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Abstract— This paper addresses the beam allocation problem
in a switched-beam based massive multiple-input-multiple-
output (MIMO) system working at the millimeter wave frequency
band, with the target of maximizing the sum data rate. This
beam allocation problem can be formulated as a combinatorial
optimization problem under two constraints that each user uses
at most one beam for its data transmission and each beam serves
at most one user. The brute-force search is a straightforward
method to solve this optimization problem. However, for a
massive MIMO system with a large number of beams N, the
brute-force search results in intractable complexity O(N K ),
where K is the number of users. In this paper, in order to
solve the beam allocation problem with affordable complexity,
a suboptimal low-complexity beam allocation (LBA) algorithm
is developed based on submodular optimization theory, which
has been shown to be a powerful tool for solving combinatorial
optimization problems. Simulation results show that our pro-
posed LBA algorithm achieves nearly optimal sum data rate
with complexity O(K log N). Furthermore, the average service
ratio, i.e., the ratio of the number of users being served to the
total number of users, is theoretically analyzed and derived as
an explicit function of the ratio N/K .

Index Terms— Switched-beam based systems, beam allocation
algorithm, sum data rate, submodular optimization, service ratio,
massive multiple-input-multiple-output (MIMO).

I. INTRODUCTION

THE rapid growth of smartphone users and high-data-rate
applications such as online-gaming and streaming

high-definition video has imposed ever-increasing high-
data-rate requirements on the fifth-generation (5G) mobile
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communication systems. In order to meet this challenge,
there has been a great interest in moving to millimeter
wave (mmWave) spectrum where a wide range of bandwidth
is available, which also enables deploying a massive number
of antennas at the base-station (BS) [1]–[10].

With a massive number of antenna elements at the
BS (popularly known as massive multiple-input-multiple-
output (MIMO)), a few advantages can be harvested, e.g.,
the random channel vectors from users to the BS become
pairwisely orthogonal, the effect of small-scale fading can
be averaged out, and the transmit power can be reduced
significantly [9], [10]. Thanks to the aforementioned benefits,
massive MIMO has been also adopted in wireless sensor
networks recently [11], [12]. Moreover, by employing massive
MIMO in mmWave communication systems, narrow and high-
gain beams can be formed to overcome the severe propaga-
tion loss of mmWave signals for establishing reliable links.
Therefore, massive MIMO beamforming has been seen as a
promising key technology for 5G cellular networks [1].

Generally, beamforming technologies can be divided into
two categories: digital beamforming [13] and analog beam-
forming [14]. Digital beamforming is often employed in the
conventional communication systems where beams are formed
by digitally adjusting the amplitudes and phases of transmit-
ted signals, which is flexible and programmable. However,
performing digital beamforming requires individual radio fre-
quency (RF) chain for each antenna element. For the massive
MIMO systems, even though with very good performance,
deploying a massive number of RF chains to enable digital
beamforming is of high cost and with high power consumption
at mmWave frequencies. By contrast, analog beamforming is
implemented just by using a number of independent phase
shifters on the BS antennas at the RF part, i.e., only one RF
chain is needed for a single data stream, which is much simpler
and cheaper. Therefore, more and more attention has been paid
on the hybrid analog-digital beamforming [15]–[20] and pure
analog beamforming [21]–[23].

For analog beamforming based systems, a switched-beam
scheme along with beam selection turned to be a popular
technique for data transmission through beams due to its
simplicity [24]–[32]. In this scheme, a fixed number of beams
are generated and pointed to different predetermined directions
to cover the whole cell. The Butler method is a representative
method to create fixed beams [25]. In the switched-beam based

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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multiuser systems, each user uses only one beam to transmit
and/or receive its data signal and switches its beam from one
time slot to another according to the strength of the line-of-
sight (LOS) signal to achieve efficient beam switching. As the
switched-beam scheme requires LOS, it has been mainly
investigated in satellite communication systems [26]–[28].
For cellular systems, the study was limited in wide-
band code division multiple access (WCDMA) mobile net-
works [29], [30]. Recently, due to the potential of high capacity
by exploiting the mmWave bands, the switched-beam scheme
has been also studied in the mmWave communication systems
where LOS often exists [31], [32].

For such a switched-beam based multiuser system, a key
challenge is how to assign multiple beams to multiple users
to achieve a high sum data rate. This beam allocation problem
shares similarities to that in the conventional random beam-
forming based systems [33]–[36]. Specifically, in a random
beamforming based system, to exploit multiuser diversity gain,
the number of users K is assumed to be much larger than
the number of beams N , i.e., K � N . By assuming that
all the N beams are used with equal power allocation, each
user can calculate the received signal-to-interference-plus-
noise ratios (SINRs) on the N beams and then feeds back
the SINRs and the corresponding beam indices to the BS.
After receiving feedback from all users on all beams, the BS
assigns each beam to the best user with the highest SINR to
maximize the sum data rate [33]–[35]. In this scenario, the
beam allocation problem is reduced to N independent user
selection problems, i.e., selecting the proper user for each
beam to serve.

However, the beam allocation algorithms in conventional
random beamforming based systems [33]–[35] cannot be
directly adopted in switched-beam based massive MIMO
systems. The main reason is that in massive MIMO systems,
the number of beams can be much larger than the number of
users, i.e., N � K , and thus some of the beams may not
be used for data transmission, and the beams used for data
transmission could vary when the channel condition changes.
As a result, it is impossible for each user to calculate its
received SINR on each beam due to the lack of information
of active beams. Moreover, even under the condition N � K ,
it is shown in [36] that using all the beams for transmission
is not always optimal due to strong inter-beam interference.
Several suboptimal beam selection algorithms were further
proposed to maximize the sum data rate [36], among which the
simplest greedy algorithm still has the complexity O(K N2),
which could be very high when the number of beams N is
large.

