Kent Academic Repository

Meadows, Steve and Jobson, Simon A. (2012) Strategic Insight Paper for Sport England: 'Calorie Mapping' Sports Participation in England. Project report. University of Kent

Downloaded from
https://kar.kent.ac.uk/59598/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
 Author's Accepted Manuscript

DOI for this version

Licence for this version UNSPECIFIED

Additional information

Versions of research works

Versions of Record

If this version is the version of record, it is the same as the published version available on the publisher's web site. Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record in KAR. If you believe that your, or a third party's rights have been compromised through this document please see our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository\#policies).

STRATEGIC INSIGHT PAPER FOR SPORT ENGLAND:
 ‘CALORIE MAPPING’ SPORTS PARTICIPATION IN ENGLAND

Meadows, S., and Jobson, S.A.

Centre for Sports Studies,
University of Kent,
Kent, ENGLAND
\triangle Address for Correspondence:
Dr. Simon A. Jobson Centre for Sports Studies, University of Kent, Kent, ME4 4AG

ENGLAND

Tel: $\quad+441634888815$
Fax: $\quad+441634888890$
E-mail: S.A.Jobson@kent.ac.uk

Abstract

The Active People Survey is a nationwide project commissioned by Sport England to investigate the sport and physical activity habits of the general population. The results of this survey provide valuable data to inform health-related Government strategy. The aim of this investigation was to provide a preliminary regional 'calorie map' of sport and physical activity. Utilising mode, frequency, duration and intensity of sport/physical activity data, energy expenditure values were ascribed to the 7 most popular sports/physical activities in the Active People Survey 2. The activities selected were: walking, cycling, swimming/diving, gym, football, golf and road running. Energy expenditure (kcal•week ${ }^{-1}$) was calculated using standard metabolic equations. Results revealed that, for much of the population, energy expenditure from walking, cycling, swimming/diving, and gym activities, was insufficient to provide a positive impact on health. However, more vigorous, high-impact pursuits, such as football and road running, or those performed over a long duration, such as golf, appear to provide a more beneficial stimulus for positive health adaptations. Males tended to expend more calories than females, although energy expenditure was higher in females for walking activity. These results suggest that further work is required to educate the public about the types and levels of sport and physical activity required to promote health and fitness. A general understanding of issues related to calorie expenditure would necessarily lead to an awareness of the important link between energy intake and energy expenditure. Sport and physical activity promotion activities should also encourage those who are already physically active to increase the frequency, intensity and/or duration of their activity bouts. Those who currently rely on walking as their sole form of exercise should supplement this with more deliberate forms of physical activity. Sport provides an excellent range of such activities. In order to maximise the health benefits of sport and physical activity, individuals should seek to incorporate both moderate (e.g. walking) and vigorous intensity (e.g. football) activities into their weekly routines. Future calorie mapping exercises should evaluate all sports/physical activities reported in the Active People Surveys, should compare successive surveys, and should provide a comprehensive evaluation of the impact of population demographics on sport and physical activity energy expenditure.

Key words: sport, physical activity, energy expenditure, health, METs, Active People Survey.

TABLE OF CONTENTS

PAGE

ABSTRACT i.
LIST OF TABLES iv.
LIST OF FIGURES vi.
1.0 INTRODUCTION 1-7
1.1 Why Physical Activity? 1
1.2 Recommendations for Minimum Levels of Physical Activity. 2
1.3 Physical Activity and Energy Expenditure 3
1.4 Physical Activity and Energy Expenditure Recommendations, 5
1.5 Aims of Investigation 7
2.0 METHODS 8-9
2.1 Source Data 8
2.2 Calculating Energy/Calorie Expenditure 8
2.3 DATA ANaLYsIS 9
3.0 RESULTS 10-19
3.1 Regional Energy Expenditure 10
3.2 Sports/Physical Activity Energy Expenditure Comparisons 16
3.3 Preliminary Social-Demographic Analysis 17
4.0 DISCUSSION 20-23
4.1 The Feasibility of Calorie Mapping 20
4.2 How Effective are the Most Popular Sports/Physical Activities 20
4.3 Regional Variation in Sport and Physical Activity Energy Expenditure. 22
4.4 Socio-Demographic Variations 22
5.0 STUDY LIMITATIONS 24-25
5.1 SURVEY Data 24
5.2 PhYsical Activity Compendia 24
5.3 Data Handling and Processing 24
6.0 RECOMMENDATIONS AND DIRECTIONS FOR FUTURE RESEARCH 26-29
6.1 ReCOMMENDATIONS 26
6.2 Directions for Future Research. 28
7.0 CONCLUSIONS 30
8.0 REFERENCES 31-32
APPENDICES 33-42
Appendix I: Local Authority Energy Expenditure 33
Appendix II: Health Profile of England 42

LIST OF TABLES

PAGE
3.0 RESULTS
Table 3.1 Regional weekly energy expenditure for walking 11
Table 3.2 Regional weekly energy expenditure for swimming 11
Table 3.3 Regional weekly energy expenditure for cycling 12
Table 3.4 Regional weekly energy expenditure for gym 13
Table 3.5 Regional weekly energy expenditure for football 14
Table 3.6 Regional weekly energy expenditure for golf 15
Table 3.7 Regional weekly energy expenditure for road running 15
Table 3.8 Regional levels of participation in 7 most popular sports/physical activities 16
Table 3.9 Weekly calorie expenditure for 7 most popular sports/physical activities 17
Table 3.10 Weekly calorie expenditure for 7 sports/physical activities for males and females 18

A. 1 APPENDIX

Table A1.1 Weekly calorie expenditure for top 7 sports/physical activities for all 33 Local Authorities

LIST OF FIGURES

PAGE
1.0 INTRODUCTION
Figure 1.1 Methods of summarising physical activity data 6
3.0 RESULTS
Figure 3.1 Regional calorie map for walking 10
Figure 3.2 Regional calorie map for cycling 13
APPENDIX II
Figure A2.1 Excerpt from Health Profile of England 2008 42

1.0 INTRODUCTION

Sport makes a significant contribution to the wider health agenda, providing economic and social benefits to the community (Sport England, 2008). The "Choosing Health" White Paper, published in 2004, set out the UK Government agenda for supporting the public to make more informed choices about their health. The Government pledged to provide information, practical support and access to services, such that 'healthy choices' could be more easily taken.

The approaching 2012 Olympic Games in London has given sport and health a fresh impetus, and moved it higher up the Government's public health agenda. Sport England is committing 15% of its investment to increase regular participation in sport by 200,000 adults per annum, working towards a target of 1 million more sports participants by 20122013 (Sport England, 2008). This key performance indicator will be monitored through the Active People Survey.

The collection of data in the Active People Survey on population activity habits, particularly exercise duration, frequency, intensity, and type of sport or physical activity undertaken, makes it possible to estimate the calories (energy) expended during sport and physical activity. By carrying out a calorie mapping exercise, the key aim of this investigation was to quantify the contribution that sport participation makes to health. Key global public health agencies, such as the American College of Sports Medicine, recommend minimum weekly calorie expenditure targets that should be achieved through bouts of physical activity.

1.1 Why Physical Activity?

It is recognised that sport and physical activity, along with a healthy diet, are key determinants of health (Department of Health, 2009a). Compared to those with a sedentary lifestyle, physically active individuals are at approximately half the risk of developing coronary heart disease (Department of Health, 2004a). Regular physical activity is also associated with improved mental health and a reduced risk of diabetes, obesity, osteoporosis and colon cancer. In older adults, physical activity is associated with increased functional capacity (Mazzeo \& Tanaka, 2001). In September 2009 the UK Government
announced details of a new sports and physical activity scheme as part of the 'Change4Life' initiative. This scheme includes a Dance Champions Group, to promote dance participation in the lead up to the 2012 London Olympic Games, and the new 'Swim4Life' campaign to complement the existing free swimming scheme. These new initiatives will complement other such activities (e.g. Bike4Life), to comprise a comprehensive Change4Life social marketing campaign. The National Health Service (NHS) will have a key role in this promotion of physical activity, placing physical activity at the forefront of policy decisions and at the heart of the health service. These activities demonstrate national recognition for the importance of sport and physical activity. For the first time, sport and physical activity is being seen as a clinical need, rather than just a lifestyle choice.

Despite this, there is evidence that general physical activity levels are declining as lifestyles change (Department of Health, 2004a). However, whilst the distance travelled per year on foot and bicycle has fallen in the last three decades, there is evidence to suggest an increase in the proportion of people who choose to be active in their leisure time (Department for Transport, 2001).

Cancer and cardiovascular disease (heart disease and stroke) are the major causes of death in England, together accounting for almost 60% of premature deaths (Department of Health, 2004a). Increasing physical activity in the adult population would reduce the prevalence of these major lifestyle diseases, as well as reducing the risk of osteoporosis, back pain and osteoarthritis. Physical activity has also been shown to have positive effects on psychological wellbeing and mental health (Paluska \& Schwenk, 2000).

1.2 Recommendations for Minimum Levels of Physical Activity

The Chief Medical Officer has recommended that the adult population (i.e. ages 16 years and over) should achieve 30 minutes of physical activity of at least moderate intensity on 5 days per week (" 5×30 ") (Department of Health, 2004a). Whilst agreeing that moderate intensity activity should be encouraged, Haskell et al. (2007) also emphasised the need for vigorous intensity physical activity. Moderate and vigorous intensity tasks performed as part of everyday life (e.g. brisk walk, gardening, DIY tasks) can be counted towards the 5×30 target. However, the recommended amount of physical activity (whether moderate or
vigorous) should be in addition to the routine, light intensity, activities of daily living (e.g. casual walking, shopping, domestic chores).

Although it is widely acknowledged that an active lifestyle leads to better health, estimates suggest that only 31% of the adult population are sufficiently active to experience the health benefits (Department of Health, 2009). Data from the most recent Health Profile of England shows that 40% of the adult male population and just 28% of the adult female population achieve the minimum recommended level of physical activity (Department of Health, 2009a). It has been reported that levels of sport and physical activity decline significantly with age for both sexes, whilst higher academic achievement has been associated with greater engagement in physical activity (Department of Health, 2004a).

One function of the Choosing Health consultation (Department of Health, 2004b) was to develop an activity plan for the UK population that would contribute to the delivery of 'Game Plan', the strategy for delivering the Government's sport and physical activity objectives. Game Plan set out a vision for increasing physical activity participation, to get 70% of the population performing 30 minutes of moderate exercise five times a week by 2020 (Strategy Unit, 2002). The 2012 London Olympic Games provides a vital opportunity to encourage the UK population to become more physically active and could stimulate a golden age of sport and physical activity. Using this global celebration of sport as an inspiration, it is hoped that the London Olympics will provide sufficient momentum to achieve the Government's ambitious targets for sport and physical activity participation.

