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Short running title: Metabolic response to diets and the link with BP 

 

Abbreviation: 1D, one-dimensional; CVDs, cardiovascular diseases; BP, blood pressure; CI, 

confidence interval; DASH, Dietary Approaches to Stop Hypertension; HDR, homogenous 

dietary response; HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein 

cholesterol; mOPLS-DA, multilevel orthogonal partial least squares discriminant analysis; 

NAD, nicotinamide adenine dinucleotide; NMR, nuclear magnetic resonance; OmniHeart, 

Optimal Macronutrient Intake Trial for Heart Health; OmniCarb, OmniHeart carbohydrate 

rich diet; OmniMFA, OmniHeart monounsaturated fat rich diet; OmniProt, OmniHeart 

protein rich diet; SD, standard deviation; SHOCSY, statistical homogeneous cluster 

spectroscopy; TSP, sodium 3-trimethylsilyl-(2,2,3,3-2H4)-1-propionate; VDR, variable dietary 

response. 

Clinical Trial Registration: The original OmniHeart intervention study is registered at 

www.clinicaltrials.gov as NCT00051350 and metabolomics study is registered at 
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ABSTRACT   1 

Background: Inter-individual variation in the response to diet is common but the underlying 2 

mechanism for such variation is unclear.    3 

Objective: The objective of this study was to use a metabolic profiling approach to identify 4 

a panel of urinary metabolites representing individuals demonstrating typical 5 

(homogeneous) metabolic responses to healthy diets, and subsequently to define the 6 

association of these metabolites with improvement of risk factors for cardiovascular 7 

diseases (CVD).   8 

Design: 24-h urine samples from 158 participants, with pre-hypertension and stage 1 9 

hypertension collected at baseline and following the consumption of a carbohydrate-rich, a 10 

protein-rich and a monounsaturated fat-rich healthy diet (6-weeks per diet) in a randomized, 11 

crossover study, were analyzed by proton (1H) nuclear magnetic resonance (NMR) 12 

spectroscopy.  Urinary metabolite profiles were interrogated to identify typical and variable 13 

responses to each diet.  We quantified the differences in absolute excretion of metabolites 14 

distinguishing between dietary comparisons within the typical response groups and 15 

established their associations with CVD risk factors using linear regression.    16 

Results: Globally all three diets induced a similar pattern of change in the urinary metabolic 17 

profiles for the majority of participants (60.1%).  Diet-dependent metabolic variation was not 18 

significantly associated with total cholesterol or low density lipoprotein cholesterol levels. 19 

However, blood pressure (BP) was found to be significantly associated with six urinary 20 

metabolites reflecting:   dietary intake (proline-betaine [inverse], carnitine [direct]); gut 21 

microbial co-metabolites (hippurate [direct], 4-cresyl sulfate [inverse], phenylacetylglutamine 22 

[inverse]), and tryptophan metabolism (N-methyl-2-pyridone-5-carboxamide [inverse]).  A 23 

dampened clinical response was observed in some individuals with variable metabolic 24 
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responses, which could be attributed to non-adherence to diet (up to 25.3%), variation in gut 25 

microbiome activity (7.6%) or a combination of both (7.0%).   26 

Conclusion: These data indicate inter-individual variations in BP in response to dietary 27 

change and highlight the potential influence of the gut microbiome in mediating this 28 

relationship.  This approach provides a framework for stratification of individuals undergoing 29 

dietary management.     30 

 31 

Keywords: diets; gut microbiome; hypertension; metabolic profiling, metabonomic, 32 

metabolomic; and personalized health care. 33 

34 
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INTRODUCTION 35 

Of the total global deaths, approximately half are attributed to cardiovascular 36 

diseases (CVDs), with elevated BP being a key risk factor (1).  Genome-wide association 37 

studies have identified common genetic variants associated with high BP (2) but these only 38 

account for a small proportion of the population variance in BP and do not take lifestyle 39 

factors such as physical inactivity or unhealthy diet into account. CVD remains the leading 40 

cause of mortality for non-communicable diseases worldwide, even though the adoption of 41 

healthy dietary patterns such as those promoted by Dietary Approaches to Stop 42 

Hypertension (DASH) (3), Optimal Macronutrient Intake Trial for Heart Health 43 

(OmniHeart) (4) and Mediterranean diets (5) have unequivocally been shown to reduce 44 

CVD risk. Humans demonstrate substantial variation in response to dietary intervention, 45 

partially attributable to genetic heterogeneity (6, 7).  For example, the apolipoprotein A-IV 46 

protein modulates cholesterol lowering responses to high fat diets (8, 9). However, 47 

supporting evidence for genetic influence on variable dietary responses remains conflicting 48 

(10) and modifiable factors such as changes in body weight (11, 12), or variation in the 49 

composition of the gut-microbiome (13) and virome (14), have been implicated in variation 50 

in dietary responses.   51 

Metabolic phenotyping technologies provide a framework for investigating the 52 

influences of environmental and lifestyle factors on disease risk and have been successfully 53 

applied to investigate chronic diseases e.g. diabetes (15). Systematic modulation of 54 

metabolism in response to food intake (16) has been reported and the impact of diet in a 55 

range of pathological conditions, including gastrointestinal cancer risk, has been assessed 56 

(17).  Building on methodological approaches developed for characterizing inter-individual 57 

variation in response to drug toxicity/therapies (18), we propose to demonstrate the 58 

feasibility of identifying inter-individual variation in clinical response to three different 59 
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healthy diets, using a 1H NMR based metabolic phenotyping approach and establish the 60 

impact of this variation on CVD risk,.   We hypothesized that dietary change from a typical 61 

American diet to a healthy diet or between different healthy diets would result in typical 62 

changes in the urinary metabolic phenotypes for the majority of individuals, herein 63 

considered as homogenous dietary response (HDR) group. We ascertained that a minority 64 

of individuals demonstrated atypical dietary responses, herein referred to as variable 65 

(heterogenous/non-uniform) dietary responders (VDR).  We further hypothesized that these 66 

specific urinary dietary response phenotypes would be associated with BP.  Variation in 67 

diet-specific biomarkers will further enhance our understanding of the link between 68 

variation in dietary response and the aetiopathogenesis of hypertension.   69 

  70 

METHODS 71 

OmniHeart Study design 72 

The OmniHeart Study (N=163) was a randomized, controlled, three period cross-73 

over feeding study aiming to assess the effects of three healthy diets on BP and lipid 74 

profiles (19).  The key findings and the study design of OmniHeart Study have been 75 

previously published (4, 19).  Briefly, all three OmniHeart diets had a similar nutrient 76 

composition to the established healthy DASH diet but varied in macronutrient composition. 77 

