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Abstract. We propose a new preconditioner for the Ohta–Kawasaki equation, a nonlocal Cahn–
Hilliard equation that describes the evolution of diblock copolymer melts. We devise a computable
approximation to the inverse of the Schur complement of the coupled second-order formulation via
a matching strategy. The preconditioner achieves mesh independence: as the mesh is refined, the
number of Krylov iterations required for its solution remains approximately constant. In addition,
the preconditioner is robust with respect to the interfacial thickness parameter if a timestep criterion
is satisfied. This enables the highly resolved finite element simulation of three-dimensional diblock
copolymer melts with over one billion degrees of freedom.
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1. Introduction. The Ohta–Kawasaki equation [14] models the evolution of di-
block copolymer melts. A diblock copolymer is a polymer consisting of two subchains
of different monomers that repel each other but are joined by a covalent bond. A large
collection of these molecules is termed a melt. These melts are of scientific and engi-
neering interest because they undergo phase separation of their different constituent
monomers, allowing for the design of nanostructures with particular desirable prop-
erties. The numerical simulation of this equation is an essential tool in exploring the
associated phase diagram [4].

The Ohta–Kawasaki functional describes the free energy of a diblock copolymer
melt:

E[u] =
1

2

∫
Ω

(
ε2 |∇u|2 +

1

2

(
1− u2

)2
+ σ

∣∣∣(−∆N )−1/2(u−m)
∣∣∣2) dx, (1.1)

where u = ±1 denotes the two pure phases, Ω is the domain under study ((0, 1)2 or
(0, 1)3), ε � 1 is the interfacial thickness between regions of the pure phases, σ is
the nonlocal energy coefficient, m is the (conserved) average value of u in Ω, and ∆N

denotes the Laplacian with homogeneous Neumann boundary conditions; a mean-
zero constraint is applied to eliminate the nullspace. Assuming that the dynamics are
governed by a H−1(Ω) gradient flow,

(ut, φ)H−1(Ω) + E′[u;φ] = 0 ∀φ ∈ {v ∈ H1(Ω) :

∫
Ω

v dΩ = 0}, (1.2)
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the resulting Ohta–Kawasaki dynamic equation on Ω × (0, T ] in strong second-order
form is given by [16]

ut −∆w + σ(u−m) = 0, (1.3a)

w + ε2∆u− u(u2 − 1) = 0, (1.3b)

with homogeneous Neumann boundary conditions

∇u · n = 0 and ∇w · n = 0, (1.4)

and with initial condition u(x, 0) = u0(x).

2. Approximating the Schur complement. After applying a finite element
discretization in space and the θ-method in time, a discrete nonlinear problem must
be solved at each timestep. Each Newton iteration involves solving a linear system of
the form

J

[
δu
δw

]
=

[
(1 + ∆tθσ)M ∆tθK
−ε2K −ME M

] [
δu
δw

]
=

[
f1

f2

]
. (2.1)

where J is the Jacobian, M is the standard mass matrix with entries of the form∫
Ω
φiφj dΩ, K is the standard discretization of the Neumann Laplacian with entries∫

Ω
∇φi · ∇φj dΩ, ME is a mass matrix involving a spatially varying coefficient with

entries
∫

Ω
(3u2 − 1)φiφj dΩ, δu is the update for u, δw is the update for w, f1 and

f2 gather the source term and contributions from previous time levels, and ∆t is
the timestep. As the discretization is refined and the dimension of (2.1) increases,
it becomes impractical to employ direct solvers and preconditioned Krylov methods
must be used instead. As the matrix in (2.1) is nonsymmetric, a suitable iterative
solver such as GMRES [18] is required to compute its solution.

We note however that there are structures within the system that can be ex-
ploited within a solver. For example, M is symmetric positive definite, K is symmet-
ric positive semidefinite (with one zero eigenvalue corresponding to the nullspace of
constants), and ME is symmetric.

