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Many microbes when grown on a mixture of two carbon sources utilise first and exclusively the preferred sugar,
before switching to the less preferred carbon source. This results in two distinct exponential growth phases,
often interrupted by a lag-phase of reduced growth termed the lag-phase. While the lag-phase appears to be an
evolved feature, it is not clear what drives its evolution, as it comes with a substantial up-front fitness penalty
due to lost growth. In this article a minimal mathematical model based on a master-equation approach is

proposed. This model can explain many empirically observed phenomena. It suggests that the lag-phase can be
understood as a manifestation of the trade-off between switching speed and switching efficiency. Moreover, the
model predicts heterogeneity of the population during the lag-phase. Finally, it is shown that the switch from
one carbon source to another one is a sensing problem and the lag-phase is a manifestation of known
fundamental limitations of biological sensors.

1. Introduction

Diauxic growth is the phenomenon whereby a population of
microbes, when presented with two carbon sources, exhibits bi-phasic
exponential growth intermitted by a lag phase of minimal growth.
Originally, the phenomenon was described by Monod (1949) demon-
strating diauxie with glucose and lactose in E.coli. In his experiments
Monod showed that the population first grows exponentially on glucose
until all glucose is exhausted, then enters the lag-phase of no growth
before resuming exponential growth on lactose. The duration of the
lag-phase can be substantial (order of magnitude of a generation time).

Diauxic growth and the network that controls it has since been
subject to intense experimental (Stiilke and Hillen, 1999; Briickner and
Titgemeyer, 2002; Boulineau et al., 2013; Boianelli et al., 2012; Inada
et al.,, 1996; Kompala et al., 1986; New et al., 2014) and theoretical
(Boianelli et al., 2012; Narang, 2006; Narang and Pilyugin, 2007;
Kremling et al., 2009) investigation. There are two main mechanisms
responsible for two phase growth in bacteria, both of which depend on
the phosphotransferase (PTS) system (Deutscher, 2008): (i Regulation
of metabolic genes via global transcription regulators, especially cAMP.
(i) Direct uptake mediated inducer exclusion. In E.coli the levels of
dephospho EIIAZC increase during glucose uptake. EIIA#¢ inactivates
the uptake of the secondary sugars (i.e. lactose) and in this way
prevents the induction of the relevant uptake system.

Diauxic growth is generally believed to be an adaptation to optimise
growth in multi-nutrient environments. Indeed, there is a clear
argument that sequential uptake is beneficial in that it maximises the
share of the higher quality nutrient for the lineage. Yet, by the same
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token one would have to conclude that a lag-phase is detrimental in
that it is not at all conducive to the overall goal of maximising growth.
Instead, it entails a substantial episodic fitness penalty as it allows
hypothetical competitors that continue growth to monopolise carbon
sources, at least temporarily.

Experimental evolution experiments (New et al., 2014) demon-
strate that there is an optimal duration. The optimum depends on the
environmental conditions, in particular the frequency with which
carbon sources change. This shows that the duration of the lag-phase
is under evolutionary control and not just an unavoidable design
feature of cells. An implication of this is that the episodic fitness cost
of the lag-phase is balanced by some long-term benefit. The experi-
ments described in (New et al., 2014) suggest that the evolution of the
lag-phase is driven by a general trade-off between the ability of the cell
to switch rapidly between metabolic states and maximum steady-state
growth rates on a particular nutrient. Such a trade-off between the
ability to grow fast and adapt well is known empirically (Kotte et al.,
2014), but its ultimate mechanistic origin remains unclear.

In this contribution we will propose that this trade-off can be due to
fundamental physical limitations of biological sensors. Diauxic growth
is not normally thought of as a problem of sensing. Yet, clearly the
accurate detection of the external conditions is a sine qua non for the
diauxic shift. The decision of an individual cell to activate the
secondary pathway depends on it having detected (i that the secondary
nutrient is present and (i7) that the primary nutrient has depleted
sufficiently. Any delay in the sensing of external conditions necessarily
puts a lower bound on the lag-phase.

It is now well established that the ability of biological cells to sense
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is fundamentally limited by the stochastic nature of the biochemical
detectors (Berg and Purcell, 1977; Bialek and Setayeshgar, 2005;
Barato and Seifert, 2015). Reducing the sensing error is only possible
at the expense of higher resource usage, either through an increase of
the number of sensing particles or the maintenance of a free energy
gradient (Govern and ten Wolde, 2014, 2014). This leads to the trade-
off between fast adaptation and fast growth which fundamentally is a
trade-off between the long-term costs of maintaining better sensors
(necessary for fast switching) and the episodic fitness penalty during
the diauxic shift.

This explanatory ansatz is also suggested by some recent empirical
studies of diauxie. Single-cell observations of E.coli diauxie reveal
significant intra-population heterogeneity (Boulineau et al., 2013)
and phenotypic variability of metabolic states during the diauxic shift
(Kotte et al., 2014). These studies indicate that during the lag-phase a
small proportion of cells continue to grow, and many cells never switch
to the secondary carbon source, but instead enter a dormant state
(Solopova et al., 2014).