This paper aims to develop a low-complexity beam alloca-
tion algorithm to maximize the sum data rate of a switched-
beam based multiuser massive MIMO system where a massive
number of N fixed beams are formed by using the Butler
method with a uniform linear array of N antenna elements to
serve K users, i.e., N � K . The beam allocation problem is
formulated as a combinatorial optimization problem with two
constraints including that each user can be served at most
by one beam and each beam can serve at most one user.
As the brute-force search leads to the complexity O(N K )

to obtain the optimal solution, which is intractable when the
number of beams N is large, in this paper, a suboptimal
low-complexity beam allocation (LBA) algorithm is proposed
based on submodular optimization theory, which is a powerful
tool for solving combinatorial optimization problems [37].
Specifically, the original optimization problem is first reformu-
lated as a non-monotone submodular maximization problem
under two partition matroid constraints, which still has high
computational complexity due to the non-monotone objective
function. To reduce the complexity, the non-monotone sub-
modular maximization problem is further decoupled into two
sub-problems, including a beam-user association sub-problem
and a beam allocation sub-problem which is a monotone
submodular maximization problem subject to a single partition
matroid constraint and can be efficiently solved by a greedy
algorithm. The LBA algorithm is then proposed by combining
the solutions of these two sub-problems. Simulation results
show that compared with the optimal brute-force search, our
LBA algorithm can achieve nearly the same sum data rate, but
only with the complexity O(K log N).

Note that to maximize the sum data rate, some users might
not be served, which causes delay for the unserved users.
It is therefore of great importance to study how many users
can be simultaneously served by the system. This performance
is indicated in the paper by service ratio, which is defined as
the ratio of the number of served users to the total number
of users. An explicit expression of the average service ratio
(i.e., the service ratio averaged over users’ positions) is
obtained and shown to be a monotonic increasing function of
the ratio of the number of beams N to the number of users K .
Simulation results verify that the analytical result serves as a
good approximation of the average service ratio, which sheds
important insights on the service delay.

The remainder of this paper is organized as follows.
Section II introduces the system model and problem for-
mulation. A low-complexity beam allocation algorithm is
proposed in Section III, followed by the simulation results
and discussions provided in Section IV. Concluding remarks
are summarized in Section V.

Throughout this paper, E[·] denotes the expectation
operator. x ∼ CN (u, σ 2) denotes a complex Gaussian random
variable with mean u and variance σ 2. |X | denotes the
cardinality of set X . 2X denotes the power set of set X .
X ∩ Y and X ∪ Y denote the intersection and union of set X
and set Y , respectively. X \Y denotes the relative compliment
of set Y in set X . ∅ denotes the empty set.

(n
k

)
denotes a

binomial coefficient, i.e., the number of ways to choose k
elements from a set of n distinct elements.

{n
k

}
denotes a

Stirling number of the second kind, i.e., the number of ways to
partition a set of n distinct elements into k non-empty subsets.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1(a), the downlink transmission is con-
sidered for a multiuser switched-beam based system with K
users and a BS with a linear array of N equally spaced
identical isotropic antenna elements to form N fixed beams.
It is assumed that K users are uniformly distributed within
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Fig. 1. Beamforming model. (a) Illustration of massive MIMO system.
d denotes the uniform BS antenna elements spacing. (ρk , θk ) is the polar
coordinate of user k. “x” represents a user and “•” represents a BS antenna
element. (b) Array pattern generated by using the Butler method. N = 16.

a circular cell with unit radius, and each user is equipped
with a single antenna.1 The BS is located at the center of the
cell and all the BS antenna elements are equally spaced at
distance d = 0.5λ, where λ is the propagation wavelength.
(ρk, θk) denotes the location of user k.

By applying the Butler method to form the beams with
N = 2i (where i ≥ 1 is an integer), the normalized array
factor of any beam n, n = 1, 2, · · · , N , with respect to an
angle of departure (AoD) θ of signal is given by [24]

An(θ) = sin(0.5Nπ cos θ − βn)

N sin(0.5π cos θ − 1
N βn)

, (1)

where

βn =
(

− N + 1

2
+ n

)
π. (2)

Fig. 1(b) illustrates the array pattern generated according to
(1) and (2) when N = 16, where the beam index increases
from 1 to N from the left-hand side to the right-hand side.

Consider user k as the reference user. By assuming an LOS
channel at the mmWave frequencies, unlike multipath channels
in conventional cellular systems [38]–[40], the AoD of the
received signal at user k is θk and the corresponding received
power can be written as [41]

Pk =
N∑

n=1

ck,n · pn · Dn(θk) · ρ−α
k , (3)

where pn denotes the transmit power allocated on beam n.
ρk is the distance from the cell center to user k and α is the
path-loss exponent. Dn(θ) denotes the directivity2 of beam n
with regard to an AoD θ , given by [24]

Dn(θ) = 2 [An(θ)]2

∫ π
0 [An(ψ)]2 sin(ψ)dψ

. (4)

1Note that the following analysis can be also applied to the case where
each user is equipped with multiple antennas by incorporating the receive
beam gain into the received signal power model given by (3).

2The directivity is a measure of how directive an individual antenna is
relative to an isotropic antenna radiating the same total power. In other words,
the directivity is the ratio of the power density of an anisotropic antenna
relative to an isotropic antenna radiating the same total power [42].

Fig. 2. Illustration of beam allocation in switched-beam based massive
MIMO systems. “x” represents a user. A beam is allocated to the user in
the same color. N = 16, K = 5.