Preconditioners for block-structured matrices typically involve approximating the
Schur complement of the system. Let the Jacobian J be partitioned as

J =

[
A B
C D

]
. (2.2)

Consider the preconditioner

P−1 =

[
A 0
C S

]−1

=

[
A−1 0

0 S−1

] [
I 0

−CA−1 I

]
, (2.3)

where S = D − CA−1B is the Schur complement with respect to A. If exact inner
solves are used for A−1 and S−1, then the preconditioned operator P−1J has minimal
polynomial degree two and GMRES converges exactly in two iterations [9, 13]. Here,
A is a scaled mass matrix and is thus straightforward to solve with standard techniques
such as Chebyshev semi-iteration [19]. Thus, the efficient preconditioning of S is the
key to the fast solution of the Newton step (2.1), and thus of the dynamic Ohta–
Kawasaki equations (1.3a)–(1.3b).

The Schur complement of (2.1) is

S = M + ε2cKM−1K + cMEM
−1K, (2.4)
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with c = (∆tθ)/(1 + ∆tθσ) > 0. In general it is very difficult to precondition the sum
of different matrices. The approach adopted here is the matching strategy of Pearson
and Wathen [17, 3]: the sum is approximated by the product of matrices, carefully
chosen to match as many terms of the sum as possible. We propose the approximation

S ≈ S̃ = ŜM−1Ŝ, (2.5)

with

Ŝ = M + ε
√
cK. (2.6)

This approximation S̃ is the product of three invertible matrices, and so its inverse
action can be efficiently computed by

S̃−1 = Ŝ−1MŜ−1. (2.7)

The action of Ŝ−1 can be efficiently approximated with algebraic multigrid techniques
[8] to yield a computationally cheap preconditioner.

Expanding the approximation (2.5), we find that it matches the first two terms
of the Schur complement exactly:

S̃ = M + ε2cKM−1K + 2ε
√
cK. (2.8)

Recall that ME depends on the current estimate of the solution u. With this matching
strategy, the term involving ME in the Schur complement (2.4) has been neglected, so
that S̃ does not vary between Newton iterations and no reassembly or algebraic multi-
grid reconstruction is required. The Schur complement approximation S̃ is straight-
forward and feasible to apply, and its effectiveness within a preconditioner will depend
to a large extent on the effect of the neglected third term from S. In the next section
we present some analysis to explain why we expect our approximation to work well
as a preconditioner.

We note in passing that it is possible to rearrange (2.1) to the symmetric form[
∆tθ

1+∆tθσK M

M −ε2K −ME

] [
δw
δu

]
=

[
1

1+∆tθσf1

f2

]
. (2.9)

It is likely that a similar approach could be used to precondition this rearranged sys-
tem, providing one takes into account the singular (1, 1)-block. For instance, provided
ε2K + ME is positive semidefinite, one could apply a recently proposed augmented
preconditioner [12]. Furthermore, as discussed in the next section, it is more straight-
forward to prove the rates of convergence of iterative methods for symmetric systems.
However, whereas the (1, 1)-block A of (2.1) may be well approximated using Cheby-
shev semi-iteration, the stiffness matrix K arising in the (1, 1)-block of the rearranged
system would require a more expensive method such as a multigrid process. We there-
fore prefer to solve the nonsymmetric system (2.1) due to the ease with which we may
compute the approximate action of A−1.

3. Analysis. We now wish to justify why our preconditioner is likely to be ef-
fective for the problem being solved. It is well-known that for nonsymmetric matrix
systems it is extremely difficult to provide a concrete proof for the rate of conver-
gence of an iterative method, as opposed to symmetric systems for which convergence
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is controlled only by the eigenvalues of the preconditioned system P−1J . For nonsym-
metric operators the spectrum alone does not determine the convergence of GMRES
[7]; furthermore, the usual techniques for establishing eigenvalue bounds do not apply
to the nonsymmetric case [3]. However, in practice, the tight clustering of eigenvalues
for the preconditioned system frequently leads to strong convergence properties, even
though this is not theoretically guaranteed. We present an analysis that establishes
spectral equivalence of the proposed preconditioner, and corroborate this analysis
with numerical experiments in section 4 which demonstrate mesh independence.