For Saccharomyces cerevisiae (Wang et al., 2015) and (Venturelli
et al., 2015) report detailed measurements of diauxie. Importantly,
they found that universally the population begins to switch to the
secondary nutrient before the primary carbon source is exhausted
(Wang et al., 2015). The timing of this switch to the secondary nutrient
determines the length of the lag phase. Cell lines that switch later tend
to have longer lag-phases (Wang et al., 2015). Finally, at low
concentrations of the secondary nutrient the system is able to display
“bistability” (Venturelli et al., 2015), i.e. co-existence of two sub-
populations characterised by an activated and suppressed secondary
metabolism respectively. A priori, it is not clear whether or not these
observations are fundamentally connected to diauxic growth, or
whether they are incidental, due to some other species specific features
of the regulatory networks. We will argue here, that they can be
understood as necessary consequences of the limitations of biological
sensors. The same limitations can be understood as giving rise to the
lag-phase itself.

Here we describe a minimal model of inducer exclusion based on
the bacterial PTS system. We show that this model is consistent with
the experimentally observed properties of diauxic growth, i.e. it
predicts bistability, pre-mature switching to the secondary nutrient
and population heterogeneity. More significantly, this minimal model
traces the origin of the lag-phase and the growth/switching trade-off to
the limitations of biological sensors. It predicts that the stochastic
limitation of the sensor manifests itself as an area of uncertainty where
the cell is unable to determine whether or not the primary nutrient has
fallen below a certain threshold concentration; this makes switching
inaccurate. This inaccuracy is a source of phenotypic variation and may
explain the observed population heterogeneity. We also show analyti-
cally (for a simplified model) and numerically (for a more complicated
version) that fast switching (from the primary to the secondary
nutrient), and hence a short lag-phase, is only possible if the threshold
number of permeases is high, i.e. there is a trade-off between the speed
of switching and the efficiency of switching. This recapitulates the
relationship found empirically by Wang et al. (2015). It really means
that cells that for a cell to be able to switch fast, it needs to start to
switch well before glucose is depleted from the environment. Finally,
the model also predicts that fast switching, and hence a short lag-phase
depends on a high leak-expression rate and thus a high permanent cost
for the cell, limiting its growth prospect under all conditions.

1.1. Summary of the inducer exclusion mechanism

Both in Saccharomyces cerevisiae and in E.coli diauxie is the
result of an inhibition of the secondary metabolism when the primary
nutrient is taken up. The basic mechanism is that uptake of the primary
nutrient coincides with the production of repressors that prevent
directly or indirectly that the genes necessary to import other sugars
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are expressed. Formally, the mechanisms for Saccharomyces cerevi-
siae and E.coli are very similar. In yeast the repressor acts directly on
the secondary metabolic genes (Venturelli et al., 2015). In E.coli, which
is the focus of this contribution, uptake of glucose coincides with the
de-phosphorylation of the enzyme EIIA#*. Since dephosphorylation is
directly coupled to glucose uptake, the concentration of dephospho-
EIIAZC is a proxy for the uptake rate of glucose. Within the cell
dephospho-EIIAZ¢ is thought to repress uptake of the secondary
nutrient in two principal ways: (I It mediates the repression of
secondary carbon sources via (i direct interaction with permeases for
secondary sugars (inducer exclusion); (i) it represses the metabolic
genes of the secondary metabolism (carbon catabolite repression). In
order to maintain the ability of the cell to take up glucose, dephospho-
EIIAZ® is continuously re-phsophorylated via the PTS phospho-relay.
Therefore, the repression of the secondary metabolisms is quickly
eased when the rate of glucose uptake is reduced.

In bacteria, metabolic genes are often regulated via a de-repression
motif, as in the case of the lac operon: the expression of lac is repressed
by the lac repressor that binds upstream of the lac operon and thus
prevents its expression. This lac repressor is displaced by allolactose
which therefore effectively acts as an activator for the synthesis of the
genes necessary for lactose utilisation. This de-repression would lead to
a “deadlock” state where the cell cannot react to, i.e. “sense”, external
lactose if it does not have lactose permease already. That these de-
repression motifs can work anyway is because lac is expressed at a
constitutive, low, leak rate. Low level leak import of lactose can then
induce the lactose metabolism.

If glucose and lactose is in the system, then EIIA#* prevents this
positive feedback loop of lac activation via inducer exclusion and
carbon catabolite repression. As levels of EIIA#" decline, the repression
mechanism becomes less efficient and the secondary permease can be
induced.

The induction of such systems can be shown to be bistable (Chu,
2015) switching rapidly from fully on to fully off, in the sense that there
is a threshold number of permeases above which lactose is taken up.
Below this threshold value the metabolic system will not be induced. In
the case of E.coli lac this threshold number is about 300 permeases
(Choi et al., 2008).

2. Results
2.1. Mathematical model

To model the switch we start with a master-equation approach. We
view the number of permeases of the secondary nutrient as a read-out
for a sensor detecting the concentration of the primary nutrient by
“measuring” the abundance of EIIA#* in the cell. If there are more than
a certain threshold number of permeases, then we consider the
secondary metabolism to be switched on, otherwise it is off.

Momentarily ignoring switching between the activated and de-
activated state, we denote the number of permeases of the secondary
metabolism by n, the number of secondary nutrient molecules by [, and
the number of EIl#* by R; see Table 1 for a summary of all symbols
used. Secondary nutrient is taken up by individual permeases; the
uptake of primary nutrient is not explicitly represented in the model.
However, in the PTS system uptake of the primary nutrient coincides
with the de-phosphorylation of EIIA#. In the model this is represented
by the production (de-phosphorylation) of R at a rate a. R is also
removed (by phosphorylation) with a rate 6. Additionally, R binds with
n (rate constant k;°), which de-activates the permease. We assume here
that the R-n compound is very stable and does not decay within
relevant time-scales. Fig. 1 represents the model graphically.