Appendix A shows that (4) can be further reduced to (A.5),
i.e.,

Dn(θ) = N [An(θ)]2 . (5)

In (3), ck,n ∈ {0, 1} denotes the beam allocation indicator.
If beam n is allocated to user k, ck,n = 1; otherwise, ck,n = 0.
With beam switching, each user can only use one beam for
its data transmission, i.e.,

∑N
n=1 ck,n ≤ 1. Moreover, to avoid

severe intra-beam interference, each beam can be used at most
by one user, i.e.,

∑K
k=1 ck,n ≤ 1. For a massive MIMO system

where the number of beams N is much larger than the number
of users K , only some of the beams will be used for data
transmission, as illustrated in Fig. 2. Let Ns denote the number
of allocated beams, given by

Ns =
K∑

k=1

N∑

n=1

ck,n, (6)

which is no larger than K as each user can only select at
most one beam for its data transmission. Assume that the
total transmit power is fixed at Pt , and equally allocated to
the beams selected for data transmission. The transmit power
allocated on beam n is then given by

pn =
⎧
⎨

⎩

Pt

Ns
, if

∑K
k=1 ck,n = 1,

0, if
∑K

k=1 ck,n = 0.
(7)

By assuming that the total system bandwidth is normalized
to unity, the achievable data rate of user k can be written as

Rk = log2

(

1 + Pk

σ 2
0 + Ik

)

. (8)

where σ 2
0 is the variance of the additive white Gaussian noise

(AWGN), and Ik is the inter-beam interference power received
at user k, which is given by

Ik =
K∑

j=1, j �=k

N∑

n=1

c j,n · pn · Dn(θk) · ρ−α
k . (9)

In this paper, we aim at developing a beam allocation
algorithm for maximizing the sum data rate of switched-beam
based massive MIMO systems, which can be formulated as

max{ck,n }∀k,∀n

K∑

k=1

Rk (10a)

s.t.
N∑

n=1

ck,n ≤ 1, ∀k ∈ {1, 2, · · · , K }, (10b)
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K∑

k=1

ck,n ≤ 1, ∀n ∈ {1, 2, · · · , N}, (10c)

ck,n ∈ {0, 1}, ∀k ∈ {1, 2, · · · , K },
∀n ∈ {1, 2, · · · , N}, (10d)

where (10b) and (10c) follow the constraints that each user
can select at most one beam to transmit, and each beam
can be used by at most one user to avoid severe intra-beam
interference, respectively.

For the combinatorial optimization problem given
by (10a)–(10d), a brute-force search among all (N + 1)K

possible beam allocations leads to unaffordably high
complexity in massive MIMO systems with a large number of
beams N . In the literature [43]–[47], a widely adopted method
for solving combinatorial optimization problems is to relax
the indicator ck,n into a continuous variable between 0 and 1,
and convert the objective function into a convex one, which
could then be efficiently solved by the convex optimization
algorithms. In our case, however, there are N ×K indicators to
be optimized, which still results in prohibitively high computa-
tional complexity for large N even with relaxation. As a result,
in this paper, we resort to submodular optimization, which has
been shown to be a powerful tool for solving combinatorial
optimization problems [37]. In the following section, the beam
allocation problem will be reformulated into a submodular
maximization problem subject to matroid constraints.

III. BEAM ALLOCATION DESIGN BASED ON

SUBMODULAR OPTIMIZATION

Before reformulating our beam allocation problem into
a submodular optimization problem, let us first present the
definitions of submodular functions and matroids given in [37]
as follows.

A. Basic Definitions

Definition 1: Let U be a finite ground set, and 2U be the
power set of U (i.e., the set of all subsets of U, including the
empty set and U itself). A set function f (S) with the input
S ⊆ U (i.e., S ∈ 2U ) and a real value output, denoted by
f : 2U → R, is said to be submodular if

f (S)+ f (T ) ≥ f (S ∩ T )+ f (S ∪ T ), (11)

for any S, T ⊆ U. An equivalent definition of a submodular
function is that

f (S ∪ {e})− f (S) ≥ f (T ∪ {e})− f (T ), (12)

for any S ⊆ T ⊆ U and e ∈ U \ T , i.e., the marginal gain of
adding an extra element in the set decreases with the size of
the set. Intuitively, if a set function is submodular, its marginal
gain is diminishing when increasing the set size by adding
more elements into it.

In particular, a set function f (S) is monotone if

f (S) ≤ f (T ), (13)

for any S ⊆ T ⊆ U.

Definition 2: A matroid M is a pair (U, I), denoted by
M = (U, I), where U is a finite ground set and I ⊆ 2U

is a collection of subsets of U with the following properties:
(1) I is nonempty, in particular, ∅ ∈ I ;
(2) I is downward closed; i.e., for each X ⊆ Y ∈ I , we

have X ∈ I ;
(3) If X,Y ∈ I and |X | > |Y |, then there exists an element

e ∈ X \ Y such that Y ∪ {e} ∈ I .
Note that I is also called independent sets. Intuitively, for

any set X ∈ I , the elements in X are independent of each
other.

Particularly, a partition matroid is a matroid where
the ground set U is partitioned into some disjoint sets,
U1,U2, · · · ,Ul, and

I = {X ⊆ U : |X ∩ Ui | ≤ wi , for all i = 1, 2, · · · , l}, (14)

for some given parameters w1, w2, · · · , wl .
Based on the above definitions, the original optimization

problems given by (10a)–(10d) will be reformulated in the
following subsection.

B. Problem Reformulation

Let us first define the ground set U as

U = {u1,1, u1,2, · · · , u1,N ; u2,1, u2,2, · · · , u2,N ; · · · ;
uK ,1, uK ,2, · · · , uK ,N }, (15)

and the beam allocation set S as a subset of U such that
uk,n ∈ S if beam n is allocated to user k, i.e., ck,n = 1,∀k, n;
otherwise, uk,n /∈ S. For any beam allocation set S ⊆ U , the
objective function of (10a) can then be written as

Rs(S) =
∑

uk,n∈S

log2

(

1 +
Pt|S| Dn(θk)ρ

−α
k

σ 2
0 +∑

u j,l∈S, j �=k
Pt|S| Dl(θk)ρ

−α
k

)

,

(16)
according to (3) and (6)–(9).