Observe that when applying the preconditioner[
Ã 0

C S̃

]−1

=

[
Ã−1 0

0 S̃−1

] [
I 0

−CÃ−1 I

]
(3.1)

for the Jacobian J , the crucial steps are applying Ã−1 and S̃−1. For the matrix
system (2.1), the inverse of the sub-block A = (1 + ∆tθσ)M may be approximated
accurately and cheaply using a Jacobi iteration or Chebyshev semi-iteration [5, 6, 19].
It is therefore instructive to consider the preconditioned system[
A 0

C S̃

]−1 [
A B
C D

]
=

[
A−1 0

0 S̃−1

] [
I 0

−CA−1 I

] [
A B
C D

]
=

[
I A−1B

0 S̃−1S

]
, (3.2)

where the inexactness of our preconditioner arises from the stated approximation S̃
of the Schur complement S. The eigenvalues of this system, which serve as a guide as
to the effectiveness of the preconditioner, are either equal to 1 or correspond to the
eigenvalues of S̃−1S.

We therefore examine the spectrum of the preconditioned Schur complement
S̃−1S, the matrix which governs the effectiveness of our algorithm, in the ideal set-
ting where the matrix M + ε

√
cK is inverted exactly. We first present a short result

concerning the reality of the eigenvalues.
Lemma 3.1. The eigenvalues of S̃−1S are real.
Proof. If v ∈ null(K) and v 6= 0, then

Sv = λS̃v (3.3)

implies

Mv = λMv, (3.4)

and hence λ = 1 ∈ R.
On the other hand, if v /∈ null(K), then (3.3) implies

KM−1Sv = λKM−1S̃v ⇒ Fv = λGv ⇒ v∗Fv = λv∗Gv, (3.5)

where the matrices F and G are given by

F = K + ε2cKM−1KM−1K + cKM−1MEM
−1K, (3.6)

G = K + ε2cKM−1KM−1K + 2ε
√
cKM−1K. (3.7)

Using the symmetry of F and G, it follows that v∗Fv and v∗Gv are real (with v∗Gv
also positive), and hence λ ∈ R.

To motivate why S̃ should serve as an effective approximation of S, we now make
use of the above analysis to present a result on the eigenvalues of S̃−1S.
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Lemma 3.2. The eigenvalues of S̃−1S satisfy:

λ(S̃−1S) ∈
[

1

2
− 1

4ε

√
c, 1 +

1

4ε

√
cλ+

]
, (3.8)

with λ+ = max{λmax(M−1ME), 0}, and λmax the maximum eigenvalue of a matrix.
Proof. As for Lemma 3.1, we split the analysis into two cases. The setting where

v ∈ null(K) is again straightforward, and the resulting eigenvalue is λ = 1.
In the case v /∈ null(K), we examine (3.5) once more. Then,

λ =
v∗Fv

v∗Gv
= 1− 2ε

√
c v∗KM−1Kv

v∗(K + ε2cKM−1KM−1K + 2ε
√
cKM−1K)v︸ ︷︷ ︸

R1

+ c
v∗KM−1MEM

−1Kv

v∗(K + ε2cKM−1KM−1K + 2ε
√
cKM−1K)v︸ ︷︷ ︸

R2

.

First observe that R1 > 0. To find an upper bound on R1, we note that R1 =
(a∗b + b∗a)/(a∗a + b∗b + a∗b + b∗a), where a = K1/2v, b = ε

√
cK1/2M−1Kv, and

therefore R1 ≤ 1
2 by simple algebraic manipulation. Therefore R1 ∈ (0, 1

2 ].
Next, observe that

R2 = c
v∗KM−1MEM

−1Kv

v∗KM−1Kv︸ ︷︷ ︸
R2,1

· v∗KM−1Kv

v∗(K + ε2cKM−1KM−1K + 2ε
√
cKM−1K)v︸ ︷︷ ︸

R2,2

.

As R2,2 = 1
2ε
√
c
R1, we see that R2,2 ∈ (0, 1

4ε
√
c
]. Further, writing v̄ = M−1/2Kv 6= 0,

we observe that

R2,1 =
v̄∗M−1/2MEM

−1/2v̄

v̄∗v̄
∈
[
λmin(M−1ME), λmax(M−1ME)

]
by considering cases where R2,1 could be positive or negative. Writing the function
associated with v as vh =

∑
i viφi, where vi denote the entries of v and φi denote the

basis functions of the finite element discretization, we see that

v∗MEv =

∫
Ω

(3u2 − 1)v2
h dΩ ≥ −

∫
Ω

v2
h dΩ = −v∗Mv,

and hence that λmin(M−1ME) ≥ −1. Combining the derived bounds, we see that
R2 ∈ [− 1

4ε

√
c, 1

4ε

√
cλ+], which leads to bounds for λ(S̃−1S) as above.

