have
analytical expressions. The computation of the portfolio loss
requires the computation of the probability of default conditional
on the factor Hs. The conditional (on the factor Ht ) characteristic
function can be obtained by observing that Hs is a known value:

φY |H(u) = eu
2Γt/2E


exp


−

u2

2
Γs

Ft


= eu

2(Gt−βHt )/2E

exp


−

u2

2
(Gs − βHs)

Ft


= eu

2(βHs+Gt−βHt )/2φGs(−u2/2). (3.3)

By inverting (3.3) and integratingwith respect to the distribution of
the factor Ht one can obtain the probability of default P(τ < s|Ft).
However, while the conditional characteristic function (3.3) has
a simple form, its inversion leads to a Laplace transform which
is known to be difficult to implement and expensive to evaluate
(Epstein and Schotland, 2008). Therefore, we advocate using a
simple Fourier inversion that is implementable by Fast Fourier
Transform algorithmswhich are possible due to the representation
in the following proposition.

Proposition 2. Given the multivariate default model described in
Section 2.2, any single name conditional probability of default given
the factor Hs can be computed as :

P(τ < s|Hs ∨ Ft)
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= E


P


1
(b − Xt)−2Υ

− (Gs − Gt)− β(Hs − Ht) ≤ 0
Hs ∨ Ft


.
= E[P(Q ≤ 0)|Hs ∨ Ft ] (3.4)

where Υ is a chi-squared variable.

Proof. See Appendix A. �

3.2. Inversion formulae

If both φGt (u) and φHt (u) are known the probability of default
(and the conditional probability of default) can be obtained by
inverting thematching characteristic functions. This can be done in
three ways. The first6 is the Gil-Pelaez formula (Gil-Pelaez, 1951)
for the cumulative distribution which in our context gives:

FQ (q) =
1
2

+
1
π


∞

0

eiuqφQ (−u)− e−iuqφQ (u)
2iu

du.

To get P[Q ≤ 0] we need to evaluate FQ (q) at zero and obtain:

P[Q ≤ 0] =
1
2

+
1
π


∞

0

eiuqφQ (−u)− e−iuqφQ (u)
2iu

du

=
1
2

+
1
π


∞

0

eiu×0φQ (−u)− e−iu×0φQ (u)
2iu

du

=
1
2

+
1
π


∞

0

φQ (−u)− φQ (u)
2iu

du. (3.5)

Because φQ (u) = φQ (−u) and ℜ(
φQ (u)

iu ) =
φQ (u)−φQ (u)

2iu :

P[Q ≤ 0] =
1
2

+
1
π


∞

0

φQ (−u)− φQ (u)
2iu

du

=
1
2

−
1
π


∞

0
ℜ


φQ (u)
iu


du.

This method has the disadvantage that the above integrand has
a singularity at zero which could create numerical problems. Since
the singularity is at the lower limit of the integration domain this
can be dealt with by choosing the lower limit close enough to zero.

A second useful formula has been described in Kim et al. (2010).

Using that FX (x) =
exρ
π

ℜ


∞

0 e−iux φX (u+iρ)
ρ−iu du


implies that:

P

Q ≤ 0


=

1
π

ℜ


∞

0

φQ (u + iρ)
ρ − iu

du

. (3.6)

The advantage of the above formula over (3.5) is the lack of
singularity given by division by zero but care is needed especially
when dealing with the evaluation of the exponential function at
high negative powers.

A third formula is from Feng and Lin (2013) and it is based on
the Hilbert transform representation of a cumulative distribution
function, expressed as a Cauchy principal value integral,H(f (x)) =
1
π
p.v


R

f (y)
x−ydy and exploit the relation between the Hilbert and

Fourier transform F(·):

F(1(−∞,l]f )(η) =
1
2
φQ (η)−

i
2
eiηlH(eiulφQ (u))(η) (3.7)

in order to write the probability distribution as:

P(Q ≤ 0) =

 0

−∞

pQ (x)dx =


R
1(−∞,0)pQ (x)dx

6 An earlier formula due to Lévy is also known but not useful in our context.
=


R
1(−∞,0)eix0pQ (x)dx = F(1(−∞,0]f )(0)

=
1
2
φQ (0)−

i
2
ei00H(eiu0φQ (u))(0)

=
1
2

−
i
2

H(φQ (u))(0) (3.8)

where the known relation φQ (0) = 1 is used. An approximation of
Hilbert transform as a truncated infinite series is available in the
form:

H(f (x)) ≈

M
m=−M

f (mh)
1 − cos(π(x − mh)/h)

π(x − mh)/h

for a step size h > 0 andM a large positive integer.
All three formulae of the probability distribution above lead to

Fast Fourier Transform implementation of the conditional proba-
bility of default which we summarise in the following proposition:

Proposition 3. The conditional probability of default formula in
Proposition 2 has the following alternative representations with
direct FFT implementations:

• PGill
[τ < s|Hs ∨ Ft ] =

1
2

−
1
π

ℜ


∞

0
e−iu(βHs)

φiΓ (u)φGs(−u)eiu(βHt+Gt )

iu
du


.

• PKim
[τ < s|Hs ∨ Ft ] =

1
π

ℜ


∞

0
e−iu(βHs)

×
φiΓ (u + iρ)φGs(−u − iρ)eiu(Gt+βHt )+ρ(β(Ht−Hs)+Gt )

ρ − iu
du


.

• PHilb
[τ < s|Hs ∨ Ft ] ≈

1
2

−
i
2

M−1
m=0

e−2imh(βHs)

×
2φiΓ ((2m + 1 − M)h)φGs((M − 2m − 1)h)eihΛ

π(M − 2m − 1)
where we used the notation Λ = (2m + 1 − M)((Gt + βHt) −

βHs(1 − M)).