The constraints can be written as an intersection of two
partition matroids on the ground set U . Specifically, let
us partition the ground set U into K disjoint subsets,
UU

1 ,U
U
2 , · · · ,UU

K , where UU
k = {uk,1, uk,2, · · · , uk,N } is the

set containing all the possible beam allocations of user k,
and the superscript denotes that the ground set is partitioned
according to the user index. Since the beam allocation indi-
cator ck,n = 1 if uk,n belongs to the beam allocation set S,
i.e., uk,n ∈ S, the constraint given in (10b) can be written as
S ∈ IU , where

IU = {X ⊆ U : |X ∩ UU
k | ≤ 1, k = 1, 2, · · · , K }. (17)

According to the definition given by (14), it is clear from (17)
that MU = (U, IU ) is a partition matroid. Similarly, by
partitioning the ground set U into N disjoint subsets accord-
ing to the beam index, i.e., U B

n = {u1,n, u2,n, · · · , uK ,n},
n = 1, 2, · · · , N , constraint (10c) can also be written as a
partition matroid constraint, S ∈ IB , with

IB = {X ⊆ U : |X ∩ U B
n | ≤ 1, n = 1, 2, · · · , N}. (18)
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MB = (U, IB) denotes the corresponding partition matroid.
The optimization problem formulated in (10a)–(10d) can then
be rewritten as

max
S⊆U

∑

uk,n∈S

log2

(

1 +
Pt|S| Dn(θk)ρ

−α
k

σ 2
0 +∑

u j,l∈S, j �=k
Pt|S| Dl(θk)ρ

−α
k

)

(19a)

s.t. S ∈ IU , (19b)

S ∈ IB . (19c)

Appendix B shows that the objective function of (19a) is not
submodular due to the existence of the inter-beam interference.
By ignoring the inter-beam interference, it can be further
relaxed into the following form with a submodular objective
function3:

max
S⊆U

∑

uk,n∈S

log2

(
Pt

|S|σ 2
0

Dn(θk)ρ
−α
k

)

(20a)

s.t. S ∈ IU , (20b)

S ∈ IB . (20c)

The proof of the submodularity of the objective function
in (20a) can be found in Appendix B.

For maximization problems with a non-negative submodular
objective function and multiple matroid constraints, a local-
search based algorithm has been proposed in [48], which
achieves at least 1

p+2+ 1
p +ε of the optimal result, where ε > 0

is a given parameter with small value and p is the number of
matroid constraints. It is also shown in [48] that this algorithm
requires at most O

( 1
ε pq4 log q

)
local operations, where q

is the size of the ground set. In our case, with the size of
the ground set q = |U | = K N and the number of matroid
constraints p = 2, the number of required local operations is
O
( 1
ε (K N)4 log(K N)

)
, which still results in high complexity

when the number of beams N is large. In the following
subsection, the beam allocation problem given by (20a)–(20c)
will be decoupled into two sub-problems, based on which a
low-complexity beam allocation algorithm will be proposed.

C. Low-Complexity Beam Allocation (LBA)

1) Problem Decomposition: In this subsection, the beam
allocation optimization problem given by (20a)–(20c) will be
decoupled into two sub-problems: (1) beam-user association
for each user, and (2) beam allocation.

For the first sub-problem, let us define SU
k as a subset

of UU
k = {uk,1, uk,2, · · · , uk,N } of user k. For each user,

we aim at maximizing its achievable data rate by properly
choosing SU

k . The corresponding optimization problem can be
written as

max
SU

k ⊆UU
k

log2

(
Pt

|S|σ 2
0

Dn(θk)ρ
−α
k

)

(21a)

s.t. SU
k ∈ IU , (21b)

3It will be shown in Section IV-A that although the inter-beam interference
is neglected in the objective function of (20a), the algorithm developed based
on the relaxed objective function can still achieve nearly optimal sum data
rate.

where (21b) follows the constraint given in (20b), i.e., each
user can be only associated with one beam.

In the objective function of (21a), only the directiv-
ity Dn(θk) depends on SU

k . Therefore, we have

SU
k

∗ = {uk,π(k)}, (22)

where the index of user k’s associated beam, π(k), is given by

π(k) = arg max
n=1,2,··· ,N Dn(θk). (23)

That is, each user is associated with the beam with the largest
directivity.

Based on the solution of the first beam-user association
sub-problem, the ground set of possible beam allocations is
reduced to

U ′ =
⋃

k=1,2,··· ,K
SU

k
∗
. (24)

Then the second beam allocation sub-problem can be
written as

max
S⊆U ′

∑

uk,n∈S

log2

(
Pt

|S|σ 2
0

Dn(θk)ρ
−α
k

)

(25a)

s.t. S ∈ I ′, (25b)

where set I ′ of matroid M ′ = (U ′, I ′) is given by

I ′ = {X ⊆ U ′ : |X ∩ U ′
n | ≤ 1, n = 1, 2, · · · , N}, (26)

with U ′
n = U ′ ∩ U B

n .
Appendix C shows that the objective function of (25a)

is a monotone submodular function on the ground set U ′
when the transmit signal-to-noise ratio (SNR) Pt/σ

2
0 >

K N sin2 π
2N

(
K

K−1

)K−1 for largeK ,N≈ 6.707K/N , where N is the
number of beams and K is the number of users. For a massive
MIMO system with N � K , the optimization problem given
by (25a)–(25b) is a monotone submodular function maximiza-
tion problem under a single matroid constraint, which can
be effectively solved by a greedy algorithm that achieves at
least 1

2 of the optimal result [49]. Specifically, the algorithm
starts with an empty beam allocation set S, and adds one
element with the highest marginal gain at each step to set S
while the updated S is still an element of I ′. Note that to
maximize the objective function of (25a), elements in U ′
should be included in the beam allocation set S as far as
possible while S still satisfies constraint (25b), i.e., each beam
can only be used at most by one user. Therefore, we can
conclude that the greedy algorithm is equivalent to allocating
each associated beam to its best user with the largest received
signal power.