Remark 3.1. If each Newton iterate satisfies u ≤ 1, as guided by the values at
the two pure phases, it also holds that λmax(M−1ME) ≤ 2.

We also note that we observe the largest eigenvalue of M−1ME to be mesh in-
dependent, and that the bounds for λ(S̃−1S) can therefore be driven tighter by de-
creasing ∆t. Therefore, as the dimension of the matrix system is increased by taking
a finer discretization in space or time, we predict that our preconditioner should not
worsen in performance. A necessary requirement for the choice of ∆t is to ensure that
the smallest eigenvalue of S̃−1S is bounded away from 0. This is equivalent to writing

1

4ε

√
c <

1

2
⇔

√
c < 2ε ⇔ ∆t <

4ε2

θ
(1 + ∆tθσ),
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which is guaranteed as ε→ 0 provided ∆t < 4ε2

θ . We uphold this condition on ∆t in
our numerical tests.

Furthermore, if ∆t is chosen to scale like ε2, then the eigenvalue bounds asymptote
to a constant as the interfacial thickness parameter ε → 0. Hence, we also expect
the preconditioner to be robust to changes in this parameter. Note that the scaling
∆t ∼ ε2 is typically necessary for stability in time discretization schemes [1], and
thus this criterion does not represent an additional restriction on the timestep size.
As this scaling ensures that λ(S̃−1S) is bounded away from 0, it also ensures that
the eigenvalues of S itself are bounded away from 0, therefore guaranteeing that the
Schur complement is invertible.

In the next section we demonstrate how our proposed solver performs for a prac-
tical test problem, and examine whether the predicted robustness is achieved.

3.1. Comment on the symmetric matrix system. We now wish to detail
how our preconditioning strategy could be adapted to the symmetrized matrix system
(2.9). As the matrix K is not invertible due to the Neumann boundary conditions
imposed, one might instead devise a saddle point preconditioner for the perturbed
matrix

JD =

[
∆tθ

1+∆tθσKD M

M −ε2KD −ME

]
.

This preconditioner may then be used to solve the original system (2.9). Here, KD

denotes some perturbed version of K which is symmetric positive definite, but also
resembles closely the properties of K itself—for instance, one may achieve this by
artificially imposing a Dirichlet boundary condition somewhere in the domain.

Then, one may take as a preconditioner

PD =

[
∆tθ

1+∆tθσKD 0

0 S̃D

]
,

where S̃D approximates the negative Schur complement SD = 1
cMK−1

D M + ε2KD +
ME of JD. Using a similar matching strategy to that of Section 2 leads to the choice

S̃D =

(
1√
c
M + εKD

)
K−1
D

(
1√
c
M + εKD

)
=

1

c
MK−1

D M + ε2KD +
2ε√
c
M.

Eigenvalue bounds for S̃−1
D SD are identical to those in Lemma 3.2. In more detail,

they may be described using

λ =
vTSDv

vT S̃Dv
= 1−

2ε√
c
vTMv

vT S̃Dv︸ ︷︷ ︸
R̄1

+
vTMEv

vTMv︸ ︷︷ ︸
R̄2,1

· v
TMv

vT S̃Dv︸ ︷︷ ︸
R̄2,2

.

It can then be shown that R̄1 ∈ (0, 1
2 ] using the same argument as in Lemma 3.2,

except with a = 1√
c
K
−1/2
D Mv, b = εK

1/2
D v, and one can then use that R̄2,2 =

√
c

2ε R̄1.

Putting all the pieces together then produces the same bounds as before.
The advantage of this approach is that convergence with MINRES [15] would

depend solely on the eigenvalues of P−1
D JD.1 A disadvantage is that one must choose

1Some research has been carried out on analyzing the convergence of iterative methods for non-
symmetric systems in a similar way, such as the field-of-values analysis in [2, 10]. Even if this
approach were possible for the nonsymmetric matrix J discussed in this paper, it would require a
wholly different analysis.
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Fig. 4.1. The final concentration u of the simulation described in section 4. The solution
consists of regions of negative material (u ≈ −1, in blue) embedded within a background of positive
material (u ≈ 1, in red). The figure shows the isosurfaces corresponding to constant values of u.

precisely how to define KD, and must assemble an additional matrix.

