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ABSTRACT 

Sociophonetic real-time studies of vowel variation and change rely on acoustic analyses of 

sound recordings made at different times, often using different equipment and data 

collection procedures. The circumstances of a recording are known to affect formant 

tracking and may therefore compromise the validity of conclusions about sound changes 

made on the basis of real-time data. In this paper, a traditional F1/F2-analysis using linear 

predictive coding (LPC) was applied to the vowels /i u a/ extracted from spontaneous 

speech corpora of Glaswegian vernacular, that were recorded in the 1970s and 2000s. We 

assessed the technical quality of each recording, concentrating on the average levels of 

noise and the properties of spectral balance, and showed that the corpus comprised of 

mixed quality data. A series of acoustic vowel analyses subsequently unveiled that formant 

measurements using LPC were sensitive to the technical specification of a recording, with 

variable magnitudes of the effects for vowels of different qualities. We evaluated the 

performance of three commonly used formant normalisation procedures (Lobanov, 

Nearey and Watt-Fabricius) as well as normalisations by a distance ratio metric and 

statistical estimation, and compared these results to raw Bark-scaled formant data, 

showing that some of the approaches could ameliorate the impact of technical issues better 

than the others. We discuss the implications of these results for sociophonetic research 

that aims to minimise extraneous influences on recorded speech data while unveiling 

gradual, potentially small-scale sound changes across decades. 

 

 
Keywords: Real-time corpus; Formants; Formant normalisation; Noise; SNR; Spectral tilt; 
Sociophonetic ‘gold standard’ 
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1. INTRODUCTION 

1.1. On the issue of comparability in sociolinguistic data 

Since its origins in the early 1960s, variationist sociolinguistics has been concerned with 

the methodological rigour of its quantitative enquiry. In the foreground of the early 

discussions were the issues primarily involving the data collection, such as the “Observer’s 

Paradox”, style shifts and sampling strategies (Labov 1972, Cukor-Avila, 2000). 

Subsequent studies have further unveiled the multitude of the potential sources of 

influences in sociolinguistic data, which include (and are not limited to) familiarity 

between the participant and the interviewer, presence of additional peers during the 

interview, the experience and elicitation strategies of the interviewer as well as the 

quantitative approaches to analysing the data (Labov 1972; Milroy 1987; Milroy and 

Gordon 2008; Llamas et al 2006; Tagliamonte 2006; see Tillery and Bailey (2003) for a 

critical overview). All of these factors may not only influence the observed results, thus 

misleading generalisations about the patterns of variation and change, but also reduce 

comparability of the results across different studies of the same sociolinguistic 

phenomena, undermining the core principles of methodologically sound research, 

reliability and intersubjectivity. 

Ultimately, sociolinguistic research aims to combine natural (or at least naturalistic) data 

which preserves the social identity (Scobbie and Stuart-Smith 2012) with a rigorous 

amelioration of any extraneous influences that can influence the data patterns. In their 

critical paper, Tillery and Bailey (2003) suggested that this standard can only be achieved 

through a solid understanding of the sources and the magnitudes of possible extraneous 

influences on sociolinguistic data patterns, and regretted the current lack of such 

understanding, calling for more research in this methodologically highly relevant area. 

The present study aims to contribute to this endeavour, and is concerned with the potential 

influences of technical specifications of recordings on the vowel formant measurements 

taken from them. Vowel formants are the core acoustic correlates of vowel quality typically 

obtained in sociophonetics (but see Harrington, Kleber and Reubold (2013) for an 

alternative set of acoustic measures), and have been scrutinised in many studies of sound 

variation and change (e.g. Fought 1999; Harrington, Cox and Evans 1997; Labov 1994; 

Labov, Ash and Boberg 2006; Maclagan et al. 2009; Mesthrie 2010). In an apparent-time 

setting, much care has traditionally been taken to account for the formant differences 

arising from speaker physiology, relating primarily to the age and the vocal tract size (e.g. 

Linvillea and Rens 2001), and to distinguish these physiological influences from the 

sociolinguistically relevant patterns produced by speakers of different ages and sexes (e.g. 

Labov, Ash and Boberg 2006). Numerous techniques have been developed, tested and 

compared in order to achieve the normalisation for speaker physiology while preserving 

the social indexicality of their speech (e.g. Adank, Smith and van Hout 2004; Clopper 2009; 

Watt and Fabricius 2002; see Flynn (2011) for an overview). We will discuss the most 

commonly used approaches in Sect. 3.3 below. 
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In contrast to this long-standing methodological debate characteristic of apparent-time 

studies, real-time studies of sound variation and change have rarely problematized 

potential issues involved in formant measurements of vowels. Trend studies with real-time 

data (recorded with different samples of individuals from the same community at different 

points in time) are unanimously recognised as a particularly insightful and reliable 

methodological setting for studying language change at a community level (e.g. Labov 

1994; Sankoff and Blondeau 2007; Trudgill 1988), primarily because they eliminate effects 

related to speaker age, such as age grading (Wagner 2012). However, real-time studies 

frequently rely on acoustic analyses of recordings of speech made using different 

equipment with variable technical specifications and following different recording 

procedures. To date, still little is known about the sources, types and magnitudes of 

technical influences on the formant data. In the next section, we will give an overview of 

the currently established effects, and hypothesise how they might play out in a real-time 

study of sound variation and change. 

1.2. Technical influences on formant measurements 

Not many studies have addressed the question of whether, and how, formant values 

(extracted using the traditional method of LPC) might be influenced by the equipment and 

set-up of a recording and its resulting technical specifications. A series of studies have been 

conducted in the context of forensic speaker identification (e.g. Byrne and Foulkes 2004; 

Künzel 2001); and only a few, mostly preliminary investigations have recently pointed out 

that technical issues of a recording may obscure the patterns of variation and change in 

sociophonetics, too (De Decker and Nycz 2011; De Decker 2016; Hansen and Pharao 2006; 

in progress). 

 

In terms of the recording equipment and set-up, several features have been identified to 

leave an imprint in the vowel spectrum and to impact on the measured formant values. 

First of all, the band-pass filtering due to the transmission by phone lines (both mobile and 

landline) is known to interfere with the calculation of the formants (Byrne and Foulkes 

2004; Künzel 2001). Harmonics that lie below the lower cut-off boundary (approximately 

300 Hz) and above the upper boundary (approximately 3.2 kHz in mobile phones and 3.5 

kHz in landline transmissions) are most affected, since their weighting in the calculation of 

the formant frequencies is decreased. This usually leads to artificially high frequencies of 

F1 (particularly in high vowels whose F1 is much stronger affected than the relatively high 

F1 of low vowels). However, even F2 whose frequencies fall within the transmitted range 

shows some technically introduced artefacts. In comparison to the values obtained from a 

recording made simultaneously with a studio microphone, F2 of high vowels tends to 

measure lower values in mobile recordings (Byrne and Foulkes 2004), though the effect 

tends to be smaller and has not been consistently documented in other phone 

transmissions (Künzel 2001). The exact magnitudes of these technically introduced effects 

also seem to vary substantially across different studies and types of phone transmissions, 

and range between 14 and as high as 60 percent of the original frequency (Byrne and 

Foulkes 2004; Künzel 2001). 
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Similar to the effects of band-pass filtering for a cost-effective phone transmission, 

compression algorithms used for a space-effective storage of video and digital audio 

recordings (as e.g. available on the internet) have been shown to influence spectral 

properties of speech recordings (De Decker and Nycz 2011; Rozborski 2007; van Son 

2005). F1 seems to be affected across the board, measuring higher values after a 

compression, while the impact on F2 is rather mediated by vowel quality, raising F2 in high 

vowels but lowering it in low vowels (De Decker and Nycz 2011). Again, the magnitude of 

these effects varies across studies and compression methods, ranging from negligible 

(≤3%, van Son 2005) to quite substantial (De Decker and Nycz 2011), with higher 

compression rates leading to a more significant distortion of the original recording 

(Rozborski 2007). Although mobile devices admittedly introduce numerical artefacts in 

the formant values during the transmission (cf. Byrne and Foulkes 2004), De Decker and 

Nycz (2011:54) argue that recordings made with some portable devices of the same 

manufacturer (here, Macbook Pro and iPhone) produce comparable measurements, and 

maintain an overall shape and size of the vowel space in comparison to uncompressed 

recordings (at least as far as F1 and F2 are concerned), thus lending themselves to a 

sociolinguistic investigation better than others (e.g. Mino-derived formats commonly used 

by YouTube). 

 

Apart from the influence the format of a recording can have on its spectra and formant 

measurements taken using LPC, somewhat less obvious factors, such as ambient noise, 

room acoustics, microphone make and placement during the recording session, have also 

been shown to leave their spectral imprints and interfere with formant measurements (De 

Decker 2016; Hansen and Pharao 2006, in progress; Plichta 2004; Švec and Granqvist 

2010). The quality of the recordings not controlled for such influencing factors will likely 

vary with respect to at least two technical specifications (cf. Švec and Granqvist 2010): (1) 

the levels of noise, typically measured by the signal-to-noise ratio, SNR (see 2.3) and (2) 

spectral balance (or tilt), reflected in the distribution of the intensity across lower vs. 

higher harmonics of the spectrum (see 2.3 for more detail).  

 

It is well known that high levels of background noise reduce intelligibility of speech (e.g. 

Pollack and Pickett 1958), but even recordings made in relatively quiet surroundings can 

differ with respect to their SNR. For example, hiss (or low-level white noise) can originate 

from analogue electronics, ground hum and buzz from improperly grounded systems: the 

fundamental of 50 or 60 Hz and their harmonics will be distinguishable in the recording 

spectrum (Corley 2010). An increased distance of the microphone from the sound sources 

can also decrease SNR, making the room reverberation and noises more prominent in a 

sound recording (Corley 2010:57). Omnidirectional microphones usually pick up more 

background noise than directional ones, with the small-tip versions producing particularly 

noisy recordings (Švec and Granqvist 2010). In such increased noise levels (reflected in 

lower SNR, see 2.3), formants often appear very faint or have larger bandwidths and are 

therefore less clearly defined (Plichta 2004); Plichta strongly advises against using such 
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recordings for speech research. De Decker (2016), however, shows that not all types of 

background noise have an equally damaging effect on the accuracy of formant estimation. 

High levels of white noise (i.e. a signal with an equal amplitude at all frequencies of its wide-

band spectrum) exerts a particularly strong impact on the formant estimation while a 60-

Hz hum and even speech babble only have a subtle effect, if any at all.  

 

Moving the microphone closer to the sound source – i.e. speaker mouth – may solve the 

problem of the background noise in some cases (cf. recommendation (3) in De Decker 

2016:99), however, a too close placement is likely to cause the so-called proximity or bass 

effect, referring to a strong boost of lower frequencies in a spectrum (Corley 2010; Švec 

and Granqvist 2010). All directional microphones are known to boost low frequencies 

when working close, while omnidirectional microphones are relatively free of the effect 

(Corley 2010; Švec and Granqvist 2010). Moreover, each microphone has its individual 

frequency response, i.e. the intensity levels of the recording over the operating range of the 

frequencies. In some microphones, a flat frequency response cannot be guaranteed at 

distances other than 30 cm away from the sound sources while others always amplify the 

frequencies between 3 and 10 kHz regardless of the distance (Švec and Granqvist 2010). 

