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Abstract 

Gas-solid fluidized beds are widely applied in numerous industrial processes. Particle motions 

significantly affect the performance of fluidized bed reactors and the characterization of particle 

movements is therefore important for fluidization quality monitoring and scale-up of reactors. 

Electrostatic charge signals in the fluidized bed contain much dynamic information on particle 

motions, which are poorly understood and explored. In this work, correlation velocities of Geldart 

B and D particles were measured, analyzed and compared by induced electrostatic sensors 

combined with cross-correlation method in the fluidized bed. The results indicated that the 

average correlation velocity of particle clouds increased and the normalized probability density 

distributions of correlation velocities broadened when the superficial gas velocity increased in the 

dense-phase region. Both upward and downward correlation velocities could be acquired in the 

dynamic bed level region. Under the same excess gas velocity, the average correlation velocity of 

Geldart D particles was significantly smaller than that of Geldart B particles, which was caused by 

the smaller bubble sizes caused by the dominant bubble split over coalescence and less volume of 
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gas forming bubbles for Geldart D particles. The experimental results verified the reliability and 

repeatability of particle correlation velocity measurement by induced electrostatic sensors in the 

gas-solid fluidized bed, which provides definite potential in monitoring of particle motions. 

Key words: 

Induced electrostatic signal; gas-solid fluidized bed; cross-correlation method; correlation velocity 

1. Introduction 

Gas-solid fluidized beds are widely applied in numerous industrial processes, such as coal 

combustion and gasification, granulation and drying, olefin polymerization, etc. The 

bubble-induced solids circulation within the bed leads to good contact and mixing of gas and solid 

phases, and high rates of heat transfer [1]. Electrostatic charge generation and accumulation on 

insulated particles are almost unavoidable due to repeated particle-particle and particle-wall 

frictions in the gas-solid fluidized bed. An excess accumulation of electrostatic charges will cause 

problems such as wall sheeting [2], particle agglomeration [3, 4], and even spark generation or 

explosion hazards [5-7]. The generation and variation of electrostatic charge signals are 

significantly affected by bubble and particle motions inside the fluidized bed, which contain much 

dynamic information related to hydrodynamic behaviors. However, the hydrodynamic information 

contained in electrostatic charge signals is poorly understood and needs more comprehensive 

analysis [8, 9]. 

Considerable efforts have been made to investigate the relations between electrostatic charge 

signals and hydrodynamic behaviors in the gas-solid fluidized bed [10-14]. However, 

interpretation and decoupling of electrostatic signals to reveal bubble behaviors or particle 

motions are relatively limited. Zhang et al. [15] compared the similarity between electrostatic 

current and pressure drop in a specific fluidized bed and proposed a quantitative relation between 

these two signals, which provided the possibility to utilize electrostatic current to characterize 

bubble behaviors. He et al. [9, 16-18] designed novel electrostatic probes to simultaneously 

measure the particle charge density and bubble properties, whose results were in good agreement 

with those from Faraday cup sampling system and video images, respectively. The aforementioned 

research focused on decoupling the electrostatic signals to reveal bubble behaviors in the fluidized 

bed. However, characterization of particle motions by electrostatic probes is rarely reported in the 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

3 

 

gas-solid fluidized bed, but mostly applied in dilute gas-solid systems. Extensive work has been 

carried out to measure particle motions by cross correlating electrostatic signals derived from a 

pair of axially spaced electrostatic sensors installed on the outer wall of pneumatic conveying 

pipes. Yan et al. [19] conducted theoretical and experimental studies of the cross-correlation 

technique applied to the velocity measurement of pneumatically conveyed solids using 

ring-shaped electrostatic sensors. The repeatability of this method was demonstrated in both 

bench-scale and pilot-plant trials. Zhang et al. [20] set ring-shape and arc-shape electrostatic 

sensors in the riser and downer of the circulating fluidized bed and found that both the particle 

correlation velocity and the standard deviation (STD) of electrostatic signals increased with 

superficial gas velocity. Xu et al. [21, 22] measured the mean velocity of solid particles in both 

dilute and dense-phase pneumatic conveying pipes based on spatial filtering effect of the 

electrostatic sensor and cross-correlation method, respectively. The relative error in the 

dense-phase system was obviously larger than that in the dilute pipe because the particle 

concentration profile fluctuated continuously due to the instability of the dense-phase gas-solid 

flow [23]. Although electrostatic sensors combined with cross-correlation method have been 

widely investigated or even applied to monitor particle motions in dilute gas-solid systems, 

scarcely any research about the application of this method in gas-solid fluidized beds has been 

reported. 