1.3 Physical Activity and Energy Expenditure

Physical activity includes many different forms of 'everyday' activity. Thus, walking to work, working out in a gym, attending a dance class, and informal family play activities are all forms of physical activity (Department of Health, 2009b). What is intrinsic to each of these forms of physical activity is the effect that movement has on the body, raising heart rate and breathing rate, eventually bringing about beneficial physiological adaptations. These are usually accompanied by an improvement in overall sense of wellbeing (Paluska \& Schwenk, 2000). The simple concept of increased movement underpins the Change4Life health strategy discussed above (Department of Health, 2009c).

The energy cost of many physical activities has been established. Activities that are vigorous and involve large muscle groups require greater energy expenditure than do moderate or low intensity activities that utilise small muscle groups. For this reason, most health agencies (American College of Sports Medicine, 2006; Department of Health, 2004; Haskell et al., 2007) recommend activities that require large rhythmical contraction of muscle groups, performed at a moderate intensity (enough to raise breathing rate) over a prolonged period of time (10-90 minutes).

The energy expenditure of a wide range of physical activities have been obtained by directly measuring the oxygen cost of these activities in an adult population (Ainsworth et al., 1993, 2000; Montoye, 2000; Montoye et al., 1996; Olson et al., 1991; Zeni et al., 1996). The term metabolic equivalent (MET) is often used to describe exercise intensity (Ainsworth et al., 2000; Department of Health, 2004a). One MET is equivalent to the amount of energy expended during one minute of seated rest. Therefore, exercise performed at a level of intensity five times that of resting oxygen uptake $\left(\mathrm{VO}_{2}\right)$ is equivalent to 5 METs . An example of a 5 METs activity is walking at 4.0 miles $\cdot h^{-1}{ }^{-1}$ on a level firm surface (Ainsworth, et al., 2000). Exercise of light intensity will usually have a MET value <3, moderate intensity 3-6 METs, and vigorous exercise >6 METs (Haskell et al., 2007).

Whilst providing a valuable tool, the MET approach has a number of limitations. The absolute energy expended during exercise at a 5-MET intensity depends on an individual's body size (i.e. a large person is likely to have a larger VO_{2} than a small person) and their body fat percentage (Howell et al., 1999). As a result, the estimation of energy expenditure for weight-bearing activities may be underestimated when using MET tables and overestimated for non-weight bearing activities (American College of Sports Medicine, 2010). Similarly, differences in age, cardiorespiratory fitness, exercise efficiency, and environmental conditions may impact on the accuracy of standardised MET values (Ainsworth et al., 1993, 2000).

In a public health setting, the MET approach is valuable as it provides a physiologically valid method to evaluate the contribution of various types of physical activity to overall daily and weekly energy expenditure. It also facilitates comparisons of energy expended between
different modes of activities. As an example, an adult walking at an average pace of 3 miles \cdot hour $^{-1}$ on a flat hard surface would be working at an intensity of 3.3 METs. If this is performed for the recommended 30 minutes, then the total accumulated energy expenditure would be $99 \mathrm{METs}(3.3 \mathrm{METs} \times 30 \mathrm{~min}=99 \mathrm{METs})$. If this individual began jogging at 5 miles \cdot hour $^{-1}\left(12 \mathrm{~min} \cdot \mathrm{mile}^{-1}\right)$, they would then be exercising at a metabolic rate that was 8 times that of resting metabolic rate, or 8 METs. Jogging for 20 minutes, accumulated energy expenditure would be 160 METs (8 METs $\times 20 \mathrm{~min}=160 \mathrm{METs}$). If an adult is to achieve the Chief Medical Officer's " 5×30 " target, they should achieve a weekly value in the range of 450-900 MET•week ${ }^{-1}$ (based upon the MET range of 3-6 METs for moderate intensity effort and $5 \times 30 \mathrm{~min}=150 \mathrm{mins} \cdot \mathrm{week}^{-1} ; 3 \mathrm{METs} \times 150 \mathrm{~min} \cdot \mathrm{week}^{-1}=450$ MET \cdot week $^{-1} ; 6$ METs $\times 150 \mathrm{mins} \cdot \mathrm{week}^{-1}=900$ MET $\cdot \mathrm{week}^{-1}$).

In order to accumulate the recommended weekly energy expenditure targets outlined, a person would need to engage in moderate intensity activity for a longer duration (i.e. more minutes), or shorter bouts of vigorous intensity activity (i.e. higher MET values). Haskell et al. (2007) suggested that vigorous intensity physical activity leads to a greater health benefit; hence the encouragement from public health agencies to mix moderate and vigorous intensity efforts.

1.4 Physical Activity and Energy Expenditure Recommendations

The specific physiological adaptations (e.g. weight loss, cholesterol reduction, enhanced maximal aerobic capacity) that result from physical activity are dependent upon the level of energy expenditure (American College of Sports Medicine, 2006). It is the interaction of intensity, duration and frequency of physical activity performed that will determine the net caloric expenditure.

Common methods to express sport and physical activity data include: duration (total minutes spent in activity [number of sessions*session time]); metabolic equivalents (METs; a MET is an estimate of intensity based on the ratio of working metabolic rate to resting metabolic rate); and kilocalories (kcal). A progression of the three methods for calculating energy expenditure during activity is illustrated in Figure 1.1.

| Frequency
 4 workouts per
 week |
| :---: | \(\mathbf{\begin{array} { c } { Duration }

{ 3 0 min/workout } \end{array}} \times\)\begin{tabular}{|c|c|}

\hline | Intensity |
| :---: |
| 5 METs |

\hline
\end{tabular}

Method 1. Duration
$4 \times 30 \mathrm{~min}=2 \mathrm{hrs} \cdot$ week $^{-1}$

Method 2. METs
$2 \mathrm{hrs} /$ week $^{-1} \times 5 \mathrm{METs}=10 \mathrm{MET}$ hrs•week ${ }^{-1}$

Method 3. Energy Expended $10 \mathrm{METs} \times 70 \mathrm{~kg}=700 \mathrm{kcal} \cdot \mathrm{week}^{-1}$

Figure 1.1 Methods of summarising physical activity data (American College of Sports Medicine, 2010)

When using these calculations the assumption is made that MET values are representative of the way an activity is performed, regardless of the skill level of the individual or the pace of the activity. Furthermore, it is assumed that the metabolic cost of performing activities (in METs) is constant among individuals, regardless of body weight (American College of Sports Medicine, 2010).

For simplicity, individual differences in resting energy expenditure are often overlooked; 1 MET is considered to be equivalent to a VO_{2} of $3.5 \mathrm{ml} \cdot \mathrm{O}_{2} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~min}^{-1}$. Expressed as caloric expenditure, 1 MET represents an energy expenditure of approximately $1.2 \mathrm{kcal} \cdot \mathrm{min}^{-1}$ for a 70kg individual (American College of Sports Medicine, 2010).

All adults should expend 150-400 kcal of energy per day through sport and/or physical activity (American College of Sports Medicine, 2006). The lower end of this range represents a minimal caloric threshold of approximately $1000 \mathrm{kcal}^{2}$ week $^{-1}$. This level of activity has been shown to reduce the risk of all-cause mortality by 20-30\% (Nelson et al., 2007). Because
there is a strong dose-response relationship between physical activity and health and fitness, there should be progression toward the upper end of the recommended range of $300-400 \mathrm{kcal} \cdot \mathrm{day}^{-1}\left(2100-2800 \mathrm{kcal}^{-}\right.$week $\left.^{-1}\right)$, particularly if weight loss is a target outcome. Indeed, recent recommendations from the Chief Medical Officer suggest that a minimum of $60 \mathrm{~min} \cdot \mathrm{day}^{-1}$ of activity is required for weight loss or healthy weight maintenance (Department of Health, 2004a). Ross \& Janssen (2001) suggested that physical activity energy expenditure in excess of $2000 \mathrm{kcal} \cdot$ week $^{-1}$ is required for short and long-term weight control.

1.5 Aims of InVEStigAtion

The primary aim of this investigation was to provide a preliminary calorie map of sport and physical activity in England using data from the Active People Survey 2. Survey questions relating to the mode, frequency, duration and intensity of physical activity performed were utilised. A secondary aim was to investigate energy expenditure from a range of sports and physical activities, to establish those activities that provide the highest and the lowest levels of energy expenditure. The results of this investigation will illustrate whether or not the sport and physical activity being performed by the sampled population is sufficient to have a positive impact on health. Whilst the target 5×30 minutes of weekly activity might be achieved by a substantial fraction of the population, this does not necessarily mean that activity levels are sufficient to promote positive health adaptations. The calculation of physical activity caloric expenditure provides valuable information on the potential healthpromoting benefits of the sport and physical activity performed by adults in England.

2.0 METHODS

2.1 Source Data

A key aim of the Active People Survey (APS) is to establish how much of the adult population of England (\% of respondents) are active at the recommended levels. However, as questions relating to the frequency, duration, and intensity of activity are included, the APS surveys also provide a valuable opportunity to quantify the energy expended through sport and physical activity.

The Active People Survey 2 (APS 2) identified 256 sports and physical activities. The preliminary investigation carried out here considered the 7 most popular sports/physical activities: walking (134,920 participants), swimming/diving [indoors] (23,769 participants), cycling (20,280 participants), gym (18,615 participants), football (7,247 participants), golf (7,098 participants), and road running (5,243 participants). This selection includes 3 out of the 4 activities promoted by the UK Government in the Change4Life health campaign. Dance was not included due to the low number of dance participants recorded in APS 2.

2.2 Calculating Energy/Calorie Expenditure

Standard metabolic calculations and MET values were used to calculate energy expenditure for each day of sport/physical activity completed (Q11: "Number of days in last 4 weeks"). The compendium tables of Ainsworth et al. (2000) were used to prescribe metabolic equivalents (METs) for each sport/physical activity at 3 intensities (Q13, negative response: 'raised breathing rate?'; Q13, positive response: 'raised breathing rate?'; and Q14, positive response: 'out of breath or sweaty?'). These compendium tables have been used previously by Haskell et al. (2007) and the UK Chief Medical Officer (Department of Health, 2004a).

Using a range of nested logic functions in Microsoft Excel, caloric expenditure was calculated for each sport/physical activity session as (Ainsworth, 2009; American College of Sports Medicine, 2006):
kcal.session ${ }^{-1}=($ METs x body weight $[\mathrm{kg}]) / 60 \times$ session duration (min)
Taking account of the number of sessions completed in the previous 4 weeks, this data was averaged to produce monthly, weekly, and daily calorie expenditure values. (Note: Walking
and cycling calculations utilised a 30-minute session duration. This was because 'average session duration' data was not available for these activities.)

It was beyond the scope of this analysis to accommodate all variables that might impact on the energy cost of movement. Ideally a correction factor would be available for different physical activities. However, no such correction is currently available. The only variable that could be accounted for was body weight. However, actual body weight data was not available. Therefore, body weight was factored into the calorie mapping calculations using a range of weights (10 kg increments between $60-100 \mathrm{~kg}$) to accommodate for variation in the UK adult population.