Brixen (1996; 1998) shows that differences in the microphone placement result in 

different power spectra, particularly affecting lavalier and headband microphones when 

they are placed very close to the sound source. Such differences in power spectra have been 

further documented to impact upon LPC-based formant measurements, and to result in 

partly substantial discrepancies between formant values extracted from these recordings 

(Brixen 2011; Hansen and Pharao 2006, in progress): once again, F1 seems to be more 

affected than F2, and shows discrepancies of up to 5 semitones while F2 measurements 

deviate from each other in the region of 2-3 semitones when taken from recordings with 

different spectral specifications. Moreover, the differences in spectra that lead to deviating 

formant values may result not only from the microphone placement, but also from a 

specific frequency response each microphone has as part of its technical specification and 

often depends on the microphone-to-sound distance (Švec and Granqvist 2010 for an 

overview). Importantly, Hansen and Pharao (in progress) highlight that these differences 

in the LPC-based formant measurements cannot be straightforwardly attributed to the 

microphone placement alone, but interact in complex ways with several other external 

factors, including the particular vowel quality being measured and the room acoustics 

where the recording took place.  

 

To summarise results of the previous research discussed in this section, there is sufficient 

evidence to demonstrate that LPC-based formant measurements are sensitive to the 

technical quality of recordings. Two main recording features seem to play a major role: (1) 

the SNR levels which can vary depending on the presence of extraneous noise, the 

microphone type and the exact distance between the microphone and the mouth of the 

speaker, and (2) the distribution of spectral information across the frequency range of 0-5 

kHz varies in the recordings which depends on a variety of factors related mainly to the 

recording equipment and set-up. In the resulting measurements, the frequency of F1 is 
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known to be particularly affected by these issues, although F2 also shows some technically 

induced artefacts, even if of a smaller magnitude.  

 

The primary interest of the studies reviewed in this section is rather technical (with 

implications for forensic or sociophonetic research, e.g. De Decker 2016; De Decker and 

Nycz 2011; Rozborski 2007). Most of them compared recordings made simultaneously 

with variable equipment, and estimated the resulting differences in formant frequencies 

those recordings measured (Byrne and Foulkes 2004; De Decker and Nycz 2011; Hansen 

and Pharao 2006, in progress; Künzel 2001; Plichta 2004; van Son 2005). While all of the 

factors identified above may potentially play out in sociophonetic real-time corpora and 

contribute to the corpus diversity in terms of technical quality, the ultimate goal of 

sociolinguistic research is to unveil gradual, potentially small-scale sound variations and 

changes across decades. For doing so, researchers need to be aware of the sources, the 

magnitudes and directions of such technical influences and enabled to keep their imprint 

on recorded speech data minimal (see 1.1). The present paper aims to tackle this challenge, 

or at least evaluate different strategies to approaching this methodological issue. To our 

knowledge, no previous study has identified and systematically investigated the 

relationship between such properties of the spectrum as variable SNR levels and spectral 

tilts on the one hand, and the LPC-based formant values on the other. These two features 

of the spectrum may result from various sources over which sociophoneticians working 

with real-time corpora may not have control, but the knowledge of the existence of these 

two easily assessable (see 2.3) spectral properties may well enable them to apply some 

post-hoc procedures that will eliminate the technically introduced artefacts in formant 

values described above. We can test and evaluate such possible post-hoc procedures using 

a phonetic case study where the presence of change and its direction have been 

demonstrated by independent research - this will allow us to see if we can minimise the 

potential effects of technical diversity in a real-time corpus, while still observing patterns 

of variation and change that converge with the previous findings. A perfect candidate for 

such a case study was deemed to be the variable /u/ in Scottish English. 

1.3. /u/ in Scottish English  

As a case study into sound change, the high back round vowel /u/ has recently attracted 

an extensive experimental scrutiny in many varieties of English. A change in progress 

towards a more fronted, near-central variant [u] has been demonstrated for many varieties 

of English, including Standard Southern British English (e.g. Hawkins and Midgley 2005; 

Harrington 2007; McDougall and Nolan 2007), American English spoken by mainstream as 

well as minority speakers (Labov, Ash and Boberg 2006; Fought 1999), Australian, New 

Zealand and South African varieties (e.g. Harrington, Cox and Evans 1997; Maclagan et al 

2009; Mesthrie 2010). While this change appears to have been taking place in Anglo-

English over the last fifty years (e.g. Harrington et al 2011), the situation seems to be more 

complex north of the border in Scotland. A fronted production of this vowel has been a 
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long-established diagnostic trait in Scottish varieties of English, most notably in the urban 

Scots vernacular spoken in Glasgow (e.g. Wells 1982: 402; Stuart-Smith 2004: 58–59).1 

Auditorily, Scottish English /u/ has been reported to be close to the central [u] for a long 

time; vernacular Scots is reported to be even fronter in contrast to the backer [u] of 

educated Scottish Standard English (McAllister 1938; Macaulay 1977; Johnston and Speitel 

1983). Contemporary articulatory-phonetic analysis suggests that /u/ is not only front but 

also low, and specifically that the tongue position is as front as that of front vowels /i ɪ e ɛ/, 

and lower than /ɪ/ and /ɛ/ (Scobbie 2011; Scobbie, Lawson and Stuart-Smith 2012). These 

findings may reflect a real-time process of fronting and lowering, i.e. we can expect to 

detect a change in the acoustic realisation of this vowel in real-time over the past 40 years. 

Recent real-time acoustic-phonetic data from Glasgow, comparing speakers from 1916 

with those recorded in the 1970s to 2000s, of different ages, suggests that /u/ has lowered 

over the 20th century (Stuart-Smith et al 2016). Taken together, these findings suggest a 

real-time process of lowering, and possibly further fronting, i.e. we can expect to detect a 

change in the acoustic realisation of this vowel in real-time over the past 40 years. 

1.4. Goals of the present study 

The main goal of the study was to examine whether or not differences in the technical 

quality of recordings, which seemed likely to intersperse a sociolinguistic real-time corpus 

(SNR, spectral balance), may have an impact on the values of F1 and/or F2 calculated using 

a standard LPC-algorithm. We addressed this question using the example of a subset from 

an electronic real-time corpus of Glaswegian vernacular speech which comprises of diverse 

recordings made at different points in time, by different people and for different purposes 

(including sociolinguistic and oral history interviews as well as free conversations, see 2.1; 

Rathcke and Stuart-Smith 2015; Stuart-Smith et al. 2015).2 We chose /u/ as a case study 

into disentangling the technical effects from the sound change, given there exists some 

reliable external evidence for this vowel in both historical and modern-day Scottish English 

data (McAllister 1938; Macaulay 1977; Johnston and Speitel 1983; Scobbie 2011; Scobbie, 

Lawson and Stuart-Smith 2012; Stuart-Smith et al 2016). 

If, as we may expect (see 1.2), a technical influence can indeed be attested in formant 

measurements taken from sociolinguistic real-time recordings, we would further want to 

know if different vowel qualities were affected in similar ways, and the extent to which 

they were affected. For the purposes of this investigation, we chose the high front vowel 

/i/ and the low central /a/ as reference vowels. Apart from being the corner vowels of the 

Scottish system (Scobbie 2011; Scobbie, Lawson and Stuart-Smith 2012), neither /i/ nor 

/a/ could have been expected to show sound changes in Scottish English (see 3.5 for 

                                                           
1 It should be noted that Glaswegian has a typical vowel systems of Scottish English characterised 
by a FOOT–GOOSE merger (e.g. Ferragne and Pellegrino 2010; Stuart-Smith 2004). 
2 For more information on this real-time project, visit 
http://soundsofthecity.arts.gla.ac.uk/index.html  

http://soundsofthecity.arts.gla.ac.uk/index.html
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further discussion). In contrast, our target vowel – which we will henceforth refer to as the 

high rounded central /u/ - may well be in focus of potential sound changes (see 1.3).  

Finally, following from the above findings, we aimed at establishing a procedure to 

minimise, or even eliminate, any effect of technical quality differences on F1/F2 

measurements in order to allow for a methodologically sound inference of vowel changes 

in valuable real-time corpora which are generally recognised to offer an insightful and 

reliable tool for studying language change at a community level (e.g. Labov 1994; Sankoff 

and Blondeau 2007; Trudgill 1988). 

2. DATABASE 

2.1. Real-time corpus of Glaswegian vernacular speech 

The real-time data to be discussed in this paper span four decades of Glaswegian 

vernacular speech, from early 1970s to late 2000s. They draw upon common types of 

speech recordings which were deemed representative of the data available for 

sociolinguistic real-time analyses at the present day (i.e. sociolinguistic or oral history 

interviews, free conversations). Recordings of this type are typically held at national or 

local libraries, sound archives or in private collections. This paper deals with data from 24 

male speakers of the working class background. The sample consists of three age groups: 

Young (12-17 y.o.), Middle-aged (40-55 y.o.) and Old (67-90 y.o.), with four speakers per 

group. The speakers were recorded either in the 1970s or in the 2000s. 

 

A large part of the 1970s-subcorpus consists of sociolinguistic interviews carried out by 

Ronald Macaulay in 1973 (Macaulay 1977). Teenagers (70-Y, m1-m4) and middle-aged 

speakers (70-M, m1-m3) were interviewed in quiet rooms using a lavalier microphone Uher 

M822 which was placed somewhere on the speaker (usually on the lapel). These recordings 

are held at the University of Edinburgh and were digitised at their Sound Archives. The 

remaining speaker of the middle-aged sample (70-M, m4) was interviewed by William 

Labov in the early 1970s. The interview took place at the interviewee’s home, in the East 

End of Glasgow. Details of the recording equipment are not known. The digitised sound file 

was kindly provided by the Linguistics Department of the University of Pennsylvania. For 

the older speaker group, most of our recordings (70-O, m1-m3) were collected between 

1970 and 1973 for the project entitled 'Family Life and Work Experience before 1918' as a 

part of the first national oral history survey in the UK (Thompson 1975/1992). The master 

tapes of these recordings are held at the British Library in London and were digitised by 

their media services. They were supplemented by an interview about the history of the 

cinema and film theatres in Glasgow, which was recorded in the early 1970s at the People’s 

Palace by the curator of the museum Elspeth King. The cassette recording is held at the 

Glasgow Museums Resource Centre and was digitised by the first author using Marantz CP 

430 recorder. 