Particle motions and flow patterns significantly affect the performance of fluidized bed 

reactors (FBRs), therefore, the characterization of solids motion and mixing is essential for the 

monitoring of fluidization quality, proper design and scale-up of FBRs [24]. Several experimental 

techniques have been developed to measure and analyze particle motions in the gas-solid fluidized 

bed. Parker et al.[25] applied positron emission particle tracking (PEPT) to obtain the particle 

moving trajectories, particle velocity and circulation pattern within the bed, which has been 

successfully applied in bench-scale fluidized beds, wurster fluidized beds [26] and rotating drums 

[27]. Mostoufi et al.[28] measured the axial and radial diffusion coefficients of particles in the 

fluidized bed by radioactive particle tracking (RPT) technique. The results showed that the 

diffusivities increased with superficial gas velocity and were linearly correlated to the axial solid 

velocity gradient. Particle image velocimetry (PIV) is mostly used for the measurement of particle 

velocity profiles around the bubble [29] and in the emulsion phase, bubble size and rise velocity 
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[30] in two-dimensional fluidized beds. Laser Doppler velocimetry (LDV) can be employed to 

simultaneously obtain the velocity profiles of both gas and solid phases [31, 32]. By inserting the 

optical fiber probes [33, 34] into the fluidized bed, the received light reflected by moving particles 

is converted into voltage signals. The solids concentration can be obtained by calibrating the 

relationship between the output signals and the solids volume concentration, and the two 

sub-probes enable to measure the instantaneous local particle velocity with cross-correlation 

method [34]. Acoustic emission (AE) method has been applied to monitor the particle fluidization 

pattern and the activity of particle motions in the fluidized bed [35, 36]. Considering of the unique 

intrinsic characteristics and data processing methodologies associated with each of the above 

measurement techniques, each technique has its own limitations in its application. For example, 

radioactive tracer particles need to be added to the measured system in the PEPT and RPT 

techniques. Therefore, the moving trajectories and velocities which come from a single particle 

cannot show entirely the movement intensity and direction of local bulk particles. Due to the 

existence of light source, PIV and LDV methods can only be applied to transparent fluidized beds, 

or fluidized beds with glass windows. Besides, velocity measurement can be carried out only on 

the front-layer particles [37] for LDV method. The optical fiber probe is intrusive, and therefore 

interferes to some extent with the flow field being measured. Furthermore, electrostatic and van de 

Waals forces may cause fine particles to adhere to the optical probe surface, leading to significant 

loss of data [38]. Moreover, for the measurement of solids volume concentrations, the calibration 

process is quite difficult since it is practically impossible to realize homogeneous gas-solid 

suspension [39]. AE method could recognize the circulation pattern of particles but could not give 

the specific velocities and directions of particle motions. In dilute gas-solid flow systems, since 

the electrostatic signals detected are affected by all the moving charged particles in the sensitivity 

zone of the sensor, the correlation velocity represents the average velocity of a certain number of 

particles [19]. Therefore, compared with the instantaneous or local velocity measured by the 

methods mentioned above, correlation velocity is more macroscopic, which could reflect the 

intensity of particle motions as well and provide supplementary information on particle 

movements. 

In comparison with dilute gas-solid systems, particle motions in the fluidized bed are more 

complicated and distributions of particle velocity and concentration are more distinct, but the 
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mechanisms of electrostatic charges induction on the electrostatic sensors are almost the same. 

Therefore, the application of cross-correlation method to the electrostatic charge signals measured 

in the fluidized bed could provide a new way to characterize particle motions. 

To demonstrate the feasibility of this method applied in the gas-solid fluidized bed, 

verification of the correlation between electrostatic signals detected and the reliability of particle 

correlation velocity are imperative. This work was to measure the correlation velocities of Geldart 

B and D particles by induced electrostatic sensors combined with cross-correlation method in the 

gas-solid fluidized bed. The average correlation velocity of particles was compared with the 

superficial gas velocity and the theoretical bubble rise velocity to explore the reliability of this 

method to monitor particle motions. Based on the experimental results of correlation velocity 

measurement for particles of different Geldart types, the movement and fluidization characteristics 

of Geldart B and D particles were analyzed and compared. 

2. Experimental apparatus and materials 

Fig. 1 shows the schematic diagram of the experimental apparatus, which consists of 

fluidization system and measurement system. The fluidized bed is made of a transparent Plexiglas 

column with an inner diameter of 140 mm and a height of 1000 mm. The thickness of the 

Plexiglas column is 5 mm. The expanded section at the top has a height of 300 mm and a width of 

250 mm. An iron perforated distributor is installed at the bottom of the column with 226 holes and 

an open area ratio 2.6%, along with a gas mixing chamber. Compressed air pre-dried to a relative 

humidity of 8-15% and within the temperature range of 20-25 C is used as the fluidizing gas. 

The measurement system is composed of electrostatic sensors, electrostatic signal 

amplification circuits, a data acquisition card (National Instruments, USB-6212) and a computer. 

Considering the fact that the signal measured by ring-shape electrostatic sensors is the average 

value of the entire cross-section while distributions of particle velocity and concentration in the 

same cross-section might be more distinct in the fluidized beds, the arc-shaped electrostatic 

sensors were used in this work to measure the differences among different directions of the 

cross-section. Sensors are made of copper with a width of 6 mm and a thickness of 2 mm. The 

central angle of the sensor is 60 degree. The arc-shaped electrodes were tightly wrapped on the 

outer wall of the fluidized bed, with four electrodes at the same level. The installation layout of 
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electrostatic sensors is shown in Fig. 2. In each set of the electrodes, the distance between the two 

adjacent electrodes was 25 mm. The electrodes were numbered 1 to 12 from the distributor to the 

top, respectively. S 1-2 will be used below to represent the correlation velocity obtained by 

electrostatic signals from sensors 1 and 2, and by this analogy. 