Establishing caloric expenditure during exercise is problematic due to the many variables that can influence it. These include factors such as inter-individual differences in skill, coordination, exercise efficiency $\left(\mathrm{VO}_{2}\right.$ per unit workload), and the variation in exercise intensity within an activity. Further error is introduced when asking an individual to report their 'usual' level of effort/intensity during sport and physical activity. Therefore, these analyses/data should be used with caution. Indeed, even direct attempts to establish energy expenditure through methods such as accelerometry have identified a variety of limitations (American College of Sports Medicine, 2006).

2.3 Data Analysis

Caloric expenditure and demographic data were prepared using Microsoft Excel pivot tables. Data were reported as means for sport, region, local authority, and sex.

Preliminary statistical analyses were carried out to evaluate differences between sports and ethnic groups (walking only). One-way ANOVA and Tukey post-hoc tests were performed using the SPSS statistical software package (versions 16 and 17). The alpha level was set at P < 0.05. An adjustment was made to the ethnic group data to accommodate 5,109 blank responses. These were converted to category 5, classified as 'Other'.

3.0 RESULTS

3.1 Regional Energy Expenditure

Regional weekly energy expenditure values for the 7 most popular activities recorded in the Active People Survey 2 are reported in Tables 3.1-3.7. As body weight data was not collected in APS 2, average values are reported for the illustrative range $60 \mathrm{~kg}-100 \mathrm{~kg}$. Values for each weight category are not qualitatively different. Therefore, it is appropriate to consider values for a reference individual of 70 kg , this representing an 'average' adult.

The most popular physical activity reported in the Active People Survey 2 was walking (APS 2 Question 2). 134,920 individuals (total sample $=191,325$) reported having completed 'at least one continuous walk lasting 30 minutes' in the 'last 4 weeks'. The South West reported the highest regional energy expenditure for walking exercise (mean for all body weights = $457 \mathrm{kcal} \cdot$ week $^{-1}$). The lowest level was reported in the West Midlands (mean for all body weights $=442 \mathrm{kcal} \cdot$ week $^{-1}$). The minimum recommended daily physical activity energy expenditure is 150 kcal (American College of Sports Medicine, 2006), this would require a minimum weekly energy expenditure of 750 kcal (5 sessions \cdot week $^{-1} \times 150 \mathrm{kcal}$). Assuming walking to be the only physical activity undertaken, this minimum level was not achieved through walking exercise for any region (or body weight) (see Figure 3.1).

Figure 3.1 Regional calorie map for walking.

Table 3.1 Regional weekly energy expenditure for walking (APS 2 Question 2) ($N=134,920$).

	Energy expenditure (Kcal.week ${ }^{-1}$)					
Region	$\mathbf{6 0 k g}$	$\mathbf{7 0 k g}$	$\mathbf{8 0 k g}$	$\mathbf{9 0 k g}$	$\mathbf{1 0 0 k g}$	Population \%*
North East	344	402	459	517	574	68.3
North West	341	397	454	511	568	69.6
Yorkshire	354	413	472	530	589	71.1
West Mids	331	387	442	497	552	68.2
East Mids	341	398	454	511	568	70.4
East	333	389	444	500	555	69.7
South West	363	423	484	544	605	74.5
South East	333	388	443	499	554	71.9
London	348	406	464	522	580	69.5
Mean (Kcal)	343	400	457	515	572	70.4

*Percentage of respondents, per region, undertaking activity in 4 weeks prior to survey.

Table 3.2 Regional weekly energy expenditure for swimming (sport 003) ($N=23,769$).

	Energy expenditure (Kcal.week ${ }^{-\mathbf{1}}$)					
Region	$\mathbf{6 0 k g}$	$\mathbf{7 0 k g}$	$\mathbf{8 0 k g}$	$\mathbf{9 0 k g}$	$\mathbf{1 0 0 k g}$	Population \%*
North East	220	257	293	330	367	11.4
North West	212	247	282	318	353	12.6
Yorkshire	204	238	272	306	340	12.9
West Mids	195	228	260	293	325	11.9
East Mids	192	224	257	289	321	12.3
East	203	237	271	305	339	12.7
South West	198	231	264	297	330	12.6
South East	194	227	259	292	324	12.9
London	194	226	258	290	323	12.0
Mean (Kcal)	$\mathbf{2 0 1}$	$\mathbf{2 3 5}$	$\mathbf{2 6 9}$	$\mathbf{3 0 2}$	$\mathbf{3 3 5}$	$\mathbf{1 2 . 4}$

*Percentage of respondents, per region, undertaking activity in 4 weeks prior to survey.

Swimming/diving [indoors] (sport 003) was the second most popular physical activity in the Active People Survey 2, with 23,769 individuals (total sample $=191,325$) having undertaken this activity in the 4 weeks prior to questioning. Of the 7 sports/physical activities investigated, swimming was ranked lowest for weekly energy expenditure (Table 3.9). These
data suggest that, with the highest energy expenditure for this activity, a $100-\mathrm{kg}$ person from the North East achieved just 49\% of the minimum recommended weekly energy expenditure from swimming/diving [indoors] alone ($367 \mathrm{kcal} \cdot$ week $^{-1}$).

Cycling was the third most popular physical activity reported in the Active People Survey 2. 20,280 individuals (total sample $=191,325$) reported having completed 'at least one continuous cycle ride lasting 30 minutes' in the 'last 4 weeks'. The highest weekly energy expenditure for cycling activity was reported in London (mean for all body weights $=614$ kcal• week ${ }^{-1}$). The lowest value was reported in the East region with an energy expenditure of $508 \mathrm{kcal} \cdot$ week $^{-1}$ (mean result for all body weights). Only a 100 kg person in London achieved the minimum recommended weekly energy expenditure from cycling alone (Table 3.3 and Figure 3.2).

Table 3.3 Regional weekly energy expenditure for cycling (APS 2 Question 6) $(N=20,280)$.

	Energy expenditure (Kcal.week ${ }^{-1}$)					
Region	$\mathbf{6 0 k g}$	$\mathbf{7 0 k g}$	$\mathbf{8 0 k g}$	$\mathbf{9 0 k g}$	$\mathbf{1 0 0 k g}$	Population \%*
North East	406	473	541	609	676	8.3
North West	446	520	595	669	743	8.7
Yorkshire	416	485	555	624	693	9.6
West Mids	390	455	520	585	650	9.3
East Mids	402	469	537	604	671	10.7
East	381	445	508	572	635	12.4
South West	382	446	510	574	637	11.5
South East	386	451	515	579	644	12.2
London	460	537	614	690	767	10.2
Mean (Kcal)	408	476	544	$\mathbf{6 1 2}$	680	10.3

*Percentage of respondents, per region, undertaking activity in 4 weeks prior to survey.

The fourth most popular activity reported in APS 2 was gym. The mean weekly energy expenditure for all body weights for this activity exceeded 600 kcal in all regions, with a high of $703 \mathrm{kcal} \cdot$ week $^{-1}$ in the North East (Table 3.4). However, only individuals in the 90 kg and 100kg categories expended sufficient energy through this activity to meet the weekly recommendations for energy expenditure from sport and physical activity. However, given
that many gym activities are weight-supported (e.g. rowing machine, weight bench) and that MET values (used to derive calorie values) may be inaccurate for such activities (see Section 1.4), these results should be treated with caution.

Figure 3.2 Regional calorie 'map' for cycling.

Table 3.4 Regional weekly energy expenditure for gym (sport 014) ($N=18,615$).

	Energy expenditure (Kcal.week ${ }^{-\mathbf{1}}$)					
Region	$\mathbf{6 0 k g}$	$\mathbf{7 0 k g}$	$\mathbf{8 0 k g}$	$\mathbf{9 0 k g}$	$\mathbf{1 0 0 k g}$	Population \%*
North East	528	616	703	791	879	9.0
North West	526	614	701	789	877	9.9
Yorkshire	512	598	683	768	854	9.1
West Mids	516	603	689	775	861	9.5
East Mids	502	586	669	753	837	9.1
East	492	574	656	738	821	9.5
South West	464	542	619	696	774	7.7
South East	479	559	639	719	799	10.2
London	490	572	653	735	817	12.9
Mean (Kcal)	$\mathbf{5 0 1}$	585	$\mathbf{6 6 8}$	752	835	9.7

*Percentage of respondents, per region, undertaking activity in 4 weeks prior to survey.

Data presented in Table 3.5 suggests that football provides a valuable means of achieving minimum levels of weekly energy expenditure. Even for a 60 kg individual in the East region, which reported the lowest energy expenditure per week, football provided sufficient energy expenditure ($836 \mathrm{kcal} \cdot \mathrm{week}^{-1}$) to meet the $750 \mathrm{kcal} \cdot$ week $^{-1}$ physical activity energy expenditure target. The highest energy expenditure for football was reported in the South West (mean for all body weights $=1303 \mathrm{kcal} \cdot$ week $^{-1}$) and the lowest in the East (mean for all body weights $=1114 \mathrm{kcal} \cdot$ week $^{-1}$).

Table 3.5 Regional weekly energy expenditure for football (sport 049) ($\mathrm{N}=7,247$).

	Energy expenditure (Kcal.week ${ }^{\mathbf{- 1} \text {) }}$					
Region	$\mathbf{6 0 k g}$	$\mathbf{7 0 k g}$	$\mathbf{8 0 k g}$	$\mathbf{9 0 k g}$	$\mathbf{1 0 0 k g}$	Population \%*
North East	893	1042	1191	1340	1489	3.9
North West	878	1025	1171	1317	1464	4.0
Yorkshire	921	1075	1229	1382	1536	3.6
West Mids	925	1079	1234	1388	1542	3.8
East Mids	888	1036	1184	1332	1480	3.7
East	836	975	1114	1253	1393	3.9
South West	977	1140	1303	1466	1628	2.9
South East	838	978	1118	1257	1397	3.7
London	913	1065	1217	1369	1522	4.6
Mean (Kcal)	$\mathbf{8 9 7}$	$\mathbf{1 0 4 6}$	$\mathbf{1 1 9 6}$	$\mathbf{1 3 4 5}$	$\mathbf{1 4 9 4}$	$\mathbf{3 . 8}$

*Percentage of respondents, per region, undertaking activity in 4 weeks prior to survey.

Golf/pitch \& putt/putting was the sixth most popular sport/physical activity in the Active People Survey 2. Although golf is a low intensity sport, the prolonged duration of this activity resulted in the highest weekly energy expenditures of the 7 sports analysed (mean for all regions and all body weights $=1502 \mathrm{kcal} \cdot \mathrm{week}^{-1}$). Indeed, the mean energy expenditure (for all body weights) exceeded the minimum recommended levels (750 $\mathrm{kcal} \cdot$ week $^{-1}$) by a factor of two in 6 out of the 9 regions (Table 3.6).