The Omniheart carbohydrate-rich diet (OmniCarb diet) provided 58% kcals from 78 

carbohydrate, 15% from protein and 27% from fat; the remaining two diets, replaced 10% 79 

of calories from carbohydrate with either protein, predominantly obtained from vegetable 80 

sources (OmniProt diet), or unsaturated fats, predominantly derived from monounsaturated 81 

fat (OmniMFA diet).  Participants were randomly assigned to one of six possible orders of 82 

administration of the three diets, each intervention period lasting for 6-weeks. During each 83 

intervention period, the participants were requested to only consume food prepared in the 84 
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diet kitchen and were allowed to consume up to 2 alcoholic beverages and 3 non-caloric 85 

caffeinated beverages per day as part of the trial. Their main meal was consumed on-site on 86 

weekdays and all other meals were eaten at home.  Participants completed a diary in which 87 

they indicated whether they had complied with the study food protocol during the feeding 88 

periods.  During the screening visits and washout periods (at least 2 weeks), participants 89 

consumed their own food.  The Willett food frequency questionnaire (20), administered by 90 

certified staff as a means to describe the usual food intake of participants during screening 91 

visits indicated participants consume a typical American diet at the outset of the study; 92 

corresponding to high intake of saturated fat, excessive refined sugar and salt with low 93 

intake of fruit, vegetables and omega-3-fat.   94 

 A total of 163 men and women, aged between 30 to 80 years from the Baltimore and 95 

Boston areas, with pre-hypertension (systolic BP of 120 to 139 mmHg and/or diastolic BP of 96 

80 to 89 mmHg) or stage 1 hypertension (systolic BP of 140 to 159 mm Hg and/or diastolic 97 

BP of 90 to 99 mm Hg) and without diabetes or prior CVD were recruited to the study. The 98 

minimum detectable, between-diet differences for primary (systolic BP) and secondary 99 

(diastolic BP, low density lipoprotein cholesterol [LDL], high density lipoprotein cholesterol 100 

[HDL], triglyceride and total cholesterol) variables in the full cohort (n=160) and in 101 

subgroups (n=80 and 70) were at 80% and 90% power (2-sided alpha, p=0.05). 102 

The sample size of the trial (n=160) was selected because it provided adequate power to 103 

detect between-diet differences in the primary outcome variables that have public health 104 

significance, both overall and in subgroups. Specifically, the minimum detectable effect size 105 

for systolic BP was  < 3 mmHg even in subgroups that comprised only 40 % (n=64) of 106 

participants.  One individual completed just one dietary intervention period, and four 107 

individuals completed two intervention periods.  The remaining 158 completed all three 108 

dietary interventions, provided four 24-h urine collections and supplied anthropometric and 109 
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sociodemographic metrics on CVD (Supplemental Figure 1).  These four 24-h urine 110 

collections corresponded to the baseline screening visit and one at the end of each of the three 111 

6-week dietary interventions.  NMR urine spectra for these 158 individuals were used for the 112 

analyses presented here. During the last 10 days of each dietary intervention period, a fasting 113 

blood specimen was obtained to measure lipid levels.   BP was measured on 5 days by trained 114 

staff using the OMRON 907 device for those requiring a normal or large adult cuff, after 115 

participants had been seated for at least 5 mins.  The reported BP was based on the average of 116 

nine BP measurements taken at screening visits and 15 measurements taken at the last five 117 

visits of each feeding period. Body weight for all participants was maintained within 2% of 118 

their baseline throughout the study period by adjusting caloric levels each week-day.  119 

Baseline socio-demographic and anthropometric characteristics were obtained for each 120 

participant.  Institutional ethics committee approval was obtained for each site and all 121 

participants provided written informed consent.  122 

 123 

NMR based metabolic phenotyping and data processing 124 

 Urine specimens were analyzed by 600 MHz 1H NMR spectroscopy using a Bruker 125 

NMR spectrometer (Bruker Biospin, Rheinstetten, Germany) according to a standard protocol 126 

(21) in our London metabolic phenotyping laboratory. Urine specimens were allowed to thaw 127 

at room temperature and centrifuged at 12,000g for 5 mins to remove particulates.  For each 128 

specimen, 500uL of urine was mixed with 250ȝL of phosphate buffer solution at pH 7.4±0.1.  129 

The resulting mixtures were left to stand for 10 mins and then further centrifuged as before.  130 

A total volume of 500uL of the supernatant was added to 50uL of sodium 3-trimethylsilyl-131 

(2,2,3,3-2H4)-1-propionate (TSP) in Deuterium Oxide, giving a final concentration of 1mM.  132 

This solution was transferred to a 5mm NMR tube.  The prepared urine specimens were 133 

placed in the auto-sampler, analyzed in a simple randomized order generated by computer. A 134 
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one-dimensional (1D) pulse sequence with a water saturation method (recycle delay – 90º –t1-135 

90º-tm-90º-acquisition) was used to acquire standard 1H NMR spectra of urine. The spectra 136 

were acquired with 64K data points and 128 scans over a spectral width of 12kHz.  The 137 

recycle delay was set to 2s with a mixing time (tm) of 100ms and a t1 of 20µs, providing an 138 

acquisition time of approximately 2.72s.  All 1H NMR spectra were phased, baseline 139 

corrected, and manually referenced to sodium 3-trimethylsilyl-(2,2,3,3-2H4)-1-propionate 140 

(TSP) at  0 with Topspin software (version 2.1, Bruker Biospin) prior to multiplication by an 141 

exponential weighting function corresponding to a line broadening of 0.3Hz.  The spectral 142 

regions containing the water (į 4.5 to 5.05) and urea (į 5.5 to 6.5) resonances, as well as the 143 

extreme ends (<į 0.7 and > į 9.5) of the spectra that contain minimal metabolic information, 144 

were removed.  Initial analysis showed that the signal arising from the –CH2 and –CH3 group 145 

of the creatinine peaks dominated the analysis due to the high concentration of creatinine 146 

compared to other metabolites. Since there was no statistical difference in the clinical 147 

creatinine measurements at screening visit and at the end of each study period based on Jaffé 148 

reaction measurement (p>0.5 for all comparison between each diet and the baseline), we 149 

removed the creatinine regions containing the peaks at į 3.035-3.062 and į 4.052-4.075 from 150 

all subsequent analysis.  A total of 23,998 NMR data variables, at a full resolution (0.0003 151 

ppm), were then normalized by a probabilistic quotient method (22) using the median 152 

spectrum of the whole dataset as a reference and subsequently scaled to unit-variance.  153 