When charged particles come across the sensitivity zone of electrodes, induced electrostatic 

charges on the electrodes are affected and electrostatic current is generated, which is transformed, 

filtered and amplified to electrostatic voltage signal by signal amplification circuit. Grounded 

metal boxes were installed outside the electrodes and circuit boards in order to eliminate external 

electrical interference and enhance the signal-to-noise ratio. Electrostatic voltage signals from all 

the electrodes were recorded in a computer through the data acquisition card. The sampling time 

period was 200 s. The selection of the sampling frequency was determined by the measurement 

error, the measuring range of velocity and the space between adjacent electrostatic sensors [40], 

which would be discussed in Section 3.2. 

The fluidized particles used in the experiment were linear low density polyethylene (LLDPE) 

particles and polypropylene (PP) particles, supplied by a branch company of SINOPEC. Specific 

physical properties of the particles and operating parameters are indicated in Table 1. The 

minimum fluidization velocity (umf) was determined by the conventional pressure drop method. 

The fluidized bed was operated in the bubbling flow regime in the superficial gas velocity (u) 

range covered in these experiments. The static height of the bed was kept at 265 mm when 

different types of particles were used. 

3. Cross-correlation method and parameter selection 

3.1. Characteristics of induced electrostatic signals in time and frequency domains 

When particles were charged to a saturate level after fluidization for over 30 min, induced 

electrostatic voltage signals on the electrostatic sensors were recorded simultaneously for 200 s. 

Fig. 3(a) shows the induced electrostatic voltage signals from the upstream (H=205 mm, S 4) and 

downstream (H=230 mm, S 5) electrostatic sensors during fluidization process at a superficial gas 

velocity of 0.5 m/s. It can be seen that the fluctuations of electrostatic voltage were similar 

between the upstream and downstream signals, while there existed a time difference between the 
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signals sequences. The time difference was denoted as τ in the Fig. 3(a). The corresponding power 

spectral density (PSD) of electrostatic voltage is displayed in Fig. 3(b). It was demonstrated that in 

the dense-phase pneumatic conveying system, the energy of the electrostatic fluctuation was 

mainly distributed in the frequency range of 0-300 Hz, and the peak frequency moved toward 

higher frequency with increasing superficial gas velocity [41]. Compared with the pneumatic 

conveying system, the PSDs of electrostatic voltage signals in the gas-solid fluidized bed were 

mainly located between 0-5 Hz. The difference of frequency distributions in PSDs is caused by the 

difference of superficial gas velocity, or solid velocity in these two systems. The particle velocity 

in the pneumatic conveying system is always 1-2 magnitude orders larger than that in the gas-solid 

fluidized bed. Due to the difference of intrinsic characteristics of signals from various gas-solid 

systems, some parameters should be carefully selected first before calculating the correlation 

velocity. 

3.2. Selection of parameters for cross-correlation calculation 

The cross-correlation coefficient Rxy(τ) of electrostatic signals between the upstream and 

downstream electrodes can be calculated by the following Eq. [40]: 

      
0

1
 

T

xyR y t x t dt
T

     (1) 

where x(t) and y(t) represent the upstream and downstream electrostatic signals, respectively. T is 

the integral time. The corresponding time lag of maximum correlation coefficient is the time 

difference between the upstream and downstream signals, which is also called transit time (τm). 

Then the particle correlation velocity can be obtained by Eq. (2), 

 
c

m

L
v


   (2) 

in which L is the distance between the centers of adjacent electrostatic sensors, which was 25 mm 

in this work. In the gas-solid pipeline flow system, the meter factor, K, is always introduced to 

express the relationship between the mean particle velocity (vm) and the correlation velocity (vc) 

[19]. The relative magnitude of the mean particle velocity can be reflected by the value of the 

correlation velocity. 

The cross-correlation function of the electrostatic voltage signals shown in Fig. 3(a) is 
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revealed in Fig. 4. An obvious peak value of cross-correlation coefficients can be found and the 

peak value reflects the similarity between the upstream and downstream signals. When the 

maximum correlation coefficient exceeds 0.6, it means that the upstream and downstream signals 

are remarkably correlated, which is the basis of the following calculation. 

Selection of sampling frequency 

The selection of sampling frequency is strongly influenced by the characteristics of the 

electrostatic signal. Zhang et al. pointed out that the sampling frequency (f) should be 

 max100

2

v
f

L
  , (3) 

where L is the distance between adjacent electrostatic sensors, δ represents the tolerance of the 

standard deviation of the transit time, and vmax is the maximum velocity in the measuring process, 

which could be estimated by the bubble rise velocity in the fluidized bed. The upward velocity of 

the particles in a wake of a bubble should be equal to the bubble rise velocity [42], and greater 

than the velocities of particles in other parts of the fluidized bed. Therefore, the bubble rise 

velocity was calculated to estimate the maximum particle velocity in the fluidized bed. 