4. Numerical results. The solver was implemented in 338 lines of Python using
version 1.6 of the FEniCS finite element library [11]2. The experiment conducted used
Ω = (0, 1)3, m = 0.4, ε = 0.02, σ = 100, and an initial condition of

u0(x, y, z) = m+ p(x, y, z), (4.1)

where the perturbation p must be chosen to have integral zero and satisfy ∇p · n = 0
on the boundary. In this experiment we chose

p(x, y, z) =
cos (2πx) cos (2πy) cos (2πz)

50
. (4.2)

The initial condition for w was computed from u0 via (1.3b). In this parameter regime
the solution is expected to consist of spherical regions of negative material (u ≈ −1)
embedded within a background of positive material (u ≈ 1), see Figure 4.1.

The discretization used standard piecewise linear finite elements for u and w, a
timestep ∆t = ε2, a final time T = 300∆t, and an implicitness parameter θ = 0.5.
The mesh was generated to achieve approximately 2.5 × 105 degrees of freedom per

2The code is available at http://bitbucket.org/pefarrell/ok-solver.

http://bitbucket.org/pefarrell/ok-solver
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Degrees of freedom (×106) Number of cores Iterations

0.265 1 8.2
2.060 8 8.0
16.24 64 8.0
128.9 512 8.0
1027 4096 8.0

Table 4.1
Average number of GMRES iterations per Newton step with preconditioner (2.3) and Schur

complement approximation (2.8) as the problem is weakly scaled. The number of iterations required
remains constant as the mesh is refined.

ε ∆x ∆t Iterations

0.02 0.01 0.0004 8.0
0.01 0.005 0.0001 8.0
0.005 0.0025 0.000025 8.0

Table 4.2
Average number of GMRES iterations per Newton step with preconditioner (2.3) and Schur

complement approximation (2.8) as the interfacial thickness ε is varied (and with it the spatial
discretization ∆x and timestep ∆t). The performance of the preconditioner does not change as
ε→ 0.

core, to investigate how the number of Krylov iterations required to solve (2.1) varies
as the mesh is refined. The preconditioner (2.3) approximated the action of A−1

with ten Chebyshev semi-iterations with SOR preconditioning, and approximated the
action of S−1 with two Richardson iterations of S̃−1. Each action of Ŝ−1 was in turn
approximated with five V-cycles of the BoomerAMG algebraic multigrid solver [8].
GMRES was used as the outer Krylov solver. Each timestep typically took one or at
most two Newton iterations.

The essential properties of a good preconditioner are that the Krylov iteration
counts are low, they grow slowly (if at all) with mesh refinement, and they are robust
to variation in parameters. We therefore examined the average number of Krylov
iterations required per Newton step in two numerical experiments: in the first, all
parameters were fixed, and only the mesh was refined; in the second, the interfacial
thickness ε was reduced, and with it the spatial discretization (to resolve the interface)
and the temporal discretization (to retain stability). The experiments were conducted
on Hexagon, a Cray XE6m-200 hosted at the University of Bergen, and ARCHER, a
Cray XC30 hosted at the University of Edinburgh.

The results of the first experiment are shown in Table 4.1. The average number
of Krylov iterations per Newton step remains very close to 8, even as the number of
degrees of freedom is increased by four orders of magnitude. The results of the second
experiment are shown in Table 4.2. The average number of Krylov iterations required
per Newton step does not vary as ε→ 0.

5. Conclusions. We have presented a new preconditioner for the Ohta–Kawasaki
equation that models diblock copolymer melts. An approximation to the Schur
complement was derived using a matching strategy. The proposed preconditioner
yields mesh independent convergence, is robust to changes in interfacial thickness if a
timestep criterion is satisfied, and requires no reassembly or reconstruction between



A PRECONDITIONER FOR THE OHTA-KAWASAKI EQUATION 9

Newton steps. This enables the solution of very fine discretizations with billions of
degrees of freedom.
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