 154 

Data analysis 155 

We applied Statistical HOmogeneous Cluster SpectroscopY (SHOCSY) (23) to the 156 

processed and normalized spectroscopic data.  SHOCSY  is a variant of statistical 157 

spectroscopic techniques such as the Subset Optimization by Reference Matching (STORM) 158 

(24) and Statistical TOtal Correlation SpectroscopY (STOCSY) (25).  SHOCSY involves 159 
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clustering of the spectral data based on the similarity/dissimilarity of the spectral features 160 

followed by the association of clusters to different dietary groups using an enrichment test.  161 

The application of SHOCSY enables identification of the groups of spectra showing 162 

uniform/homogeneous urinary metabolic responses (HDR) and those showing variation from 163 

the coherent metabolic response (VDR) following the consumption of different OmniHeart 164 

diets. Due to the nature of cross-over study design, we employed multilevel orthogonal partial 165 

least square-discriminant analysis (mOPLSDA) (26, 27), which incorporates the variation 166 

between and within participants in the dataset to optimize visualization of dietary response, in 167 

conjunction with SHOCSY. We performed this in a pairwise fashion, comparing the urinary 168 

spectral data from the screening visit (reflecting a basal dietary pattern) with those from the 169 

end of each dietary intervention and modelled this separately for the urinary spectral data 170 

corresponding to a HDR (3 models, 1 per diet) and those representing a VDR  (3 models).  171 

Thus, each subgroup was compared to its own baseline. We also performed comparison 172 

between different OmniHeart diets and separately for the HDR (3 models) and VDR (3 173 

models) groups creating a total of 12 different mOPLSDA models, Supplemental Table 1.  174 

Each mOPLSDA comparison was validated using a seven-fold cross-validation procedure.  175 

The model statistics, Q2Yhât (28) is defined as the proportion of variance in the data predicted 176 

by the mOPLSDA model and is therefore a measure of the robustness of the model.  In 177 

addition, permutation testing was performed by randomly assigning classes to the samples 178 

and remodeling repeatedly for 100 times. The Q2Yhât statistic for the real model was then 179 

compared to the null hypothesis distribution obtained from the permuted Q2Yhât t values and 180 

was considered significant when the p-value of the real Q2Yhât was <0.05 on those permuted 181 

values.  182 

 The three criteria used to identify discriminatory metabolites were: i) P-values of the 183 

correlations between the spectral variable and the mOPLS-DA scores vector should be < 184 
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1.85ൈ10-6 (corresponding to p <0.05 after Sidák correction); ii) a variable loading coefficient 185 

strength, r2 >0.3 as defined in Zou et al (23); and iii) the stability of the NMR variables, 186 

whereby a data point was considered significant when flanked by two NMR spectral variables 187 

conforming to criteria i) and ii). For peaks that were free from spectral overlap, the 24-h 188 

urinary excretion of each discriminatory metabolite was quantified by integration of the NMR 189 

signal intensities. Since we found no significant difference in the excretion of creatinine 190 

between different OmniHeart diets and the typical American diet (P >0.5), the absolute 191 

excretion of each discriminatory metabolite was normalized to the corresponding 24-h urinary 192 

creatinine excretion (in mmol/L). The difference in absolute excretion of each discriminatory 193 

metabolite was determined for the comparison of each dietary intervention with baseline or 194 

between different OmniHeart dietary interventions.  The association between the differences 195 

in absolute excretion of each discriminatory metabolite and changes in CVD risk factors 196 

(systolic and diastolic BP, LDL, total cholesterol) was established using linear regression for 197 

HDR groups. In addition, known covariates for hypertension including urinary excretion of 198 

sodium, potassium, calcium and phosphate, were also established for HDR and VDR groups 199 

for the comparison between baseline and each OmniHeart diet. The statistical significance of 200 

these covariates was adjusted by Bonferroni correction (0.05 divided by number of 201 

comparisons) to account for multiple testing. All analyses were performed using in-house 202 

software written in Matlab (version 2012a, MathWorks, Natick, MA).    203 

 204 

Identification of discriminatory metabolites 205 

 The discriminatory metabolites found to be significantly influenced by the healthy dietary 206 

interventions were confirmed by in-house and published database (29) references and 207 

authenticated by spiking in standard compounds purchased from Sigma Aldrich.  These 208 

compounds included: N-methyl-2-pyridone-5-carboxamide, 4-hydroxyphenylacetic acid, 209 
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carnitine, creatine, dimethylglycine, S-methyl-L-cystiene-S-oxide, N-methyl nicotinic acid, N-210 

methyl nicotinamide, proline-betaine and hippurate.  For the remaining urinary metabolites 211 

where they were not available commercially, identification was achieved using further 212 

analytical methods such as two dimensional NMR experiments, solid phase extraction 213 

chromatography experiments coupled with NMR, ultra-performance liquid chromatography 214 

coupled to mass spectroscopy, and statistical analysis such as Subset Optimization by Reference 215 

Matching (STORM) (24) as well as using published databases and/or literature.  216 

 217 

RESULTS 218 

Individuals show variation in urinary metabolic phenotypes to OmniHeart diets  219 

Participants’ demographics and changes in CVD risk factors following each 220 

OmniHeart diet are provided in Table 1. Each diet elicited a range of clinical responses 221 

over the six-week study, in terms of reduction of CVD risk factors, which was reflected in 222 

the urinary metabolome.  Inter-individual differences in dietary response were observed; 223 

the majority of the participants showed a HDR to all of the OmniHeart diets when 224 

compared with the baseline profile: 71.5% (N=113) for OmniProt, 80.4% (N=127) for 225 

OmniMFA and 86.7% (N=137) for OmniCarb.  The remaining individuals who did not 226 

demonstrate a ‘typical’ response to a given diet were grouped into the VDR class: N=45 for 227 