 

The main resource for speech data from the 2000s was the Media Project Corpus recorded 

in Glasgow in 2003, along with socio-economic and attitudinal data, to investigate the 
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impact of media on linguistic properties of the Glaswegian vernacular (Stuart-Smith 2006; 

Stuart-Smith et al. 2013). Free conversations between self-selected pairs of interlocutors 

included teenagers (00-Y, m1-m4), who were recorded in quiet rooms at schools, and adult 

speakers (00-M, m1-m04), who talked to each other in Glasgow West-End pubs with 

varying degrees of background noise interspersing the conversation. For these recordings, 

a Sony ECM CS10 lavalier microphone was placed on the speaker’s chest. The data for the 

older speaker group was taken from two series of oral history interviews, The M-74 

collection (00-O, m1, recorded in 2008) and The Dock Workers collection (00-O, m4, m5, m6, 

recorded in 2010), both conducted by an oral historian from the Scottish Oral History 

Archives at the University of Strathclyde. Audio-technica PRO70 lapel microphones were 

used and placed on the speaker’s upper chest. The interviews took place at interviewee’s 

homes, in quiet surroundings. Digitised copies of the interviews were made available for 

phonetic research by the Archives.  

 

We note that the recordings of the corpus were digitised at varied sampling rates, using 

diverse equipment. Little is known about how the digitisation of old reel-to-reel tapes (as 

in Macaulay’s recordings) or cassettes (as in all other 1970s-recordings) may affect 

acoustic properties of the spectrum. A discussion of such issues is beyond the scope of this 

paper. For the purposes of the current investigation, all recordings were downsampled to 

10 kHz for the formant analyses undertaken in Praat (see below for more detail). 

 

The recordings might differ with respect to their stylistic setting due to the field method 

employed for their collection (see Gregersen and Barner-Ramussen (2011) for an 

overview). 2000s-dialogs of young and middle-aged men are quite possibly a closer 

approximation of vernacular speech since they had the advantage of a familiar audience as 

compared to the sociolinguistic and oral history interviews available for the 1970s and 

older speakers (Bell 1984). To this end, 00-M and 00-Y data obtained from more casual 

conversations can be expected to show more target undershoot, i.e. more centralised 

realisations of all vowels (Moon and Lindbloom 1994; Picheny, Durlach and Braida 1986). 

Also, a stylistic shift towards the local standard variety may occur in more formal interview 

settings. In the context of this investigation, this would mean a slight retraction of the target 

vowel /u/ (cf. Stuart-Smith 1999) and is more likely to occur in the sociolinguistic and oral 

history interviews (all 70s and 00-O groups) than in the spontaneous conversations (00-Y 

and 00-M groups). However, the situation of being recorded while speaking into a 

microphone might have created comparable levels of awareness and attention drawn to 

speech production and therefore resulted in negligible phonetic differences due to style 

shifting (cf. Labov 1994: 157-158). In any case, even if we consider stylistic differences 

across the dataset as being minimal, we are still left with conspicuous differences in 

technical quality of the 1970s and 2000s-recordings, to be illustrated below (see 2.3).  

2.2. Data preparation  

All corpus recordings were first transcribed orthographically by native speakers of Scottish 

English. Dysfluencies, overlaps, laughed or sung speech and other features worth 
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considering in subsequent analyses were captured at multiple layers in Transcriber 

software (Barras et al. 2001). 

For the chosen 24 speakers, we extracted all words containing lexically stressed and 

phrasally prominent /i u a/ vowels (except those preceding a postvocalic /r/), totalling 

N=3610. To insure consistency across the dataset, a protocol of segmentation and labelling 

was developed to guide the data preparation by two fully trained phoneticians (one of them 

the first author). EMU-software (Cassidy and Harrington 2001, Winkelmann 2015) was 

used to create a hierarchically and sequentially organised speech database for acoustic 

analyses. All acoustic measurements reflecting recording quality reported below were 

taken based on the DFT-spectra created in EMU (Harrington 2010, see 2.3) while formant 

values were calculated using Praat (Boersma and Weenink 2013, see 3.1). Subsequent data 

processing was conducted in R (version 2.15.1).  Statistical analyses were also run in R 

(version 3.1.0).  

2.3. Differences in recording quality across the selected dataset 

To our knowledge, most of the recordings in our corpus were made using lavalier 

omnidirectional microphones. However, they were of different makes, and we know 

nothing about their frequency response. As far as we are aware, the microphone placement 

was not controlled for, neither were sources of background noise or acoustic properties at 

the respective places where recordings took place. To illustrate resulting differences in 

sound quality, spectrograms of six recording samples showing the frequent word good 

(chosen as it contains the target vowel /u/) are compared in Figure 1.  

 

The two main issues related to the technical quality of recordings discussed in 1.2 can be 

confirmed for these data: (1) the SNR levels are highly variable, potentially reflecting both 

different levels of extraneous noise and varied distance between the microphone and the 

mouth of the speaker, and (2) the distribution of the spectral information across the 

frequency range of 0-5 kHz varies in the recordings, potentially reflecting differences in the 

make and the placement of the microphones used and the acoustics of rooms where 

recordings took place. Similar to the observations made in previous research (see 1.2), we 

find that poor SNR can make formants appear very faint (cf. 00-O, m3) or have larger 

bandwidths and therefore be less clearly defined (cf. 00-M, m1).  

 

Weak acoustic information in the high frequency range (above 4 kHz in 70-O, m3 or even 

above 2.5 Hz in 70-M, m4 and 70-Y, m2) accompanied by higher intensity of F1 seems to be 

a particular feature of some 1970s-samples. The distribution of acoustic energy across the 

vowel spectrum has a much steeper negative spectral slope as compared to a more 

balanced spectrum as in e.g. the 00-Y sub-corpus, making F2 less well defined in the vowel 

spectrum of the 70-Y speakers. This difference between recordings made in the 1970s and 

the 2000s is illustrated in Figure 2. It seems unlikely that the proximity effect alone might 

have caused this spectral imbalance (Švec and Granqvist 2010), given that the first spectral 

peak is not substantially higher in the 70-Y, m2 than in the 00-Y, m3 example (Figure 2). 

However, the second and the third peaks appear much lower in the earlier recording. We 
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considered the possibility of these slope differences being due to differences in the voice 

quality (e.g. Hillenbrand, Cleveland and Erickson 1994), but our perceptual analyses of the 

speakers’ voices did not confirm this potential explanation. We will return to this issue in 

the discussion (see 5.4). 

 

 
Figure 1: Waveforms and spectrograms of six samples to demonstrate differences in 

spectral detail across the real-time corpus of Glaswegian, 1970s recordings (upper panel) 

and 2000s-recordings (lower panel). 

 

Figure 2: DFT-spectra of two [u]-tokens taken from the midpoint of the vowel in ‘good’ (left: 

70-Y, m2; right: 00-Y, m3). Dashed lines indicate spectral slope calculated as best fit by least 

squares regression. The spectra are based on an unsmoothed narrow-band spectrum 

created with a frame shift of 5 ms and a 1024 point Blackman window and then converted 

to a power spectrum in dB across the frequencies from 0 to 8 kHz (i.e. half the sampling 

rate). 
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To illustrate the core technical issues of interest here, Figure 3 gives an overview of 

spectral slope and SNR levels within the chosen set of recordings. Slope was calculated 

from the spectral data extracted from vowel midpoints by linear regression models in R 

and averaged across all vowel tokens. As indicated in Figure 2, the lower the resulting 

value, the steeper the negative slope, the less balanced the spectrum. To gain an insight 

into the levels of background noise which often do not remain constant throughout a 

recording, ten pauses (with the mean duration of 450 ms) were taken from various time 

points of each recording, mostly near the beginning, the middle and the end of each 

conversation (cf. Švec and Granqvist 2010). Filled pauses like those containing breathing, 

laughing, speech of the respective interlocutor and the like, were excluded. An average 

Root Mean Square amplitude (RMS, in dB) was measured for each pause and each vowel 

token (i.e. a RMS average was calculated across the whole duration of the respective 

segment). The SNR was calculated as the power ratio between the speech signal (here, 

vowel tokens) and the background noise (here, pauses): 

(1) 










noise

signal

noise

signal

A

A

P

P
SNR 10log20  

where P represents the average power and A the amplitude. This way of conceptualising 

SNR defines identical levels of noise and signal (i.e. a difference of 0 dB) as equal to 1. 

Accordingly, the higher the resulting SNR-value, the stronger the signal stands out against 

the noise. The quality of each recording was then described through its mean SNR and a 

mean slope value (see Figure 3). 

 

 
 

Figure 3: Mean SNR and spectral slope values and their standard deviations measured in 

recordings of six speaker groups (24 recordings in total, see text for more detail). The 

decade of recording is indicated by the two shades of grey, age group is plotted along the 

y-axis. 

 

The bar graphs in Figure 3 display considerable differences in both technical aspects of the 

corpus recordings. By and large, the SNR was the best in the 00-Y and the poorest in the 00-
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M group. All recordings from the 1970s had a more negative spectral slope in comparison 

to those from the 2000s. These recording-specific measurements were subjected to a series 

of statistical tests. The assumption of equal variances could not be accepted for a large 

subset of these data. Welch t-tests for two independent samples were thus performed. The 

observed differences in the SNR and spectral balance were compared within same-age 

group (real-time comparisons) and across same-decade recordings (apparent-time 

comparisons). The alpha-level was adjusted to account for repeated comparisons, i.e. p was 

set to 0.0056 (≈ 0.05/9) in order to be interpreted as significant.  

 

With regard to SNR, real-time comparisons did not show significant effects at the set alpha-

level; though the middle-aged speaker recordings showed a trend toward significance (70-

M/00-M: t(4.0) = 3.7, p = 0.021), supporting the observation that recordings made with the 

00-M group (in pubs) were noisier than those made with the 70-M group (in quiet 

surroundings). Apparent-time comparisons showed that SNR was significantly better in 

the young speakers from the 2000s in comparison to all other age groups (00-Y/00-M: t(5.0) 

= 9.4, p < 0.001; 00-Y/00-O: t(4.1) = 8.1, p = 0.0012). Interestingly, there was no significant 

difference between recordings of the 00-M and 00-O groups, although their relatively poor 

SNR-levels result from two different sources: a strong background noise during the 

recording in the former vs. a distant placement of the microphone in the latter.3 SNR did 

not differ statistically across the recordings of different age groups made in the 1970s. 

Neither microphone placement nor background noise levels seemed to have varied much 

when the older recordings took place. All of them showed a relatively high SNR, i.e. speech 

was relatively clear.  

 

As far as the spectral balance is concerned, all recordings from the 1970s had a less 

balanced spectrum than all recordings from 2000s (t(18.9) = 4.5, p < 0.001), which may be 

primarily reflective of the type of equipment used. Further real-time comparisons showed 

significant differences for young and middle-aged speakers (70-Y/00-Y: t(5.6) = 5.0, p = 

0.003; 70-M/00-M: t(4.4) = 4.9, p = 0.006), but the difference in the older speakers’ 

recordings did not reach significance at the set alpha-level. These results support the above 

observation that an imbalanced slope seemed to be primarily an important technical 

specification of the recordings made by Ronald Macaulay in the 1970s (Macaulay 1977). 

There was only one significant apparent-time comparison, for the groups whose data were 

collected using different equipment (00-Y/00-O: t(3.3) = 7.2, p = 0.0039). Taken together, 

the above findings corroborate the idea that spectral slope is related to specifications of 

the recording equipment (different in the 1970s vs. 2000s recordings) while SNR reflects 

the particulars of the recording environment (recordings made in pubs vs. quiet 

surroundings).  