Proof. See Appendix B. �

When compared to the Panjer recursion based methodology our
Fourier transform methods have the advantage of being fast
and accurate. The above formulae only require the characteristic
functions of the variance variables to be available analytically,
whichmakes the applicability of the abovemethodology very large
when compared to the Panjer recursion methodology limited to
specifications of the variance in the Compound Poisson class.

3.3. Portfolio cumulative loss

Since the multidimensional credit quality process {Xt}t≥0
defined in (2.1) has a factor structure with the common variance
process {Ht}t≥0 driving the common informational shocks, we can
use the fact that the univariate probabilities of default conditional
on the common factor are independent. Due to this property one
can compute the joint probability of default by first computing
the conditional default probabilities and then just integrating their
product with respect to the distribution of the common factor:

P[τ 1t ≤ s, . . . , τNt ≤ s] =


R+

N
j=1

P[τ
j
t ≤ s|Hs]PHs(dh) (3.9)
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For pricing most liquid existent multi-name contracts (like
synthetic CDOs or index tranches) it is sufficient to know the loss
process {Lt}t≥0 defined as Lt =

n
j=1(1 − Rj)1

{τ
j
t≤s} where 1

{τ
j
t≤s}

is an indicator variable signalling whether the name j is in default
or not and Rj is the associated recovery rate which can be random.
For computing the conditional distribution of the cumulative loss
of the portfolio L(s) one can employ the so-called ASB algorithm
proposed in Andersen and Sidenius (2004) and Andersen et al.
(2003), see also Hull and White (2004).

Herewe present a slightmodification of the algorithm, working
with the cumulative loss expressed as percentage instead of dollar
losses. We start from the conditional (on the common factor)
loss distribution of a single-name which we discretise. Under the
assumption that the recovery rate Rn corresponding to the name
n is an independent random variable with a known distribution
which can be discretised by using the relation P[Rn

∈ (qk−1, qk]] =

P[Rn
≤ qk] − P[Rn

≤ qk−1] for u = qk − qk−1 and k ∈

{1, 2, . . . , kmax}.7 Next, the conditional distribution of ℓn = (1 −

Rn)1{τn≤T } can be computed for a generic q:

P[ℓn(s) ≤ q|Hs]

= P[(1 − Rn) ≤ q|Hs]P[τn ≤ T |Hs] + P[τn > T |Hs]

= P[(1 − Rn) ≤ q]pn(Hs)+ (1 − pn(Hs))

because Rn is an independent variable and where pn(Hs) denoting
the conditional probability of default (3.4) for the name n.

Now the computation for the probability distribution of the
portfolio loss is based the observation that given the conditional
probability distribution P[Lm(s) ≤ q|Hs] for a portfolio made of
m credit names (1 < m ≤ n) we can compute the conditional
distribution of a portfolio with an additional credit name by:

P[Lm+1(s) ≤ K |Hs]

=

kmax
k=1

P[Lm(s) ≤ K − qk|Hs]P[ℓm+1(s) ≤ qk|Hs]. (3.10)

The conditional portfolio loss can be computed by starting from
the initial case with zero companies in the portfolio P[L0(s) ≤

K |Hs] = 1{K=0} and applying the recursion relation above.
The computation of the unconditional portfolio loss distribution
requires to integrate P[Lm+1(s) ≤ K |Hs]with respect to the density
of the factor Hs. Because the density of the factor Hs is not usually
known, we need to use the Fourier inversion to compute it from
the characteristic function.

We follow this approach for the case of the IG-OU model and
generate the density of the factor H by inverting the associated
characteristic function for the most liquid maturities on the CDS
market (see Fig. 1). One can see from Fig. 1 that a decrease
in θ has the effect of flattening the distribution of the factor.
Remember that the factor is an integrated variance process with
θ controlling the speed of mean reverting. As a result, the lower
the θ is the slower is the mean reversion implying that the jumps
in the variance process will have a persistent impact leading to the
flattened distributions observed in Fig. 1(b). The role of parameter
a is to control the shape of the distribution of increments for the
BDLP driving the variance process while b is controlling the mean.
These two parameters are closely related to the shape and scale
parameters of Inverse Gaussian distributions. Fig. 1(c) suggests
that a lower value for a increases the peak of the distributions
while from Fig. 1(d) it is obvious the impact of b on the location
of the mean for the distribution of the factor for each of the five
maturities analysed. For the Gamma-OU model similar comments
can be made.

7 Alternatively one can assume a discrete distribution for Rn .
4. Variance modelling

The volatility of the credit quality of a company may exhibit
jumps that can lead to sudden moves in the probability of default.
Therefore, for the volatility we select a positive process in the
class of mean reverting Lévy-driven OU type process introduced
by Barndorff-Nielsen (2001) and Barndorff-Nielsen and Shephard
(2001). Packham et al. (2013) showed that this choice can be
beneficial whenmodelling jumps in credit spreads for some exotic
univariate derivative contracts like credit-linked notes. There are
several possible specifications for variance or volatility processes.

4.1. Lévy-OU model

The model forΣt that was discussed in Norberg (2004) has the
form:

dΣt = θ(µ(t)−Σt−)dt + dZt , Σ0 > 0 (4.1)

where {Zt}t≥0 is the so-called background driving Lévy process
(BDLP). This is the model of choice in Packham et al. (2013), where
the long term mean parameter µ(t) is specified as a piecewise
constant function that takes different values for various maturities
and plays a special role in the calibration of the univariate model.

The integrated variance processwhich plays the role of the time
change is thenobtainedby integrating the variance process {Σt}t≥0
over time.

Gt =

 t

0
Σsds =

 t

0


e−θsΣ0 +

 s

0
e−θ(s−u)θµ(u)du

+

 s

0
e−θ(s−u)Σudu


ds

= (1 − e−θ t)
Σ0

θ
+

 t

0
(1 − e−θ(t−u))µ(u)du

+
1
θ

 t

0
1 − e−θ(t−s)dZs.

