
An Experimental Evaluation of Deliberate
Unsoundness in a Static Program Analyzer

Maria Christakis, Peter Müller, and Valentin Wüstholz

Department of Computer Science
ETH Zurich, Switzerland

{maria.christakis, peter.mueller, valentin.wuestholz}@inf.ethz.ch

Abstract. Many practical static analyzers are not completely sound by
design. Their designers trade soundness to increase automation, improve
performance, and reduce the number of false positives or the annotation
overhead. However, the impact of such design decisions on the effective-
ness of an analyzer is not well understood. This paper reports on the first
systematic effort to document and evaluate the sources of unsoundness in
a static analyzer. We developed a code instrumentation that reflects the
sources of deliberate unsoundness in the .NET static analyzer Clousot
and applied it to code from six open-source projects. We found that 33%
of the instrumented methods were analyzed soundly. In the remaining
methods, Clousot made unsound assumptions, which were violated in
2–26% of the methods during concrete executions. Manual inspection of
these methods showed that no errors were missed due to an unsound
assumption, which suggests that Clousot’s unsoundness does not com-
promise its effectiveness. Our findings can guide users of static analyzers
in using them fruitfully, and designers in finding good trade-offs.

1 Introduction
Many practical static analyzers are not completely sound by design. Their design-
ers often trade soundness in order to increase automation, improve performance,
reduce the number of false positives or the annotation overhead, and achieve a
modular analysis. As a result, such static analyzers become precise and efficient
in detecting software bugs, but at the cost of making implicit, unsound assump-
tions about certain program properties. For example, ESC/Java uses bounded
loop unrolling to reduce the overhead of writing loop invariants, and Spec#
ignores exceptional control flow to speed up verification.

Despite how common such design decisions are, their practical impact on
the effectiveness of static analyzers is not well understood. There are various
approaches in the literature that study the efficiency and precision of static an-
alyzers by measuring, for instance, their performance and the number of false
positives [2]. In this paper, we focus on a different perspective: we report on the
first systematic effort to document and evaluate the sources of deliberate un-
soundness in a static analyzer. We present a code instrumentation that reflects
the sources of unsoundness in the static analyzer Clousot [10], an abstract in-
terpretation tool for .NET and Code Contracts [9]. This instrumentation adapts

2 M. Christakis, P. Müller, and V. Wüstholz

our earlier technique to make the unsound assumptions of a static analyzer
explicit where they occur by automatically inserting annotations into the an-
alyzed code [6]. Most of these assumptions are motivated by Clousot’s design
goal to analyze programs modularly without imposing an excessive annotation
overhead. To evaluate the impact of Clousot’s unsound assumptions, we instru-
mented code from six open-source projects, measured how often the unsound
assumptions were violated during executions of the projects’ test suites, and
determined whether Clousot missed bugs due to unsound assumptions.

The contributions of this paper are the following:
- We report on the first systematic effort to document all sources of unsoundness
in an industrial-strength static analyzer. We focus on Clousot, a widely used,
commercial static analyzer.

- We present a code instrumentation that reflects the unsoundness in Clousot.
Most sources of unsoundness in Clousot are precisely captured by our encoding.

- We perform an experimental evaluation that, for the first time, sheds light on
how often the unsound assumptions of a static analyzer are violated in practice
and whether they cause the analyzer to miss bugs.
In our experiments, 33% of the instrumented methods were analyzed soundly.

In the remaining methods, Clousot made unsound assumptions, which were vi-
olated in 2–26% of the methods during concrete executions. Manual inspection
of these methods showed that no errors were missed due to an unsound as-
sumption, which suggests that Clousot’s unsoundness does not compromise its
effectiveness. We expect these results to guide users of static analyzers in using
them fruitfully, for instance, in deciding how to complement static analysis with
testing, and to assist designers of static analyzers in finding good trade-offs.

Outline. Sect. 2 explains all sources of unsoundness in Clousot and how we
instrument most of them. Sect. 3 gives an overview of our implementation. In
Sect. 4, we present and discuss our experimental results. We review related work
in Sect. 5 and conclude in Sect. 6.

2 Unsoundness in Clousot
In this section, we present a complete list of Clousot’s sources of deliberate un-
soundness and demonstrate how most of these can be expressed through simple
annotations. We have elicited Clousot’s unsound assumptions during the last
two years by studying publications, extensively testing the tool, and having nu-
merous discussions with its designers. Note that a formal proof that Clousot is
sound modulo the issues we document here is beyond the scope of our paper.

We make the unsoundness of a static analyzer explicit by automatically anno-
tating the analyzed code with assumed statements, also called explicit assump-
tions. An assumed statement is of the form assumed P , where P is a boolean
expression, and denotes that a static analyzer unsoundly assumed property P
at this point in the code; that is, the analyzer assumed P without checking that
it actually holds. Note that assumed statements are different from the classical
assume statements, which express properties that the user intends the static
analyzer to take for granted.