The theoretical Eq. for bubble rise velocity calculation is shown in Eq. (4) [43]. 

    
1 2

0.711b mf bu u u gd     (4) 

In Eq. (4), ub is the bubble rise velocity and db is the bubble diameter, which is calculated by the 

following Eq. (5) proposed by Mori and Wen [44], 

 
0.3

0

tz dbm b

bm b

d d
e

d d





  (5) 

  
0.4

20.652
4

bm t mfd d u u
 

  
 

  (6) 

  
0.4

2

0 00.347
4

b t mfd d u u N
 

  
 

  (7) 

where dt is the inner diameter of the fluidized bed and db0 is the initial bubble diameter 

formed at the surface of the perforated distributor. N0 is the number of holes in the distributor. In 

this work, the maximum z was 0.6 m, therefore, the corresponding bubble rise velocity was 1.22 

m/s. The tolerance of the standard deviation of the transit time was set to be ±δ%=±2%. The 

sampling frequency could be calculated by Eq. (3) as follows: 
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100 1.22

1220 
2 2 0.025

f Hz


 
 

  (8) 

Considering that the particle motions in the fluidized bed are so complicated that the velocity of 

particles may be greater than the theoretical bubble rise velocity due to the collisions between 

particles, the sampling frequency was selected as 4000 Hz in this work. The sampling time was 

200 s. 

Selection of integral time 

The integral time, T, represents the number of data points used in the cross-correlation 

calculation. The longer the integral time is, the more accurate the correlation result should be. 

However, the increase in the integral time will decrease the dynamic response of the system and 

require higher level hardware performance to calculate the correlation function [40]. It was found 

that when the integral time is short, the standard deviation (STD) of correlation velocity will 

increase as the integral time gets longer. If the integral time reaches a certain value, the STD will 

not change obviously with the increase of integral time. Fig. 5 shows the variation of STD with 

the integral time. It can be indicated that when the integral time reached 2 s, the value of STD 

became relatively stable with the integral time increasing. 

According to the cross-correlation principle [45], the integral time should also satisfy the 

following relationship, 

 010T    (9) 

where τ0 is the first zero crossing point in the auto-correlation function of electrostatic signals. The 

maximum τ0 was 0.15 s in this experiment, which meant that T should be greater than 1.5 s. 

Compared with the result obtained in the STD calculation process, the integral time in this work 

was selected as 2 s. Since the sampling time was 200 s, 100 correlation velocity values can be 

obtained from two adjacent electrostatic sensors, but not all the calculated values are valid. The 

correlation velocity will be discarded if the maximum correlation coefficient is less than 0.6 [20, 

33]. 

4. Results and discussions 

4.1. Characterization of Geldart B particle motions by electrostatic sensors 

Induced electrostatic voltage signals were detected when charged particles approached or left 
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the sensitivity zone of electrostatic sensors in the gas-solid fluidized bed. Since all the particles in 

the sensitivity zone contributed to the generation and variation of electrostatic voltage, the 

correlation velocity obtained by cross-correlating the upstream and downstream signals was 

regarded as the correlation velocity of the particle cloud in the sensitivity zone in this work, which 

could reflect the movement intensity of a number of charged particles. The minimum dynamic bed 

level was 330 mm during the experiment and the dynamic bed level range was 330-590 mm. 

Therefore, in the discussions below, the region covered by sensors S 1-7 is called the dense-phase 

region of the fluidized bed, and the region covered by S 8-12 is called the dynamic bed level 

region. 

Fig. 6 indicates the 100 correlation coefficients calculated from the signals shown in Fig. 3(a) 

and the corresponding correlation velocities. As shown in Fig. 6(a), the maximum correlation 

coefficients were in the range of 0.6-1 when the integral time was 2 s. The ratio of the maximum 

coefficients greater than 0.6 was over 90% for different trials with various superficial gas 

velocities in the fluidized bed of Geldart B particles, which means that the upstream and 

downstream electrostatic signals in the gas-solid fluidized bed showed a remarkable correlation 

under different superficial gas velocities. This was the precondition of this method used in the 

dense gas-solid flow system. Fig. 6(b) displayed the correlation velocities calculated by the transit 

time corresponding to each maximum correlation coefficient. It can be seen that the correlation 

velocity fluctuated in the range of 0.3-0.7 m/s with relative errors no more than 18.1%. The 

charged particle cloud might locate in the wake or the drift of the bubble, or in the emulsion phase 

when it passed through the sensitivity zone of the electrostatic sensors [24], and consequently, the 

velocities of particle clouds were intrinsically different during the measurement. Besides, the 

mutual disturbance and coalescence of bubbles would also affect the velocity of particle clouds. 

Consequently, the correlation velocity measured was not a fixed value, but fluctuated within a 

certain range. 