 

By and large, these analyses showed that from a sociolinguistic viewpoint the most 

relevant comparisons of the corpus (i.e. those in real-time and apparent-time as outlined 

                                                           
3 We also analysed the spectral properties of noise, looking for correlates of different types of 
noise (cf. De Decker 2016) but failed to demonstrate any significant differences in these data. 
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above) differed in terms of the recording quality. In the following, we will discuss potential 

consequences of these technical differences for acoustic analyses of vowel quality using 

formant analysis of the linear predictive coding (LPC). 

 

3. ANALYSES 

3.1. Obtaining formant measurements 

Formants were measured at the midpoint of the vowel to reduce coarticulatory influences 

due to abutting segments. Formant values were extracted using standard settings of the 

LPC-algorithm Burg implemented in Praat (Anderson 1978; Boersma and Weenink 2013). 

By default, acoustic signals are downsampled to 10 kHz, low-pass filtered at 5 kHz with an 

LPC-order of 10 and a pre-emphasis of 50 Hz (i.e. starting at 50 Hz, higher frequencies are 

amplified by 6 dB per octave). The standard analysis window length is 25 ms with 25% 

window shift. Given the diverse quality recordings like those constituting the real-time 

corpus of Glaswegian, the low sampling rate of 10 kHz seemed advantageous for several 

reasons. First, it made the amount of spectral information processed by the LPC-algorithm 

more comparable across the two decades, thereby minimising the effects of low levels of 

high frequency energy in the 1970s recordings. Also, the downsampling highlights the 

importance to the frequency maxima below 5 kHz – a frequency range which is known to 

contain the most crucial information for the perception of vowel quality (Dang and Honda, 

1997; Ladefoged 1962).  

 

Our preliminary investigations showed that formants measured with these Praat default 

settings produced the lowest number of error rates for F1/F2 as compared to those 

produced by two alternative systems, EMU (Cassidy and Harrington 2001; Harrington 

2010) and SFS (Huckvale 2000). The definition of error rates was roughly based on 

formant values measured in previous investigations of Glaswegian read speech (Stuart-

Smith et al. 2013), and allowed for a generous amount of variation within 250 Hz for F1 

and within 400 Hz for F2. Expected values of /i/ fell in the range of 200-450 Hz (F1) and 

2000-2400 Hz (F2). F1-values outside the range of 400-650 Hz (for /u/) and 700-950 Hz 

(for /a/) as well as F2-values outside the range of 1300-1700 Hz (for /u/) and 1200-1600 

Hz (for /a/) were considered erroneous for the purpose of the algorithm comparison. 

Whereas over 50% of F1/F2-values extracted from EMU and SFS were classified as 

erroneous in this setting, the output from Praat contained a significantly smaller amount 

of outliers. 

3.2. Dealing with formant outliers 

Praat produced a relatively high amount of reliable measures by default but its 

performance could not be further improved by changing the default settings (e.g. 

increasing the LPC-order or altering the sampling rate). As an alternative to the chosen 

measurement at vowel mid-points, ‘dynamic’ means and medians were tested, i.e. a mean 

or a median value of F1 and F2 was extracted from the formant track around the central 

50% of the total vowel duration. While ‘dynamic’ means seemed to slightly increase the 
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influence of segmental context on formant values, ‘dynamic’ medians led to a higher spread 

of the formant distributions, most considerably so for F2 (±400 Hz compared to the ‘static’ 

values) and slightly less so for F1 (±60 Hz compared to the ‘static’ values). Although taking 

formants from vowel midpoints was found to be the best method of formant extraction, the 

output of this ‘static’ measure still retained outlier values. Two ways of dealing with 

outliers were piloted on a subset of the data: manual correction and automatic outlier 

removal. For the manual correction of the outliers, the formant values were taken from the 

DFT-spectrum (512 points) and compared to the formant tracks in Praat spectrograms. 

Only plausible values derived from the DFT-spectrum were then included in the corrected 

dataset. In addition to being an extremely time-consuming procedure, this method risked 

introducing random variability into the sample since corrections of the same vowels by 

two independent experts (the first and the second author) showed disagreements within 

a range of ±60 Hz for F1 and ±450 Hz for F2. Accordingly, a more reliable procedure of data 

trimming by removing defined outliers was adopted instead.  

 

The values in Hz were first Bark-transformed to map them into an auditory scale 

(Traunmüller 1990), then plotted and closely examined. Subsequently, F1-values above 5.5 

Bark were treated as outliers for the two high vowels and those below 5.5 Bark as outliers 

for the open vowel. F2-values lower than 11.5 Bark for /i/ and lower than 10 Bark for /u/ 

were excluded. Most outliers occurred in F2 of /a/, defined by the range of 9-12 Bark. Note 

that this approach to outlier removal is superior to a statistical trimming of F1/F2 

distributions because error variances are not normally distributed so that outliers do not 

always fall into the upper or lower quartiles of the respective formant distribution. The 

overall sample size was reduced by about 15% as a consequence of the outlier removal 

(remaining n = 3296).  

3.3. Normalising raw formant data 

The Bark-scale does not serve as a means of minimising individual influences on formant 

measurements, and was expected to be similar to raw data in Hz (Adank, Smith and van 

Hout 2004). Additionally, we calculated speaker-based transformations of raw Hz values 

following the procedures of Lobanov (z-Hz), Nearey (N-Hz) and Watt & Fabricius (WF-Hz).  

 

The well-established Lobanov’s and Nearey’s procedures are known to lessen the influence 

of speaker-specific attributes on formant values (e.g. Adank, Smith and van Hout 2004; 

Fabricius, Watt and Johnson 2009; Watt and Fabricius 2002). Lobanov’s approach employs 

z-score transformation as a means of formant normalisation (Lobanov 1971). Resulting 

values are the distance between each given measurement and the formant mean in 

numbers of standard deviations: 

(2)
n

nniLobanov

n
s

FF
F


  

where Fni is an individual formant value, F̅n speaker’s mean frequency and sn their standard 

deviation across all formant measurements.  
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In the most popular version of the Nearey’s method, log-transforms of formant values are 

taken and the mean frequency is subtracted to derive for each measurement its distance 

from the mean in log-frequency units (Nearey 1978): 

(3) nni

Nearey

n FFF loglog   

The method works at its best if (3) is applied to each formant individually (Adank, Smith 

and van Hout 2004). Nearey and Lobanov normalisations usually involve more than one 

vowel and are therefore frequently classified as ‘vowel-extrinsic’. In contrast to a wide-

spread belief, there is no imperative to sample all vowels of the system in order to achieve 

a vowel normalisation, but a meaningful subset is necessary. Nearey (1978: 88) suggests 

“at least two points of known phonetic quality from which a speaker’s formant ranges may be 

estimated”. The mean-based linear transformation by Nearey could work well if at least the 

corner vowels of the system are sampled; such procedure is likely to produce similar 

normalised values in comparison to a whole-system sampling approach.4  In contrast, the 

normalised output of the Lobanov’s transform very much depends on the number and the 

spread of the vowel categories, as its scaling unit is the standard deviation. Crucially, the 

same vowel categories ought to be sampled across speakers to achieve comparability in 

scaling which is core to a successful normalisation.  

 

A more recently developed normalisation procedure proposed by Watt and Fabricius 

(2002) and subsequently refined by Fabricius, Watt and Johnson (2009), is becoming 

increasingly popular. The method is based on the same three principles as above, i.e. it is 

applied formant- and speaker-intrinsically but vowel-extrinsically. The procedure first 

seeks to establish geometric centres of gravity (S1 and S2) in the speaker’s F1/F2 plane as 

described by three corner vowels: a close-front /i/, an open-central /a/ and a 

(hypothetical) close-back /u/. Each formant value is then divided by the individual 

normalisation constant S1 or S2, as appropriate: 

(4)
3

)''()'()( unanin
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Here, u’’ denotes that the F1 and F2 values for /u/ are not observed but constructed. More 

specifically, they are set equal to the mean F1-frequency of the close front vowel /i/. 

Similarly, only the actual F1-mean of a speaker’s realisations of the open vowel /a/ is used 

to calculate the S1-constant (hence, a’). For S2, F2 of /a/ is interpreted as equidistant 

between F2 of i and F2 of u’’ (i.e. it equals the F1/F2-mean of /i/). In sum, the method only 

requires an input of the speaker’s mean frequencies for F1 and F2 of /i/ and F1 of /a/ in 

order to provide a normalised value for any vowel. 

 

Formant values resulting from (4) indicate how far each speaker’s vowel is from their 

centre of gravity. In contrast to Lobanov’s and Nearey’s procedures, the primary 

motivation behind the Watt-Fabricius approach was to create a means for visual 

inspections of vowel spaces in speakers of different sexes, common in sociolinguistic 

                                                           
4 Cf. mean(1, 5) = mean(1,2,3,4,5) 
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research. According to previous research, the method helps to reduce a considerable 

amount of data dispersion due to anatomical differences between speakers and has been 

shown, along with the Lobanov approach, to outperform Nearey on at least this criterion 

(Fabricius, Watt and Johnson 2009; Watt and Fabricius 2002). 

3.4. Evaluating the performance of normalisation methods 

To gain an appreciation of each method’s performance in the context of technically diverse 

data, two measurements were obtained for each speaker’s recording: (1) a measure of the 

overall vowel space size and (2) a measure of the dispersion within each vowel category.5 

Using (1), we captured the potential consequences of artificially higher F1 and/or lower F2 

reported in the literature (Byrne and Foulkes 2004; De Decker and Nycz 2011; Künzel 

2001; Rozborski 2007; van Son 2005). Using (2), we could estimate how well a method 

dealt with technically introduced dispersion of formant values (cf. Fabricius, Watt and 

Johnson 2009). 

 

The size of the F1/F2-vowel space, constituted by the corner vowels /i u a/, was calculated 

as the area of a triangle, At, using Heron’s formula (Heath 1921, 321ff.): 

(5) ))()()((
4

1
cbacbacbacbaAt   

where a, b and c are Euclidean distances between [i]/[a], [i]/[u] and [a]/[u], respectively, 

in the two-dimensional formant space. Mean values of each speaker’s F1 and F2 

frequencies per vowel category were used to calculate their individual At.  

 

Given that vowel quality distributions are usually conceptualised as 95% confidence 

interval ellipses around F1/F2 means, we measured the dispersion as the area enclosed by 

an ellipse, Ae, using:  

(6) abAe    

where a and b are 1/2 the ellipse's major and minor axes, respectively (cf. Disner 1980). 

The R-package siar was used to calculate Ae. Figure 4 shows a schematic representation of 

the two measurements, At and Ae. 