OmniProt, N=31 for OmnMFA, and N=21 for OmniCarb. A similar modelling strategy was 228 

applied to compare between pairs of OmniHeart diets. We found > 70% participants 229 

showed consistent metabolic differences between diets, Supplemental Table 1.   230 

 231 

OmniHeart diets show distinctive urinary metabolic phenotypes  232 

Each of the three OmniHeart diets was associated with a distinct metabolic 233 

phenotype in the majority of participants (the HDR group). For the OmniHeart-baseline 234 
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comparisons, the discriminatory metabolites were predominantly related to: i) dietary intake 235 

- increased excretion of proline-betaine, N-acetyl-S-methyl-L-cysteine sulfoxide, S-methyl-236 

L-cysteine-S-oxide, creatine, and carnitine; ii) tryptophan-nicotinamide-adenine 237 

dinucleotide (NAD) degradation - reduced excretion of N-methyl-2-pyridone-5-238 

carboxamide and N-methyl nicotinamide, and increased excretion of N-methyl nicotinic 239 

acid; and iii) gut microbial-mammalian metabolism - increased excretion of hippurate and 240 

dimethylglycine, and reduced excretion of 4-hydroxyphenylacetic acid, Supplemental 241 

Table 2.  Compared to the baseline profiles, proline-betaine was the only metabolite 242 

uniformly increased in the urinary phenotypes of HDR groups across all three diets, 243 

consistent with increased citrus fruit consumption (30).  Increased excretion of carnitine 244 

and creatine in the OmniProt diet reflected the increase in protein intake (31).   245 

Additional pairwise comparisons (P<10-5) between different OmniHeart diets 246 

further indicated that each diet was associated with a distinct metabolic phenotype. The 247 

HDR group of the OmniProt diet was generally characterized by higher excretion of urinary 248 

creatine; N- methyl-2-pyridone-5-carboxamide and two gut microbial mammalian co-249 

metabolites, phenylacetylglutamine and 4-cresyl sulfate compared to the other two 250 

OmniHeart diets; whilst the HDR group for the OmniCarb diet consistently showed higher 251 

excretion of hippurate and guanodinoacetate (Supplemental Table 3 and 4).  The 252 

differences in the markers for dietary intake of cruciferous vegetables (S-methyl-L-253 

cystiene-S-oxide and N-acetyl-S-methyl-L-cysteine sulfoxide) (32) and markers for citrus 254 

fruit intake (proline-betaine) (30) observed when comparing urine of OmniHeart diets with 255 

the baseline profiles, were generally not observed for pairwise comparisons between the 256 

OmniHeart diets since all three diets included higher proportions of fruit/vegetables than 257 

the baseline. 258 

 259 
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Urinary metabolites significantly associated with BP 260 

 We quantified ten discriminatory metabolites altered in response to one or more 261 

OmniHeart diets and assessed their associations with BP and lipid profiles using the HDR 262 

groups only. Although no significant associations were found between dietary phenotypes and 263 

LDL or total cholesterol, we found significant associations between two of these food related 264 

metabolites with BP.  Proline-betaine was inversely associated with systolic and diastolic BP 265 

for OmniCarb and OmniMFA diets when compared to baseline (P<0.05, Table 2).  A similar 266 

trend was observed for the OmniProt diet although it was not statistically significant.  A direct 267 

association was found between systolic BP and carnitine for the OmniProt diet when 268 

compared to baseline (P<0.05). We found three metabolites related to host-gut microbial 269 

pathways that were significantly associated with BP (hippurate, phenylacetylglutamine and 4-270 

cresyl sulfate).  Hippurate showed a direct association with systolic BP (P<0.001) and 271 

diastolic BP (P<0.01) levels for the OmniCarb diet compared to baseline, whereas 4-cresyl 272 

sulfate and phenylacetylglutamine (distal colonic microbial metabolites of tyrosine and 273 

phenylalanine, respectively) were inversely associated with BP for the comparison between 274 

OmniMFA and OmniProt diets.  N-methyl-2-pyridone-5-carboxamide (tryptophan-NAD 275 

metabolite) was also found to be inversely associated with systolic and diastolic BP levels for 276 

the OmniCarb-baseline comparison (P<0.05).  These data demonstrate healthy diets can elicit 277 

coherent changes in the urinary metabolic phenotypes for the majority of individuals and that 278 

some of these metabolites are either directly or inversely associated with BP.   279 

 280 

Urinary metabolic phenotypes can identify non-adherence to diets 281 

 The urinary spectral data for the VDR groups for each of the OmniHeart diets typically 282 

produced fewer dietary-specific discriminatory metabolites than the HDR groups 283 

(Supplemental Tables 2 and 3). The VDR groups also showed discordance in the levels of 284 
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proline-betaine and hippurate when compared to the HDR groups.  Since increased 285 

consumption of citrus fruits was a feature of all dietary interventions, we therefore classified 286 

individuals with a lower level of proline-betaine (a direct marker of citrus fruit intake) (33, 287 

34), as non-adherent to these diets on the assumption that this was generally indicative of 288 

dietary behavior.  We found the majority of participants in the VDR groups excreted lower 289 

24-h urinary concentrations of proline-betaine when compared to the HDR groups. Fifteen of 290 

the 21 individuals (71.4%) from the OmniCarb-VDR group showed a 24-h urinary excretion 291 

of less than 95% confidence interval (CI) obtained for proline-betaine excretion of the 292 

OmniCarb-HDR group.  A similar trend was observed for the OmniMFA-VDR (21/31, 293 

67.7%) and OmniProt-VDR (35/45, 77.8%) groups. The overall estimation of non-adherence 294 

to each diet was: 9.5% (n=15) for the OmniCarb, 13.3% (n=21) for the OmniMFA and 22.2% 295 

(n=35) for the OmniProt diet. Despite sub-classification of VDR groups as adherent or non-296 

adherent, contrasting patterns remained in the VDR and HDR groups, as exemplified for 297 

hippurate (a gut microbial co-metabolite of dietary phenols), where increased excretion of 298 

hippurate was characteristic for the HDR but not either of the VDR (diet adherent or non-299 

adherent) subgroups for OmniCarb.  Differential metabolite patterns were also observed for 300 

different subgroups within the OmniMFA (Figure 1).  301 

 302 

Urinary metabolic variation reflects inter-individual differences in clinical responses 303 

 Discarding the non-adherent VDR group, we assessed the effect of each diet, stratified 304 

by the HDR versus adherent-VDR, on urinary electrolyte concentrations. We found 305 

significant overall changes in mean urinary sodium (decrease) and mean urinary potassium 306 