Denoting ϵ(t) =
(1−e−θ t )

θ
+

 t
0 (1 − e−θ(t−u))µ(u)du and taking

f (s) = iuϵ(T − s) (withℜ(f ) = 0) the characteristic function of GT
becomes:

φGT (u) = exp

iu[ϵ(T − t)Σ0] +

 T

t
θκZ (iuϵ(T − s))ds


(4.2)

where κZ is the cumulant of the distribution of Z . Our models
are spanned by specifications for the processes driving the
randomness of the variance process, both individual and common
factors.

4.1.1. Compound Poisson BDLP
The compound Poisson process is specified by the intensity of

the Poisson process denoted by λ and the jumps Y assumed to be
only positive in order to guarantee the positiveness of the time
change. The choice of distribution for Y is restricted to the class
of distributions with positive support.

The cumulant function of a compound Poisson process driven
by a Poisson process {Nt}t≥0 with intensity λ and having jumps
Y , with κY being the cumulant of the distribution of Y , is κXt =

tλ(eκY (u) − 1). When the jumps in a Compound Poisson process
are Gamma distributed we call it a CPG process, with the cumulant
function κXt = tλ(e(1−βu)

−α
− 1).

The characteristic function of the one factor integrated variance
process G with Compound Poisson processes as BDLP can be
calculated easily.

φG(u) = exp

iuϵ(T − t)Σ0 +

 T

t
κX1(iuϵ(T − s))ds


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(a) Γ : θ = 1.2, a = 3, b = 2,ΣH
0 = 0.08. (b) Γ : θ = 0.5, a = 3, b = 2,ΣH

0 = 0.08.

(c) Γ : θ = 1.2, a = 2, b = 2,ΣH
0 = 0.08. (d) Γ : θ = 1.2, a = 3, b = 1,ΣH

0 = 0.08.

Fig. 1. Density of the common factor. Note: To generate the graphs we used the IG-OU specification for the factor Hs with parameters set Γ specified under each graph. The
parameters θ and a affect the variance of the factor distribution while b affects the location.
= exp

iuϵ(T − t)Σ0 +

 T

t
λ(eκY (iuϵ(T−s))

− 1)ds


= exp

iuϵ(T − t)Σ0 + λ(T − t)

×

 T

t
eκY (iuϵ(T−s)) 1

T − t
ds − 1


(4.3)

= exp{iuϵ(T − t)Σ0 + λ(T − t)(E[eiuϵ(S)Y ] − 1)}
= exp{iuϵ(T − t)Σ0 + λ(T − t)(φϵ(S)Y (u)− 1)}. (4.4)

The integral in (4.3) can be interpreted as an expectation with
respect to a uniform density on [t, T ]. As in Norberg (2004),
recognising the last part in (4.4) as the characteristic function of
the compound Poisson process variable CPO(λ(T − t), ϵ(S)Y ) we
can conclude that the integrated variance process for the case of
a compound Poisson BDLP is a compound Poisson with drift and
characteristic function as in (4.4). Given the integrated variance
process is a compound Poisson process, its distribution at time
T can be computed by the means of Panjer recursion technique.
We note that (4.4) is not an analytic characteristic function for the
integrated variance process for the cases of CPO considered above.

4.2. Gamma-OU and IG-OU specifications

For µ = 0 and BDLP {Zθ t}t≥0, a subordinator defined on a
deterministic time change s = θ t , we have the case of the Lévy
driven OU process

dΣt = −θΣt−dt + dZθ t , Σ0 > 0 (4.5)

with the known solutionΣt = e−θ tΣ0 + e−θ t
 θ t
0 esdZs.

For these processes the BDLP can be specified such that the
marginal law of Σs is a given distribution. In addition, the choice
of the time scale λt guarantees that for any λ, the process {Σt}t≥0

is a stationary process, meaning that the marginal distribution of
Σt remains unchanged. Two very tractable specifications are the
IG-OU and Gamma-OU specifications studied in Barndorff-Nielsen
and Shephard (2001). These processes have as an approximate
stationary distribution the IG and Gamma distributions, respec-
tively. In the sequel we follow the parametrisation in Cariboni and
Schoutens (2009) of these processes. Starting from the cumulant of
a Gamma distributionΓ (a, b) respectively IG distribution IG(a, b):

κΓ (u) =
uν
α − u

α, ν > 0.

κIG(u) =
uδ

γ 2 − 2u
γ , δ > 0
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(a) Simulated paths of Variance processes (Σ1
t ,Σ

2
t ,Σ

H
t ). (b) Evolution of time changes (Γ 1

t ,Γ
2
t ).

(c) Evolution of credit quality (X1
t , X

2
t ). (d) Evolution of default probability (P[τ1 < t], P[τ2 < t]).

Fig. 2. Path Simulation (no factor jump). Note: Simulations of Gamma-OU model with parameters set θ1 = θ2 = θH = 0.5, a1 = a2 = aH = 1, b1 = b2 = bH = 0.7,Σ1
0 =

Σ2
0 = 1,ΣH

0 = 0.08, β1 = 0.5, β2 = 0.9 The presence of no jump in the market factor Hs leaves the probabilities of default driven by only intrinsic factors.
one can use the link between a self-decomposable distribution8 D
with cumulant function κD(u) = E[euD] and the cumulant func-
tion of the BDLP κX (u) = E[euX1 ] at time t = 1κX (u) = u dκD

du (u) to
derive the cumulant function at time t = 1 of the BDLP processes.