If we denote by Pk, (¢) the probability to observe the system with R
molecules of EII ¢, n permeases, and [ molecules of imported lactose
at time t then these interaction can be formalised by the following
master equation:
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Table 1
Explanation of the symbols used.

Symbol Biological meaning

R Dephospho-EIIAg!

n Number of permeases of secondary nutrient (e.g. LacY)

l Number of secondary nutrient molecules in cytoplasm

€ Fold-change of expression rate when secondary metabolism is
activated.

N Threshold number of permeases needed to switch on secondary
metabolism

ko Expression rate of secondary permeases

ky° Rate of R binding with n and thus de-activating n

ky Shorthand for R-k

5 Rate of re-phosphorylation of dephospho-EI/A¢¢ to EIIAg
a Rate of de-phosphorylation of EIIAg

4 Rate of secondary nutrient in cell

y Uptake rate of secondary nutrient into in cell

Poni =k R+ 1)(n + DPeys + koPen11 = ('Rn + k) Pen.
+ & (Pr—1n1 — Prn) + 6 (R + 1) Pry1.ng — RPRn.0)YMPR n1-1
+ U+ DPrpigr — (n + D Prny

Here, we have suppressed the time dependence of the probability to
simplify notation. The first line of the above equation models the
removal of a permease by binding with the repressor R; this happens
with a rate constant of k;°. We assume here that R binds to the
permeases permanently. The two terms containing the expression rate
ko represent the production of the permease in the cell. The terms in
the second line represent production of R with a rate of a and removal
with a rate of 8. The repressor R represents EIIA# and its production is
the rate of de-phosphorylation due to glucose uptake. The rate a is
therefore strictly a function of the external glucose concentration. The
parameter § is then the spontaneous re-phosphorylation rate. Finally,
the terms in the third line represent uptake and removal of lactose with
rates y and ¢ respectively.

A notable omission from the model is the direct genetic regulation
of secondary metabolism via cAMP. This control mechanism is
redundant and does not seem to add any significant effect with regards
to the question asked here (Chu and Barnes, 2016). Moreover, there is
experimental evidence (Inada et al., 1996; Bettenbrock et al., 2006;
Gorke and Stiilke, 2008) suggesting that the repression of the meta-
bolic genes in E.coli is of secondary importance for diauxic growth.
Therefore and for reasons of model parsimony we will concentrate
exclusively on direct inducer exclusion here.

In order to be able to obtain analytical results from the model, we
will now simplify the master-equation. By applying two key simplifica-
tion steps we will obtain a standard birth-death process. Step 1: The
dynamics of [ does not feed back on either the number of permeases n
or the number of EIIAZ. Hence, we can remove the relevant terms from

glc import
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the equation by summing over all L

Step 2: The de-phosphorylation of EIIAZF, i.e. production of
repressor R is tied to the uptake of glucose which is fast compared to
gene expression. Re-phosphorylation rates must be of the same order
as the de-phosphorylation rates in order to guarantee sufficient
concentrations of phospho-EIIA&® in the cell. This adds high frequency
noise to R. The abundance of R also co-varies with fluctuations in the
number of glucose specific permeases in a cell. In cells growing
exponentially on glucose these fluctuations will be related to the
growth rate and the peak expression rate of the glucose permease.
While slow compared to the high frequency component, this second
source of noise is fast compared to the time between typical leak-
expression events of the repressed metabolic genes of the secondary
metabolism.

We therefore assume that EIIAZ® is in a quasi steady state (QSS) and
we replace the number of R by their mean R in the master equation. As
a further simplification, we note that the mean abundance of R is high
with R>1, hence R + 1 ~ R. Finally, we assume that re-phosphoryla-
tion of the repressor EIIAZ* is high compared to the leak expression of
permease, i.e. 6>k’n. This latter assumption means that binding to
permeases is a negligible sink for EIIA#, It is justified by the high
turnover rate of metabolites compared to gene products.

For simplicity we will henceforth omit the over-bar in R when
denoting the average number of EIIA#. The above approximations
then lead to a birth-death process for our system:

P, 1) =k’R(n + DP(n + 1, 1) + P (n — 1, 1) — (Rnk® + ko) P (n, 1)
(€8]

This master equation can be solved leading to a Poisson distribution for
n.

A@)"exp(=A(®))

PG, 1) = v

where () = —2-(1 — exp(=Rk'1))
Rk]

This solution is of limited use for the present purpose. We are
interested in the amount of time the system spends being activated
or not, i.e. above or below the threshold concentration of permeases.

The activation/deactivation time is formally a mean first passage
time (MFPT). For the birth-death process in Eq. (1) this time can be
calculated exactly and provides formulas for the expected time for the
system to be switched on and off. Specifically, we will consider the
secondary metabolism to be activated if there are more than N
permeases; otherwise if n < N it is deactivated or “off” (see Fig. 3 for
a schematic explanation). Whenever the system crosses this threshold,
we assume that the expression rate for the secondary permeases
switches abruptly from low to high (or vice versa). This means that
there are two parameters for the expression rate corresponding to the
leak rate and the expression rate of the induced gene.