(increase) in the HDR groups for all OmniHeart diets when compared to baseline values 307 

(Supplemental Table 5).  The mean changes in urinary electrolytes were of slightly greater 308 

magnitude when considering the subset of pre-hypertensive individuals within the HDR 309 
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groups for sodium: -31.3mmol/day (OmniCarb), -44.9mmol/day (OmniMFA), and -310 

35.9mmol/day (OmniProt); and potassium 26.4 mmol/day (OmniCarb), 28.4 mmol/day 311 

(OmniMFA) and 24.7 mmol/day (OmniProt), P<0.001 (data not shown).  This general trend 312 

in mean urinary sodium and potassium levels was apparent for the adherent-VDR groups but 313 

the changes from baseline level were insignificant. With regard to the inter-comparison 314 

between OmnniHeart diets, no systematic differences were observed in the electrolyte levels 315 

with the exception of higher urinary sodium and phosphate levels being characteristic of the 316 

OmniProt-HDR when compared to the OmniMFA-HDR group (P<0.01, data not shown). No 317 

systematic differences in electrolytes were expected as micronutrients such as potassium, 318 

sodium, calcium and magnesium were indexed to the energy level from the diet for each 319 

participant (19).   320 

 We also investigated the changes in CVD risk factors post-diet and found a significant 321 

(P<10-10) reduction in all HDR diet groups when compared to the baseline for systolic and 322 

diastolic BP, LDL and total cholesterol. Additionally, the reduction in serum triglyceride 323 

concentrations was significant for the OmniProt-HDR group; and HDL for the OmniCarb-324 

HDR and OmniProt-HDR groups, P<0.05, (Figure 2).  High risk individuals such as those 325 

who were hypertensive or those with non-optimal lipid profiles in the HDR groups showed 326 

greater reduction in these CVD risk factors than low risk individuals (Supplemental Figure 327 

2).  For all the VDR groups, a dampened reduction in CVD risk factors was generally 328 

observed when compared to the corresponding HDR comparator groups (Figure 2).  A 329 

significant (P<0.05) reduction in systolic and diastolic BP was observed in both the adherent- 330 

and non-adherent-OmniMFA-VDR and the non-adherent-OmniProt-VDR groups; whilst the 331 

adherent- and non-adherent-OmniProt-VDR groups also generally showed significant 332 

reductions for LDL, HDL and total cholesterol although the magnitude of the change in CVD 333 

risk factors was generally more variable than that observed for the corresponding HDR 334 
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groups.  The observed lack of dietary-induced clinical benefit in the adherent-VDR groups 335 

may be partially due to the reduced sample size (N<10) following stratification of the cohort.  336 

In addition to the observation that HDR groups of all three OmniHeart diets generally elicited 337 

a reduction in CVD risk factors when compared to typical American diets, we also found the 338 

HDR-OmniProt group generally showed a larger overall reduction in the CVD risk factors 339 

when compared to the HDR-OmniMFA and HDR-OmniCarb groups (Supplemental Figure 340 

3).   341 

 342 

Stratification of individual response based on urinary metabolic phenotypes  343 

 From a cohort of 158 individuals, who partook in all three dietary interventions, we 344 

were able to stratify individuals according to diet-response specific urinary phenotypes; 345 

corresponding to those who demonstrated: HDR to all three diets (N=95, 60.1%; Group 1); 346 

HDR to two diets but VDR to one diet (N=35, 22.2%; Group 2); HDR to only one diet but 347 

VDR to two diets (N=22, 13.9%; Group 3); non-adherent-VDR to all three diets (N=4, 2.5%; 348 

Group 4); and mix of non-adherent- and adherent-VDR to all three diets (N=2, 1.3%; Group 349 

5).   Moreover, we were able to further sub-stratify individuals in the VDR groups that 350 

demonstrated a dampened clinical response into those participants that were: a) adherent to 351 

diets but showed differences in metabolic phenotypes from the majority of participants 352 

(including gut-microbial co-metabolites; N=12, 7.6%); b) non-adherent to one or more diet 353 

(N=40, 25.3%); or c) a combination of the two (N=11, 7.0%), Table 3. We found that 354 

individuals consistently classified as HDR for all three OmniHeart diets generally manifested 355 

a greater reduction in CVD risk factors than those that were classified as HDR for just one or 356 

two of the OmniHeart (Supplemental Figure 4).       357 

  358 

DISCUSSION  359 
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We show that the majority, but not all, of the participants responded similarly in terms 360 

of their expressed metabolic phenotype to a particular diet and that each of the three diets had 361 

a distinct effect on the metabolism. However, regardless of the macronutrient differences 362 

between the three OmniHeart diets and the diet-specific impact on the metabolic profile, the 363 

majority of participants (60.1%), demonstrated post-diet improvement in clinical risk factors 364 

for CVD. We applied an agnostic multivariate statistical tool to identify participants who 365 

showed a coherent biochemical response (HDR) to each of the diet and sub-divided the 366 

dataset into high- and low-risk individuals based on their BP status or lipid profiles.  Although 367 

both groups demonstrated a coherent biochemical response irrespective of the CVD risk status 368 

the high-risk groups generally demonstrated a larger reduction in CVD risk factors than low-369 

risk individuals.  Our results thus demonstrate that manipulation of dietary macronutrient 370 

content, without alteration of caloric intake and body weight, can elicit coherent changes in 371 

metabolic profiles and contribute to beneficial effects on both BP levels and lipid profiles  372 