A total of 7,098 individuals reported having taken part in road running during the 4 weeks prior to questioning. The North East reported the highest weekly energy expenditure from
this activity (Table 3.7) (mean for all body weights $=934 \mathrm{kcal} \cdot \mathrm{week}^{-1}$), with the lowest values being reported in Yorkshire (mean for all body weights $=777 \mathrm{kcal} \cdot$ week $^{-1}$). With the exception of Yorkshire, all individuals over 70kg achieved the minimum recommended weekly energy expenditure from road running.

Table 3.6 Regional weekly energy expenditure for golf (sport 092) ($\mathrm{N}=7,098$).

	Energy expenditure (Kcal.week ${ }^{-\mathbf{1}}$)					
Region	$\mathbf{6 0 k g}$	$\mathbf{7 0 k g}$	$\mathbf{8 0 k g}$	$\mathbf{9 0 k g}$	$\mathbf{1 0 0 k g}$	Population \%*
North East	1229	1434	1639	1844	2049	3.3
North West	1167	1362	1557	1751	1946	3.4
Yorkshire	1242	1449	1656	1862	2069	3.8
West Mids	1129	1317	1505	1693	1881	3.7
East Mids	1169	1364	1559	1754	1949	3.8
East	1091	1273	1455	1637	1819	4.2
South West	1166	1360	1555	1749	1943	3.6
South East	1050	1225	1400	1575	1750	4.5
London	895	1044	1193	1342	1491	2.3
Mean (Kcal)	$\mathbf{1 1 2 7}$	$\mathbf{1 3 1 4}$	$\mathbf{1 5 0 2}$	$\mathbf{1 6 9 0}$	$\mathbf{1 8 7 9}$	3.6

*Percentage of respondents, per region, undertaking activity in 4 weeks prior to survey.

Table 3.7 Regional weekly energy expenditure for road running (sport 075) ($N=5,243$).

	Energy expenditure (Kcal.week ${ }^{-1}$)					
Region	$\mathbf{6 0 k g}$	$\mathbf{7 0 k g}$	$\mathbf{8 0 k g}$	$\mathbf{9 0 k g}$	$\mathbf{1 0 0 k g}$	Population \%*
North East	700	817	934	1050	1167	2.3
North West	637	743	849	955	1062	2.7
Yorkshire	583	680	777	874	971	2.5
West Mids	684	798	912	1026	1140	2.2
East Mids	660	770	880	990	1100	2.4
East	669	781	892	1004	1115	2.6
South West	693	808	924	1039	1154	2.9
South East	669	781	892	1004	1115	3.1
London	686	801	915	1029	1144	3.7
Mean (Kcal)	665	775	$\mathbf{8 8 6}$	997	$\mathbf{1 1 0 8}$	$\mathbf{2 . 7}$

*Percentage of respondents, per region, undertaking activity in 4 weeks prior to survey.

The final column in Tables 3.1-3.7 provides the percentage of the population from each of the 9 regions who participated in each activity during the 4 weeks prior to survey. A mean 70.4% of respondents across the regions had participated in walking, 12.4% in swimming, 10.3% in cycling, 9.7% in gym-based activities, 3.8% in football, 3.6% in golf and 2.7% in road running. The range of percentages shown in Table 3.8 are relatively narrow for swimming (1.5\%), football (1.7\%), golf (2.2\%) and road running (1.5\%), suggesting that there is relatively small variation in regional participation statistics. The difference between the highest and lowest regional respondents was greatest for walking (6.3\%), gym activities (5.2\%), and cycling (4.1\%); suggesting more regional variation for these activities. The distribution of figures across the regions suggests that no individual region skews the figures. London had the highest percentage of respondents for 3 activities: gym, football and road running, but had the lowest percentage of respondents for golf. The South East had the highest percentage of respondents for swimming (with Yorkshire) and golf. The South West had the highest percentage of respondents for walking, but the lowest for gym and football. A full list of the percentage respondents for the 7 selected activities is shown in Table 3.8.

Table 3.8 Regional levels of participation in 7 most popular sports/physical activities.

Activity	Mean \% Participating in the Last 4 Weeks	Cross-regional range of \% participation	Region with lowest rate of participation	Region with highest rate of participation
Walking	70.4	$68.2-74.5$	West Midlands	South West
Swimming	12.4	$11.4-12.9$	North East	South East/Yorkshire
Cycling	10.3	$8.3-12.4$	North East	East
Gym	9.7	$7.7-12.9$	South West	London
Football	3.8	$2.9-4.6$	South West	London
Golf	3.6	$2.3-4.5$	London	South East
Road Running	2.7	$2.2-3.7$	West Midlands	London

3.2 Sports/Physical Activity Energy Expenditure Comparisons

A one-way ANOVA identified significant differences between the mean regional values for each sport/physical activity ($P<0.001$). Post-hoc analysis suggested that walking and cycling energy expenditures were not different ($P>0.05$) but revealed a significant difference
between cycling and gym ($P<0.02$) and between all other sports ($P<0.0001$). Table 3.9 identifies the rank order of weekly energy expenditures per sport for a 70 kg individual.

Table 3.9 Weekly calorie expenditure for 7 most popular sports/physical activities.

Region	Energy expenditure (kcal.week ${ }^{-1}$)						
	Walking	Cycling	Swimming	Gym	Football	Golf	Road Running
North East	402	473	257	616	1042	1434	817
North West	397	520	247	614	1025	1362	743
Yorkshire	413	485	238	598	1075	1449	680
West Mids	387	455	228	603	1079	1317	798
East Mids	398	469	224	586	1036	1364	770
East	389	445	237	574	975	1273	781
South West	423	446	231	542	1140	1360	808
South East	388	451	227	559	978	1225	781
London	406	537	226	572	1065	1044	801
Mean (kcal)	400	476	235	585	1046	1314	775
Rank order	6th	5th	7th	4th	2nd	1st	3rd

Reference values for a 70kg individual.

3.3 Preliminary Social-Demographic Analysis

A social-demographic analysis between the sexes identified higher levels of weekly energy expenditure in males in all regions for cycling, gym and football (Table 3.10). Conversely, females expended more energy weekly in all regions for walking activity. Perhaps surprisingly, the weekly energy expenditure for females taking part in golf was higher than males in 4 out of 9 regions. Females in Yorkshire and the East region also expended more weekly energy than males whilst road running. Weekly energy expenditure from swimming was greater in males in all regions except the West Midlands.

Table 3.10 Weekly calorie expenditure for 7 sports/physical activities for males and females.

Sex	Energy expenditure (kcal.week ${ }^{-1}$)						
	Walking	Cycling	Swimming	Gym	Football	Golf	Road Running
North East	402	473	257	616	1042	1434	817
Male	399	533	268	721	1082	1458	849
Female	404	374	252	533	593	1280	782
North West	397	520	247	614	1025	1362	743
Male	389	587	263	682	1037	1374	788
Female	404	409	240	562	893	1310	689
Yorkshire	413	485	238	598	1075	1449	680
Male	394	532	272	643	1145	1417	647
Female	424	418	226	564	608	1560	718
West Mids	387	455	228	603	1079	1317	798
Male	378	511	225	670	1108	1339	808
Female	393	365	229	550	890	1222	786
East Mids	398	469	224	586	1036	1364	770
Male	382	550	245	688	1063	1363	786
Female	409	360	216	515	844	1371	754
East	389	445	237	574	975	1273	781
Male	366	498	238	635	1017	1219	775
Female	404	376	237	527	671	1509	787
South West	423	446	231	542	1140	1360	808
Male	396	515	235	603	1141	1387	849
Female	441	364	230	499	1132	1257	766
South East	388	451	227	559	978	1225	781
Male	363	504	235	626	987	1208	823
Female	405	379	224	512	916	1295	733
London	406	537	226	572	1065	1044	801
Male	383	596	247	623	1140	1101	848
Female	421	455	216	532	599	815	749
Mean (kcal)	400	476	235	585	1046	1314	775

Reference values for a 70kg individual.

A feasibility analysis identified a significant difference in energy expenditure between ethnic groups for walking ($P<0.001$). Post-hoc analysis revealed a significant difference between
ethnic group 1 ("White") and group 5 ("Other") ($P<0.0001$), between group 3 ("Asian") and group 5 ("Other") (P < 0.026), and between group 5 ("Other") and group 6 ("Chinese") (P < 0.011).

For reference, calorie expenditure for the top 7 sports/physical activities for each Local Authority is presented in Appendix 1 (Figure A1.1).

4.0 DISCUSSION

4.1 The Feasibility of Calorie Mapping

The results of this investigation build upon the findings of the Health Profile of England 2008 (Department of Health, 2009a). As illustrated in Figure A1.2, the Health Profile of England provided basic descriptive data showing the fraction of the adult population that are physically active in each of the 9 Government regions. By using such data to calculate mean energy expenditure levels for seven sports/physical activities, this investigation illustrates the feasibility of completing a comprehensive 'calorie map' of sport and physical activity in England.

4.2 How Effective are the Most Popular Sports/Physical Activities?

The calorie mapping completed in this investigation considered the seven most popular sports reported in the Active People Survey 2. The accessibility of walking made this activity by far the most popular physical activity. Despite this popularity, the results of this investigation suggest that walking, on its own, does not provide sufficient energy expenditure to stimulate any significant health benefit. For a reference 70 kg individual, walking only accounted for 56% of the minimum recommended weekly energy expenditure. Clearly, some individuals carry out more than one type of physical activity per week, helping them achieve recommended energy expenditure levels. However, given that just 11.3% of APS 2 respondents reported having undertaken at least 2 sports in the 4 weeks preceding questioning, it is unlikely that a combination of activities contributes to energy expenditure for most people. The prevalence of walking participation (71\% APS 2 respondents) compared to the other popular activities (e.g. swimming: 12% APS 2 respondents) suggests that walking is the sole form of physical activity for most people. This analysis shows that the energy expenditure associated with walking is not sufficient to meet even the minimum recommended level of energy expenditure. It is vital, therefore, that individuals who currently rely on walking as their sole form of exercise, supplement this with additional, or more deliberate forms of physical activity. Sport provides an excellent range of such activities.

Abstract

Few of the sports/physical activities considered provided sufficient energy expenditure to achieve the minimum recommended caloric expenditure. The exceptions were provided by road running, football and golf.

A surprising finding of this investigation was that physical activities commonly associated with significant health and fitness benefits (walking, cycling, swimming, gym activities and road running) provided lower levels of energy expenditure than sports activities (golf and football). This suggests that sports that are often carried out for reasons of enjoyment and social interaction, rather than for specific health reasons, may actually provide a more effective stimulus to health and fitness.

Whilst swimming did not appear to lead to high levels of energy expenditure, it is acknowledged to provide a significant contribution to other aspects of physical health, like muscular strength and flexibility (Lin et al., 2004). These fitness components are particularly important for older adults in order to prevent functional deterioration and to preserve independence and quality of life (Lin et al., 2004).