For convenience, but in slight abuse of notation, we will denote the
expression rate of the gene coding for permeases by k». In those cases

lactose

[ (] L

[
[
lac import
Y
%a
%
¢ % o

Fig. 1. Schematic drawing of the model. The grey elements are implicit to the model only. The black elements are in the full model only and the coloured elements are contained in the
reduced model in Eq. (1). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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below, where the induced rate and the leak expression rate appear in
the same formula, we will denote the activated value by ko. In many
cases below, we will write kg as an e-fold multiple of the leak expression
rate. We will then write ko = ek,. The parameter e specifies the factor by
which the leak expression rate is increased when the gene is fully
induced.

2.2. Mean time to switch

In this section we will calculate the MFPT. This will then provide us
with the rates of switching between the activated and the de-activated
state and will allow us to calculate the long-term probability of finding
the secondary metabolism switched on or off depending on R.

We first compute the MFPT to reach the threshold number of N
permeases when starting from a state n=x. To do this we use an
approach described by Bressloff, sec. 6.6 and start from the backwards
version of the master Eq. (1). The general form of this backward
equation for a birth death process is (Bressloff):

P (n, tlng, 0) = w,(no)[P(m, thng + 1, 0) — P(n, ting, 0)]

+ w_(ng)[P(n, tiIng — 1, 0) — P(n, ting, 0)] 2

The backward equation is equivalent to the standard master equation,
but is formulated with respect to the position at time t=0. In our
particular problem, the generalised rates w, are o=k and
w_(n) = nky = an]O.

The basic idea of calculating the MFPT is to erect an absorbing
boundary condition at the point b=N. Absorbing here means that the
system, once it has reached this point, cannot go back to previous states
any more. Biologically, we will then identify this boundary with the
threshold number of permeases needed to switch on the secondary
metabolism.

Given this absorbing boundary condition, we can now formulate the
probability S (¢, ng) of finding the system in any of the sites1...N — 1 at
time t given that we started at n, at time t=0.

b
S(ng, 1=y P(n, tlng, 0)
Here a is the reflecting boundary of the interval. It can then be seen
(Bressloff,) that
T =m= [ S (ng, H)dt

) = () = [~ S0

Summing over all n in the master Eq. (2), we obtain an equation for S.

ds (no, 1)

e @4(no)[S(no + 1, 1) = S(no, ] + @ (ne)[S(no — 1, 1)

— S(no, 1]

We can now integrate over all ¢, to obtain a formula for the mean time
to absorption:

=1 =a(n))[T (no + 1) = T (no)] — a-(no)[T (no) — T (ng — 1] 3)
If we now introduce the helper function U(n) defined by
Um):=T(n)—Tmn-1) (€))

, then we obtain a recursive relationship for U (n):
@4 (ng) U (ny + 1) — w_(np) U (ng) = —1

The MFPT problem can be solved in general using those equations by
imposing the relevant boundary conditions to the problem. Here we are
interested in two different solutions. The MFPT T,(x) from the de-
activated state to the activated state and the MFPT T.(x) from the
activated state to the de-activated state. These correspond to the mean
waiting times for the system to switch itself on and off respectively. The
de-activation time requires the left boundary a to be reflecting, and the
right boundary (b) corresponding to the activation threshold to be
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absorbing. Vice versa the waiting time to transition from the activated
state to the de-activated state is the MFPT to reach the absorbing point
a < b, where b is a reflecting point. Here, we will choose the reflecting
boundary of the activated state to be located at infinity and the
reflecting boundary of the de-activated state corresponds to O per-
meases, i.e. for the activated state we will choose, a=N and b — o and
for the de-activated state, a=0 and » = N — 1 where N is the threshold.

2.3. MFPT with a < b and a absorbing and b reflecting

We will first compute the deactivation time. The point a is
absorbing; b is reflecting and a < b. The reflecting boundary condition
implies that 7 (b + 1) = T (b). We can now use this to calculate U(b)
from Eq. (3), which implies a recursive solution for U(n) for any n:

1 w4(n)

U) = Umn+1)

w_(n) w_(n)

The recursive sequence is truncated at the reflecting boundary given by
n=b

1

U®) = o) (Boundary condition)U (b — 1) = W
N |:m+(b Dy (b)] _ 1 . [a)+(b -1 1 ]U(b _y
w_(b—1) w_(b—1) w_(b — 1) w_(b)
B 1 o,(b-2) 1
T w-2 |ob-2a®-1)
wpb—2) wpb—1) 1
o_(b—2) w(b—1) w(b)
This leads to a general formula for any U(n):
b 1 i—-1 " (])
_ . N 4
Un) = Z,:, v (n, i), where wy(n,i): —a),(i) [jljln —a)(j)]

The left absorbing boundary condition means that the waiting time
beyond the transition point is zero, i.e. T (¢ — 1) = 0. This can be used
to truncate the recursive formula for 7T(n) in Eq. (4).

Tn)=Um)+Tm-1)=Um)+Umn - 1)+---+U(a) =

Y Uk
k=a

Altogether, we then obtain the final formula for the mean first passage
time at a:

(i)

w_(i)

21

This formula is general, but not very useful by itself. For the particular
question we are interested in calculating the rate of switching between
the two states. For this, we need to evaluate the expected time for the
system to remain switched on after having transitioned into this state.
This time is the mean first exit time from the activated state when
starting from just above the threshold. For this case the formula
reduces considerably in complexity. Setting w_(n) = kin and w, = k we
obtain for p.