2) LBA Algorithm Design: By combining the solutions
of the above two sub-problems, a two-step beam allocation
algorithm is proposed: (1) Each user is associated with its
best beam with the largest directivity; (2) Each associated
beam is allocated to its best associated user with the largest
received signal power. The detailed description of this two-step
algorithm is presented in Algorithm 1. As Fig. 3 illustrates,
in the first step, each user is associated with the beam with
the highest directivity, which is highlighted in the same color.
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Fig. 3. Illustration of the proposed LBA algorithm. “x" represents a user. N = 16, K = 9.

Fig. 4. Achievable sum data rate Rs under 20 realizations of the users’ positions with both the optimal brute-force search and the proposed LBA algorithm.
α = 2.7, Pt/σ

2
0 = 20dB, N = 16.

Algorithm 1 Low-Complexity Beam Allocation (LBA)
1: Initialization: S∗ = ∅. a = 01×N .
2: for k = 1 to K do
3: π(k) = arg max

n=1,2,··· ,N Dn(θk);

4: end for
5: for k = 1 to K do
6: if aπ(k) = 0 then
7: S∗ = S∗ ∪ {uk,π(k)};
8: aπ(k) = k;
9: else

10: k ′ = aπ(k);
11: if Dπ(k)(θk)ρ

−α
k > Dπ(k)(θk′)ρ−α

k′ then
12: S∗ = S∗ \ {uk′,π(k)} ∪ {uk,π(k)};
13: aπ(k) = k;
14: end if
15: end if
16: end for
17: Output: S∗.

In the second step, if a beam is associated with more than one
user (such as the blue beam), then it is allocated to the user
with the highest received signal power.

It is clear from Algorithm 1 that in the first step of the
proposed LBA algorithm, there are K iterations. In each

iteration, the number of comparisons required to find the best
beam of that user is log2 N by adopting the binary search.
In the second step, as there are K users in total, at most
K −1 comparisons are needed when all the users are associated
with the same beam. Therefore, the maximum number of
comparisons required by our proposed LBA algorithm is
K log2 N + K − 1. Compared with the optimal brute-force
search, it can be clearly seen that by relaxing the objective
function and decoupling the problem into two sub-problems,
the computational complexity is significantly reduced from
O(N K ) to O(K log N).

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, simulation results will be presented to
demonstrate the performance of the proposed LBA algorithm.
As described in Section II, we assume that K users are
uniformly distributed in a circular cell with unit radius, and
a linear antenna array with N identical isotropic antenna
elements is placed at the center of the cell.

A. Sum Data Rate

Fig. 4 presents the simulation results of the achievable sum
data rate, Rs �

∑K
k=1 Rk , under 20 random realizations of the

users’ positions with the number of beams N = 16, and the
number of users K = 6 and 10, respectively. It can be seen
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Fig. 5. Average sum data rate R̄s with both the optimal brute-force search
and the proposed LBA algorithm. α = 2.7, K = 8, N = 16.

from Fig. 4 that our proposed LBA algorithm can achieve
very close sum data rate to that of the optimal brute-force
search under most realizations. Since the sum data rate closely
depends on the locations of users {rk : k = 1, 2, · · · , K } as
shown in Fig. 4, we further focus on the average sum data rate
R̄s � E{rk :k=1,2,··· ,K }

[∑K
k=1 Rk

]
, in the following discussion.

Specifically, Fig. 5 presents the simulation results of the
average sum data rate R̄s over 1000 realizations of users’
positions for both the proposed LBA algorithm and the opti-
mal brute-force search under varying values of the transmit
SNR Pt/σ

2
0 . It can be clearly seen from this figure that the

average sum data rate R̄s first increases with Pt/σ
2
0 , and then

becomes saturated for large Pt/σ
2
0 as the system becomes

interference-limited. A small gap of the average sum data rate
between the optimal brute-force search and the proposed LBA
algorithm can be observed for smaller values of Pt/σ

2
0 , while

the gap becomes noticeable when the transmit SNR Pt/σ
2
0 is

higher than 20dB. In this case, as the system operates at the
interference-limited region, the rate gap becomes significant
due to ignoring the effect of inter-beam interference in our
proposed LBA algorithm.

Fig. 6 further presents the simulation results of the average
sum data rate R̄s with both the optimal brute-force search
and our proposed LBA algorithm under varying values of
the number of users K and the number of beams N when
the transmit SNR Pt/σ

2
0 is fixed at 20dB. Note that as the

complexity of the brute-force search algorithm O(N K ) sharply
increases with K and N , we only present the optimal average
sum data rate for K ≤ 6 in Fig. 6(a), and for N ≤ 128
in Fig. 6(b). It can be seen from Fig. 6(a) that with the number
of beams N fixed at 64, the average sum data rate R̄s increases
with the number of users K as more users can be served for a
larger K . With the number of users K fixed at 4 in Fig. 6(b),
the average sum data rate R̄s logarithmically increases with
the number of beams N thanks to the enhanced beam gain.
It can be also clearly observed in both Fig. 6(a) and Fig. 6(b)
that our proposed LBA algorithm achieves nearly the same
average sum data rate as the optimal brute-force search.
The gap is slightly enlarged when the number of beams N is

small in Fig. 6(b) because with a small N , the beams are very
wide and the overlap of two adjacent beams is large, which
results in high inter-beam interference for each user.

B. Service Ratio

It should be noted that with the proposed LBA algorithm, as
shown in Fig. 3, some users might not be served, since multiple
users might be associated with the same beam, and only one
of them can be served. In this section, how many users can
be served simultaneously by using our LBA algorithm will be
evaluated.

Specifically, let us first define the service ratio, Ps , as the
ratio of the number of served users to the total number of
users K , which is given by

Ps � Ns

K
. (27)

Here Ns is also the number of beams allocated for data
transmission, which is given in (6). As the beam allocation
result closely depends on the positions of users, similar to the
average sum data rate, we further define the average service
ratio as

P̄s � E{rk |k=1,2,··· ,K } [Ps] . (28)

Note that P̄s sheds important light on the service delay
performance as well. A larger P̄s indicates that more users
can be simultaneously served by the system, and thus shorter
average service delay can be expected for each user.