                                                           
5Previous studies sometimes utilized the squared coefficient of variation (calculated (SD/mean)2) 
as a measure of vowel dispersion (e.g. Fabricius, Watt and Johnson 2009:243). The coefficient is 
meant to evaluate the success of several vowel normalization methods in reducing the speaker-
induced variability, and to make this evaluation independent of the scaling unit of each 
normalization method. A potential issue with this approach lies in the fact that the formula is 
inapplicable if the denominator (i.e. the mean) equals 0 which is theoretically possible in the case 
of Lobanov and Nearey transforms. 
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Figure 4: A schematic representation of the triangular F1/F2 vowel space as created by 

the corner vowels /i a u/, At (in dark grey) and the dispersion ellipses of 95% confidence 

intervals, Ae (in light grey).  

 

The Ae metric could not be applied to /a/ of the speaker 70-Y, m01 as only 2 (out of 33 

labelled) cases remained in his dataset after outlier removal. This problem resulted from 

erroneous tracking of F1 in many /a/-tokens of this speaker, which mostly had values as 

low as in speaker’s /i u/ tokens. Consequently, the discussion of Ae(a) below will be based 

on the results of 23 speakers. 

 

Subsequently, correlations between SNR and spectral slope values on the one hand and At, 

Ae measurements of a recording on the other hand were run to uncover potential 

relationships between the technical quality measurements and the properties of the 

corresponding vowel spaces (in Bark, z-Hz, N-Hz, WF-Hz). A significant correlation would 

indicate that there is a linear relationship between a measurement of technical quality and 

a measurement of the vowel space.  

3.5. Using an alternative normalisation by vowel distance ratios  

There are further alternatives to the three normalisation procedures discussed above. 

Speaker normalisation is implicit in a relative measure which conceptualises ratios instead 

of scaled units of measurement. For investigations of sound changes affecting the fronting 

of /u/ in the vowel space, du, the logarithmic Euclidean distance ratio defines the relative 

positioning of the target vowel between two meaningfully chosen reference vowels as e.g. 

the front /i/ and the back /ɑ/ in Southern British English (Harrington, Kleber and Reubold 

2008): 

(7) )log()log( // iuauu EEd   

where Eu/a and Eu/i  are Euclidian distances between the respective vowels. Accordingly, 

mean acoustic values of each speaker’s corner vowels /i ɑ/ are treated as centroids of a 

multi-dimensional vowel space. The relative distance of /u/ between the two centroids is 

measured: when du is zero, the token is equidistant between the two centroids; positive du-



19 
 

values indicate its proximity to /i/ (i.e. fronting of /u/) while negative du shows that /u/ is 

closer to /ɑ/ than to /i/ (i.e. backing of /u/). Since these ratios are calculated separately 

for each speaker (i.e. relative to speaker-specific centroids), then a certain degree of 

speaker normalisation is implicit in the calculation.  

 

Crucially, the choice of the reference vowels needs to be considered in the context of each 

given variety and research question of the investigation. Southern British English back, 

open vowel /ɑ/ is missing in the phonology of Standard Scottish English. Another back 

vowel, /o/, is known to be unstable and potentially undergoing fronting itself (Watt and 

Tillotson 2001). Since the potential sound change in question involves a lowering of 

Scottish /u/ (which is already considerably front, see 1.3), the definition of two anchor 

points in the vowel space - the lowest, central /a/ and the highest, front /i/ - was 

considered the most suitable approach for the purposes of the present investigation. 

 

However, the core premise of the method that the reference vowels are reliable anchors 

may be still, at least partly, violated in our real-time corpus due to the technical issues. For 

example, it is possible that the frequency of front vowels with a high second formant, like 

our reference vowel /i/ here, is more strongly affected by the attenuation of spectral 

energy in the upper frequency range attested in a large part of the 1970s-recordings (Sect. 

2.3): if this is the case, we might find that F2 of /i/ is lowered in those recordings while F2 

of /u/ or /a/ remains fairly unaffected. This constellation would lead to an inherent, 

technically introduced bias towards a positive du-output (i.e. a larger proximity of /u/ to 

/i/). If, in contrast, the issues arising from a recording-specific slope or SNR have a very 

similar effect on formants of both high and low vowels, the du-metric may offer the best 

approach to tackling both technical and speaker-related issues as the ratios are calculated 

for each recording and speaker separately. An additional argument in favour of choosing 

/a/ and /i/ as anchors lies in the fact that the space between the centroids of the lowest 

and the highest vowel of the Scottish vowel system may be used to investigate a potential 

lowering of /u/ (see 1.3). 

 

Again, correlations between SNR, spectral slope and averaged du(F2), du(F1) measurements 

of recordings will help to shed light on whether or not these measurements co-vary; du-

values can further be subjected to statistical analyses and serve as a dependent variable 

(see 3.6). 

3.6. Dealing with individual variation and technical issues by statistical means 

Finally, another way of dealing with various influences on formant values is to use the 

estimation procedure of linear mixed-effects modelling. A potential advantage of this 

normalisation method lies in that the speaker (reflecting individual influences) and the 

quality of a recording (reflecting technical issues) can be defined as random or fixed 

factors, allowing for their individual impacts on the dataset to be estimated. Estimates are 

preferable to raw means as they represent weighted means obtained in a situation when 

all other sources of influence defined in the model are held constant. Estimation seems to 



20 
 

be particularly appealing in contexts of unbalanced datasets which are common in analyses 

of spontaneous speech, mainly because multiple sources of influence can be accounted for 

in a model (cf. Hay 2011:212f). Plotting estimates instead of raw means might therefore 

allow substantially increased comparability of formant plots.  

 

Linear mixed-effects  models were fitted to F1 and F2 data separately using the lme4-

library in R. Overall, there were eight dependent variables (and models) since for both 

formants, one model was fitted to each of the four Hz-derivatives (Bark, z-Hz, N-Hz and 

WF-Hz). The best model fit was established through model comparisons using drop1() 

function implemented in the R-library lmerTest. Each model contained a simplified 

structure of fixed and random effects in order to maintain some comparability with the 

three vowel transforms discussed above (e.g. potential effects of consonantal environment 

or lexical items were not considered). The quality of each recording was specified in terms 

of its SNR and spectral slope which were both converted to binary factors using median 

split.6 In both cases, just over 50% of all measurements - 51% (SNR, median: 6.79) and 

54% (slope, median: -0.0085) – were assigned to the “higher quality” category.  

 

Speaker group, vowel category, SNR and spectral slope were fitted as the fixed factors, and 

individual speaker and the recording source as random effects. We tested for all possible, 

meaningful two-way interactions of the predictors.  

4. RESULTS 

4.1. Recording-based analyses 

4.1.1. Correlations between technical quality and vowel space measurements  

First, correlations were run to explore the potential interdependence between SNR or 

spectral slope features of a recording on the one hand and its vowel space size At or vowel 

dispersion Ae on the other. We did not find significant correlations between SNR and At (on 

any of the Hz-transforms) suggesting that these phenomena are unrelated. However, there 

was a significant positive correlation between the spectral balance and the vowel space 

size showing that the more negative the spectral slope of a recording, the smaller its vowel 

space in Bark (R = 0.45, t(22) =2.4, p=0.027), N-Hz (R = 0.44, t(22) =2.3, p=0.027) or WF-Hz (R 

= 0.46, t(22) =2.4, p=0.024). This correlation was removed only if the vowel space was 

created via the z-Hz scale (R2= 0.1, n.s.).  

 

                                                           
6 The decision to create binary factors was made since only two technical specifications (one for 
SNR and one for slope) were available for each recording (N=24) that measured many tokens (N = 
3296). Hence the technical specifications could not be fitted as true covariates (which would 
require one technical specification per token with N = 3296), and little advantage was seen in 
including two 24-level predictors into each model (given the lack of a hypothesis related to the 24 
levels, and also how difficult it is to interpret the meaning of statistical significance in a multilevel 
factor, see Baayen 2008:114). 
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With respect to the amount of dispersion Ae and the recording quality, absent correlations 

between the Ae metric (for any of the vowels and scales) and spectral balance was 

suggestive of the two factors being rather unrelated. No significant correlations were 

obtained for SNR and Ae, either.  

4.1.2. Correlations between technical quality measurements and distance metric du 

Next, we ran correlations between SNR or spectral slope values and the speaker-specific 

averages of the distance metrics du(F2) and du(F1), indicative of the degree of /u/-fronting 

and -lowering, respectively. A marginal effect was found for SNR and du(F1), showing a 

negative correlation: the lower SNR-levels (i.e. the noisier the recording), the higher the du 

values, i.e. the closer /u/ tends to move to /i/ in the created vowel space (R = -0.37, t(22) = -

1.9, p=0.076). There were no further effects. 

4.2. Token-based analyses 

4.2.1. Linear mixed-effects statistic for F1 

Linear mixed-effects  models (see 3.6) were fitted to the measurements of F1 (in Bark, z-

Hz, n-Hz, WF-Hz). The outputs of the best fit model for each of the Hz-transforms are shown 

in Table 1. Two core interactions were significant regardless of the scale, one potentially 

indicative of a technical issue impacting on F1 (vowel*slope) and one related to the core 

sociolinguistic interest behind formant analyses – a potential sound change (vowel*group).  

 

Table 1. Output of linear mixed-effects models for F1-values through four different Hz-

derivatives (Bark, z-Hz, n-Hz, WF-Hz).  

Hz-derivate Factor/interaction  χ2 df p 

Bark Vowel*SNR 13.9 2 <0.0001 

Vowel*slope 144.9 2 <0.0001 

Vowel*group 532.1 10 <0.0001 

WF-Hz Vowel*slope 107.75 2 <0.0001 

Vowel*group 699.45 10 <0.0001 

z-Hz Vowel*slope 37.9 2 <0.0001 

Vowel*group 74.5 10 <0.0001 

n-Hz Vowel*slope 93.6 2 <0.0001 

Vowel*group 626.7 10 <0.0001 

 

With respect to the technical influences, vowel quality interacted with spectral slope. Post-

hoc t-tests of the best-fit models compared the impact of the slope imbalance on the F1-

values measured in /a/, /i/ and /u/ separately and showed noteworthy discrepancies 

between the four scales. On the Bark scale, an effect of the slope imbalance was observed 

exclusively in the open vowel /a/ whose F1 was raised by 0.57 Bark when the slope was 

more negative (t(10) = 3.4, p<0.01); a significant effect was absent in the two high vowels /i 

u/. The spectral balance effect on F1 of /a/ was merely trending toward significance after 

the frequency transformation using the Nearey formula (t(17) = 1.8, p = 0.088) while F1 of 
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/i/ and /u/ remained unaffected by the slope changes. Interestingly, this effect on /a/ 

disappeared completely after the Lobanov-transform (still no effects were observed for /i/ 

or /u/). In contrast, the Watt-Fabricius transform uncovered a strong effect of /a/ having 

a higher F1 when the spectral slope was less balanced (0.06 higher, t(19) = 4.2, p<0.001). 

Additionally, the slope also had an impact on F1 measured for /i/ (0.07 units lower, t(19) = 

3.0, p<0.01) and /u/ (0.06 units lower, t(19) = 2.6, p<0.05). This result for high vowels may 

point to the central role of /a/ as a reference vowel in this transformation (see (4)). We 

will return to the discussion of these findings in Sect. 5.3 below. 