Notably, we identified two gut microbial-host co-metabolites associated with BP: 373 

phenylacetylglutamine and 4-cresyl sulfate, deriving from phenylalanine and tyrosine, 374 

respectively, resulting from bacterial putrefaction of protein in the distal colon. The gut 375 

microbiota, in particular Firmicutes and Bacteroidetes, can adapt to dietary changes and 376 

induce changes in host metabolism (35): an increase of Firmicutes to Bacteroidetes ratio has 377 

been demonstrated in spontaneous hypertensive rats (36).  Other researchers have 378 

manipulated gut microbiota balance via probiotic administration with consequent beneficial 379 

effects on BP levels (37).  More recently, blood levels of phenylacetylglutamine were found 380 

to be strongly anti-correlated with BP, consistent with our results, and with carotid-femoral 381 

pulse-wave velocity, a measure of aortic stiffness (38).  Although 4-cresyl sulfate has never 382 

been formally linked to BP, its dietary excretion has been shown to be highly correlated with 383 

that of phenylacetylglutamine (16).  384 
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The association between gut-microbial co-metabolites and BP is further evidenced in 385 

the direct association we found between BP and hippurate, originating from the conversion of 386 

benzoic acid by gut microflora via the shikimate pathway (39). In contrast to our results, 387 

hypertensive rats showed an anti-correlation between hippurate and BP (40) but interpolation 388 

from animal data to human must be performed with care due to the differences in the gut 389 

microbiome between species.  An inverse association between excretion of hippurate and BP 390 

has been reported in humans but this association was not significant after adjusting for body-391 

mass-index, alcohol intake, and urinary excretion of sodium and potassium (41). A controlled 392 

feeding study by Wu et al showed that changes in the gut microbiome occurred within 24-h of 393 

initiating a change in diet (35) and that body-mass-index and weight loss can also influence 394 

the gut-microbiome composition.  However, in our dietary intervention study, all participants 395 

consumed a consistent healthy dietary pattern for 6 weeks and maintained their body weight, 396 

with micronutrients being indexed to the energy level of their diets.  Our data, therefore, 397 

suggest modulation of diets can affect gut microbiome activity and that this may lead to a 398 

direct effect on BP regulation.  399 

We observed an inverse association of N-methyl-2-pyridone-5-carboxamide 400 

(tryptophan-NAD metabolite) and BP.  Bartus et al showed that ingestion of 1-401 

methylnicotinamide in hypertriglyceridemic rats resulted in an increase of 1-402 

methylnicotinamide and its metabolites such as N-methyl-2-pyridone-5-carboxamide and 403 

found that ingestion of 1-methylnicotinamide in both the diabetic and hypertriglyceridemia 404 

rats can ameliorate the nitric oxide dependent vasodilation, a surrogate marker for 405 

atherosclerosis (42). Others have found that 1-methylnicotinamide demonstrates anti-406 

thrombotic activity (43). Our findings further support the beneficial impact of N-methyl-2-407 

pyridone-5-carboxamide on CVD health. We suggest, the tryptophan-NAD pathway may 408 

offer a new target for pharmacological treatment of hypertension.   409 
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We also confirmed the association of dietary markers with BP including: a direct 410 

association between BP and carnitine (a marker for protein ingestion); and an inverse 411 

association with proline-betaine (citrus fruit ingestion).  Our results are consistent with 412 

previous studies linking hypertension with blood concentration of carnitine (44) and 413 

variations in BP following carnitine treatment in rats (45). Similarly our results support the 414 

previously postulated benefit of citrus fruit intake in reduction of BP (34).  Specifically for the 415 

OmniProt diet, despite the increased excretion of carnitine, a marker which was linked to 416 

higher BP, overall beneficial reductions in CVD risk factors (both BP levels and lipid 417 

profiles) was elicited and these benefits persisted for those who were considered as typical 418 

(HDR) as well as variable (VDR) responders.  The specific mechanisms for this remain 419 

unclear although it may be hypothesized that the altered large-bowel microbiome following 420 

protein rich dietary intervention may play a significant role.   421 

 We investigated our data stratified by responders (HDR groups) and non-responders 422 

(VDR groups) to ascertain whether the lack of demonstrated response was purely due to poor 423 

adherence to diet.  We used a marker of citrus fruits, proline-betaine, as a proxy for dietary 424 

adherence to OmniHeart diets, as participants were given citrus fruits as part of their diets. 425 

Using the level of proline-betaine excretion at <95% CI of the HDR groups as a cutoff, we 426 

estimated non-adherence contributed to the dampened clinical responses for 9.5% to 22.2% of 427 

the participants, depending on the type of OmniHeart diet.  These non-adherence values are 428 

considerably higher than the <5% non-adherence estimated from the self-reported data from 429 

this study (4) and provided an additional objective measure to the mean urine urea nitrogen 430 

measurements, reflecting protein intake, which was highest on the protein rich diet. Our 431 

modeling strategy thus provided an objective method for classification of individuals in the 432 

VDR groups as non-adherent to each of the OmniHeart diets.  The remaining discrepancy in 433 

metabolic response in individuals showing good dietary adherence was mainly attributable to 434 
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variation in the excretion of gut microbial metabolites (7.6%). These results are consistent 435 

with findings from a recent study by Zeevi et al (46) who showed inter-individual differences 436 

in glycaemic response to foods and that this was correlated with differences in the 437 

composition of the microbiome.   438 

As a feeding study, this study has several strengths including: the provision of all meals 439 

to participants where their body weights were held constant throughout the feeding periods, 440 

thereby removing the confounding effect of weight loss; the inclusion of 24-h urine collection; 441 

and the randomized cross-over design all add rigor to the study.  Further, we have included 442 

individuals from high CVD risk groups such as African American (~50%) and pre-hypertensive 443 

patients (~80%), which strengthens the general applicability of our stratification pipeline, 444 

although we recognize large proportion of our participants were either overweight or obese and 445 

therefore not reflective of the general population. However, this reflects the higher incidence 446 

of obesity among the African American. Since, by design, participants’ weight remained the 447 

same throughout the study, our models were not adjusted for body-mass-index.  We also did 448 

not adjust for socioeconomic status based on previous findings in a large scale cross sectional 449 

study, which demonstrated that the inverse association with BP was explained mostly by dietary 450 

differences (47).   451 

Our study represents one of the largest dietary interventions of its kind where many 452 

prior nutritional metabolic phenotyping studies have typically involved a small number of 453 

participants (N< 25) (48, 49).  In this study, we used food frequency questionnaires to describe 454 

participants’ food intake during the screening visit (baseline) and this information was used to 455 

estimate the average intended food intake to maintain the participants’ body weight throughout 456 

the isocaloric feeding periods.  However, one limitation was that we were unable to perform 457 

more detailed analysis on individual dietary components and the dose-response relationship 458 

with BP.  An additional limitation of the current study was the use of NMR spectroscopy as the 459 
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sole method of metabolic profiling.  Although the robustness of the technique is advantageous 460 

for generating high quality data, mass spectrometry would offer better sensitivity and selectivity 461 

and may have identified further candidate biomarkers relating to BP.  Nonetheless, we were 462 

able to uncover a number of biomarkers related to BP and these biomarkers were structurally 463 

authenticated.  464 

In this global profiling study, we opted to use urine as our choice of biofluid as urine 465 

contains rich source of information encompassing the influence of dietary and gut microbiota.  466 