Appendix D shows that by approximating the beam alloca-
tion problem as a ball-dropping problem, the average service
ratio P̄s can be obtained as

P̄s =
K∑

m=1

m

K
·
(N

m

)

N K

m∑

j=1

(−1)m− j
(

m

j

)
mK , (29)

and for a large number of beams N , we have

P̄s
for large N≈ N

K

(
1 − e− K

N

)
. (30)

(30) indicates that the average service ratio P̄s is solely
determined by the ratio of the number of beams N to the
number of users K . As Fig. 7 illustrates, the average service
ratio P̄s increases as the ratio N/K increases. Intuitively, with
a larger N/K , the average number of beams that could be used
by each user increases, leading to a higher P̄s . Specifically,
for a small N/K � 1, it can be easily obtained from (30)
that P̄s ≈ N/K . As N/K → ∞, the average service ratio
P̄s → 1. We can clearly see from Fig. 7 that the average service
ratio is above 0.9 when N/K is larger than 5, which indicates
that over 90% of the users can be simultaneously served. The
analysis is verified by the simulation results in Fig. 7.

Recall that it is shown in Fig. 6(b) that the average sum
data rate R̄s increases as the number of beams N increases.
Therefore, with the number of users K fixed, both the sum
data rate and the service ratio can be improved by increasing
the number of beams N . By contrast, for a given number of
beams N , although the average sum data rate R̄s increases with
the number of users K as shown in Fig. 6(a), the average
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Fig. 6. Average sum data rate R̄s with both the optimal brute-force search and the proposed LBA algorithm. α = 2.7, Pt/σ
2
0 = 20dB.

Fig. 7. Average service ratio P̄s with the proposed LBA algorithm. α = 2.7.

Fig. 8. Average sum data rate R̄s and average service ratio P̄s with the
proposed LBA algorithm. α = 2.7, Pt/σ

2
0 = 20dB, N = 64.

service ratio P̄s decreases as K increases. In this case, the
number of users K determines a trade-off between the sum
data rate and the service ratio, which can be clearly observed
from Fig. 8.

V. CONCLUSION

In this paper, the beam allocation problem in switched-beam
based massive MIMO systems has been studied to maximize
the sum data rate. Based on submodular optimization theory,
a low-complexity suboptimal beam allocation algorithm has
been proposed, which achieves nearly optimal sum data rate
with complexity O(K log N) with respect to the number
of users K and the number of beams N . As some users
might not be served for the sake of maximizing the sum
data rate, the average service ratio, i.e., the average percent-
age of users that can be served simultaneously, is further
evaluated. The analysis shows that the average service ratio
is solely determined by the ratio of the number of beams
N to the number of users K . Simulation results corrobo-
rate that the average service ratio can be greatly improved
by increasing the ratio N/K , which is above 90% when
N/K exceeds 5.

Note that in this paper, as we aim at maximizing the sum
data rate from the system’s perspective, not all the users
can be simultaneously served. For practical systems, however,
it is equally important to serve as many users as possible
and consider the fairness issue among users. To balance the
sum data rate and service ratio, and ensure fairness among
users with varying locations, some service ratio constraint
and individual data rate requirements for the users can be
added into the beam allocation problem, which deserves much
attention and should be carefully investigated in the future
work.

APPENDIX A
DERIVATION OF (5)

From (1), the denominator of (4) can be written as
∫ π

0

sin2(0.5Nπ cosψ − βn)

N2 sin2
(

0.5π cosψ − βn
N

) sinψdψ

φ=0.5π cosψ− βn
N= 2

π

∫ π
2 − βn

N

− π
2 − βn

N

sin2(Nφ)

N2 sin2 φ
dφ. (A.1)
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∫ π
2 − βn

N

− π
2 − βn

N

sin2(Nφ)

N2 sin2 φ
dφ =

∫ π
2 − βn

N

− π
2 − βn

N

1

N

log2 N∏

k=1

[
cos(2kφ)+ 1

]
dφ

= 1

N

∫ π
2 − βn

N

− π
2 − βn

N

⎛

⎝1 +
log2 N−1∑

k=1

cos
(

2kφ
) log2 N∏

i=k+1

[
1 + cos

(
2iφ

)]
⎞

⎠ dφ

= 1

N

⎛

⎝π +
log2 N−1∑

k=1

∫ π
2 − βn

N

− π
2 − βn

N

cos
(

2kφ
) log2 N∏

i=k+1

[
1 + cos

(
2iφ

)]
dφ

⎞

⎠ . (A.3)

As N is a power of 2 and sin(2x) = 2 sin x cos x , we have

∫ π
2 − βn

N

− π
2 − βn

N

sin2(Nφ)

N2 sin2 φ
dφ =

∫ π
2 − βn

N

− π
2 − βn

N

log2 N−1∏

k=0

cos2(2kφ)dφ,

(A.2)

which can be further expanded by substituting cos2
(
2kφ

) =
cos

(
2k+1φ

)+1
2 into it as (A.3) shown at the top of this page.

As
∫ π

2 − βn
N

− π
2 − βn

N

cos
(
2kφ

) · ∏log2 N
i=k+1

[
1 + cos

(
2iφ

)]
dφ = 0 for

any k ≥ 1, it is easily obtained from (A.3) that

∫ π
2 − βn

N

− π
2 − βn

N

sin2(Nφ)

N2 sin2 φ
dφ = π

N
. (A.4)

By combining (4), (A.1) and (A.4), we have

Dn(θ) = N [An(θ)]2 . (A.5)

APPENDIX B
PROOF OF NON-SUBMODULARITY OF OBJECTIVE

FUNCTION IN (19A) AND SUBMODULARITY OF

OBJECTIVE FUNCTION IN (20A) ON

GROUND SET U

A. Proof of Non-Submodularity of Objective
Function in (19a) on Ground Set U

Proof: Recall that the objective function of (19a) is given
by

Rs(S) =
∑

uk,n∈S

log2

(

1 +
Pt|S| Dn(θk)ρ

−α
k

σ 2
0 +∑

u j,l∈S, j �=k
Pt|S| Dl(θk)ρ

−α
k

)

.