Fig. 7 showed the normalized probability density distributions of correlation velocities 

measured by the same sensors pair as in Fig. 6 under different superficial gas velocities. As the 

superficial gas velocity increased, the distribution of correlation velocities broadened and the 

correlation velocity corresponding to the peak became greater, which means that the motions of 

charged particle clouds became more vigorous with the increase of gas velocity. The average 
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correlation velocity of particle clouds, which was the average of all the valid correlation velocities 

as shown in Fig. 6(b), was used to represent and compare the magnitude of particle velocity 

below. 

Fig. 8 indicated the average correlation velocities of particle clouds measured by sensor pairs 

S 1-2 and S 4-5, which were both in the dense-phase region, with the error bars representing STDs 

of the correlation velocities. It can be seen that with the increase of superficial gas velocity, the 

average correlation velocity of particle clouds increased in the dense-phase region of the fluidized 

bed. The average correlation velocity was greater at the higher position (S 4-5) than that at the 

lower position (S 1-2). This was due to the fact that as the axial height ascended, the size of the 

rising bubble became larger and the associated rising velocity became faster. Since the motion of 

rising bubbles was the source of particle motions within the bed, the average particle velocity also 

increased and the particle motion became more energetic. The average correlation velocity of 

particle clouds could be used as a parameter to measure the magnitude of particle velocity in the 

dense-phase region of the fluidized bed. Table 2 further displayed the average correlation velocity 

measured under different superficial gas velocities at four axial positions. The measurement 

process was repeated three times under each superficial gas velocity. The correlation velocities 

shown in Table 2 were the mean values of the three average correlation velocities mentioned 

previously. The relative error was no more than 12.7%, which is greater than that in the dilute 

pneumatic conveying system [19]. The reason is that distributions of particle velocity and 

concentration in fluidized beds are much more distinct than those in the dilute pneumatic 

conveying system and which make the increases of relative errors of measured results. The 

experimental results shown in Fig. 8 and Table 2 demonstrated that electrostatic sensors combined 

with cross-correlation method are capable of providing reliable velocity measurement with good 

repeatability in the dense-phase region of the fluidized bed. Besides, the four pairs of electrostatic 

sensors installed at a certain height provided nearly the same average correlation velocity and 

normalized probability density distributions of correlation velocities, which was similar with our 

previous experimental work [46]. This uniformity means that at a certain axial height, the 

measured average correlation velocity of particle clouds from only one pair of electrostatic sensors 

could be used to represent the intensity of particle motions in this section. 

Fig. 9 further compares the average correlation velocity of particle clouds with the theoretical 
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bubble rise velocity estimated by Eq. (4), where the dash lines represent the bubble velocity and 

the solid points stand for the average correlation velocity. As shown in Fig. 9, the same tendency 

was observed for the bubble rise velocity and the average correlation velocity of particle clouds as 

the superficial gas velocity increased. Both the theoretical bubble velocity and the experimental 

average correlation velocity ascended with the superficial gas velocity. This verifies again that the 

average correlation velocity of particle clouds can be used to reflect the relative magnitude of 

particle motions affected by rising bubbles. It should be noticed that all the measured average 

correlation velocities were positive in the dense-phase region in the fluidized bed, which means 

that particle clouds mainly moved upward during the measurement. Moreover, the average 

correlation velocity measured at the higher position (S 6-7) of the dense-phase region was always 

smaller than that measured at a lower position (S 4-5), which was different from the comparison 

result from S 1-2 and S 4-5. 

It can be found from the previous research [20] that the sensitivity zone of the arc-shape 

electrode was localized and the measurement by the electrodes was more sensitive to the charged 

particles near the electrode. It is also known that particles near the wall mainly move downward in 

the gas-solid fluidized bed [47-49]. Therefore, it is prone to infer that the correlation velocity 

measured by the arc-shape electrostatic sensors on the outer wall of the fluidized bed should be 

negative, which represents that particles mainly move downward. However, the experimental 

result obtained in this work is not the case as inferred, which is mainly attributed to the following 

facts during fluidization. The net downward transport of particles is only in the wall region in the 

fluidized bed, whereas the overall upward flow of particle motions occupies the remaining larger 

part of the cross section [24]. Furthermore, the magnitude of upward velocity is remarkably 

greater than that of the downward velocity [47, 50]. Since the induced electrostatic voltage was 

simultaneously affected by spatial sensitivity of sensors and particle velocity, the measured 

correlation velocity was always positive in the dense-phase region in the fluidized bed, which 

means particles showed an overall upward movement in this region. While for the dynamic bed 

level region, both the upward and downward particle motions were more vigorous [50]. The 

number of particles moving upward became fewer since more particles moved laterally due to the 

bubbles eruption at the bed surface [24]. As a result, the upward and downward particle 

movements could be detected simultaneously in this region as shown below. 
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In the dynamic bed level region, particles are thrown into the freeboard region by erupted 

rising bubbles and finally fall into the bed again under gravity. Combined with the specific 

dynamic bed level ranges shown in Table 3, Fig. 10 further illustrates the relative positions of the 

dynamic bed level and fixed electrostatic sensors under different gas velocities, where the blue 

dash lines represent the average top and bottom edges of the dynamic bed level. Fig. 11 shows the 

probability density distributions of the correlation velocities measured by S 8-9 in the bed level 