 

In addition to the effect of the spectral slope, models fitted to Bark-scaled F1-values also 

showed a significant interaction of the vowel quality and SNR. Low SNR-levels (meaning 

less clear recordings) raised F1 of all vowels, though the effect was the strongest for /a/ 

(0.57 Bark, t(18) = 4.0, p<0.001), slightly less distinct for /i/ (0.44 Bark, t(18) = 42.9, p<0.01) 

and even weaker for /u/ (0.35 Bark, t(18) = 2.5, p<0.05). The interaction was not significant 

for any other Hz-transforms. 

 

Second, vowel quality also interacted with speaker group for all Hz-transforms (see Table 

1). If the age-related differences were completely accounted for by the normalisation 

procedures (see 3.3), this finding may be suggestive of a sound change (we will address 

this question in 4.2.4-5). 

4.2.2. Linear mixed-effects statistic for F2 

Subsequently, another series of linear mixed-effects models was run for the F2-values (in 

Bark, z-Hz, n-Hz, WF-Hz). The outputs of the models with the best fit are outlined in Table 

2. All models showed an effect potentially related to sound change (vowel*group) which 

will be addressed in 4.2.4-5. Models for Bark, Watt-Fabricius and Nearey scales further 

showed two interactions indicative of an influence of the technical issues in the recordings 

(i.e. vowel*SNR and vowel*slope). In contrast, Lobanov-transformed F2-values (z-Hz) did 

not display the effect of the spectral balance, and only produced a comparably weak effect 

of the different SNR-levels. Subsequent t-tests, however, failed to produce a significant 

effect among the relevant contrasts between more vs. less noisy recordings for /i u/ or /a/. 

Similarly, these contrasts were not significant in the t-tests run for n-Hz scale, meaning that 

both Nearey and Lobanov transforms eliminate the impact of recording quality on F2-

measurements.7 

 

On the Bark scale, t-tests produced evidence that F2 of /i/ was 0.4 Bark lower in noisy 

recordings (t(20) = 2.5, p<0.05) and 0.5 Bark lower in recordings with a less balanced 

spectral slope (t(18) = 2.8, p<0.05), but no evidence for such effects in /a/ or /u/. WF-

transform showed the most significant effects. Here, /a/ and /u/ (but not /i/) were both 

affected by the two technical issues. More specifically, F2 of /a/ measured 0.09 WF-Hz 

                                                           
7 The significant interactions vowel*SNR or vowel*slope listed in Table 2 are related to other (in our case 
meaningless, yet routinely calculated by the linear mixed effects procedure) contrasts between the factor 
levels, e.g. F2 of a noisy /a/ vs. F2 of a quiet /i/. 
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higher values in poorer SNR (t(20) = 3.1, p<0.01) as well as in less balanced spectral slopes 

(t(10) = 2.8, p<0.05). For /u/, F2 was 0.08 WF-Hz higher in noisy recordings (t(12) = 2.4, 

p<0.05) and 0.06 WF-Hz higher in recordings with an unbalanced slope (t(21) = 1.9, p = 

0.066). These findings are very likely to be related to the way the normalisation constant 

S2 is calculated in (4), and will be discussed in Sect. 5.3 below.  

 

Table 2. Output of linear mixed-effects models for F2-values measured on Bark, z-Hz, n-Hz, 

WF-Hz scales. 

Hz-derivate Factor/interaction  χ2 df p 

Bark Vowel*SNR 52.1 2 <0.0001 

Vowel*slope 57.7 2 <0.0001 

Vowel*group 157.2 10 <0.0001 

WF-Hz Vowel*SNR 45.3 2 <0.0001 

Vowel*slope 48.9 2 <0.0001 

Vowel*group 131.8 10 <0.0001 

z-Hz Vowel*SNR 8.4 2 <0.05 

Vowel*group 72.9 10 <0.0001 

n-Hz Vowel*SNR 52.5 2 <0.0001 

Vowel*slope 59.7 2 <0.0001 

Vowel*group 163.9 10 <0.0001 

4.2.3. Linear mixed-effects statistic for du-metrics 

As the next step, a mixed-effects model was fitted to the du(F1) and du(F2) metrics discussed 

in 3.5, which measures the location of /u/ in the F1 or F2-space between the corner vowels 

/i/ and /a/, potentially indicative of lowering and/or fronting of /u/. The new models 

retained the same structure of random effects as the token-based models discussed above 

(Sect. 4.2.1 and 4.2.2). The predictors were group, SNR and slope; only one interaction 

(SNR*slope) was tested for. du(F1) and du(F2) served as the dependent variables in two 

separate calculations.  

The best-fit models for both du(F1) and du(F2) did not contain any effect for either factor 

related to the technical issues under investigation. The factor group showed significance 

for du(F1) (χ2(5) = 11.4 and p = 0.044), but only a trend for du(F2) (χ2(5) = 10.3 and p = 0.068). 

4.2.4. Visual representations on F1/F2-plane and inference of change  

Since exploratory formant plots are a common sociophonetic tool to discuss and ascertain 

sound variation and to derive change (e.g. Labov, 1994; Labov, Ash and Boberg, 2006),8 

this section is dedicated to exploring how the significant technical effects shown above 

might interfere with the interpretation of the visual data, and focuses on two scales: Bark 

and z-Hz, given that Bark-scaled values contain the information related to both the speaker 

physiology and the technical set-up of the recording, while Lobanov-transformed z-Hz 

                                                           
8 Also the NORM suite facilitates this well: http://lingtools.uoregon.edu/norm/ 

http://lingtools.uoregon.edu/norm/
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values seem to retain the least influence from either factor (cf. also Adank, Smits and van 

Hout, 2004). 

Formant plots in Figure 5 and 6 display F1/F2 values with the 75%-dispersion and the 

centroids of /i u a/. Additionally, the graphs compare the sizes (and shapes) of the vowel 

spaces derived through the interpolation between the centroids of /i u a/. The centroids 

were based either on raw-data averages (black lines) or on estimates of the best-fit linear 

mixed-effects models (grey lines, see 3.6). The sizes of the resulting vowel spaces were 

measured as an area of a triangle, At (see 3.4), and given for comparison.   

 

Patterns in Figures 5 and 6 suggest two core observations. First, the triangular vowel 

spaces appear more unevenly sized across the six speaker groups when plotted on the Bark 

scale than on the z-Hz scale. At value of the 70-Y group was partly less than half the value 

of any other speaker group. In contrast, z-Hz scale created a more balanced representation 

of the six vowel spaces in this sample. Even though the triangle between /i/, /u/ and /a/ 

remained the smallest in the 70-Y group under this transform, the magnitude of the 

differences between the groups diminished (reflected in more comparable At 

measurements across the sample). Second, the issue of the Bark-scaled vowel spaces being 

of highly varied sizes across the sample could not be resolved using statistical means of 

estimation implemented in linear mixed-effects modelling. Moreover, this method created 

a number of F1-values substantially diverging from raw-data means, most notably for the 

open vowel /a/ (i.e. the vowel whose F1 was particularly strongly affected by both 

technical issues under investigation, see 4.2.1). Such substantial discrepancies between the 

means and the estimates of formant values were absent after the Lobanov transform, 

reinforcing the idea that technical issues can be effectively dealt with by applying a vowel 

normalisation. 

 

The relative size of the formant ellipses in Figures 5 and 6 seems to suggest an increase in 

F1/F2-dispersion after the Lobanov transformation. However, this visual observation is 

deceiving and results from differences in the units of scaling. In fact, the ellipse sizes 

measured as Ae (see (6) in 3.4) were slightly but significantly larger on the Bark scale than 

on the z-Hz scale, for /i/ (t(45.9) = 2.9, p=0.0065), /u/ (t(45.3) = 3.2, p=0.0024) as well as /a/ 

(t(43.6) = 2.5, p=0.018) while At values (see (5) in 3.4) did not differ significantly between 

the two scales. 

 

With respect to the inference of change, statistical results (see 4.2.1-2) were a little 

inconclusive. Surprisingly, none of the planned group comparisons showed significance for 

F1/F2 measured on the z-Hz scale. On the Bark scale, some apparent-time comparisons 

were significant for F1 and F2; significant real-time comparisons were observed for F2 

only. 

 

As far as F1 was concerned, only 70-Y group entered significant apparent-time 

comparisons. Compared to the middle-aged speakers, the young speakers recorded in 

1970s had a 0.5-0.8 Bark higher F1 in high vowels (70-Y/70-M-comparisons for /i/: t(18) = 
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2.7, p<0.05; 70-Y/70-M-comparison for /u/: t(18) = 3.4, p<0.01) and a 0.4 Bark lower F1 in 

low vowels (70-Y/70-M-comparison: t(18) = 2.6, p<0.05).  

 

Figure 5: Means (black lines) and estimates (grey lines) of F1/F2 values of /i a u/ measured 

in Bark. 75% confidence interval ellipses show the dispersion of individual values 

measured for /u/ (solid lines), /i/ (dashed lines) and /a/ (dotted lines). The three age 

groups are plotted from top (old speakers) to bottom (young speakers). Recordings from 

1970s are shown on the left, the ones from 2000s on the left. See text for further detail. 
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Figure 6: Means (black lines) and estimates (grey lines) of F1/F2 values of /i a u/ measured 

in Lobanov-transformed z-Hz. 75% confidence interval ellipses show the dispersion of 

individual values measured for /u/ (solid lines), /i/ (dashed lines) and /a/ (dotted lines). 

The three age groups are plotted from top (old speakers) to bottom (young speakers). 

Recordings from 1970s are shown on the left, the ones from 2000s on the left. See text for 

further detail. 
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Regarding F2 measurements, only high vowels of the 70-O group showed significant 

comparisons in real-time (70-O/00-O-comparison for /i/: t(18) = 2.9, p = 0.01; 70-O/70-M-

comparison for /u/: t(19) = 2.9, p = 0.01) and in apparent-time (70-O/70-M-comparison for 

/i/: t(19) = 3.2, p = 0.0047; 70-O/70-M-comparison for /u/: t(19) = 3.6, p = 0.0019), with 70-

O group measuring 0.6-0.7 Bark lower F2 of both high vowels. 

 

While the results for F1 are rather suggestive of technically influenced patterns, the results 

for F2 could be cautiously interpreted as indicative of change, signifying a /u/-fronting that 

took place in Glasgow between 1890s and 1920s (70-O vs. 70-M/00-O speakers). However, 

not only /u/ but also /i/ shows a similar rise of F2-frequency in more recent speaker 

groups. Fronting of both /u/ and /i/ cannot be expected under the sound change view, and 

prompts a question about technical issues or other recording-related factors influencing 

the results. 