We and others (41, 50) have successfully identified urinary discriminatory metabolites related 467 

to BP.  However, future studies should validate our findings by the use of urine specimens 468 

collected from independent epidemiological studies. Further to validating the candidate 469 

biomarkers related to dietary modulation of BP, a series of in vivo studies to establish causality 470 

would be necessary. For example, Menni et al have shown a possible causal relationship 471 

between hexadecanedioate with BP using rodent models (51).  472 

Our strategy illustrates the feasibility of adopting a rational stratification approach for 473 

diabetologists/cardiologists/dieticians to identify individuals’ non-adherence to diets and to 474 

optimize clinical responses to therapy. Extending this concept, we can envisage that further 475 

characterization of inter-individual responses to healthy diets as determined by an individual’s 476 

phenotypic patterns and further determining an individual’s longitudinal phenotypic stability 477 

prior to a healthy dietary intervention would need to be developed for the identification of latent 478 

sub-phenotypes. This may confer a public health benefit with potential to provide a personalized 479 

approach to dietary recommendations aimed at optimizing prevention of CVD and related 480 

disorders.  481 

In conclusion, variation in metabolic phenotypes in response to specific healthy diets 482 

may hold clues as to the mechanisms underlying inter-individual variations in response to 483 

dietary modulation and points the potential importance of the gut microbiome in accounting for 484 
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differences in dietary response and the subsequent impact on BP. The workflow presented here 485 

provides a clinically actionable framework to develop tailored dietary interventions designed 486 

to reduce BP and other CVD risk factors.    487 
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Table 1: Characteristics of participants completed all three OmniHeart diets (N = 158). 
 

Characteristics    P values 
Age, mean (SD) 53.1 (10.8)  
Ethics, N (%)   

 
 African American 86 (54.4%)  
 Non-African American 72 (45.6%)  
Gender, N (%)   

 
 Male 88 (55.7%)  
 Female 70 (44.3%)  
Hypertension, N (%)    
 Pre-hypertension 127 (80.4%)  
 Hypertension 31 (19.6%)  
Obesity status, N (%)   

 
 Normal range 32 (20.3%)  
 Overweight 53 (33.5%)  
 Obese 73 (46.2%)  
Smoking, N (%)    
 Current 18 (11.4%)  
 Former 42 (26.6%)  
 Never 98 (62%)  
Alcohol intake    
 No alcohol, N (%) 88 (56%)  

 
Serving per week 
among drinker, 
meanേSD 4.17േ3.5  

Education, N (%)    
 ≤ high school 32 (20.3%)  
 Some college 53 (33.5%)  
 College graduate 73 (46.2%)  
Mean changes of SBP from baseline (95% CI), mmHg  

 
 OmniCarb diet -8.0 (-9.4, -6.6) ‡ 
 OmniMFA diet  -9.4 (-10.7, -8.1) ‡ 
 OmniProt diet  -9.4 (-10.8, -8.1) ‡ 
Mean changes of DBP from baseline (95% CI), mmHg  
 OmniCarb diet -4.1 (-4.9, -3.3) ‡ 
 OmniMFA diet  -4.9 (-5.7, -4.1) ‡ 
 OmniProt diet  -5.3 (-6.1, -4.4) ‡ 
Mean changes of LDL from baseline (95% CI), mg/dL  
 OmniCarb diet -11.6 (-14.6, -8.6) ‡ 
 OmniMFA diet  -13.2 (-16.5, -9.9) ‡ 
 OmniProt diet  -14.4 (-17.7, -11.1) ‡ 
Mean changes of HDL from baseline (95% CI), mg/dL  
 OmniCarb diet -1.5 (-2.6, -0.3) * 
 OmniMFA diet  -0.4 (-1.4, 0.6)  
 OmniProt diet  -2.7 (-3.7, -1.7) † 
Mean changes of Triglyceride from baseline (95% CI), mg/dL  
 OmniCarb diet -0.2 (-9.1, 8.7)  
 OmniMFA diet  -9.7 (-17.9, -1.5) * 
 OmniProt diet  -16.5 (-25.8, -7.3) * 
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Abbreviations: N, number of individuals; SD, standard deviation; CI, confidence interval; 

SBP, systolic blood pressure; DBP, diastolic blood pressure; HDL, high-density lipoprotein 

cholesterol; LDL, low-density lipoprotein cholesterol. 

T-test comparison between baseline clinical data and after each dietary intervention: * 

p<0.05; † p<10-5; ‡ p<10-10.  

 

 

 

Mean changes of total cholesterol from baseline (95% CI), mg/dL  
 OmniCarb diet -12.5 (-15.8, -9.1) ‡ 
 OmniMFAdiet  -15.6 (-19.2, -11.9) ‡ 
  OmniProt diet  -20.2 (-23.7, -16.69) ‡ 
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Table 2: Estimated mean differences in CVD risk factors.  The systolic and diastolic BP, LDL and total cholesterol mean differences per 2 

standard deviation (SD) increase in absolute excretion for the comparison between baseline and post OmniHeart diets; and between different 

OmniHeart diets for the HDR groups.  

Urinary metabolites 
2SD 
excretion SBP 

(mmHg) 
DBP 
(mmHg) 

LDL 
(mg/dL) 

Total 
Cholesterol 
(mg/dL) (mmol/L) 

 Homogeneous dietary responder for OmniCarb diet vs Baseline (N=137) 
proline-betaine 1.25 -4.10 (-2.90) † -1.77 (-2.15) * -3.90 (-1.26) -3.94 (-1.17) 
Hippurate 3.47 6.14 (4.64) ‡ 2.27 (2.79) † -1.47 (-0.48) 2.70 (0.80) 
N-methyl-2-pyridone-5-carboxamide 0.21 -3.03 (-2.24)* -1.77 (-2.19) * 2.22 (0.75) 3.49 (1.11) 
N-methyl nicotinic acid 0.27 -0.20 (-0.14) 0.59 (0.71) -1.94 (0.64) -0.25 (-0.07) 
N-methyl nicotinamide 0.03 -0.86 (-0.60) -0.75 (-0.97) 0.60 (0.20) -0.55 (0.17) 
      