Il

=y

T(n) =

o.(J)

k7K (y - D!

O.)) =
v G = Dk

It is possible to evaluate the first sum for b — oo:
ki

I(a) = Z wa,j) = —ekl( ( a, %] + (a - 1)!](k—2)

This is the mean waiting time to deactivate when starting from just
beyond the threshold.
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Fig. 2. Pyr as in Eq. (7) as a function of k; for k»=0.5, € = 1 and b=10. The uncertainty
AR"™ is the distance between the points where Py reaches 0.1 and 0.9 respectively.

2.4. Calculating the case for a reflecting, b absorbing, a < b

In a similar way, we now compute the probability of reaching » + 1
starting from x when a is a reflecting boundary. In this case, the
boundary conditions are:

To+1)=0 T@@-1)=T@UbB+1)=-T®) U =0

In close analogy to above we calculate the mean first passage time
by first developing a recursive solution for U(n) taking into account the
boundary conditions. We obtain:

n—1

L, o Y pen-1

w.(n) w,(n)

Un+1)=- Un)=--=—

Here we define

1 J
o =—— 1

@:(/) I=i+1

(1)
w_(l)

Using this we can then further establish a general formula for the
MFPT

Umn)=Tm)-Tn-DTm-1)=THn)-Um)=THn+ 1H)-Umn + 1)-U @)

b
=T = Y U@

i=n+1

Substituting in the formal solution of U(n) we get.

b i-1
Tmy= Y Y hEi-1

i=n+1 z=a

Similar to above, we are interested in the mean first exit time from the
de-activated state when starting from just below the threshold. Setting
n = b — 1 and substituting our rates for . we obtain an expression for
the relevant time.

bt b k2 o
=k ky ek ﬁ st=le=sds
Lo

k2
T(b — 1):=kl"“k2"’ekTF(b, %)
k1

1

()

2.5. Probability to be de-activated

We can now calculate the probability of the system being in the “off”
state. If downis the rate of the system to transition from the activated
state to the off state and upthe rate from the off state to the activated
state, then the probability to be in the off state is given by:

Journal of Theoretical Biology 414 (2017) 137-146

1

up _
L,

up

down
Forr =

up + down
down

Assuming now that the threshold is at n=N, then the rate up equals
T7'(N — 1), the inverse of the MFPT to reach the threshold when
starting from just one molecule less than the threshold. Similarly, the
rate down is T.(N)~! the inverse of the MFPT to drop below the
threshold when starting from just one molecule above the threshold.
The expressions for 7. have been calculated above. Writing ko, the
activated expression rate of the permeases, as a fixed multiple of the
leak rate, k) = ek, (e > 1) we obtain an expression for the probability to

be switched off:
r(N) -T|N, k
ki) _, =k

B = —ke e k
F(N, —2)
ki 6)

I'(x) and I (x, y) are the I" function and the upper incomplete I" function
respectively.

The expression in Eq. (6) is the probability that given a certain
number of R the system is in its de-activated state. The number R,
which represents the number of EIIAZ®, is not explicitly stated in this
expression, but is contained in the parameter k;, which has previously
been defined as a shorthand for Rk{. As written Eq. (6) is not very
illuminating, but for some special cases the expression can be
simplified significantly.

+1

2.6. Accuracy of switch in the limiting case of € = 1

We will first consider the limiting case of e = 1. Then the expression
for the probability in Eq. (6) reduces to a ratio between two I" functions.
k

F[b, —] ﬁ; st=le~sds
kl 71

rey /Omsb"e‘sds

off =

@)

Switching Time

3y

n=N

Fig. 3. A schematic illustration of the switching time. The time to deactivate the system
is the period between the system reaching n=N from below until it reaches the threshold
again.
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Fig. 4. (a) The uncertainty Ax calculated numerically as the distance between Pyt = 0.1 and Pyr = 0.9. (b) The switching time at Ryt = 1/2 for a a number of different k, and € = 1. Note

that by choice of the parameter k; we have 7_ = T.,.

This function shows a sigmoidal transition from 0 to 1 as k; crosses
the threshold (Fig. 2). Recall that k;:=Rk with k;° constant. Hence, the
control parameter here is the abundance of R. For low R, correspond-
ing to low glucose uptake rates, the probability for the secondary
metabolism to be on is almost 1, as expected. Equally, for high R the
system is almost certainly switched off. There is a transition area Ag in-
between, where the system could be either switched on or switched off
(Fig. 3).

For the cell, Az corresponds to a region where its internal state
cannot be accurately controlled in response to a change of environ-
mental conditions. At the level of the population, this would result in a
bimodal distribution, whereby some cells have the secondary metabo-
lism activated, while others not. The existence of this area can be
interpreted as a consequence of the fundamental limitation of the
sensing apparatus that is implicit in the regulatory network modelled
here. It is well known that biological systems are limited in their ability
to determine molecular concentrations accurately. The present case
represents a binary sensing problem, i.e. the cell needs to establish
whether or not R is above or below a certain threshold. Consequently,
sensing inaccuracies only manifest themselves close to a threshold.
Inaccuracies are irrelevant far away from the threshold, i.e. for very low
or very high R.