The characteristic functions of the intOU processes modelling
the integrated variance are analytic and this is a major advantage
of the approach presented in this paper. The Laplace transform of
the Integrated Gamma-OU and IG-OU processes has been derived
in Nicolato and Venardos (2003) (see also Cariboni and Schoutens,
2009) and they are:

ψIG∗(u) = exp

iuΣ0

θ
(1 − e−θ t)+

2aiu
bθ

B


(4.6)

ψΓ ∗(u) = exp

iuΣ0

θ
(1 − e−θ t)+

θa
iu − θb

C


(4.7)

where

B = +
1

√
1 + ν


arctanh


1 + ν(1 − e−θ t)

√
1 + ν



8 A random variable X is said to have a self-decomposable distribution if for a
constant 0 < c < 1 there exist an independent random variable X (c) such that
X = cX + X (c) . The self-decomposable random variables are infinitely divisible.
− arctanh


1
√
1 + ν


+

1 −

1 + ν(1 − e−θ t)

ν

C = b log


b
b − iuθ−1(1 − e−θ t)


− iut, ν =

−2iu
θb2

.

This feature creates an advantage overmodels of CompoundPoison
OU type discussed in the previous section and provided us with a
strong motivation to choose this class of models for the pricing of
credit default swap, credit index and CDO later on in this paper.

4.3. Properties related to dependence and contagion

The evolution of the variance in CP-OU, Gamma-OU and IG-
OU specifications are driven by pure jump processes, allowing the
model a fast precipitation to default. One peculiarity of the IG-OU
process when compared to Gamma-OU and CP-OU specifications
is that the first has an infinite number of jumps per time interval
while the last two have only a finite number of jumps per time
interval. To highlight how the superposition of the OU processes
driving the variance factors introduces credit dependence we
simulated the factors in a two factor model and show how this
translates into dependence between the integrated variance of the
two names (Figs. 2 and 3). The variance process of each of the two
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(a) Simulated paths of variance processes (Σ1
t ,Σ

2
t ,Σ

H
t ). (b) Evolution of time changes (Γ 1

t ,Γ
2
t ).

(c) Evolution of credit quality (X1
t , X

2
t ). (d) Evolution of default probability (P[τ1 < t], P[τ2 < t]).

Fig. 3. Path simulation (with factor jump). Note: Simulations of Gamma-OU model with parameters set θ1 = θ2 = θH = 0.5, a1 = a2 = aH = 1, b1 = b2 = bH =

0.7,Σ1
0 = Σ2

0 = 1,ΣH
0 = 0.08, β1 = 0.5, β2 = 0.9 The presence of a big jump in themarket factor Hs after time 4 increases the probability of default of the two companies

and eventually leads to their default.
factors has paths characterised by jumps and exponential decays
and an increase in the variance translates into a faster growth of
the integrated variance process. The dependence in this setting
is produced by the effect that the jumps in the common factor
has on the default probability of all the names in the portfolio.
When the integrated variance driving the common factor rises,
this increases the probability of default of all the names in the
portfolio. In Fig. 2we illustrate the paths of the variance, integrated
variance(factors) and credit quality processes for the case when
no jump takes place on the path of the variance driving in the
common factor. In this instance the evolution of the credit quality
processes and the default probabilities of the two names evolve
independently of each-other. When a jump in the variance of
the market factor occurs, as is illustrated in Fig. 3, this leads to
dependence between the credit quality and the probability of
default of the two companies. As illustrated in Fig. 3(c) this could
lead to the default of both companies.

As depicted in Fig. 2, theOUprocess driving the variance is char-
acterised by sudden jumps followed by exponential decay periods.
The decay in the common factor produces autocorrelation of the
variance and, due to the fact that the jump in the business time
persists for some period, the probability that the company will de-
fault is increasing. More importantly, two companies affected by a
common shock such as the market factor will be exposed to this
shock for as long as the decay continues. This can generate a con-
tagion effect in which the default of a company due to a jump in
the market factor can be followed by the default of another com-
panywhich at first has not defaulted but later on it does because of
the prolonged decay period. While the default of the first company
does not cause the default of the second (due to the conditional in-
dependence assumption) as in the standard contagion models, see
Davis and Lo (2001), the important feature of the domino effect is
captured in our model.

5. Credit derivatives pricing

5.1. Single-name credit default swaps

Under ISDA 2009 documentation which is known as the ‘‘Big
Bang’’ specification, see MARKIT (2009) the CDS contracts have
fixed coupons and at the cash settlement date the difference
between the premium leg (computed with fixed coupons) and
the protection leg is paid upfront. The formulae needed for the
pricing of CDS contracts are based on assuming a unit notional and
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denoting by R the (random) recovery, rt(v) the discount rate9 at
the present time t for maturity v and by T the expiration of the
CDS contract, the present value of the dirty protection leg is:

V Prot,dirty
t = E[e−

 τ
t rt (v)dv(1 − R)1{τ≤T }|Ft ]

= E[E[Bt(τ )(1 − R)1{τ≤T }|HT ]|Ft ]

= E[Bt(τ
∗)(1 − R̄)p∗(T )|Ft ] (5.1)

where Bt(τ ) = e−
 τ
t rt (v)dv is the discount factor, R̄ is expected

recovery rate and p∗(T ) = E[1{τ≤T }|HT ] is the conditional (on the
H) probability of default. The present value of the accrued coupon
at default (Accrdeft ) is detracted from V Prot,dirty

t to obtain the clean
protection leg value V Prot,clean

t = V Prot,dirty
t − Accrdeft where

Accrdeft = E

Bt(τ )1{τ≤T }

C(τ − max(tc : tc ≤ τ))

360

Ft


= E


Bt(τ

∗)p∗(T )
C(τ − max(tc : tc ≤ τ ∗))

360

Ft


(5.2)

where C denotes the fixed coupon and tc the coupon dates.
Similarly, the present value of the dirty premium leg is:

V Prem,dirty
t = E


tc>t

Bt(tc)C1{τ≥tc }

Ft



= E

tc>t

Bt(tc)C(1 − p∗(tc))
Ft


. (5.3)

Thus V Prem,clean
t = V Prem,dirty

t − Accr initt where Accr initt =

C (t−max(tc :tc≤t))
360 and then CDSt = V Prot,clean

t − V Prem,clean
t is the

upfront (in bps) premium.
Standard practice assumes that default occurs half-way be-

tween coupon payments, see OKane and Turnbull (2003). Approx-
imating (5.1)–(5.3) by discretisation of the time line at the coupon
payment nodes tc gives:

V Prot,dirty
t ≈ (1 − R̄)


tc>t

Bt


max(tc−1, t)

2


EHtc

× [P∗(τ ∈ (max(tc−1, t), tc])]

Accrdeft ≈


tc>t

Bt


max(tc−1, t)

2


C[tc − max(tc−1, t)]

2 ∗ 360
EHtc

× [P∗(τ ∈ (max(tc−1, t), tc])]

V Prem,dirty
t ≈ C


tc>

Bt(tc)
tc − tc−1

360
EHtc [P

∗(τ > tc)]

where P∗(τ > tc) = 1 − p∗(tc) and P∗(τ ∈ (tc−1, tc]) = p∗(tc) −

p∗(tc−1) that can be easily computed by the formulae introduced
in Section 4. The notation EHtc [·] shows calculation based on the
density of the factor Htc .

In Fig. 4 we present the resulting default probability curve
and the associated spreads term structure for various sets of
parameters. Themodel can generate various curve shapes, from the
normal CDS curve (graphs 4(a)–(d)) in which the spreads increase
with the time to maturity to inverted CDS curves (graph 4(f))
characterised by lower spreads for higher maturities.

9 We assume independence between the interest rate and default or recovery
rate. This can be relaxed.
5.2. Credit default swaps index

If we denote by Ht =
K

j=1 nj1{τi>t} the unit notional at
time t , by nj the percentage exposure10to the name j, by Rj the
respective recovery rate and by Bt(s) the discount factor, then the
discounted cash-flows corresponding to Protection Leg payments
can be written as:

W Prot,dirty
t = E

 K
j=1

njBt(τj)(1 − Rj)1{τj≤T }

Ft



= E


E
 K

j=1

njBt(τj)(1 − Rj)1{τj≤T }

HT

Ft



= E
 K

j=1

njBt(τ
∗

j )(1 − R̄j)p∗

j (T )
Ft


. (5.4)

Again there may be a possible accrued coupon at the time of
default. Denoting by Cidx the fixed coupon we have:

Adef
t = E

 K
j=1

njBt(τi)1{τj≤T }

Cidx(τ − max(tc : tc ≤ τ))

360

Ft



= E
 K

j=1

njBt(τ
∗)p∗

j (T )
Cidx(τ − max(tc : tc ≤ τ))

360

Ft


. (5.5)

The present value of the cash-flows corresponding to the Premium
Leg is:

W Prem,dirty
t = E


tc>t

Bt(tc)Cidx

K
j=1

nj1{τj>tc }

Ft



= E

tc>t

Bt(tc)Cidx

K
j=1

nj(1 − p∗(tc))
Ft


. (5.6)

An initial correction corresponding to the accrued coupon up to
the trade date is computed similar as for the CDS contract Ainit

t =

Cidx
(t−max(tc :tc≤t))

360 which leads to the index swap price CDSIt =

W Prot,clean
t − W Prem,clean

t . With the assumption that defaults occur
half-way between coupon payments:

W Prot,dirty
t ≈


tc>t

Bt


max(tc−1, t)+ tc

2

 K
j=1

nj(1 − R̄j)EHtc

× [P∗(τj ∈ (max(tc−1, t), tc])]

Adef
t ≈


tc>t

Bt


max(tc−1, t)+ tc

2


Cidx[tc − max(tc−1, t)]

2 ∗ 360

×

K
j=1

njEHtc [P
∗(τj ∈ (max(tc−1, t), tc])]

W Prem,dirty
t ≈ Cidx


tc>t

Bt(tc)
tc − tc−1

360

K
j=1

njEHtc [P
∗(τj > tc)]

where P∗(τ > tc) = 1 − p∗(tc) and P∗(τ ∈ (tc−1, tc]) =

p∗(tc)− p∗(tc−1) are computed as for the CDS pricing.
In Fig. 5 we present an analysis of the parameter’s impact on

the shape of the spread curve for the CDSI of iTraxx Europe index.
We fix the univariate parameters and focus on the multivariate
parameterswith impact on the CDSI price. Similar to Eckner (2009)

10 Usually computed as 1/K . For iTraxx nj = 0.08.
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(a) α = −1, θ = 1.2, a = 3, b = 5, θH = 1.2. (b) α = −5, θ = 0.7, a = 1, b = 5, θH = 0.6.

(c) α = −3, θ = 1.2, a = 1, b = 5, θH = 0.9. (d) α = −2, θ = 0.7, a = 4, b = 5, θH = 1.4.

(e) α = −1, θ = 1.2, a = 1, b = 5, θH = 1.2. (f) α = −1, θ = 0.2, a = 2, b = 2, θH = 0.4.