region with gas velocity increasing. It can be indicated that when the gas velocity was relatively 

small (u=0.4 m/s), the sensors pair S 8-9 was near the top edge of the dynamic level region. The 

average correlation velocity was negative and the distribution of the correlation velocities was also 

mainly located in the negative direction, which means that particles primarily moved downward in 

the upper part of the bed level region. Since the position of the sensors pair was fixed but the 

dynamic bed level ascended due to the increase of gas velocity, the section measured by S 8-9 

gradually approached the bottom edge of the dynamic level region, until it belonged to the 

intersection between the bed level and dense-phase regions, where particles were mainly thrown 

upward by erupted bubbles. As a result, both the number of particles moving upward and the value 

of upward velocity increased in comparison with the situation under a lower superficial gas 

velocity. Therefore, distributions of the correlation velocities measured by S 8-9 were located in 

both the negative and positive directions, and positive correlation velocities became more 

prominent with the increase of superficial gas velocity. When the gas velocity became larger 

(u=0.7 m/s), the distribution of correlation velocities was quite similar with that in the dense-phase 

region of the fluidized bed. Fig. 12 displayed the variations of probability density distributions of 

correlation velocities measured by different pairs of sensors under a certain gas velocity. When the 

superficial gas velocity was 0.5 m/s (Fig. 10(b)), S 8-9 belonged to the middle of the dynamic 

level region, where both positive and negative correlation velocities could be detected. While for S 

9-10 located near the top edge of the dynamic level range, the distribution of correlation velocities 

dominantly lay in the negative direction. When the superficial gas velocity increased to 0.7 m/s 

(Fig. 10(d)), sensors S 8-10 were in the intersection of the bed level and dense-phase regions while 

S 11-12 was located in the upper part of the dynamic bed level region. Distributions of correlation 

velocities measured by S 8-9 and S 9-10 were similar to those in the dense-phase region of the 

fluidized bed, while negative correlation velocities appeared as the position of the sensors pair 
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became higher (S 11-12). 

In a word, both upward and downward movements of particles could be measured in the 

dynamic bed level regions, which is different from the results obtained in the dense-phase region 

of the fluidized bed. In the dynamic bed level region, the numbers and velocities of particles 

moving upward and downward were always changing due to the complex velocity and 

concentration distributions of particles, and both positive and negative correlation velocities could 

be detected. This also gives a probable explanation to the unusual result shown in Fig. 9. Since the 

position of S 6-7 was closer to the dynamic bed level, the downward movement of particles near 

the wall was more vigorous than that in the lower part of the dense-phase region [24]. 

Consequently, the average correlation velocity in the higher position (S 6-7) was smaller than that 

in the lower position (S 4-5). 

Based on the experimental results from the dense-phase and dynamic bed level regions of the 

fluidized bed, it can be inferred that the average correlation velocity of particle clouds obtained by 

electrostatic sensors combined with cross-correlation method can be used as a parameter to reflect 

the relative magnitude of particle velocity and intensity of particle motions. Furthermore, a 

positive correlation velocity means upward motions of particles are dominant and a negative 

correlation velocity represents an overall downward movement of particles. The measurement 

results verified the repeatability and reliability of electrostatic sensors to monitor particle motions 

in the gas-solid fluidized bed. 

4.2. Comparison of fluidization characteristics of Geldart B and D particles 

The criteria to select the parameters in the cross-correlation calculation for Geldart D 

particles are the same with those for Geldart B particles, which are hence not described in detail in 

this section. The integral time (T) was also chosen as 2 s and only the correlation velocity 

associated with a maximum correlation coefficient greater than 0.6 was regarded as a valid result. 

For Geldart D particles, the ratio of maximum coefficients over 0.6 was no less than 95% in this 

experiment, which demonstrated the remarkable correlation between the upstream and 

downstream electrostatic signals in the fluidized bed with Geldart D particles. The probability 

density distributions of correlation velocities of Geldart D particle clouds are shown in Fig. 13. 

The correlation velocity distribution broadened and the magnitude of the correlation velocity 
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corresponding to the peak became greater with the increase of superficial gas velocity. Since 

bubbles grow up and coalescence as they rise along the axial height within the fluidized bed, 

particles motions carried by larger bubbles become more energetic. Therefore, the distribution of 

correlation velocities with the axial height became broader with a larger average correlation 

velocity as shown in Fig. 13(b). 

Fig. 14 further compares the average correlation velocity and the theoretical bubble rise 

velocity at different heights under various superficial gas velocities. The average correlation 

velocity and theoretical bubble rise velocity showed a similar tendency with the increase of gas 

velocity at different axial heights. The experimental results shown in Figs. 13 and 14 demonstrated 

the applicability of the cross-correlation method based on electrostatic signals in the fluidized bed 

with Geldart D particles. 