In the limiting case of € =1 it is possible to find an analytic
expression, Ag™ for the width of Az. We now define the switching
point as the value of k; where the sigmoid function has maximal slope
for a given k> and N. Since the denominator in Eq. (7) does not depend
on ky, the switching point is the maximum of the first derivative of the
enumerator and is located at k; = /(N + 1). Here we define Ay™ as the
distance between the inflection points of the sigmoid function. We find
those by solving the equation d3Bygldki = 0 for ky. This yields two
positive solutions. The difference between those is:

2k

ASYM —
R 3 1
(N+2)2 —(N+2)2
The uncertainty is proportional to k.. Consequently, a higher leak rate
means that there is a larger range of parameters where the secondary
metabolism can be either switched on or off. On the other hand, the
uncertainty is also inversely correlated to N. Biologically this has a
concrete interpretation: Switching at lower abundances of R, i.e. at
lower concentration of glucose, necessarily increases the uncertainty
Ag.
For € > 1 there is no useful analytical expression for the width of

Ag. We define the numerical value of the width, Ag"™, as the distance
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between some threshold values for Bg. Throughout this contribution
we keep these values fixed at 0.1 and 0.9 (see Fig. 4). The two measures
AR"™ and AP™ are not numerically identical, but it will become clear
below that they both show the same scaling behaviour with respect to
key-parameters; see Fig. 5.

2.7. Time required to switch

The long-term probability to find the system switched on or off (Eq.
(6)) does not provide any information about the time required to
switch, i.e. how often the system switches between activated and de-
activation. This information is contained in the expressions for the
MFPT above. We now consider the time to switch at the above defined
switching point where k; = k2/(N + 1). Substituting this value into the
full formulas for the MFPT one can see that 7, ~ k;.

Hence, while the accuracy of the switch, Az ~ k, the speed of
switching is proportional to the inverse of k, at the switching point.

2.8. The case kg > k: activated expression is higher than leak

Once we relax the condition € = 1 then the system is no longer
amenable to analytical treatment and numerical analysis is necessary.
We found that the qualitative dependence of Az on the threshold N can
be recovered for € > 1. To confirm this we performed numerical
simulations (see Fig. 5a). We kept the transition threshold fixed (at
N =5, 10, 15, 20). Then we set € = 3, chose a value of k» and calculated
numerically the values of k; where the probability of being switched off
are 0.1 and 0.9 respectively. We called the difference between these two
values 43" and plotted it for different values of the threshold N in
Fig. 5a; analogously we plotted Az"™ as a function of k, for different
values of the threshold in Fig. 5b. These graphs show the same
qualitative dependence as in the case of € = 1

In a similar way we determined the switching time as a function of
ko. To this end we determined the value of k; such that P = 1/2; from
this we then calculated the transition-time using Eq. (5). Fig. 5¢ shows
the inverse of the switching time for a number of threshold values. As
expected it is a straight line, confirming that the switching time is
inversely proportional to k.. By construction, the values of 7. are
exactly the same as 7, hence only one is shown here.

Note that the linear relationship between ks and the switching time
and uncertainty respectively will only be retained if the activated
expression rate ko = €k, i.e. is a fixed multiple of the leak expression
rate. If ko is kept fixed, while k- is varied then there is no longer a
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Fig. 5. (a) The uncertainty as a function of the switching threshold. (b) Same, but the leak expression rate k» is varied while keeping the peak expression rate constant ko at a fixed
multiple of the leak. See main text for details. The graphs (c) show the inverse of the expected time to switch on at the point where the probability of being on and off is equal. The

parameter ko = 3k>.

simple relationship between k, and the uncertainty. For some para-
meters Az"™ can even decrease with increasing k. That the proportion-
ality cannot be retained in the case of a fixed ko is apparent from the

expression defining By in Eq. (7).
3. Discussion

Here we modelled a PTS-like system for the control of inducer
exclusion as a biological binary sensor. Due to inherent noise of the

1
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Fig. 6. Testing the limits of the QSSA. The grey curve shows a numerical solution for the
master equation using k» = 0.5, ¢ = 1 and R=400. The along the horizontal axis k{° is
varied. The coloured lines show the probability for the system to be switched on after 70
time units assuming for different values of the decay rate &. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)
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system, specifically the fluctuations in the number of permeases, the
system is fundamentally limited in its accuracy. Since the PTS system is
a binary detector, the limitations become only relevant in the vicinity of
the transition threshold.

3.1. Time-accuracy trade-off

The inaccuracy Ag, is the manifestation of a general limitation of the
ability of cells to establish the concentration of molecules internally or
in their environments. Theoretically, it is to be expected as a con-
sequence of a more general limitation of biological systems to sense
their environment, as first proposed by Berg and Purcell (1977).
Experimentally it would manifest itself as a population heterogeneity
with respect to the induction state of the secondary metabolism during
the lag-phase. At certain low concentrations of the primary nutrient the
population would consist of cells that have an activated secondary
metabolism and some that do not. Such heterogeneity has been
observed experimentally (Boulineau et al., 2013) and has even been
suggested as the fundamental reason for the lag-phase (Kotte et al.,
2014). From our minimal model it is not possible to make quantitative
predictions about the amount of heterogeneity to be expected based on
the sensing limitations inherent in the PTS system. It is of course
conceivable that effects other than sensor limitations can also explain
these effects. The possibility that there is a connection between the well
known Berg-Purcell limit (Berg and Purcell, 1977) of biological sensors
and the equally well known effect of diauxic growth remains intriguing.