 Homogeneous dietary responders for OmniMFA vs Baseline (N=127) 
proline-betaine 0.87 -3.53 (-2.76) † -1.73 (-2.20) * 2.41 (0.73) 1.87 (0.48)       
 Homogeneous dietary responders for OmniProt vs Baseline (N=113) 
proline-betaine 0.74 -1.16 (0.74) 0.14 (0.16) 1.31 (0.33) -1.42 (-0.33) 
Carnitine 0.29 3.11 (1.99) * 1.13 (1.38) 0.45 (0.11) 1.03 (0.24) 
Creatine 1.62 1.54 (1.05) -1.19 (-0.24) -4.34 (-1.11) -6.87 (-1.65) 
      
 Homogeneous dietary responders for OmniCarb vs OmniMFA (N=113) 
Guanodinoacetate 0.95 0.29 (0.35) 0.06 (0.09) -0.51 (-0.21) 2.70 (0.94) 
      
 Homogeneous dietary responders for OmniCarb vs OmniProt (N=134) 
Phenylacetylglutamine 0.70 -0.89 (-0.96) -0.93 (-1.42) -2.82 (-1.18) -0.44 (-0.15) 
4-cresyl sulfate 0.27 0.06 (0.07) 0.73 (1.11) -0.91 (-0.79) 1.02 (0.35)       
 Homogeneous dietary responders for OmniMFA vs OmniProt (N=118) 
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Phenylacetylglutamine 0.68 -1.7 (-1.93) -1.89 (-3.32) † 0.31 (0.13) -0.33 (-0.14) 
4-cresyl sulfate 0.30 -2.68 (-3.05) † -2.15 (-3.74) † 0.73 (0.31) -0.27 (-0.11) 

 

Abbreviations: N, number of individuals; SD, standard deviation; CI, confidence interval; SBP, systolic blood pressure; DBP, diastolic blood 

pressure; LDL, low-density lipoprotein cholesterol.  Key: * p<0.05; † p<0.01; ‡ p<0.001 

 

 

The correlation between changes of metabolites and CVD factors were evaluated by linear regression. 2SD excretion of each urinary metabolite 

was calculated by the absolute differences between dietary comparisons.  Numbers in parenthesis are Z-scores, i.e. regression coefficient divided 

by standard error (|Z-score|≥1.96, p<0.05; ≥2.58, p<0.01; ≥3.89, p<0.001).  NMR chemical shifts (multiplicity) used for quantification: proline-

betaine, 3.11 (singlet); hippurate, 7.64 (triplet); N-methyl-2-pyridone-5-carboxamide, 6.67 (doublet); N-methyl nicotinic acid, 4.44 (singlet); 

N-methyl nicotinamide, 8.89 (triplet); carnitine, 3.23 (singlet); creatine, 3.93 (singlet); guanodinoacetate, 3.80 (singlet); 

phenylacetylglutamine, 7.43 (triplet); 4-cresyl sulfate, 2.35 (singlet).   
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Table 3: Stratification by urinary phenotypes.  Individuals were stratified based on diet-

specific urinary phenotypes. 

Summary of sub-phenotypes N % 

Group 1: HDR to all three diets 95 60.1% 

Group 2: HDR to two diets but  VDR to one diet 35 22.2% 

 
a) Non-adherent-VDR to the other diet 25 15.8% 

 b) Adherent-VDR to the other diet 10 6.3% 

Group 3: HDR to one diet but VDR to two diets 22 13.9% 

 
a) Non-adherent-VDR to the other two diets 11 7.0% 

 b) Adherent-VDR to the other two diets 2 1.2% 

 

c) Mixed response – non-adherence-VDR to one diet and adherence-

VDR to the other diet 9 5.7% 

Group 4: Non-adherence-VDR to all three diets 4 2.5% 

Group 5: Mix of non-adherence and adherence to all three diets 2 1.3% 
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Figure 1: The observed mean differences in excretion for hippurate between homogeneous 

(HDR), adherent- and non-adherent variable dietary response (VDR) groups when OmniHeart 

diets and their corresponding baseline spectra were compared.  Open squares, OmniCarb-

HDR (N=137); light-grey closed squares, adherent- OmniCarb-VDR (N=6); dark-grey closed 

square, non-adherent-OmniCarb-VDR (N=15); open circle, OmniMFA-HDR (N=127); light-

grey closed circle, adherent- OmniMFA-VDR (N=10); dark-grey closed circle, non-adherent-

OmniMFA-VDR (N=21); open triangle, OmniProt-HDR (N=113); light-grey closed triangle, 

adherent- OmniProt-VDR (N=10); dark-grey closed triangle, non-adherent-OmnProt-VDR 

(N=35). Error bars indicate 95% confidence interval.  Significant t-test comparison between 

baseline and post OmniHeart diets: * p<0.05; † p<10-5; ‡ p<10-10. 

 

Figure 2: Key observations for changes in the cardiovascular disease risk factors showing 

differences in homogeneous and variable dietary response groups for the comparisons 

between each OmniHeart diet and baseline corresponding to the changes in: (A) systolic BP; 

(B) diastolic BP; (C) LDL; (D) HDL; (E) triglycerides; (F) total cholesterol.   Open squares, 

OmniCarb-HDR (N=137); light-grey closed squares, adherent- OmniCarb-VDR (N=6); dark-

grey closed square, non-adherent-OmniCarb-VDR (N=15); open circle, OmniMFA-HDR 

(N=127); light-grey closed circle, adherent- OmniMFA-VDR (N=10); dark-grey closed circle, 

non-adherent-OmniMFA-VDR (N=21); open triangle, OmniProt-HDR (N=113); light-grey 

closed triangle, adherent- OmniProt-VDR (N=10); dark-grey closed triangle, non-adherent-

OmnProt-VDR (N=35). Error bars indicate 95% confidence interval.  Missing data include: 

LDL (N=2 for OmniMFA-VDR, OmniProt-VDR, OmniMFA-HDR, OmniProt-HDR and N=3 

for OmniCarb-HDR); HDL (N=1 for OmniMFA-VDR and OmniProt-VDR); triglycerides 

(N=1 for OmniMFA-VDR and OmniProt-VDR); and total cholesterol (N=1 for OmniMFA-
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VDR and OmniProt-VDR).  Significant t-test comparison between baseline and post 

OmniHeart diets: * p<0.05; † p<10-5; ‡ p<10-10. 