Fig. 4. Term structure of default probabilities and spreads. Note: The graphs above are generated under Gamma specification both the idiosyncratic and common factor. The
parameters that varies have their values specified under each graph while the rest of the parameters are kept constant (β = 0.7, aH = 2, bH = 3,H0 = G0 = ΣG

0 = ΣH
0 =

0.02, R = 0.4). The default probabilities are computed for every quarter maturity starting with T = 0.25 until T = 10 while the spreads are computed for T = 1, 3, 5, 7, 10.
The variety of term structure shapes possible shows the flexibility of the model.
we used a common level α (estimated in our example at −5.5)
which we multiply by the weight ωc computed as the ratio of the
average 5y spreads over the entire portfolio and the 5y spread
of the company (αc = −5.5ωc). The weight ωc represents the
relative riskiness of the company when compared with the rest of
the names in the index. The parameter β controls the dependence
between the default probabilities for the obligors in the index. An
increase in β produces a rise in the spreads for the CDSI contract
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(a) β I
= 0.9, β II

= 1.4, β III
= 0.6. (b) θ IH = 1.2, θ IIH = 1.6, θ IIIH = 0.6.

(c) aIH = 3, aIIH = 6, aIIIH = 1. (d) bIH = 2, bIIH = 5, bIIIH = 1.

(e) αI
r = 2, αII

r = 4, αIII
r = 1. (f) β I

r = 4, β II
r = 6, β III

r = 2.

Fig. 5. Parameter sensitivity of the CDSI curve. Note: Term structure of CDSI spreads at the most important maturities for the iTraxx index with various parameter sets. The
model used is IG-OU for both idiosyncratic and common factor. The initial parameters αc = −5.5ωc , θ = 1.2, a = 2, b = 3, β = βs = 0.9, θH = 1.2, aH = 3, bH = 2, αr =

2, βr = 4,H0 = G0 = ΣG
0 = ΣH

0 = 0.02 are kept constant in all the graphs (model I) while on e of the parameters that affect the entire index are changed one at a time
with values specified under each graph (model II and III).
(see Fig. 5(a)). This effect is usually more pronounced at longer
maturities since for longermaturities there is time for the common
factor to jump and create multiple defaults.

An opposite effect is observed in Fig. 5(b) for the parameter
θH . This parameter controls the speed of the mean reversion of
the common factor. One expects that for higher values of θH the
variance of the common factor will reverse faster to the long-run
mean value, reducing the impact of the jumps in the common
factor on the probability of default of the names in the portfolio.
The same conclusion can be drawn for the parameter aH which
controls the shape of the increments of the BDLP driving the
variance of the common factor. Lower values of this parameter
lead to a distribution of increments which is peaked closer to
the origin implying smaller jump sizes of the common factor,
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and consequently a smaller importance of the common factor.
This effect explains the lower spreads observed in Fig. 5(c). On
the contrary, the effect of an increase in bH , the scale parameter
of the distribution of common factor’s jumps, is to increase the
level of spreads of the CDSI contract, as illustrated in Fig. 5(d). An
explanation is that increasing bH implies a distribution for jumps
of the common factor centred at higher values, creating more
possibilities of default in the index portfolio.

The last two analysed parameters control the distribution of
the recovery rate. Here we used a discretisation of a Beta(αr , βr)
distribution to model the random recovery rate, assumed to be the
same for all the names in the portfolio. Since the mean of a Beta
distribution is αr

αr+βr
the expected recovery rate is positively related

to αr and negatively related to βr . There is a negative linkage
between the spreads of a CDSI contract and the expected recovery
rate R̄ so an increase in αr leads to lower spreads, as in Fig. 5(e),
while an increase inβr implies higher spreads as in Fig. 5(f). Similar
observations can be made in the case of the IG-OU specification.

5.3. CDO tranches

A CDSI tranche is an option contract on the index, with the
attachment Al and detachment points Bl of a tranche l representing
the interval of the cumulative loss process {Lt}t≥0 to which the
investors in that specific tranche are exposed. For pricing CDO
tranches we consider the cumulative loss Ls =

K
j=1 nj(1 −

Rj)1{τj≤s}. Then the notional of a tranche l can be written as N tr(l)
s =

fl(Ls) = (Bl −Al)− (Ls −Al)1{Ls>Al} + (Ls −Bl)1{Ls>Bl}. The Premium
Leg is

TrPrem,dirtyt,l = E

tc>t

Bt(tc)C l
trN

tr(l)
tc

Ft


=


tc>t

Bt(tc)C l
trE[N tr(l)

tc |Ft ] (5.7)

and applying the market correction Ainit,l
t = C l

tr
(t−max(tc :tc≤t))

360

leads to the clean Premium price TrPrem,cleant,l = TrPrem,dirtyt,l − Ainit,l
t .

With defaults halfway between coupon payments, the value of the
Protection Leg and the accrued coupon at the time of default are:

TrProt,dirtyt,l ≈


tc>t

Bt


max(tc−1, t)+ tc

2


E[N tr(l)

tc − N tr(l)
max(tc−1t)

]

Adef
t ≈


tc>t

Bt


max(tc−1, t)+ tc

2


×

C l
tr [tc − max(tc−1, t)]

2 ∗ 360
E[N tr(l)

tc − N tr(l)
max(tc−1,t)

].

The applicability of the formulae above depend on computing
the values E[N tr(l)

tc − N tr(l)
tc−1

] = E[N tr(l)
tc ] − E[N tr(l)

tc−1
] and E[N tr(l)

tc ].
Since N tr(l)

s = fl(Ls) is a function of Ls for which we showed
in Section 3.3 how to obtain its distribution, the computation of
E[N tr(l)

tc ] is determined by the integral

R+ fl(Ls)gLs(x)dx.