According to our model a certain degree of inaccuracy is unavoid-
able, but Ax can be reduced by an appropriate choice of parameters.
Our model predicts that there is a trade-off between the width of Ag
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and the parameter ko, i.e. the time required to switch. The width of A
is proportional to ko, but the time to switch between the activated and
the de-activated state is inversely proportional to k>. A moderate
inaccuracy Ag is unlikely to be detrimental to the cells. It prevents
the population from switching collectively at a particular time in
unison, but is also a source of heterogeneity, which may even be
beneficial evolutionarily especially with respect to bet-hedging strate-
gies (King and Masel, 2007; Miiller et al., 2013).

3.2. Trade-off between the efficiency and the speed

The second trade-off emerging from our model is between the
efficiency of switching and the length of the lag-phase. A maximally
efficient sensor would be able to detect the precise point when the
primary nutrient runs out and then switch to the secondary nutrient
immediately. Within our model this is not possible. Informally, this can
be seen as follows: Precise switching would imply that the secondary
metabolism remains repressed by a single molecule of R and that upon
the removal of the last R the secondary metabolism is immediately
active. This is only possible if there is at most a single permease for the
secondary carbon source in the cell which implies that & — 0. In this
limit the waiting time for the next leak expression event—and also the
time to reach the threshold—diverges.

This informal argument already suggests that there is a trade-off
between the speed with which the system is able to switch and the
efficiency of control. This intuition can be confirmed formally. Using
the simplified model from above with ¢ = 1 we can define the switching
point as the point of maximum slope of the function By (k) located at
k =k (N + 1)"!. Writing now k = Rk, we obtain the number of R
required to switch:

_k 1
K N+1

sW

Noting that the abundance of R will be typically very large we find
that k’<l. A small value of R,,, ie. switching at low external
concentrations of the primary nutrient, therefore relies on k, small
or N large. A trade-off arises here because both of these possibilities
entail that 7, are high (c.f. Eq. (5)). Hence, efficient switching entails
slow switching. Note that efficient switching also entails high accuracy
switching, i.e. Az small.

A certain degree of premature switching to the secondary nutrient is
therefore unavoidable and a direct consequence of the limitations of
stochastic systems. Interestingly, our minimal model reproduces the
empirical relationship found by Wang et al. (2015) between early
switching and short lag-phase. Note that the Wang study focussed not
on bacteria but on yeast which are regulated differently. One possibility
is of course that the relationship measured by Wang et al. is due to
some other constraints in the cell and unrelated to the trade-off
established by our model. On the other hand, since the trade-offs we
found are a consequence of the fundamental limitations of stochastic
sensors we expect that they are not dependent on the details of the
system, but appear in many biological sensors.

3.3. Cost

Computation in stochastic systems can only happen when the
system is kept out of equilibrium by dissipating energy (Bennett,
1982). Sensing is a form of computation and as such requires energy
dissipation as well. In the particular case of our model, one
important contributor to cost in energy is the leak expression of
permeases, which is a constitutive basal expression rate. Permeases
are synthesised at this rate independently of the presence or absence
of the relevant carbon source. This comes at a resource cost for the
cell in the form of a direct metabolic cost of amino acid synthesis,
sequestration of ribosome during translation but also spatial costs
due to permeases occupying space on the cell surface. A high leak
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expression rate therefore draws permanently resources from the cell,
thus reducing long-term growth potential on any carbon source.
From the model one would therefore predict a trade-off between
short lag-phases and long-term growth potential. Such a trade-off
between the ability to switch and the growth speed is well estab-
lished experimentally (Schuetz et al., 2012). Recent simulation
models using more detailed models confirm this.

3.4. Limitations to the model

Crucial for the derivation of the birth-death process was the
assumption that the repressor R is in a QSS with respect to the
expression dynamics of the secondary nutrients. This can be justified
by the fact that levels of R are coupled to the uptake of glucose which
fluctuates over a time-scale much faster than the typical time-scale of
leak-expression. In those cases, any fluctuations of R are averaged out.
The QSSA also rests on the assumption that the mean abundances of R,
and thus the mean uptake rate of glucose, changes slowly over time.
Experimentally, this can be realised in chemostats where glucose
concentrations can be kept fixed. Sufficiently low concentrations of
glucose then allow co-utilisation of glucose and lactose (Lendenmann
et al, 1996; Lendenmann and Egli, 1995), consistent with the
prediction of our model.

The opposite extreme of the QSS model is an instantaneous change
of the glucose uptake rate from some very high value to nothing; see
Chu and Barnes (2016) for a detailed stochastic simulation model of
this scenario. An instantaneous model is trivially not compatible with
bistability (in the sense of co-utilisation of primary and secondary
nutrients). In this scenario, immediately after the switch lactose
expression is completely repressed and no growth is possible. Cells
need to wait for the lactose metabolism to be expressed, while they
continue to express glucose permeases in the meantime. Those cells
that eventually activate lactose through leak expression will then
resume growth fuelled by lactose. Yet, there will be cells that do not
express a secondary metabolism and perhaps enter into a dormant
state.

In batch-growth experiments, the QSSA will be an approximation.
Depending on the specifics of the set-up towards the end of the first
growth-phase changes of the concentrations of the primary nutrient
may be non-negligible. The principle conclusions of our QSS model
remain valid even then. To check this, we extended our model and
allowed the repressor R to decay. Using the Prism model checker
(Kwiatkowska et al., 2001) we calculated the probability of the system
to be switched on after 70 time units given various decay rates for R. A
vanishing decay rate would correspond to the perfect QSS (grey curve
in Fig. 6). As expected, for small decay rates the QSSA is a good
approximation, but less so for large decay rates corresponding to fast
reduction of R. Note that the qualitative shape of the probability
distribution remains unchanged over the time-scale considered.
However, once one departs from the QSSA too fast, the time-depen-
dence of the probability will become dominant and the systems
dynamics will increasingly resemble that of the instantaneous switch.