Energy expenditure through physical activity normally relates to those movements that involve large rhythmical muscle contractions performed in aerobic type exercise (e.g. walking, running, cycling, and swimming). Whilst aerobic activities may potentially provide the greatest health benefit, other aspects of fitness are important for overall health, function and wellbeing. Strength and flexibility contribute to a muscle's ability to produce force and movement around joint complexes. Strength and flexibility development are considered an important part of physical development in children. The Department of Health recommends that children complete two activity sessions per week that specifically target strength and flexibility (Department of Health, 2004a). Older adults lose muscular strength and flexibility with advancing age, so activities that help preserve it should form part of an exercise programme. Improvement in each of these fitness components will: allow comfortable execution of functional tasks of daily living; will contribute to a reduced incidence of falls; and will help to maintain lean body weight and manage healthy levels of body fat. This may require more deliberate forms of strength and flexibility training, e.g. using resistance equipment or performing passive stretching exercises (Nelson et al., 2007).

Although only seven sports/physical activities were considered in this investigation, these findings may have important implications for strategic decisions on the promotion of key health-promoting physical activities.

4.3 Regional Variation in Sport and Physical Activity Energy Expenditure

This investigation identified some variation in energy expenditure between regions and, indeed, local authorities. Considering a 'regional' calorie map, summing regional weekly energy expenditure values for all 7 sports/physical activities for a reference adult of 70 kg , the highest values were reported in the North East ($5040 \mathrm{kcal} \cdot \mathrm{week}^{-1}$). The lowest levels of energy expenditure were reported in the South East ($4608 \mathrm{kcal} \cdot$ week $^{-1}$), whilst London was ranked $8^{\text {th }}$ (out of 9) ($4650 \mathrm{kcal} \cdot$ week $^{-1}$). Although there were regional differences between sports, the combined results are relatively consistent across sports. The North East was ranked high, and the South East and London were ranked low in most sports/physical activities (see Table 3.9). The reasons for these regional variations in energy expenditure are beyond the scope of this investigation.

Six out of the 7 activities selected had the highest number of participants in southern regions (London, South East or South West). The West Midlands or North East regions had the lowest levels of participation in walking, swimming, cycling, and road running. This evidence suggests that there may be a North-South divide in sport and physical activity participation levels.

4.4 Socio-Demographic Variations

4.4.1 Sex-Related Energy Expenditure Differences

The Health Survey for England and the Health Profile of England have reported values for the percentage of male and female populations who are performing the minimum recommended level of physical activity (5 sessions of 30 minutes duration at moderate intensity per week). However, these reports do not provide detailed insight into these observations (e.g. activities undertaken, activity duration, and activity-related energy expenditure). Although the level of physically active adults is important, it is the energy expended from such activity which determines whether or not it is health promoting (American College of Sports Medicine, 2006).

It has been widely reported (Department of Health, 2009a) that males are more physically active than females. Having a larger stature and greater musculature than the average female, the average male also has a significantly greater body weight. Males tend to expend more energy (i.e. burn more calories) during physical activity than females for two reasons: 1) for historical and social reasons (Choi, 2000), a higher percentage of males are physically active than females (Department of Health, 2009a), and 2) for a given bout of physical activity, an individual with a greater body weight will expend more energy than a lighter individual. In line with this rationale, the results of this investigation showed that males generally expended more calories during their activity bouts than females. However, there were some exceptions (see section 3.3). Most notably, females expended more energy per week through walking than males in all regions. Similar weekly caloric expenditure was calculated for males and females for swimming/diving [indoors] in all regions; although, female values exceeded male values in the West Midlands only. Males expended more energy through weekly football activity than females. However, in the South West, female values were just $9 \mathrm{kcal} \cdot$ week $^{-1}$ lower than male values. Indeed, the female values were the $4^{\text {th }}$ highest of any region and for either sex.

4.4.2 Ethnic Group Related Energy Expenditure Differences

In previous physical activity surveys, concern has been expressed about the low participation rates amongst certain ethnic groups, particularly those of Asian origin (Department of Health, 2004b). In this investigation, a preliminary investigation of weekly energy expenditure for walking between ethnic groups identified significant differences. White, Asian and Chinese groups were all different to the "Other" group. However, this analysis was affected by an unbalanced design and a large number of blank responses. These data require further analysis to establish whether important energy expenditure differences exist between ethnic groups.

Research has shown that people tend to over-estimate their fitness levels and the amount of physical activity that they perform (Department of Health, 2009b). It is therefore appropriate to assume that the picture of activity levels described by this investigation may represent a 'best case scenario'.

5.0 STUDY LIMITATIONS

5.1 Survey Data

In order to provide an accurate calorie map, detailed data are required for activity frequency, duration, and intensity. Survey data are dependent upon participant recall over relatively long time periods and are, therefore, subject to large inaccuracies. As the Active People Survey was not designed specifically to provide data for calorie mapping, it provides only limited data relating to exercise intensity. This restricts the robustness of the calorie mapping results provided.

5.2 Physical Activity Compendia

In order to calculate caloric expenditure values, MET values for generic physical activities were used. These values do not account for differences in body weight, adiposity, age, sex, efficiency of movement (mechanical or metabolic), or environmental conditions. Whilst these factors mean that error in the calculation of energy expenditure for any given individual may be large, it is probable that such errors are smoothed as a result of the large sample examined.

When establishing the MET level for a given activity the Compendium of Physical Activities (Ainsworth et al., 2000) was used. However, exact matches with the Active People Survey 2 questions/responses were not always available. In such cases, the authors matched to 'similar' activities and, on one occasion, provided a non-coded value half way between values available for high and low intensities. In all cases where exact matches were not available, conservative MET values were utilised, reflecting minimum rather than maximum energy expenditure. For a full discussion of the limitations of this approach see Ainsworth et al. (2000).

5.3 Data Handling and Processing

Data handling and processing of the large Active People Survey data sets provided major difficulties during data analysis. The complex calculations required to calculate energy expenditure within Microsoft Excel were severely restricted by a lack of computer processing power and memory. These limitations meant that transfer of data into
appropriate statistical analysis software was not possible. Future calorie mapping exercises should investigate the efficacy of alternative software packages (e.g. Matlab).

6.0 RECOMMENDATIONS AND DIRECTIONS FOR FUTURE RESEARCH

6.1 Recommendations

6.1.1 Levels of Physical Activity

In order to achieve some health benefit from sport and physical activity, adults should perform a minimum of 30 minutes of moderate intensity physical activity on 5 days a week, or 20 minutes of vigorous intensity physical activity on 3 days a week. Individuals might also seek to combine moderate and vigorous intensity activities and should target an intensity in the range 450-900 $\mathrm{MET} \cdot$ week $^{-1}$ (over and above low intensity activities of daily living). The lower end of this range could be achieved by walking at 2.5 miles \cdot hour $^{-1}$ on a firm surface (equivalent to 3.0 METs) for 30 minutes 5 times per week ($30 \mathrm{~min} \times 5=150 \mathrm{mins} \cdot$ week $^{-1} \mathrm{x}$ 3.0 METs $=450 \mathrm{MET} \cdot$ week $^{-1}$). This level of energy expenditure might also be achieved by combining different sessions. For example, a 30-minute football session would provide 300 MET \cdot week $^{-1}$ (30 mins \cdot week $^{-1} \times 10.0 \mathrm{METs}=300 \mathrm{MET} \cdot$ week $^{-1}$). Adding two 30-minute walk sessions at moderate intensity ($60 \mathrm{mins} \cdot \mathrm{week}^{-1} \times 3.0 \mathrm{METs}=180 \mathrm{MET} \cdot \mathrm{week}^{-1}$) would allow the minimum MET target of $450 \mathrm{MET} \cdot$ week $^{-1}$ to be achieved. A combination of one vigorous intensity 30 -minute football session and two moderate intensity 30 -minute walk sessions accumulates more energy expenditure ($300 \mathrm{METs}+180 \mathrm{~min}=480 \mathrm{MET} \cdot \mathrm{week}^{-1}$) and takes less time than the five moderate intensity walks (90 minutes vs. 150 minutes).

Physical activity beyond the minimum recommendations ($450 \mathrm{MET} \cdot$ week $^{-1}$), including that performed at a higher intensity, will likely provide additional health benefits (Haskell et al., 2007). Broadly, sport provides a greater opportunity to engage in vigorous exercise than conditioning activities such as gym and walking. Sports such as football and road running require higher energy expenditure and, therefore, may lead to improved personal fitness and health.

The shape of the dose-response curve, points of maximal benefit and the possible contribution from physical activity bouts shorter than 10 minutes, are as yet unknown (Haskell et al., 2007). The optimal combination of moderate and vigorous intensity physical activity, to produce an achievable programme of effective exercise, also requires further investigation.

6.1.2 Types of Sport/Physical Activity

Exercising at moderate-vigorous intensity has potentially the greatest benefits for health (American College of Sports Medicine, 2006). This is reflected in the total calories expended during activity, which can be a reflection of time spent in the activity and/or the intensity of the activity.

Participation in endurance-type (and muscle-strengthening) physical activities above the minimum recommended amounts provides additional health benefits, reduces the risk for premature chronic health conditions and mortality related to a sedentary lifestyle, and potentially results in higher levels of physical fitness. Of the 7 sports/physical activities selected in this investigation, when carried out as the sole physical activity, only football, road running and golf provided sufficient caloric expenditure to stimulate these positive health benefits. If only carrying out cycling, swimming/diving, walking, and gym activities, individuals should seek to increase the intensity and or duration of activity in order to gain positive health adaptations.

6.1.3 The Female Calorie Map

The number of females achieving sufficient energy expenditure from the activities investigated above may be even less than suggested, as these conclusions are based upon body weights in the range $60 \mathrm{~kg}-100 \mathrm{~kg}$. Although most females are accommodated by this range, a significant fraction of the female population may be below this weight. Lower body weights would necessarily reduce the caloric expenditures described in section 3 above. Golf may provide one exception, as relatively high energy expenditures were recorded for both males and females (>1000 kcal•week ${ }^{-1}$). In order to achieve minimum activity levels, golf may therefore offer an effective choice for females. Golf may also provide valuable social interaction, stimulating both physical and mental wellbeing. However, the relatively long duration of golf activity may be impractical for large portions of our time-conscious society.

6.1.4 Using Calorie Mapping Techniques to Plan Physical Activity

Working backwards from the caloric goals to determine the volume (duration and frequency) of exercise needed to reach the goal is useful in providing key strategic
information to the public about appropriate exercise prescription components (American College of Sports Medicine, 2006).