When the dimensions of the fluidized bed are fixed, the bubble size and rise velocity depend 

on the excess gas velocity (u-umf) and the ratio of gas in the bubble phase [51], which significantly 

affect particle motions. In order to compare and analyze the fluidization characteristics of Geldart 

B and D particles, Fig. 15 displays the average correlation velocity of Geldart D and B particles at 

two axial heights under the same excess gas velocity. It can be found that the average correlation 

velocity of Geldart B particles was significantly greater than that of Geldart D particles under the 

same excess gas velocity. To be specific, when the excess velocity was 0.35 m/s, the average 

correlation velocities measured by S 4-5 were 0.451 m/s and 0.586 m/s for Geldart D and B 

particles, respectively. The average correlation velocity of Geldart B particles was 29.9 percent 

greater than that of Geldart D particles under this condition. Within the experimental conditions 

covered by this work, the average correlation velocity of Geldart B particles was 20-40 percent 

larger than that of Geldart D particles. Fig. 16 further compares the normalized correlation 

velocity distributions of Geldart B and D particles. Under the same excess gas velocity, the 

normalized correlation velocity distribution of Geldart B was broader than that of Geldart D 

particles at a certain height and the correlation velocity corresponding to the peak was also greater. 

These experimental results demonstrated that motions of Geldart B particles were obviously more 

vigorous than Geldart D particles under the same excess gas velocity. 

The difference of particle motions shown in Figs. 15 and 16 is due to the distinction of 

fluidization characteristics of different Geldart types particles. In a fluidized bed with Geldart B 
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particles, bubbles coalescence is more predominant than bubbles split [52]. As a result, the size of 

bubbles keeps enlarging as they rise along the axial height of the bed and the rise velocity of 

bubbles increases. For the fluidized bed with Geldart D particles, the rise velocity of bubbles 

within the bed is always smaller than the gas velocity in the emulsion phase (umf/εmf) due to the 

large minimum fluidization velocity of Geldart D particles. Consequently, the gas in the emulsion 

phase can flow into the bubble from the bottom and flow out from the top, which makes the 

bubble split and become smaller [52]. The average size and rise velocity of bubbles in the 

fluidized bed with Geldart D particles are always smaller than those in the fluidized bed with 

Geldart B particles. Movements of Geldart B particles carried by larger rising bubbles are 

therefore more intensive than Geldart D particles. Moreover, although it is believed that all the gas 

exceeding the minimum fluidization velocity, namely, u-umf, will contribute to the bubble 

formation according to the classical two-phase theory, actually, some of the gas expected to go 

through the bed as bubbles does not [51]. Previous research [53] has indicated that the ratios of 

gas forming bubbles to the gas expected to form bubbles are 0.65 and 0.26 for Geldart B and D 

particles, respectively. This means that the volume of gas which goes through the bed as bubbles is 

significantly smaller for Geldart D particles than for Geldart B particles. The ratio of gas forming 

bubbles actually also leads to the less vigorous movements of Geldart D particles. Therefore, the 

developed monitoring method can be used to characterize and distinguish the motions and 

fluidization behaviors of particles of different types. 

5. Conclusions 

Induced electrostatic voltage signals were measured by arc-shape electrostatic sensors 

installed on the outer wall of the fluidized bed in this work. The average correlation velocity of 

particles and the normalized probability density distributions of correlation velocities were 

obtained and compared under various fluidization conditions for Geldart B and D particles. The 

reliability and repeatability of velocity measurement by electrostatic sensors combined with 

cross-correlation method in the gas-solid fluidized bed were demonstrated and the fluidization 

characteristic differences of Geldart B and D particles were further compared and illustrated. 

For Geldart B particles in the dense-phase region of the fluidized bed, with the increase of 

superficial gas velocity or the axial height, the average correlation velocity of particle clouds 
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increased and the normalized probability density distributions of correlation velocities broadened. 

The variation of the average correlation velocity showed the similar trend with the theoretical 

bubble rise velocity. The average correlation velocity was always positive due to the relatively 

greater velocity and larger proportion of particles moving upward carried by rising bubbles in the 

dense-phase region. The average correlation velocities measured showed a good repeatability with 

a relative error no more than 12.7%. In the dynamic bed level region, both upward and downward 

correlation velocities could be detected for the complex particle velocity and concentration 

distributions in this region. The experimental results verified that the average correlation velocity 

and the distribution of correlation velocities can be used to reflect the direction and intensity of 

particle motions at a certain height in the gas-solid fluidized bed. 

For Geldart D particles, the velocity measurement based on electrostatic sensors and 

cross-correlation method was still applicable. Moreover, compared with Geldart B particles, the 

average correlation velocity of Geldart D particles was smaller and the normalized probability 

density distribution of correlation velocities was narrower under the same excess velocity. This 

was caused by the differences of fluidization behaviors between these two types of particles. More 

gas goes through the bed as bubbles and coalescence of bubbles is more predominant in the 

fluidized bed with Geldart B particles than that with Geldart D particles. Therefore, particle 

movements mainly driven by larger bubbles were more vigorous in the fluidized bed with Geldart 

B particles. 

Considering the simplicity, cost effectiveness and non-invasiveness, this method is a potential 

and promising method to characterize particle motions in the fluidized bed. However, due to the 

fact that particle motions, particle charging and concentration distribution are quite complex in the 

fluidized bed, a more explicit physical interpretation of correlation velocity in the fluidized bed, 

effects of particle velocity and concentration distributions on correlation velocity measurement, 

and the optimization of sensor configurations, still need more investigation in the future work. 