Further quantitative errors are introduced by other approximating
assumptions of the birth-death process, including: (i The R-n com-
pounds is vanishingly small whereas in real systems R — n compounds
may decay in finite time. (ii) The activation threshold b is sharp. In
reality, activation of sugar metabolisms is a stochastic function of the
number of permeases. (iif) The translation step during the synthesis of
permeases does not add to the noise in the protein signal. LacY is
produced in burst of about 35 (Mettetal et al., 2006), thus creating
additional fluctuations.

3.5. Testable predictions

The combined effect of those assumptions is that the model under-
estimates the noise in the system. It is therefore unlikely to be useful in
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making quantitative predictions about real bacteria. However, the main
qualitative insights we derived, the trade-offs arising from the model,
are effects to be expected in real systems because they depend on the
stochastic dynamics only. It is a mathematical given that the networks
of the type considered would lead to a lag-phase that is driven by
limitations to sensing. Qualitatively, the same effects that our model
predicts have also been observed in micro-organisms. While encoura-
ging, this does clearly not mean that limitations of sensors are the sole
or even dominant cause of the lag-phase. There could be a number of
other effects that give rise to the same behaviours.

Validating the predicted effect for cells can, at least partially, be
done using extensive computer simulations. Assuming these models
represent microbial metabolism and growth in sufficient detail, includ-
ing a plausible parametrisation, it would be possible to estimate the
contribution of sensing uncertainty to the lag-phase. The problem of
such simulation models is that they would be computationally very
expensive.

An immediate experimental test of the model would be to confirm
that in bacteria there is the same relationship between pre-mature
switching and the lag-phase that Wang et al. found for yeast.
Furthermore, the model affords an important role to the leak rate
expression of the permeases. If the model is relevant, then one would
expect to be able to observe that changing the leak rate modulates the
length of the lag-phase. A further prediction of the model is that the
presence of two concomitant sugars shortens the lag-phase relative to
the presence of only one secondary sugar. Although, it is conceivable
that second order effects based on hierarchies of secondary nutrients
could mask this effect (Aidelberg et al.,, Koirala et al., 2015).

4. Conclusion

We used a minimal model of the regulatory network of diauxic
growth. This model predicts that there are limitations to the ability of
cells to switch from one nutrient to another that arise as a consequence
of the limitations of stochastic biological sensors (Mehta and Schwab,
2012; Bialek and Setayeshgar, 2008; Govern and ten Wolde, 2014,
2014). As a consequence of this a number of trade-offs emerge. (i We
found that accurate (Az small) and efficient (R, small) switching is
only possible at the expense of a long lag-phase. Inaccurate switching
may also be the reason for the observed population heterogeneity
during the lag-phase. (ii) The cell can (over evolutionary times)
decrease the duration of the lag-phase, but this implies a permanent
metabolic cost penalty on the cell, which limits growth in the long run.
In environments where switching between nutrients is infrequent, it
will then be beneficial to accept a higher lag-phase (and episodic fitness
penalty) in exchange for a better long-term growth rate. In environ-
ments that do not see frequent changes of conditions longer lag-phases
will be beneficial, while in variable environments shorter lag-phases
paired with smaller long-term growth would evolve.

The existence of speed-accuracy-cost trade-offs in biological sys-
tems is not a surprise. Similar relationships have been found in a
number of contexts now including gene networks (Zabet and Chu,
2010; Chu et al., 2011) or bacterial adaptation systems (Lan et al.,
2012). Ultimately, these trade-offs are a consequence of the limitations
of Brownian computers (Bennett, 1982).

The significant insight here, therefore, is not so much that sensing
the external concentration of the primary nutrient is subject to
limitations and trade-offs, but that these trade-offs can explain the
well known phenomenon of the lag-phase, which has so far not been
thought of as a sensing problem. This is an exciting prospect. If
methods from statistical physics can predict design principles of
biological systems, then this opens up for substantial progress in a
theory-driven biology.

The limitation of sensing may or may not be the sole driver for the
evolution of the lag-phase; it may not even be the dominant one.
Further research is required in order to establish this. Yet, importantly,
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the biological consequences indicated by our model are qualitatively
consistent with observed behaviours in real cells.

Acknowledgments

I thank Prof. Christian Ray and two anonymous reviewers for their
comments, which helped to improve this manuscript.

Appendix A. Code of the PRISM model
ctme

const int nmax = 50;
const double k21=0.5;
const double k2=0.5;
const double kl=xxx;
const double nT = 10;
module mixm
n: [0.nmax] init 1;
r: [1..400] init 400;
[t1] n <= nT-> k2I: (n'=n+1);
[t21n > 0-> n*r*kl : (n'=n-1);
[t3] n> nT & n< nmax-> k2: (n'=n+1);
[t4] r>1 -> delta: (r'=r-1);

endmodule

Fig. 6 was produced by querying the model using
P=? [true U[70, 70] n< = nT] for different values of k1 and delta
(corresponding to the parameter k;° and & respectively in the main
model).
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