6. Calibration methodology

The calibration of the model will use the information encoded
in the term structure of CDS, CDSI and CDO tranches spreads.
This requires the computation of the conditional probabilities of
default, the conditional distribution of portfolio losses and the
factor density for all the payment dates of the coupons.11 For

11 For a 10 year maturity there are 40 payment dates for which these calculations
need to be performed.
Fig. 6. Calibration of LafargeHolcim Ltd CDS term structure. Note: The Gamma-
OU model is calibrated on LafargeHolcim Ltd CDS term structure data available in
Bloomberg for the date 18 Feb. 2015. The parameters of the common factor are fixed
(θH = 0.6, aH = 2, bH = 3, R̄ = 0.4) while the free parameters (αc , βc , θc , ac , bc)
are implied from the calibration with the goodness-of-fit measured by RRMSE, APE,
ARPE and RMSE.

reducing the computational burden we follow Eckner (2009) and
(Mortensen, 2006) and compute the above value for intervals of
one year length and use a cubic spline to interpolate for values at
coupon dates in-between.

6.1. Univariate calibration

The calibration of the default probability model for a specific
name is based on CDS spreads or defaultable bond prices available
on the market. The input observations can be either the market
CDS rates or the implied probabilities of default bootstrapped from
these spreads, seeOKane andTurnbull (2003) for the bootstrapping
procedure. In order to find the set of parameters Γc one could
minimise the average relative percentage error:

ARPE =
1
M

M
n=1

|Snmarket − Snmodel(Γ )|

Snmarket
(6.1)

where M is the number of available market spreads/upfronts.
Other measures of goodness-of-fit that are routinely used, see
(Schoutens et al., 2004), include RRMSE, APE and RMSE.

The example described here is for LafargeHolcim Ltd on the date
18 Feb 2015,with CDSmarket prices downloaded fromBloomberg.
For the interest rate we used the swap curve data available in
Bloombergwhich consists of Euribor rates formaturities under one
year and rates striped form interest rate swap prices for longer
maturities.

Since we are interested in the performance of the univariate
default probability model, we fix the parameters of the common
factor to θH = 0.6, aH = 2, bH = 3, R̄ = 0.4while letting the other
parameters free (αc, βc, θc, ac, bc). The results of the univariate
calibration presented in Fig. 6 indicate that the model fits well the
data.
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Table 1
Parameters from the multivariate calibration. Note: The parameters resulted from
the calibration of themultivariatemodel on the 22nd series of the iTraxx index CDSI
term structure data available in Bloomberg for the date 18 Feb. 2015. The model
used for the factors is Gamma-OU.

α βAI βC βE βTMT βF αr

−1.5337 0.7573 0.6675 1.1043 0.6693 1.2044 2.2394

θ a b θH aH bH

2.9999 2.8597 0.4301 0.2081 2.1495 0.8116

6.2. Multivariate calibration

The multivariate calibration of the model requires the joint
calibration of CDS, CDSI and index tranches spreads. The market
data used for calibration purpose regards the trading date 18 Feb.
2015 and was downloaded from Bloomberg. It corresponds to
the CDS spreads for maturities (3y, 5y, 7y, 10y) for each of the
125 components of the iTraxx Series 22 index, the CDSI prices on
the iTraxx Series 22 index for maturities (3y, 5y, 7y, 10y) and the
spreads for the 0%–3%, 3%–6%, 6%–12% and 12%–100% tranches on
the index for maturities (3y, 5y).12 The total error to minimise is
the (weighted) sum of the errors on CDS spreads, CDSI spreads and
tranches spreads:

min
Γ


ARPECDS(Γ )+ 5ARPECDSI(Γ )+ 5ARPEtr(Γ )


(6.2)

where

ARPECDS(Γ )

=
1
N

1
M

N
n=1

M
m=1

|Sn,mmarket,CDS − Sn,mmodel,CDS(Γ )|

Sn,mmarket,CDS
(6.3)

ARPECDSI(Γ ) =
1
M

M
m=1

|Smmarket,CDSI − Smmodel,CDSI(Γ )|

Snmarket,CDSI
(6.4)

ARPEtr(Γ ) =
1
P

1
M

P
p=1

M
m=1

|Sm,pmarket,tr − Sm,pmodel,tr(Γ )|

Sm,pmarket,tr
(6.5)

for n = 1, 2, 3, . . . ,N = 125 names in the index portfolio, m =

1, 2, . . . ,M maturities and p = 1, 2, . . . , P tranches available.
The general model employed here has (N × 5)+ 5 parameters,

five univariate parameters corresponding to each obligor in the
credit portfolio of N names and five common parameters. For
the purposes of having a more parsimonious model we adopt a
series of simplifying assumptions. The first assumption is that the
individual barrier level αc can be expressed as αc = αωc for a
general level α and a weightωc =

CDSc5
avgCDS5

obtained as the quotient
between the 5y CDS level of individual names and the average 5y
CDS for the entire portfolio of credit names. The second assumption
is that each obligor in a specific sector responds in the same way
to the shocks from the market factor.

As a result we reduced the number of βc parameters from
N = 125 to only 5 beta values βAI , βC , βE, ββAI , βF corresponding
to the five sectors division of the names in the iTraxx index
(Autos & Industrials, Consumers, Energy, Technology & Media &
Telecommunications and Financials). The last assumption is that
the parameters θ, a and b which control the distribution of the
company specific factor are common to all the companies in the
index. The results of the multivariate calibration are presented
in Table 1. As can be seen from the measure of goodness of fit
presented in Fig. 7, the multivariate model fits well the market
data.

12 Some of the tranches are quoted in upfront points and have been transformed
to spreads by using the Bloomberg calculator available in the CDSW screen.
7. Conclusions

In this paper we developed a factor structure of the time-
changes driving the impact of the information arrival on the
credit worthiness process. Moreover we proposed a new FFT based
general methodology for the computation of the probability of
default which allows the extension of the univariate model to
specifications not possible under the Panjer recursion technology
used in recent credit risk literature.

Under our framework it is feasible to price single-name CDS,
CDSI and index tranches contracts or CDOs. A useful and interesting
characteristic of our proposedmultivariatemodel, that stems from
the use of mean reverting models for the variance of the common
factor, is the ability of producing ‘‘contagion-like’’ effects observed
in the market.