It should be remembered that 1 MET represents resting metabolic rate and that energy expenditure goals are based on net caloric expenditure from exercise. For a 70 kg individual performing a 6 MET activity, the net caloric expenditure from the exercise is actually 5 METs. Therefore, the net caloric expenditure from the exercise is $6 \mathrm{kcal} \cdot \mathrm{min}^{-1}(5 \times 1.2$ $\mathrm{kcal} \cdot \mathrm{min}^{-1}$). If this individual is attempting to attain the $1000 \mathrm{kcal} \cdot \mathrm{week}^{-1}$ target threshold, it is simple to calculate the amount of this 6 MET physical activity that needs to be performed (1000 / 6 = $167 \mathrm{~min} \cdot$ week $^{-1}$ or approximately $34 \mathrm{~min} \cdot$ day $^{-1}$ for 5 days or $24 \mathrm{~min} \cdot d a y^{-1}$ for each day of the week).

6.1.5 Calorie Mapping and Education

The Change4Life campaign (Department of Health, 2009c) seeks to educate the population to "eat better, move more and live longer". Although a descriptive tool, calorie mapping methods might also be used to complement such education activities. Understanding the concept of energy balance (calorie intake=calorie expenditure) would stimulate the population to avoid being inactive and overeating. Linking calorie expenditure to different sports and physical activities may help people to recognise the need to accumulate sufficient energy expenditure through a weekly exercise regimen in order to sustain a healthy body and lifestyle.

6.2 Directions for Future Research

In order for there to be confidence in the calorie mapping exercise, the data being used needs to be as accurate as possible. Further work needs to be performed on the collection of data from large population samples, but particularly where it is critical to achieve accurate recall in terms of quantity of activity performed. Of particular relevance to this calorie mapping exercise, the estimation and reporting of the intensity dimension needs to be more detailed. Another aspect of the intensity problem is that in existing data sets, a single intensity value is reported for all physical activity completed in the 4 week sample period. Clearly, the intensity of effort will often vary dramatically within a session and from one bout of physical activity to the next.

Building upon the experiences and successful outcomes of this investigation, a number of questions for future research have been identified.

Methodological Question:

- Can a more accurate and detailed method of data collection be established to enable the collection of exercise mode, frequency, intensity, and duration data?

Analytical Questions:

- How has the calorie map of England changed since suitable data first became available?
- Is there a North/South divide in the amount of energy expended through sport and physical activity?
- What is the impact of education level on weekly levels of energy expenditure?
- Can specific Local Authorities be targeted to have a large impact on national levels of energy expenditure?
- Which non-mainstream sports/physical activities provide the most effective caloric expenditure and, therefore, potentially the greatest health benefit?

7.0 CONCLUSIONS

The adult population of England appears to be expending too few calories through sport and/or physical activity. Some sport activities seem to provide a suitable opportunity to expend large amounts of calories, e.g. football and golf. From the activities sampled, football, golf and road running meet the weekly minimum energy expenditure, but not the higher energy expenditure thresholds (2100-2800 kcal•week ${ }^{-1}$) which likely offer greater health benefits.

Thus, even for those individuals engaged in regular physical activity, energy expenditure needs to be increased if the health benefits of exercise are to be realised. Therefore, the key question stemming from this investigation and a key problem to add to the physical activity debate is: How can health promoters get the active population to expend more energy during their exercise bouts?

8.0 REFERENCES

Ainsworth, B.E. (2009). How do I measure physical activity in my patients? Questionnaires and objective methods. British Journal of Sports Medicine, 43: 6-9.

Ainsworth, B.E., Haskell, W.L., Leon, A.S., Jacobs, D.R. Jr., Montoye, H.J., Sallis, J.F., and Paffenbarger, R.S. Jr. (1993). Compendium of physical activities: classification of energy costs of human physical activities. Medicine and Science in Sports and Exercise, 25(1): 71-80.

Ainsworth, B.E., Haskell, W.L., Whitt, M.C., Irwin, M.L., Swartz, A.M. Strath, S.J., O’Brien, W.L., Bassett, D.R., Schmitz, K.H., Emplaincourt, P.O., Jacobs, D. Leon, A.R. (2000). Compendium of Physical Activities: an update of activity codes and MET intensities. Medicine and Science in Sports and Exercise, 32(9): S498-S516.

American College of Sports Medicine (2006). ACSM's Guidelines for Exercise Testing and Prescription (7th Ed.) Maryland: Lippincott, Williams \& Wilkins.

American College of Sports Medicine (2010). ACSM's Resource Manual for Guidelines for Exercise Testing \& Prescription (6th Ed.) Maryland: Lippincott, Williams \& Wilkins.

Choi, P.Y.L. (2000). Femininity and the Physically Active Woman. London: Routledge
Department for Transport (2001). National Travel Survey 1999-2001 Update. London: National Statistics.

Department of Health (2004a). At Least Five a Week - Evidence on the Impact of Physical Activity and its Relationship to Health. London: Department of Health.

Department of Health (2004b). Choosing Health: Making Healthier Choices Easier. London: Department of Health.

Department of Health (2009a). Health Profile of England 2008. London: Department of Health.

Department of Health (2009b). Healthy Weight, Healthy Lives: One Year On. London: Department of Health.

Department of Health (2009c). http://www.nhs.uk/change4life/Pages/Default.aspx. Date accessed: 7th September 2009.

Haskell, W.L., Lee, I., Pate, R.R., Powell, K.E., Blair, S.N., Franklin, B.A., Macera, C.A., Heath, G.W., Thompson, P.D., and Bauman, A. (2007). Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Medicine and Science in Sport and Exercise, 39(8): 1423-1434.

Howell, W., Earthman, C., Reid, P., Delaney, J., and Houtkooper, L. (1999). Doubly labelled water validation of the Compendium of Physical Activities in lean and obese college women. Medicine and Science in Sport and Exercise, 31: S142.

Lin, SY-C, Davey, R.C., and Cochrane, T. (2004). Community rehabilitation for older adults with osteoarthritis of the lower limb: a controlled clinical trial. Clinical Rehabilitation, 18: 92101.

Mazzeo, R.S., and Tanaka, H. (2001). Exercise prescription for the elderly: current recommendations. Sports Medicine, 31(11): 809-818.

Montoye, H.J., Kemper, H.C.G., Saris, W.H.M., and Washburn, R.A. (1996). Measuring Physical Activity and Energy Expenditure. Champaign, Illinois: Human Kinetics Publishers.

Montoye, H.J. (2000). The energy cost of exercise and competitive sport. In: Nutrition in Sport: Olympic Encyclopaedia of Sports Medicine, Vol. VII, R.J. Maughan (Ed.) Maldea, MA: Blackwell Science Inc., pp53-72.

Nelson, M.E., Rejeski, W.J., Blair, S.N., Duncan, P.W., Judge, J.O., King, A.C., Macera, C.A., and Castaneda-Sceppa, C. (2007). Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Medicine and Science in Sports and Exercise, 39(8): 1435-1445.

Olson, M.S., Williford, H.N., Blessing, D.L., and Greathouse, R. (1991). The cardiovascular and metabolic effect of bench stepping exercise in females. Medicine and Science in Sports and Exercise, 23: 1311-1318.

Paluska, S.A., and Schwenk, T.L. (2000). Physical activity \& mental health: current concepts. Sports Medicine, 29(3): 167-180.

Ross, R., and Janssen, I. (2001). Physical activity, total and regional obesity: dose-response considerations. Medicine and Science in Sport and Exercise, 33: S521-527.

Sport England (2008). Sport England's Strategy 2008-2011. London: Sport England.
Strategy Unit (2002). Game Plan: a strategy for delivering Government's sport and physical activity objectives. London: Cabinet Office.

Zeni, A.I. (1996). Energy expenditure with indoor exercise machines. Journal of the American Medical Association, 275: 1424-1427.

A. 1 APPENDIX - Local Authority Energy Expenditure

Table A1.1 Weekly calorie expenditure for top 7 physical activities/sports for all Local
Authorities (April 2009 designation).

Local Authority	Walking	Cycling	Swimming	Gym	Football	Golf	Road Running
North East	402	473	257	616	1042	1434	817
Gateshead	377	538	248	628	1017	1105	1728
Newcastle upon Tyne	397	568	252	669	1047	1196	755
North Tyneside	380	396	256	766	811	1517	729
South Tyneside	418	591	324	604	1054	1243	587
Sunderland	383	490	239	609	1729	1337	423
Hartlepool UA	343	328	292	635	818	2069	391
Middlesbrough UA	402	574	286	795	1078	1263	832
Redcar \& Cleveland UA	381	519	228	628	807	1184	703
Stockton-on-Tees UA	360	496	350	664	747	1131	853
Darlington UA	379	490	225	622	859	1106	1023
County Durham	407	477	235	596	1189	1333	702
Northumberland	422	437	258	560	922	1603	909
North West	397	520	247	614	1025	1362	743
Allerdale	451	437	263	671	763	1749	1062
Barrow-in-Furness	403	415	196	557	955	1356	977
Carlisle	413	355	269	659	751	1141	889
Copeland	444	584	266	664	1531	1460	1068
Eden	456	496	245	592	829	1002	803
South Lakeland	475	495	185	487	1160	1753	658
Bolton	363	439	255	667	869	1988	548
Bury	379	519	206	737	964	3132	562
Manchester	365	652	245	919	1153	914	518
Oldham	364	589	196	646	719	1506	878
Rochdale	376	617	246	582	1085	1416	783
Salford	403	522	327	565	784	1203	544
Stockport	350	438	379	480	1148	1183	1084
Tameside	389	466	198	563	1016	690	700
Trafford	369	622	249	621	608	1348	742
Wigan	373	604	212	598	596	1593	763
Knowsley	395	565	306	752	1211	1450	1191
Liverpool	399	636	258	659	1141	1128	653
St Helens	384	425	299	654	1478	1495	342
Sefton	387	509	272	683	1172	776	603
Wirral	412	563	308	601	1619	2195	598
Halton UA	441	511	279	606	995	1069	661
Warrington UA	381	473	183	532	672	1125	656
Blackburn with Darwen UA	394	477	248	546	896	1154	525

Table A. 1 continued.