(B.1)
To prove that Rs(S) is not submodular, we only need to find
a counter example where (11) does not hold.

Let us consider a special case: for any two sets S, T ⊂ U
with |S| ≥ 2 and |T | ≥ 2, their intersection S ∩ T = {uk∗,n∗ },
and the transmit SNR Pt/σ

2
0 → ∞. In this case, the inter-beam

interference suffered by each user would be much larger than
the noise for both set S and set T . Then the achievable sum
data rate with respect to S and T can be obtained as

Rs(S)
Pt /σ

2
0 →∞→

∑

uk,n∈S

log2

(

1 + Dn(θk)∑
u j,l∈S, j �=k Dl(θk)

)

,

(B.2)

and

Rs(T )
Pt/σ

2
0 →∞→

∑

uk,n∈T

log2

(

1 + Dn(θk)∑
u j,l∈T , j �=k Dl(θk)

)

,

(B.3)

respectively, both of which have finite values. In contrast,
for the intersection S ∩ T = {uk∗,n∗}, as only beam n∗ is
used by user k∗ in the whole system, there is no inter-beam
interference. Therefore, we have

Rs(S ∩ T ) = log2

(

1 + Pt

σ 2
0

Dn∗(θk∗)ρ−α
k∗

)
Pt/σ

2
0 →∞→ ∞.

(B.4)

Since the sum of Rs(S) and Rs(T ) is finite, it is obvious that

Rs(S)+ Rs(T ) < Rs(S ∩ T ) ≤ Rs(S ∩ T )+ Rs(S ∪ T ).

(B.5)

According to (11), we can conclude that the objective func-
tion of (19a) is not a submodular function on the ground
set U .

B. Proof of Submodularity of Objective
Function in (20a) on Ground Set U

Proof: Let Rap
s (S) denote the objective function

of (20a) as

Rap
s (S) =

∑

uk,n∈S

log2

(
Pt

|S|σ 2
0

Dn(θk)ρ
−α
k

)

. (B.6)

Then for any S ⊆ T ⊆ U , and u j,l ∈ U \ T , we have

Rap
s (S ∪ {u j,l})− Rap

s (S)

=
∑

uk,n∈S

log2

(
Pt

(|S| + 1)σ 2
0

Dn(θk)ρ
−α
k

)

+ log2

(
Pt

(|S| + 1)σ 2
0

Dl (θ j )ρ
−α
j

)

−
∑

uk,n∈S

log2

(
Pt

|S|σ 2
0

Dn(θk)ρ
−α
k

)

= log2

(( |S|
|S| + 1

)|S|
· Pt

(|S| + 1)σ 2
0

Dl(θ j )ρ
−α
j

)

. (B.7)
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Similarly,

Rap
s (T ∪ {u j,l})− Rap

s (T )

= log2

(( |T |
|T | + 1

)|T |
· Pt

(|T | + 1)σ 2
0

Dl (θ j )ρ
−α
j

)

. (B.8)

To show that the objective function of (20a), i.e., Rap
s (S),

is submodular, according to (12), we only need to show
that (B.7) is larger than (B.8), i.e,

|S||S|

(|S| + 1)|S|+1 ≥ |T ||T |

(|T | + 1)|T |+1 , (B.9)

which holds as |S| ≤ |T |.

APPENDIX C
PROOF OF MONOTONE SUBMODULARITY OF OBJECTIVE

FUNCTION IN (25A) ON GROUND SET U ′

Proposition 1: The objective function of (25a) is a
monotone submodular function on Ground Set U ′ if

Pt

σ 2
0

> K N sin2 π

2N

(
K

K − 1

)K−1

. (C.1)

Proof: Denote the objective function of (25a) as Rap
s (S).

Since Rap
s (S) is shown to be a submodular function on the

ground set U in Appendix B and U ′ is a subset of U , Rap
s (S)

is also submodular on the ground set U ′.
Moreover, for any S ⊂ T ⊆ U ′, we have

Rap
s (S)− Rap

s (T )

=
∑

uk,n∈S

log2

(
P

|S|σ 2
0

Dn(θk)ρ
−α
k

)

−
∑

uk,n∈T

log2

(
P

|T |σ 2
0

Dn(θk)ρ
−α
k

)

= |S| log2

( |T |
|S|

)
−

∑

uk,n∈T \S

log2

(
P

|T |σ 2
0

Dn(θk)ρ
−α
k

)

.

(C.2)

Let uk′,n′ = arg minuk,n∈T \S log2

(
P

|T |σ 2
0

Dn(θk)ρ
−α
k

)
, we can

obtain that

∑

uk,n∈T \S

log2

(
P

|T |σ 2
0

Dn(θk)ρ
−α
k

)

≥ (|T | − |S|) log2

(
P

|T |σ 2
0

Dn′(θk′)ρ−α
k′

)

. (C.3)

By substituting (C.3) to (C.2), we have

Rap
s (S)− Rap

s (T )

≤ |S| log2

( |T |
|S|

)
− (|T | − |S|) log2

(
P

|T |σ 2
0

Dn′ (θk′)ρ−α
k′

)

.