This paper described the set-up of the credit modelling
framework based on Brownian time-changed processes with
volatility belonging to the class of mean reverting Lévy driven
OU type process. Within this framework flexible formulae were
derived for CDS prices, credit index prices and CDO/tranche prices.
The next challenge would be to link the drivers of this models to
sectoral and macroeconomic effects such as described by Chava
et al. (2011).

Appendix A. Proof Proposition 2

Because Υ has a chi-squared distribution with one degree of
freedom so Υ ∼ Γ (1/2, 2) and k−2Υ ∼ Γ (1/2, 2a−2). Then 1

k−2Υ
has an inverted Gamma (or inverted chi-squared) distribution with
density:

f (1/x) =
kn

2n/2Γ (n/2)
x(n+2)/2e−

xk2
2 (A.1)

and the characteristic function as given in Witkovskỳ (2001),with
n = 1 in our case, where Γ (x) is the Gamma function and Kα(x) is
the Bessel function of the second kind:

φiΓ (u) =
2(−2iuk−2)n/4Kn/2[k2(−2iuk−2)1/2]

(2k−2)n/2Γ (n/2)
. (A.2)

Taking the square of a standard normal variable by Υ = Z2 and
denoting υ =

k2
γ−c for constants k < 0, γ > 0, c > given that

γ − c > 0, we can write:

P

Υ ≤ υ


= P


Z2

≤
k2

γ − c


= P


|y| ≤

√
z


= P

Z ≤

|k|
√
γ − c


−


1 − P


Z ≤

|k|
√
γ − c


= 2P


Z ≤

|k|
√
γ − c


− 1. (A.3)

Standard probability calculus gives P

Z ≤

−k
√
γ−c


= 1 − P


Z ≤

k
√
γ−c


so 2P


Z ≤

a
√
γ−c


= 1 − P


Υ ≤

k2
γ−c


= P


1

k−2Υ
≤

γ − c

.

Therefore we can write the default probability (3.1) as

P(τ < s|Ft) = E[2P(Z
√
Γs − Γt − (b − Xt) ≤ 0|Γs)|Ft ]

= E

2P


Z ≤

(b − Xt)
√
Γs − Γt

Γs

Ft


= E


P


1
(b − Xt)−2Υ

≤ (Γs − Γt)

Γs

Ft


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(a) CDSI. (b) 0%–3% tranche.

(c) 3%–6% tranche. (d) 6%–12% tranche.

Fig. 7. Multivariate calibration results. Note: The multivariate model is calibrated on CDSI and index tranches data on iTraxx index available from Bloomberg for the date 18
Feb. 2015. The model used for the factors is Gamma-OU. The parameters from the calibration are presented in Table 1. Four measures of goodness of fit (RRMSE, APE, ARPE
and RMSE) are also displayed in the tables below each graph.
= E


P


1
(b − Xt)−2Υ

− (Γs − Γt) ≤ 0
Γs

Ft


. (A.4)

The variable inside (A.4) is the difference of two independent
variables: the first is an inverted Gamma with characteristic
function given by (A.2) and the second is just the distribution of the
integrated variance for which the characteristic function of various
specifications will be discussed in Section 4. Now the conditional
probability of default given the factor Hs is:

P(τ < s|Hs ∨ Ft)

= E


P


1
(b − Xt)−2Υ

− (Gs − Gt)− β(Hs − Ht) ≤ 0
Hs ∨ Ft


= E[P(Q ≤ 0)|Hs ∨ Ft ] (A.5)

where Q =
1

(b−Xt )−2Υ
− (Gs − Gt)− β(Hs − Ht).
Appendix B. Proof Proposition 3

The formulae follow by just writing the characteristic function
of Q =

1
(b−Xt )−2Υ

− (Gs − Gt) − β(Hs − Ht) as function of the

characteristic functions of the inverse Gaussian variable 1
(b−Xt )−2Υ

and of the variables Gs and Hs:

PGill
[τ < s|Hs ∨ Ft ] =

1
2

−
1
π


∞

0
ℜ


φQ |H(u)

iu


du

=
1
2

−
1
π

ℜ


∞

0
e−iu(βHs)

φiΓ (u)φGs(−u)eiu(βHt+Gt )

iu
du


(B.1)

PKim
[τ < s|Hs ∨ Ft ] =

1
π


∞

0
ℜ


φQ |H(u + iρ)
ρ − iu


du
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=
1
π

ℜ


∞

0
e−iu(βHs)

×
φiΓ (u + iρ)φGs(−u − iρ)eiu(Gt+βHt )+ρ(β(Ht−Hs)+Gt )

ρ − iu
du


(B.2)

PHilb
[τ < s|Hs ∨ Ft ] =

1
2

−
i
2

H[φQ (0)](0)

=
1
2

−
i
2

H[φiΓ (u)φGs(−u)e−iu(Gt+βHt−βHs)](0)

≈
1
2

−
i
2

M
m=−M,m≠0

φiΓ (mh)φGs(−mh)eimh(Gt+βHt−βHs)

×
1 − cos(−πm)

−πm

=
1
2

−
i
2

M
m=−M,m≠0

φiΓ (mh)φGs(−mh)eimh(Gt+βHt−βHs)

×
1 − (−1)−m

−πm

=
1
2

−
i
2

M−1
m=0

e−2imh(βHs)

×
2φiΓ ((2m + 1 − M)h)φGs((M − 2m − 1)h)eihΛ

π(M − 2m − 1)
(B.3)

where we used the notation Λ = (2m + 1 − M)((Gt + βHt) −

βHs(1 − M)).

Appendix C. Size of CDO Market and Parameter Sensitivity
Analysis

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.insmatheco.2016.10.004.
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