Local Authority	Walking	Cycling	Swimming	Gym	Football	Golf	Road Running
Blackpool UA	430	689	249	570	1069	1317	738
Chester and Cheshire West	403	484	232	614	874	1299	802
Cheshire East	385	490	198	551	1278	1556	895
Burnley	415	471	230	611	1226	1461	871
Chorley	374	538	234	657	1068	1235	835
Fylde	409	496	258	514	896	1280	760
Hyndburn	394	404	225	604	1243	1314	807
Lancaster	401	596	238	700	1036	1200	781
Pendle	394	424	244	535	1387	1505	441
Preston	426	473	184	556	852	1583	689
Ribble Valley	392	499	404	588	946	1189	701
Rossendale	359	452	258	630	1019	1414	549
South Ribble	377	504	227	582	605	1361	895
West Lancashire	350	444	252	650	708	1259	487
West Lancashire	439	590	219	470	1032	1274	1045
Yorkshire	413	485	238	598	1075	1449	680
Barnsley	426	430	276	710	1074	1333	584
Doncaster	399	373	252	524	928	1564	1098
Rotherham	340	426	219	715	1159	1323	356
Sheffield	372	558	278	498	1052	1375	667
Bradford	381	576	224	762	1826	1748	438
Calderdale	432	600	219	450	1353	1176	620
Kirklees	376	383	205	639	652	1317	427
Leeds	412	458	353	510	1507	1378	764
Wakefield	410	576	227	734	927	1746	516
Kingston upon Hull, City of	421	553	216	813	2017	1559	1539
East Riding of Yorkshire UA	400	486	238	592	980	1803	548
North East Lincolnshire UA	420	473	264	673	919	1330	747
North Lincolnshire UA	421	516	242	525	1118	1617	1154
York UA	392	528	183	589	628	1176	701
Craven	450	457	216	428	710	1041	532
Hambleton	417	461	223	431	923	1975	529
Harrogate	428	442	225	629	1060	1503	670
Richmondshire	446	443	235	443	731	1034	798
Ryedale	464	466	221	511	473	1109	653
Scarborough	432	468	258	658	625	1321	809
Selby	414	450	222	617	1126	1447	667
West Mids	387	455	228	603	1079	1317	798
Birmingham	391	471	230	622	1127	1317	721
Coventry	348	452	173	683	1581	1429	1142
Dudley	393	424	207	586	793	949	642
Sandwell	375	616	224	622	658	1737	1046

Table A. 1 continued.

Local Authority	Walking	Cycling	Swimming	Gym	Football	Golf	Road Running
Solihull	347	422	240	600	634	1053	531
Walsall	345	379	258	584	1167	1677	672
Wolverhampton	419	567	471	652	1313	995	521
Herefordshire UA	396	467	205	612	513	1192	783
Telford \& Wrekin UA	388	364	243	686	1133	929	584
Stoke-on-Trent UA	368	509	277	635	989	507	1225
Shropshire	418	443	218	596	804	1243	950
Cannock Chase	375	634	220	679	863	1924	1123
East Staffordshire	385	465	205	568	692	1385	676
Lichfield	372	406	264	512	1123	1474	891
Newcastle-under-Lyme	407	448	252	559	1300	1563	659
South Staffordshire	382	483	219	569	1490	1420	791
Stafford	379	439	281	498	669	1701	828
Staffordshire Moorlands	379	548	230	597	527	1032	602
Tamworth	351	411	228	612	2003	1148	757
North Warwickshire	394	562	214	422	754	1242	922
Nuneaton \& Bedworth	349	285	240	644	942	1379	669
Rugby	404	524	203	572	740	1634	692
Stratford-on-Avon	407	316	181	593	1840	1025	531
Warwick	359	544	207	522	957	1029	666
Bromsgrove	387	431	185	765	928	1697	1531
Malvern Hills	389	405	266	640	1659	1409	616
Redditch	371	400	199	547	972	1173	841
Worcester	389	504	225	661	732	1155	1040
Wychavon	387	440	160	546	1588	1568	634
Wyre Forest	384	396	220	602	1863	1094	654
East Mids	398	469	224	586	1036	1364	770
Derby UA	388	449	192	459	1156	1149	679
Leicester UA	411	413	203	679	1268	1084	660
Rutland UA	415	524	211	584	788	1544	847
Nottingham UA	415	578	375	649	1125	1069	896
Amber Valley	395	397	227	509	1096	1496	598
Bolsover	379	529	235	650	891	1207	1097
Chesterfield	379	532	236	614	976	1276	1161
Derbyshire Dales	401	501	204	533	1116	1454	1185
Erewash	371	380	225	548	940	1320	477
High Peak	420	596	180	499	627	1697	554
North East Derbyshire	381	405	260	587	849	1152	831
South Derbyshire	398	383	198	601	864	1183	837
Blaby	372	512	239	668	782	1425	721
Charnwood	355	386	235	632	1377	1380	929
Harborough	386	431	209	560	459	1133	971

Table A. 1 continued.

Local Authority	Walking	Cycling	Swimming	Gym	Football	Golf	Road Running
Hinckley \& Bosworth	382	497	173	566	906	845	826
Melton	413	448	177	568	813	1385	396
North West Leicestershire	411	478	225	472	1493	1643	829
Oadby \& Wigston	384	447	223	620	1107	1987	807
Boston	409	484	239	696	1812	1889	369
East Lindsey	431	658	235	578	656	1582	1184
Lincoln	386	562	223	738	1880	1175	749
North Kesteven	351	535	212	610	559	1702	746
South Holland	421	493	208	609	1065	1072	818
South Kesteven	412	408	245	630	888	1574	717
West Lindsey	454	360	232	563	1511	1155	728
Corby	410	459	239	630	1054	1297	716
Daventry	400	477	231	556	955	1286	928
East Northamptonshire	395	440	176	727	1019	1547	702
Kettering	397	360	193	582	1391	1292	1021
Northampton	372	463	213	651	1080	893	349
South Northamptonshire	404	438	201	431	438	1175	568
Wellingborough	375	420	246	473	1199	1411	819
Ashfield	443	436	239	578	1334	1231	296
Bassetlaw	426	481	211	551	1250	1975	950
Broxtowe	376	425	196	481	758	1160	784
Gedling	382	438	237	565	750	1435	997
Mansfield	399	520	266	635	1077	1188	578
Newark \& Sherwood	414	526	209	603	721	1493	699
Rushcliffe	363	425	205	541	730	1580	739
East	389	445	237	574	975	1273	781
Peterborough UA	367	399	300	522	1063	1238	278
Cambridge	354	515	256	610	1136	823	1183
East Cambridgeshire	358	450	245	553	1175	1011	1281
Fenland	387	467	259	724	1151	1177	1363
Huntingdonshire	366	419	203	661	755	1242	735
South Cambridgeshire	364	482	198	509	625	1443	1071
Breckland	400	485	246	539	666	1580	467
Broadland	359	340	179	522	1215	1409	741
Great Yarmouth	420	447	315	608	1243	1574	1103
Kings Lynn \& West Norfolk	451	388	239	668	758	1518	776
North Norfolk	429	410	229	581	954	1527	1009
Norwich	383	613	196	554	1132	906	360
South Norfolk	407	493	179	565	747	1713	902
Babergh	435	414	235	597	1164	1622	721
Forest Heath	410	435	202	545	551	1334	538
Ipswich	427	462	229	665	1385	1633	688

Table A. 1 continued.

Local Authority	Walking	Cycling	Swimming	Gym	Football	Golf	Road Running
Mid Suffolk	393	447	198	575	1221	1251	646
St Edmundsbury	439	478	199	741	679	994	845
Suffolk Coastal	463	438	386	468	798	1617	1020
Waveney	413	482	193	509	396	1017	888
Luton UA	378	402	191	563	1015	934	1212
Southend UA	399	618	211	803	445	904	824
Thurrock UA	381	484	296	679	1275	1348	944
Central Bedfordshire	391	410	288	681	886	1453	673
Bedford	380	510	242	479	1135	854	772
Basildon	402	485	242	571	1078	846	706
Braintree	404	418	404	617	609	1033	855
Brentwood	346	418	166	508	695	1171	834
Castle Point	362	390	261	483	1265	1564	1330
Chelmsford	359	440	206	568	1058	1502	447
Colchester	382	475	258	456	1103	1596	421
Epping Forest	374	353	214	424	886	2084	948
Harlow	357	506	238	589	1009	903	1152
Maldon	430	500	313	516	2026	1441	510
Rochford	392	339	238	530	528	1190	304
Tendring	409	360	229	712	1046	1353	1039
Uttlesford	425	374	171	567	1541	1364	898
Broxbourne	326	407	222	627	1057	1655	944
Dacorum	381	335	222	540	916	1139	765
East Hertfordshire	342	405	198	459	923	1055	474
Hertsmere	405	437	232	584	687	1168	677
North Hertfordshire	366	382	242	589	981	1066	669
St Albans	376	420	174	535	983	1021	463
Stevenage	371	417	256	677	1113	1137	994
Three Rivers	412	469	249	542	933	1125	652
Watford	368	508	235	543	866	1164	580
Welwyn Hatfield	338	433	308	543	798	1047	742
South West	423	446	231	542	1140	1360	808
Bath \& North East Somerset	421	335	213	643	822	1281	592
Bristol, City of UA	386	537	175	564	838	1432	1186
North Somerset UA	415	503	212	599	1136	1167	538
South Gloucestershire UA	378	341	210	487	1037	1175	873
Plymouth UA	426	505	270	584	1047	1104	1169
Torbay UA	446	605	244	702	942	1615	751
Bournemouth UA	387	425	314	750	900	845	672
Poole UA	359	536	196	578	699	1471	894
Swindon UA	368	532	238	547	1085	996	952
Cornwall	433	458	265	483	2053	1631	867

Table A. 1 continued.

Local Authority	Walking	Cycling	Swimming	Gym	Football	Golf	Road Running
Isles of Scilly	519	445	164	385	1011	2205	449
East Devon	468	445	227	594	715	1032	614
Exeter	445	458	203	512	1432	1038	527
Mid Devon	409	355	214	477	3939	2487	645
North Devon	457	330	234	407	841	2517	637
South Hams	397	392	238	607	817	1359	499
Teignbridge	448	486	238	477	696	1416	849
Torridge	432	330	251	541	880	1196	972
West Devon	452	384	207	466	698	1189	1056
Christchurch	435	520	213	608	692	1474	931
East Dorset	410	369	214	459	851	1565	803
North Dorset	447	478	236	375	715	1674	1244
Purbeck	449	461	264	538	782	1090	846
West Dorset	440	456	173	449	391	1223	817
Weymouth \& Portland	437	501	281	454	1065	1328	678
Cheltenham	396	573	193	485	2927	1693	690
Cotswold	466	475	241	553	604	1185	814
Forest of Dean	405	343	196	568	633	1285	478
Gloucester	392	516	208	559	894	881	844
Stroud	401	459	203	549	1093	1312	575
Teweekesbury	417	414	219	448	484	1152	987
Mendip	410	436	266	1024	1180	1420	724
Sedgemoor	464	355	360	573	1244	1256	957
South Somerset	390	424	193	518	692	1114	590
Taunton Deane	412	418	234	499	719	1348	921
West Somerset	495	506	222	582	1220	1749	961
Wiltshire	406	427	205	513	826	1241	842
South East	388	451	227	559	978	1225	781
Medway UA	359	255	206	533	713	1092	567
Bracknell Forest UA	385	554	197	549	704	1173	796
West Berkshire UA	363	400	239	621	1126	1248	742
Reading UA	374	531	254	560	872	1553	985
Slough UA	408	649	283	579	1144	1363	429
Windsor \& Maidenhead UA	419	464	174	532	769	1544	594
Wokingham UA	325	315	189	621	1013	1700	804
Milton Keynes UA	346	493	213	636	649	1511	447
Brighton \& Hove UA	410	463	260	588	697	804	927
Portsmouth UA	380	532	258	625	1797	1312	669
Southampton UA	387	356	239	528	1301	2125	783
Isle of Wight UA	408	463	217	400	1510	1065	989
Aylesbury Vale	395	473	188	438	965	925	783
Chiltern	385	375	163	492	1763	1303	758

Table A. 1 continued.