Notations 

db bubble diameter, m 

db0 initial bubble diameter formed at the surface of the perforated distributor, m 

dt inner diameter of the fluidized bed, m 
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f sampling frequency, Hz 

H axial distance of electrostatic sensor from the distributor, mm 

K meter factor, dimensionless 

L distance between the centers of adjacent electrostatic sensors, mm 

N0 the number of holes in the distributor 

R cross-correlation coefficient, dimensionless 

t time, s 

T integral time in the cross-correlation calculation, s 

u superficial gas velocity, m/s 

umf minimum fluidization velocity, m/s 

vc particle correlation velocity, m/s 

vm particle mean velocity, m/s 

x upstream electrostatic voltage signal, V 

y downstream electrostatic voltage signal, V 

z axial distance of bubbles from the distributor, m 

Greek letters  

τ time lag, s 

τ0 the first zero crossing point in the auto-correlation function of electrostatic 

signals, s 

τm transit time, s 
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No. Figure captions 

Figure 1 Schematic diagram of the experimental apparatus. 

Figure 2 Installation layout of arc-shaped electrostatic sensors. 

Figure 3 Induced electrostatic voltage signals from adjacent sensors and corresponding 

PSDs. (S 4-5, u=0.5 m/s) 

Figure 4 Cross-correlation coefficients of induced electrostatic voltage signals from adjacent 

sensors in the fluidized bed of Geldart B particles. (S 4-5, u=0.5 m/s) 

Figure 5 Variations of STDs of correlation velocity with integral time. 

Figure 6 Cross-correlation results of upstream and downstream electrostatic signals.  

(S 4-5) (a) Correlation coefficient; (b) Correlation velocity 

Figure 7 Normalized probability density distributions of particle cloud correlation velocities 

under different superficial gas velocities. (S 4-5) 

Figure 8 Variation of average particle cloud correlation velocity with superficial gas velocity. 

Figure 9 Comparison of average correlation velocity of Geldart B particle clouds and 

theoretical bubble rise velocity. 

Figure 10 Schematic of relative positions of electrostatic sensors and dynamic bed level. 

(a) u=0.4 m/s; (b) u=0.5 m/s; (c) u=0.6 m/s; (d) u=0.7 m/s 

Figure 11 Normalized probability density distributions of particle cloud correlation velocities 

in the bed-level region of the fluidized bed. (S 8-9) 

Figure 12 Variations of particle cloud correlation velocity distributions with axial height in the 

bed-level region of the fluidized bed. (a) u=0.5 m/s; (b) u=0.7 m/s 

Figure 13 Variations of correlation velocity distributions of Geldart D particle clouds with 

superficial gas velocity and axial height. (a) S 4-5; (b) u=0.9 m/s 

Figure 14 Comparison of average correlation velocity of Geldart D particle clouds with 

theoretical bubble rise velocity. 

Figure 15 Average correlation velocities of Geldart B and D particles under different excess 

superficial gas velocities. 

Figure 16 Comparison of correlation velocity distributions of Geldart B and D particles.  

(a) u-umf=0.15 m/s; (b) u-umf=0.35 m/s 
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Fig. 3 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

31 

 

 
Fig. 10 
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Fig. 12 
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Fig. 13 
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Fig. 15 
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Fig. 16 
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Table 1. Physical properties of particles and specific operating parameters in this work 

Materials Density(kg/m
3
) Diameter (mm) 

Geldart 

type 

umf 

(m/s) 
u (m/s) 

LLDPE 918 0.45-0.90 B 0.20 0.35,0.4,0.5,0.55,0.6,0.7 

PP 900 ~1.85 D 0.55 0.7,0.8,0.9,1.0 
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Table 2. Measurement results of average correlation velocities in the dense-phase region. 

u, m/s 

S 1-2 S 3-4 S 4-5 S 6-7 

Average, 

m/s 

STD, 

m/s 

Average, 

m/s 

STD, 

m/s 

Average, 

m/s 

STD, 

m/s 

Average, 

m/s 

STD, 

m/s 

0.4 0.288 0.0125 0.389 0.0130 0.401 0.0374 0.314 0.0400 

0.5 0.345 0.0148 0.452 0.0268 0.449 0.0384 0.404 0.0424 

0.6 0.421 0.0179 0.521 0.0426 0.525 0.0521 0.524 0.0512 

0.7 0.524 0.0128 0.555 0.0628 0.597 0.0619 0.538 0.0624 
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Table 3. Dynamic bed level ranges under different superficial gas velocities. 

Superficial gas velocity (m/s) 0.4 0.5 0.6 0.7 

Bed level range (mm) 330-410 340-440 370-520 390-590 
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Graphical abstract 
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Highlights 

 Correlation velocity of fluidized particles was measured by electrostatic sensors. 

 Both upward and downward correlation velocities were measured in bed level region. 

 Differences between B and D particles can be distinguished by correlation velocity. 