4.2.5. Inference of change based on du-measure 

As seen above (4.1.2; 4.2.3), the du-measure was largely unaffected by the technical issues 

under investigation.9 In contrast, the factor group was relevant for explaining the variation 

in these F1/F2 data. Figure 7 displays the group results. Despite a visible, continuous 

(apparent- and real-time) tendency for F1 of /u/ to shift away from /i/ (i.e. to lower), 

planned comparisons yielded no significant effects for du(F1) across the sample. In contrast, 

du(F2) showed two real-time effects involving the young (00-Y/70-Y: t(17.3) = 2.6, p = 0.017) 

and the old (00-O/70-O: t(15.1) = 2.1, p = 0.05) speakers (the comparison for middle-age 

speakers was merely trending towards significance with t(21.7) = 1.9, p = 0.072).  

In terms of an inferred change, the effects involving F2 point to two different directions: on 

the one hand, an early /u/-fronting dating as far back as 1890s and 1920s (70-O vs. 00-O 

groups, cf. also 4.2.4); on the other hand, a more recent /u/-backing – i.e. a reversal of the 

previous change – which may have taken place between 1965 and 1985. 

The patterns for F1 point subtly, yet somewhat consistently, in the direction of a potential 

/u/-lowering over time, and cannot be explained by stylistic factors which in fact predict a 

completely opposite pattern of more retracted vowels in sociolinguistic and oral history 

interviews (all 70s and 00-O groups) than in the spontaneous conversations (00-Y and 00-

M groups, see 2.1). The fact that neither apparent-, nor real-time comparisons produced a 

significant effect may be due to a relatively small sample of this study and a relatively small 

magnitude of the change (see Stuart-Smith et al 2016). Consequently, an additional model 

was fit to the du(F1) data, replacing the predictor group by two factors, year of recording (00 

vs. 70) and age group of the speakers (O, M, Y). The best-fit model included both factors 

(age: χ2(2) = 7.4, p = 0.025 and year: χ2(1) = 4.8 and p = 0.029). In contrast to the speakers 

recorded in the 2000s, speakers from the 1970s had their du(F1) values 0.4 units closer to 

/i/ than to /a/, suggesting some vowel lowering in real-time.  F1 of young speakers’ /u/ 

was 0.5 units closer to /a/ in comparison to the middle-aged (t(21.5) = 2.2, p = 0.035) and to 

                                                           
9 The du for this investigation was calculated with Bark-scaled values (see 3.5). Noteworthy is a very strong 
correlation between du resulting from the different scales (R2=0.99, p<0.0001). 
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old speakers (t(19.2) = 2.4, p = 0.028), while the latter two age groups did not differ 

significantly from each other. These age group results are difficult to reconcile with the 

idea of age grading which would rather predict middle-aged speakers to deviate 

significantly from the remaining speaker groups (Wagner 2012).  We will return to this 

discussion in 5.5 below. 

 
Figure 7: Group means and standard deviations of the distance metric du for F1 (top 

panel) and F2 (bottom panel). 

5. DISCUSSION 

5.1. Does technical quality influence acoustic measurements of vowel quality? 

The primary goal of the study was to ascertain whether or not differences in recording 

quality – in our case, varied levels of noise, measured as SNR, and variable amounts of 

spectral energy available at lower and higher frequencies, measured as spectral tilt – would 

affect F1/F2 formant measurements in a sociolinguistic real-time corpus comprising of 

spontaneous speech. In this section, we will concentrate on the results obtained for the 

“raw” F1/F2 measurements on the Bark scale which we took as the reference point of the 

comparison with the normalised scales and the vowel ratio metric du (to be discussed 

below in 5.3). 

 

To address the primary question of this study, we first confirmed that there were indeed 

some statistically significant technical differences among the recordings of the analysed 

corpus. The two technical specifications, SNR and spectral slope, showed significant 

differences between recording series relevant for the sociolinguistic comparisons in both 

real-time (here, 1970s vs. 2000s) and apparent-time (here, old vs. middle-aged vs. young 
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speaker recordings; see 2.3). Subsequently, we conducted recording-based, correlational 

analyses which unveiled the tendency for those recordings with a more negative average 

spectral slope (i.e. recordings which had a reduced amount of energy above 4 kHz) to 

produce a smaller vowel space (see 4.1.1): the more negative the slope, the smaller the 

resulting vowel space. Interestingly, the SNR-levels did not co-vary with either the vowel 

space size or the vowel dispersion – the two parameters that were measured as indicators 

of technically introduced artefacts on the resulting F1/F2 vowel spaces (see 3.4).  

 

Subsequently, we looked beyond a pure co-variation of the technical specifications and 

vowel space measurements, and tested for causal influences of the technical quality of a 

recording on F1/F2. “Better” recording quality was defined by higher SNR-levels and a less 

tilted average spectral slope.  

 

A significant effect of increased noise (i.e. in recordings with SNR below 6.8) in interaction 

with the vowel quality was observed on both F1 and F2. Noisy recordings raised F1 of all 

vowels, with the effect being strongest for the open vowel (amounting to an increase of 

approximately 0.6 Bark) and slightly weaker for the two high vowels (amounting to an 

increase of approximately 0.4 Bark). In contrast, only F2 of /i/ (but not F2 of /a/ or /u/) 

was affected, and lowered by 0.4 Bark in noisier recordings. Interestingly, related forensic 

investigations into the impact of phone transmissions brought to light quite comparable 

patterns of F1-raising in all vowels across the board and a differential F2-lowering in 

dependence upon vowel quality (Byrne and Foulkes 2004; Künzel 2001), although in 

contrast to our results, the magnitude of the raising effect was usually found larger in low-

F1 vowels like /i/ and /u/ than in the in high-F1 vowel/a/ (whose frequency mostly lies 

within the transmitted range).  

 

Spectral imbalance (with negative slopes tilted beyond -0.009) again influenced both F1 

and F2 values, and interacted with the vowel quality. But for F1, we found an effect 

exclusively on the open vowel /a/ which measured 0.6 Bark higher values in recordings 

with less balanced spectra. For F2, only /i/ showed an influence, and 0.5 Bark lower 

formant values in recordings of poorer quality. By and large, these results are essentially 

in line with some of the effects reported in the previous literature (see 1.2), particularly 

with respect to complex interactions of technically determined factors with vowel quality 

(Hansen and Pharao 2006; in progress; see 5.2). 

 

The magnitudes of the technically introduced effects are somewhat difficult to compare 

across the studies, given the variability in the preferred method of reporting the results – 

as percentage of the original frequency (Byrne and Foulkes 2004; Künzel 2001), semitones 

(Hansen and Pharao 2006; in progress) or raw Hz values (De Decker and Nycz 2011) – but 

we note that in our study, we find rather comparable magnitudes for both changes in F1 

and F2, unlike previous research that showed larger deviations for F1 than for F2 which 

seems less affected, if at all (Byrne and Foulkes 2004; De Decker and Nycz 2011; Hansen 

and Pharao 2006; in progress; Künzel 2001). Such discrepancies may have various 



30 
 

explanations, and include the calculations (mean values based on raw data in previous 

studies vs. estimates from mixed-effects models in our case when random effects due to 

the speaker and token are accounted for, see 3.6) as well as type of the speech data 

(recordings of read speech in previous studies vs. spontaneous speech in our case). 

Moreover, our study attempted to disentangle the effects of the two influencing properties 

of the spectrum, SNR and spectral balance, while previous research seems likely to be 

dealing with both spectral features simultaneously (see 1.2). When these technical effects 

accumulate, their magnitude increases (see 5.2 below). 

 

We note that the interaction of SNR and spectral slope was found significant neither for F1 

nor for F2; SNR and spectral slope balance thus seem to be independent technical issues 

with their independent (if present) effects on the formant tracking. This finding has 

implications for the best-practice approaches to dealing with technically diverse 

recordings which we will discuss in 5.4. In sum, our analyses revealed that both noise in 

the recording and its spectral imbalance influence the traditional LPC-based F1/F2 

formant measurements, and should therefore be not ignored in sociophonetic real-time 

studies that involve formant measurements as indicators of sociolinguistic variations and 

long-term changes in vowel quality. 

5.2. Are different vowel qualities affected in similar ways? 

If technical issues affected all vowel qualities in similar ways, we could have easily 

estimated the direction of the influence and subsequently developed a unified way of 

dealing with such an influence across a diverse vowel set. However, our results suggest 

that such a simplistic approach to dealing with technical issues of diverse recordings will 

remain impossible, given the persistent interaction of vowel quality with each technical 

issue investigated in the present study. Künzel (2001:93) arrived at a similar conclusion, 

faced with the vowel- and speaker-specific variability in his data. 

 

As expected (see 1.2), corner vowels of the system were affected in particular. In this study, 

the high, most front vowel /i/ and the most open vowel /a/ were highly susceptible to a 

strong influence from both noise and spectral imbalance. More specifically, the highest F1 

(in /a/) and the highest F2 (in /i/) seemed to be targeted: while F1 was strongly raised, F2 

was lowered by both noise and spectral balance issues. Given the independency of both 

technical effects and yet the same direction of their influence, their impact on formant 

values accumulates (instead of e.g. cancelling each other out), raising or lowering the value 

by a substantial amount of up to over 1 Bark. 

 

Although we found that corner vowels were most affected by the technical issues, we 

recommend real-time studies of central or mid-high peripheral vowels also run technical 

quality checks before attempting meaningful vowel analyses – this seems crucial since 

noise affected F1 of all vowels of this study, even if /u/ was affected to a lesser degree. 

Apart from that, the advice to only investigate non-corner vowels in real-time studies of 

variation and change seems neither appealing nor viable.  



31 
 

5.3. Can technical interference be effectively dealt with post-hoc? 

As shown in 1.2, the technical set-up during a recording is bound to have an impact on the 

resulting quality. The details and magnitudes of such technical effects are somewhat too 

diverse to generalise, e.g. we know that F1 is often raised in technically compromised 

recordings but the magnitudes of the frequency increase vary substantially across studies 

and (at least partly) depends on the point of comparison, i.e. on the technical specification 

of the recording that is considered free of such interferences.  The best a researcher can do 

in order to achieve a high level of comparability in the sense discussed in Gregersen and 

Barner-Ramussen (2011) is to keep the recording equipment and surroundings exactly the 

same across all sessions. It may be particularly helpful to take a photo of the recording set-

up if a session takes place outside of a recording studio (Christoph Draxler, personal 

communication). Unfortunately, researchers often neither have control over the technical 

set-up, nor have access to a detailed, photographic representation of the field situation 

during the collection of data relevant for the compilation of real-time corpora. Moreover, 

recording equipment is constantly evolving and being upgraded, making the exact 

replacement of an old, defective gadget often impossible, if the time depth between 

recording session is 10 or more years. Therefore, a post-hoc way of dealing with any 

technical influence is, and will remain, crucial to any real-time studies into sound variation 

and change.  

 

In Sect. 3, we discussed an array of different, theoretically plausible approaches to dealing 

with technical issues, which we aligned with presently well-understood and widely-

applied methods of neutralising the speaker-specific influences on F1/F2: these included 

three frequently applied formant normalisation procedures – Nearey (1978), Lobanov 

(1971), Watt-Fabricius (Watt and Fabricius 2002) – plus a distance ratio metric du 

(Harrington, Kleber and Reubold 2008) and statistical means (cf. Hay 2011). We will 

comment on how each of the above methods fared in comparison to the Bark-scaled F1/F2 

data discussed above. The point of comparison in our case is the part of our corpus which 

has better technical specifications in terms of SNR and spectral slope balance (see 2.3). 