Local Authority	Walking	Cycling	Swimming	Gym	Football	Golf	Road Running
South Bucks	350	478	232	604	2470	1260	717
Wycombe	414	549	172	504	965	840	831
Eastbourne	384	498	466	577	958	1309	2343
Hastings	399	488	407	684	726	462	1550
Lewes	452	491	229	690	1089	1525	570
Rother	388	489	207	682	704	1392	918
Wealden	383	336	198	701	618	923	554
Basingstoke \& Deane	380	448	233	533	1342	1640	714
East Hampshire	371	536	201	546	619	1185	808
Eastleigh	341	356	199	498	874	1426	836
Fareham	395	412	234	590	1209	1582	778
Gosport	379	563	196	527	937	1198	1195
Hart	367	404	211	596	613	1120	815
Havant	364	518	259	523	847	1368	917
New Forest	381	316	184	567	1410	1296	481
Rushmoor	356	329	249	522	962	1328	793
Test Valley	354	347	217	542	974	1305	489
Winchester	418	379	217	469	746	1117	509
Ashford	425	463	210	620	1688	1375	751
Canterbury	411	437	210	422	839	1042	423
Dartford	409	396	226	715	843	1182	848
Dover	399	471	196	555	729	977	408
Gravesham	403	410	203	660	931	1259	1023
Maidstone	417	450	354	708	946	1107	840
Sevenoaks	390	315	218	414	753	1282	508
Shepway	388	541	253	474	613	1047	804
Swale	430	335	253	673	1406	965	790
Thanet	437	494	273	457	1142	1094	823
Tonbridge \& Malling	368	479	224	531	1586	1156	669
Tunbridge Wells	389	457	214	489	909	1184	691
Cherwell	422	442	205	603	590	1596	693
Oxford	392	497	216	553	488	827	617
South Oxfordshire	394	506	208	589	940	1359	940
Vale of White Horse	369	554	197	523	1034	1161	782
West Oxfordshire	399	510	202	543	1245	1022	825
Elmbridge	372	458	181	495	923	1422	637
Epsom \& Ewell	386	550	186	538	670	1256	916
Guildford	350	598	173	502	1133	929	921
Mole Valley	395	423	187	515	883	1110	281
Reigate \& Banstead	354	498	211	479	1003	1325	846
Runnymede	362	383	197	611	919	1348	707
Spelthorne	363	351	225	556	821	1273	876

Table A. 1 continued.

Local Authority	Walking	Cycling	Swimming	Gym	Football	Golf	Road Running
Surrey Heath	371	442	306	531	738	860	691
Tandridge	377	480	217	567	765	996	755
Waverley	408	475	193	530	832	1087	666
Woking	358	456	213	528	852	1281	680
Adur	419	550	197	644	1165	1018	771
Arun	413	363	346	648	796	1420	688
Chichester	504	448	226	501	794	941	898
Crawley	377	348	190	687	829	1097	416
Horsham	384	386	278	521	388	1177	830
Mid Sussex	367	445	264	475	1062	1263	716
Worthing	378	378	199	574	980	1292	1117
London	406	537	226	572	1065	1044	801
City of London	385	525	271	612	2940	643	799
Barking \& Dagenham	388	398	218	592	1417	954	694
Barnet	394	608	201	616	963	1127	603
Bexley	368	356	248	545	1580	980	653
Brent	403	490	222	607	1131	894	750
Bromley	364	453	266	548	1008	875	915
Camden	471	580	240	507	993	521	756
Croydon	362	430	229	675	987	1065	563
Ealing	410	532	223	673	1170	796	568
Enfield	360	454	175	618	931	1393	2529
Greenwich	393	439	253	536	985	1338	697
Hackney	466	741	250	615	3212	235	785
Hammersmith \& Fulham	441	597	418	597	995	537	932
Haringey	425	463	216	576	865	1350	627
Harrow	373	419	201	591	1023	903	543
Havering	369	436	177	531	961	1854	437
Hillingdon	415	459	173	536	984	1339	633
Hounslow	399	429	194	563	1319	708	646
Islington	435	703	267	472	583	1262	2139
Kensington \& Chelsea	461	699	246	579	948	639	810
Kingston upon Thames	380	446	216	516	699	1615	530
Lambeth	379	599	197	586	771	392	793
Lewisham	398	646	235	537	958	861	1009
Merton	392	528	218	532	813	874	502
Newham	495	552	238	519	1021	907	847
Redbridge	370	457	252	616	986	885	578
Richmond upon Thames	370	516	166	550	1201	1382	1028
Southwark	441	654	178	593	1197	694	815
Sutton	348	508	169	492	517	909	681
Tower Hamlets	426	584	192	549	1141	493	462

Table A. 1 continued.

Local Authority	Walking	Cycling	Swimming	Gym	Football	Golf	Road Running
Waltham Forest	433	469	247	616	788	1094	650
Wandsworth	364	575	307	569	814	1332	866
Westminster	427	577	193	555	2010	582	1231
Mean (Kcal)	$\mathbf{3 9 9}$	$\mathbf{4 7 0}$	$\mathbf{2 3 4}$	$\mathbf{5 8 1}$	$\mathbf{1 0 3 6}$	$\mathbf{1 3 0 4}$	$\mathbf{7 8 0}$

Reference values for a 70 kg individual.

A. 2 APPENDIX - Health Profile of England

HEALTH PROFILE OF ENGLAND
Summary of Indicators - Regions (using Local Health Profile data)

	INDICATOR	Period	Unit ${ }^{1}$								¢		
Our communities													
1	Deprivation	2005	\%	19.9	33.6	31.7	27.2	16.6	27.4	6.2	28.5	5.9	9.2
2	Children in poverty	2005	\%	22.4	26.0	25.0	23.0	19.5	24.8	16.9	33.9	15.4	16.9
3	Statutory homelessness	2005-06	crper 1000	4.4	5.2	4.4	4.2	3.7	5.8	3.5	6.8	2.8	3.6
4	GCSE achievement ($5 \mathrm{~A}^{*}-\mathrm{C}$)	2006-07	\%	60.1	60.5	60.3	57.8	57.9	59.3	61.2	60.9	62.0	59.5
5	Violent crime	2006/07	cr per 1000	19.3	18.8	19.7	20.8	18.3	19.7	14.6	24.3	18.6	17.2
6	Carbon emissions	2005	tCO2 pr^{3}	7.6	9.0	7.6	8.3	8.3	7.4	7.8	6.8	7.3	7.7
Children's and young people's health													
7	Smoking in pregnancy	2006-07	\%	16.1	23.6	20.8	19.6	18.3	16.3	14.4	8.9	15.2	16.8
8	Breast feeding initiation	2006-07	\%	69.2	49.8	59.8	62.5	70.5	60.3	69.7	81.9	75.6	75.8
9	Physically active children	2006-07	\%	85.7	87.0	85.8	84.1	85.9	85.1	86.6	84.9	85.0	88.6
10	Obese children	2006-07	\%	9.9	10.9	10.2	9.7	9.7	10.4	9.1	11.3	8.7	9.0
11	Children's tooth decay (at age 5)	2005-06	mean	1.5	2.0	2.0	1.8	1.3	1.0	1.1	1.7	1.1	1.6
12	Teenage pregnancy (under 18)	2004-06	crper 1000	41.1	49.7	45.4	47.2	40.2	45.7	32.8	46.9	33.4	33.7
Adults health and lifestyle													
13	Adults who smoke	2003-05	\%	24.1	29.1	26.0	25.5	24.9	24.0	23.5	23.3	21.8	21.5
14	Binge drinking adults	2003-05	\%	18.0	26.5	23.0	22.0	17.7	17.9	15.2	12.7	16.2	15.3
15	Healthy eating adults	2003-05	\%	26.3	18.5	23.6	24.7	25.9	25.1	27.0	29.7	30.4	25.9
16	Physically active adults	2005-06	\%	11.6	11.4	11.1	11.1	11.6	10.5	11.3	11.6	12.5	12.6
17	Obese adults	2003-05	\%	23.6	25.2	24.5	24.1	25.6	26.5	24.8	18.4	22.0	23.2
Disease and poor health													
18	Under-15s not in good health	2001	\%	11.6	13.4	12.4	11.8	10.4	12.1	10.4	13.1	10.4	10.7
19	Incapacity benefits for mental illness	2006	cr per 1000	27.5	40.8	40.5	28.3	24.1	28.5	20.0	26.9	19.4	26.3
20	Hospital stays related to alcohol	2006-07	rper D0,000	260.3	422.9	424.2	250.9	238.0	252.5	170.0	239.7	201.9	247.3
21	Drug misuse	2004-05	cr per 1000	9.9	9.5	11.4	11.7	8.2	10.6	6.5	14.4	6.4	9.4
22	People diagnosed with diabetes	2005-06	\%	3.7	3.8	3.9	3.7	3.9	4.0	3.4	4.0	3.3	3.5
23	Sexually transmitted infections												
24	New cases of tuberculosis	2004-06	crper 100,000	15.0	5.0	9.0	11.0	12.0	17.0	7.0	44.0	8.0	5.0
25	Hip fractures in over-65s	2006-07	rper 00,000	479.8	552.3	493.9	484.0	480.1	499.0	467.6	454.4	467.5	462.7
Life expectancy and causes of death													
26	Life expectancy - male ${ }^{4}$	2004-06	years	77.3	75.8	75.8	76.6	77.3	76.6	78.3	77.4	78.5	78.5
27	Life expectancy - female ${ }^{4}$	2004-06	years	81.6	80.1	80.3	81.0	81.3	81.1	82.3	82.0	82.4	82.7
28	Infant deaths	2004-06	crper 1000	5.0	4.9	5.6	5.8	5.1	6.5	4.1	5.0	4.0	4.4
29	Deaths from smoking ${ }^{2}$	2004-06	rper D0,000	225.4	285.8	270.0	249.2	218.2	228.8	199.3	225.1	197.9	192.3
30	Early deaths: heart disease \& stroke	2004-06	rper D0,000	84.2	99.8	102.2	90.5	84.6	90.7	72.9	89.0	70.2	69.5
31	Early deaths: cancer	2004-06	rper D0,000	117.1	136.0	131.0	122.3	115.1	119.2	108.3	114.6	109.8	108.1
32	Road injuries and deaths	2004-06	crper 100,000	56.3	44.6	57.5	65.1	63.7	50.5	64.4	52.6	55.3	49.8

Key
GREEN = significantly better than national average
AMBER = not significantly different from national average
RED = significantly worse than national average
NO SHADE $=$ significance not calculated, or data unavailable
Figure A2.1 Excerpt from Health Profile of England 2008.