(C.4)

For uk′,n′ ∈ U ′, beam n′ is the best beam with the largest
directivity of user k ′, i.e., Dn′ (θk′) ≥ Dn(θk′),∀n �= n′,
n = 1, 2, · · · , N . It is clear from Fig. 1(b) that the minimum

value of Dn′ (θk′) is achieved at the crosspoint of two adjacent
beams. Let l and l + 1 denote the indices of any two adjacent
beams, and φ denote the AoD measured at the crosspoint.
Then we have

Dn′ (θk′) ≥ Dl(φ), (C.5)

and

Dl(φ) = Dl+1(φ). (C.6)

According to (1), (2), and (5), Dl(φ) can be obtained as

Dl (φ) = sin2
(
0.5Nπ cosφ − (− N+1

2 + l
)
π
)

N sin2
(
0.5π cosφ − 1

N

(− N+1
2 + l

)
π
) . (C.7)

It can be then obtained from (C.6) and (C.7) that

0.5π cosφ − 1

N

(
− N + 1

2
+ l

)
π + 0.5π cosφ

− 1

N

(
− N + 1

2
+ l + 1

)
π = 0, (C.8)

i.e.,

cosφ = 2l − N

N
. (C.9)

By substituting (C.9) into (C.7), Dl (φ) is obtained as

Dl(φ) = 1

N sin2 π
2N

. (C.10)

By combining (C.5) and (C.10), we further have

Dn′(θk′) ≥ 1

N sin2 π
2N

. (C.11)

With the distance from user k ′ to the cell center ρk′ ≤ 1,
by combining (C.1), (C.4) and (C.11), we have

Rap
s (S)− Rap

s (T )

< |S| log2

( |T |
|S|

)
− (|T | − |S|) log2

(
K

|T |
(

K

K − 1

)K−1
)

= (|T | − |S|) log2

(( |T |
|S|

) |S|
|T |−|S| · |T | · 1

K

(
K − 1

K

)K−1
)

.

(C.12)

As 1 ≤ |S| < |T | ≤ K , we can easily obtain that

( |T |
|S|

) |S|
|T |−|S| · |T | ≤ K

(
K

K − 1

)K−1

, (C.13)

where “=” holds when |S| = K − 1 and |T | = K .
By substituting (C.13) into (C.12), it is clear that

Rap
s (S)− Rap

s (T ) < 0. (C.14)

According to the definition of a monotone set function pre-
sented in Section III-A, we can conclude that Rap

s (S), i.e., the
objective function of (25a), is a monotone submodular function
on the ground set U ′.
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P̄s = 1

K N K

(
K∑

m=1

(
N

m

)
m!
{

K + 1

m

}
−

K∑

m=1

(
N

m

)
m!
{

K

m − 1

})

= 1

K N K

(
K+1∑

m=1

(
N

m

)
m!
{

K + 1

m

}
−
(

N

K + 1

)
(K + 1)! − N

K∑

m=1

(
N − 1

m − 1

)
(m − 1)!

{
K

m − 1

})

= 1

K N K

[
K+1∑

m=1

(
N

m

)
m!
{

K + 1

m

}
−
(

N

K + 1

)
(K + 1)! − N

(
K∑

i=1

(
N − 1

i

)
i !
{

K

i

}
−
(

N − 1

K

)
K !
)]

= 1

K N K

[
K+1∑

m=1

(
N

m

)
m!
{

K + 1

m

}
− N

K∑

i=1

(
N − 1

i

)
i !
{

K

i

}]

. (D.6)

APPENDIX D
DERIVATION OF (29) AND (30)

A. Derivation of (29)

For given total number of users K , the average service
ratio P̄s can be written as

P̄s =
K∑

m=1

m

K
Pr{Ns = m}. (D.1)

To find the probability mass function of the number of
allocated beams Ns , let us first consider the following ball-
dropping problem: Assume that each ball is dropped into
N distinct boxes with equal probability 1/N . What is the
probability that there are Ns non-empty boxes after drop-
ping K balls? The ball-dropping problem shares similarities
to our beam allocation problem because by regarding beams
as boxes and users as balls, associating each user with a beam
is equivalent to dropping each ball into a box. The probability
that Ns beams are used is then the probability that Ns boxes
are non-empty. Note that here an implicit assumption is that
each user has equal probability 1/N to be associated with any
beam, which is a good approximation only when the number of
beams is large, i.e., each beam approximately has equal width.

For the ball-dropping problem, the total number of possible
combinations by dropping K distinct balls into N distinct
boxes is N K . Note that a Stirling number of the second
kind

{ K
Ns

}
denotes the number of ways to partition a set

of K distinct objects into Ns non-empty subsets [50]. Then the
number of combinations that Ns boxes are non-empty is given
by

( N
Ns

)
Ns !

{ K
Ns

}
. Therefore, the corresponding probability that

there are Ns non-empty boxes after dropping K balls can be
obtained as

Pr{Ns = m} =
(N

m

)
m!{K

m

}

N K
, (D.2)

where the Stirling number of the second kind,
{K

m

}
, is given

by [50]

{
K

m

}
= 1

m!
m∑

j=1

(−1)m− j
(

m

j

)
mK . (D.3)

(29) can be then obtained by combining (D.1)–(D.3).

B. Derivation of (30)

Note that a Stirling number of the second kind
{K

m

}
obeys

the recurrence relation [50]
{

K + 1

m

}
= m

{
K

m

}
+
{

K

m − 1

}
. (D.4)

Then we have
{

K

m

}
= 1

m

({
K + 1

m

}
−
{

K

m − 1

})
. (D.5)

By combining (D.1), (D.2) and (D.5), the average service
ratio P̄s can be obtained as (D.6), which is shown at the top
of this page.

Note that for the probability mass function Pr{Ns = m},
we have

K∑

m=1

Pr{Ns = m} = 1. (D.7)

By substituting (D.2) into (D.7), it is clear that

K∑

m=1

(
N

m

)
m!
{

K

m

}
= N K . (D.8)

The average service ratio P̄s can be then obtained by combin-
ing (D.6) and (D.8) as

P̄s = 1

K N K

(
N K+1 − N(N − 1)K

)

= N

K
− N

K

(
1 − 1

N

)K

for large N≈ N

K
− N

K
e− K

N . (D.9)
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