 

First of all, the co-variance of the spectral slope and the vowel space size were observable 

for two out of the three normalised scales, namely Nearey and Watt-Fabricius. After these 

transformations, the resulting vowel space remained smaller in recordings with a more 

negative spectral slope. In contrast, the Lobanov-transformation removed this correlation. 

While the SNR-levels did not seem to co-vary with either the vowel space size or the vowel 

dispersion measured on any of the Hz-transforms, the du(F1) values showed a potential to 

be affected by SNR, and a tendency to increase in noisier recordings (see 4.1.2), i.e. /u/ 

would appear less lowered in noisy recordings. This correlation is likely attributable to the 

differential impact of low SNR on F1, raising that of /a/ more substantially than that of /i 

u/, and may become more substantial in a larger corpus. In the case of our relatively small 

database consisting of just 24 recordings in total, however, this linear relationship was 

rather weak, and the correlation did not approach significance. Similarly though, the effect 

of SNR was absent in the linear mixed-effects models fitted to du(F1). Overall, the distance 
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metric du seemed to provide a good way of removing the impact of technical issues from 

the vowel quality data since none of the technical specifications showed a significant effect 

on the tested du-values (apart from the marginally significant correlation above). 

 

Overall, the impact of noise on F1 of /i a u/ was successfully removed by all normalisation 

procedures, including du(F1). The impact of the spectral imbalance on F1 of /a/ was 

successfully dealt with by both Nearey and Lobanov normalisations (though it is 

noteworthy that Nearey-scaled data retained a marginal effect). In contrast, this effect was 

rather boosted by the Watt-Fabricius normalisation; the transformation also led to a 

significant impact of spectral imbalance on both high vowels, which was absent in Bark-

scaled data. These findings are very likely driven by the central role of /a/ in the calculation 

of the S1-constant in the Watt-Fabricius normalisation (see (4)). If, as in our data, F1 of /a/ 

is the only vowel to be strongly affected by the technical issues (but not /i/, the other 

anchor vowel of the S1-constant), there will be carry-over effects to the normalised F1 of 

any other vowels. The absence of the impact of SNR on F1 under this transformation might 

be due to the fact that F1 of both reference vowels, /a/ and /i/ was similarly affected by 

noise, raising the frequency of the formant in comparable ways: 0.6 Bark for /a/ and 0.4 

Bark for /i/; the difference of 0.2 Bark between the reference vowels seemed less likely to 

have as strong an impact as the difference of 0.6 Bark above. 

 

Similarly, the impact of noise and spectral balance on F2 of /i/ was successfully dealt with 

by two normalisation methods, Nearey and Lobanov, while the Watt-Fabricius 

transformation produced more significant effects than the Bark scale did. First of all, the 

technical issues affected /a/ and /u/ (but not /i/ as in the Bark-scaled data). Instead of /i/ 

showing a lowering of F2 by 0.4-0.6 Bark under the influence of the technical issues, /a/ 

and /u/ had higher F2-values after the Watt-Fabricius transformation. These patterns 

clearly differ from the ones ascertained for F1, and can be explained by the way the 

calculation of the S2-constant works in (4): in contrast to S1, S2 relies exclusively on F1 and 

F2 of /i/. There is again a carry-over effect on F2 of other vowels if F2 of /i/ is technically 

affected, but it does not surface in the normalised values of /i/ itself (given that it serves as 

an anchor).  

 

And finally, the success of minimising technical interference purely by the statistical means 

of estimation should be considered as rather mixed: the F1/F2 values estimated from non-

normalised data neither increased the comparability of formant plots across different 

speaker groups nor did they help to eliminate the vowel space shrinkage in recordings with 

a particularly poor spectral balance specification: the At values remained extremely similar 

across raw and estimated formant data (see Figure 5). In contrast, these vowel space 

characteristics were much less of an issue in Lobanov-transformed data where the 

estimates also more closely reflected the means of F1 and F2 (see Figure 6). 
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5.4. Additional remarks on recording quality 

Before moving on to making recommendations to future sociophonetic research involving 

real-time data, some additional remarks need to address the origins of the spectral 

imbalance in our data, preliminarily introduced in 2.3. Given previous research (see 1.2), 

we expected to find some spectral variability in our data resulting mainly from an 

occasional proximity effect. However, the distribution of spectral energy in our 1970s-

samples suggested that the proximity effect alone could not have contributed to the 

reduced amount of energy available at higher frequencies. There was also some variation 

among individual recordings of the Ronald Macaulay’s set where the exact same recording 

equipment, set-up and procedure were used throughout the multiple recording sessions 

(Ronald Macaulay, personal communication). We consulted with the School of Scottish 

Studies Sound Archives (University of Edinburgh) who hold all of the Macaulay’s original 

reel-to-reel tapes and digitised them for our project, and with a colleague from LANCHART 

Centre in Copenhagen. A detailed inspection led to the conjecture that the above spectral 

issues may have been caused by the digitisation procedure itself; the tapes may have been 

slightly out of kilter (i.e. the tape and the tape head were misaligned) while the digitisation 

took place (Gert Foget Hansen from LANCHART, personal communication). Additionally, 

some dust on the playback head could have also led to the reduction of high frequencies. 

Fixing this problem required a technician to adjust the azimuth of the tape head on the 

playback machine to match the tape, and to clean the tape head.  

 

 
Figure 8. DFT-spectra of two [u]-tokens taken from the midpoint of the vowel in ‘good’ 

produced by the speaker 70-Y, m2 (left: before the re-digitisation; right: after the re-

digitisation). Dashed lines demonstrate the spectral tilt (for more detail on these spectra 

see Figure 2).  

 

A re-digitisation of all affected tapes followed, with surprisingly impressive results.  Figure 

8 illustrates the difference in spectral tilts calculated for the same sound example (70-Y, 

m2; taken from Figure 2), prior to the re-digitisation and afterwards; and compares the 

1970s data with the more recent recording made in the 2000s (00-Y, m3; taken from Figure 
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2). The spectral tilt of the re-digitised recording now more or less equals the unaffected 

recording, although the bass effect (higher energy in of F1 in comparison to F2 and F3) can 

still be attested. 

 

This example demonstrates that even more technical factors of potential influence need to 

be taken into consideration when working with real-time data than initially hypothesised 

(see 1.2). Fortunately, a competent set-up of a digitisation is one of the factors over which 

sociophoneticians can exert more control, if aware of potential technical issues. 

5.5. Is there a sound approach to the inference of change? 

In this final section, we would like to offer some recommendations on how to approach 

potentially challenging and technically diverse real-time data in sociophonetic 

investigations, and to unveil the beauty in a beast.  

 

First of all, sociophonetic research needs to show awareness of the technically introduced 

issues affecting both F1 and F2, by assessing the technical quality of the data with respect 

to at least SNR and spectral slope, before formants are measured (see 2.3). If only one of 

the two issues is present, the irrelevant factor can be ignored since their effects are 

independent of each other. If spectral imbalance is ascertained in the data, a potential 

redigitisation of the original tapes might help alleviate, if not completely extinguish, the 

problem. It is advisable to keep track of such technical information in a meta-data file for 

each recording of a sociolinguistic corpus, along with the information about speakers, 

interviewers and the recording situation.  

 

Reliance on a single formant normalisation as a post-hoc method seems contraindicated. 

In our data, the transformation after Nearey retained a minimal amount of information 

about the poor SNR and the negative spectral balance of recordings in comparison to Bark, 

while the Watt-Fabricius method created formant values most affected by the technical 

issues. Following De Decker and Nycz (2010:54) who argue against using formant 

normalisations which rely on F3-measurements if the data cannot be assumed technically 

impeccable, we would like to also advise against applying the Watt-Fabricius 

transformation in such cases. Given that this normalisation procedure relies heavily on 

F1/F2 measurements of the corner vowels /i/ and /a/ whose values have been shown to 

be particularly affected by the two technical issues studied here, many carry-over effects 

are likely to obscure the patterns within a vowel system. The only transformation that we 

could show to reliably remove the technical influences of recording quality was Lobanov. 

However, it also removed sociolinguistically meaningful differences in the dataset: none of 

the relevant group comparisons showed significant results (see also Adank et al. 2004, 

Disner 1980). 

 

In comparison to the above normalisation methods, the distance measure du showed little 

influence by the technical issues, similar to the Lobanov transformation. The du-dataset 

was, however, superior to the Lobanov-transformed data from the sociophonetic point of 
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view since only du clearly unveiled some meaningful effects involving /u/-lowering and 

potential backing that we expected to find given existing evidence from independent 

research (Scobbie 2011; Scobbie, Lawson and Stuart-Smith 2012). Despite its advantage in 

context of a technically diverse corpus, a distance metric like the du measure comes with 

its own limitations. First, a metric of this type is not appropriate for investigations with an 

interest in the visualisation of the overall vowel space and dispersion. Stability of the 

reference vowels might be the second issue that would obscure the patterns of variation of 

change in the vowels in the centre of investigation. Moreover, direct comparisons of similar 

sound changes across different accents of English can be conceivably difficult if the 

reference vowels have different qualities.  

 

Our general recommendation, then, is to combine the two approaches. Using Lobanov-

normalised data, formant plots can be created to visualise the vowel space, its dispersion 

and the relationships between vowel categories. Notably, patterns of /u/-lowering and 

retraction are somewhat visible in Figure 6, even though they did not reach significance 

levels in statistical tests. Subsequently, distance metrics for the variable(s) in question may 

help and narrow down the tendency of the change. 

5.6. Summary and outlook 

The present study set out to examine whether or not technical quality differences present 

in a sociolinguistic real-time corpus might have an impact on the values of F1 and/or F2 

measured by a standard LPC-algorithm implemented in Praat (Anderson 1978; Boersma 

and Weenink 2013). Sufficient evidence supported the idea of some technically introduced 

artefacts of F1/F2, which derived from noisy and spectrally compromised recordings. 

Although the magnitude of the F1/F2 deviations seemed rather small in these data, the 

technical effects could potentially accumulate, given the independence of SNR and spectral 

balance. Moreover, we worked with a relatively small dataset comprising of 24 recordings; 

a larger dataset (with more power) is likely to lend higher relevance to the effects that were 

just trending towards significance in our data. 

 

Based on the evidence provided in our study, we recommend that sociophonetic 

investigations of real-time data consider some possible technical effects before a 

meaningful analysis of the sociolinguistic variation is conducted. The researchers may not 

always have control over the various factors influencing the technical quality of spoken 

data during a recording session (and there always might be more, yet unknown, external 

factors of influence that need to be taken into consideration, as the digitisation issues 

showed us in the present study). However, we suggest that a preliminary acoustic analysis 

of SNR and spectral balance properties of recordings should suffice to give the researchers 

an appreciation of potential technical interferences and a post-hoc control over the arising 

issues. 
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