An Experimental Evaluation of Unsoundness in a Static Program Analyzer 3

Each unsound assumption in Clousot applies to a specific syntactic cate-
gory such as a kind of statement or expression (for instance, because Clousot’s
abstract transformer does not soundly reflect the semantics of that syntactic
category). We say that an explicit assumption precisely captures the unsound
assumption for a syntactic category if for all elements e of that category and
all executions τ of e, Clousot’s analysis is sound iff the execution τ does not
violate e’s explicit assumption. Here, sound means that the concrete states of τ
lie within the concretization of the corresponding abstract states. We say that
an explicit assumption over-approximates the unsound assumption if there is an
element e and an execution τ of e such that Clousot’s analysis is sound, but the
execution τ violates e’s explicit assumption. Conversely, an explicit assumption
under-approximates the unsound assumption if there is an element e and an
execution τ of e such that Clousot’s analysis is not sound, but the execution τ
does not violate e’s explicit assumption.

2.1 Heap Properties

Clousot treats the following aspects of the heap unsoundly: object invariants,
aliasing, write effects, and method purity.

Object invariants. Code Contracts provide object (or class) invariants to ex-
press which objects are considered valid. Clousot checks the invariant of the
receiver at the end of a method or constructor, and assumes it in the pre-state
of a method execution and after a call. However, the checks are insufficient to
justify these assumptions [8]. That is, Clousot makes the following unsound as-
sumptions to facilitate modular checking: Clousot assumes the invariant of the
receiver object in the pre-state of instance methods, without checking it at call
sites; moreover Clousot assumes the invariant of the receiver after a call to an
inherited method on this, without fully checking it.

class C {
bool b;

invariant !b;

void M() {

assumed invariant(this, typeof(C));

b = true ;
N();
assert !b;

}

void N() {

assumed invariant(this, typeof(C));

assert !b;
}

}

The C# code on the right illustrates
the first unsoundness. Method M violates
the invariant of its receiver before calling
N. (We use the keywords invariant and
assert to denote Code Contracts’ object
invariants and assertions.) The gray boxes
in the code are discussed later. Clousot as-
sumes the invariant of the receiver in the
pre-state of method N, which is unsound
since it does not check this invariant at
call sites of N, in particular, before the call
to N in M. So Clousot emits no warning for
the assertion in N, although it will not hold
when N is called from M. The fact that there is no warning for the assertion in M is
a consequence of the same unsoundness. Clousot checks the receiver’s invariant
in the post-state of method N; this check succeeds because of the same unsound
assumption in N’s pre-state. The check in the post-state justifies assuming the
invariant after the call.

4 M. Christakis, P. Müller, and V. Wüstholz

We capture this unsoundness by introducing an assumed statement at the
beginning of each instance method in classes that declare or inherit object in-
variants. As shown in the gray boxes in the code, these explicit assumptions
use a predicate invariant(o, t), which holds iff object o satisfies the object in-
variants defined in class t in conjunction with all invariants inherited from t’s
super-classes. Here, type t is the type of the class in which the method is defined;
the corresponding type object is retrieved with the typeof expression in C#.
We label this kind of explicit assumption as “invariants at method entries” (IE).
We will refer to such labels in our experimental evaluation.

This explicit assumption captures the first unsoundness precisely because any
method execution in which the explicit assumption is violated (that is, where
the receiver’s invariant does not hold in the pre-state), will be analyzed with an
unsound abstraction of the initial state (unless Clousot’s abstract domains do
not reflect the invariant anyway, which we ignore here). This does not necessarily
mean that Clousot misses errors because the unsoundness might be irrelevant for
the checks performed on the method body. Conversely, if the abstraction of the
initial state is unsound because the receiver’s invariant is violated, the explicit
assumption will be false. Note that there are programs for which this will never
happen; some explicit assumptions may always hold in these programs (and still
be precise according to our definition).

class Super {
bool b;

void N() { b = true ; }
}

class Sub : Super {
invariant !b;

Sub () { b = false ; }

void M() {
N();

assumed invariant(this, typeof(Sub));

assert !b;
}

}

The code on the right illustrates the
second unsoundness. Method M of the
sub-class calls the inherited method N of
the super-class on the current receiver,
and N violates the invariant declared in
the sub-class. However, since Clousot’s
analysis is modular, Sub’s invariant is not
considered when analyzing Super and,
therefore, Clousot does not detect this
invariant violation. Nevertheless, Clousot
assumes the invariant of this after the
call to N in M, which is unsound. As a re-
sult, no warnings are emitted.

We precisely capture this unsoundness by introducing an assumed statement
after each call to an inherited method on the current receiver in classes that de-
clare or inherit object invariants. The explicit assumption states that the object
invariant of this holds for the enclosing class (here, Sub) and its super-classes.
We label this kind of explicit assumption as “invariants at call sites” (IC).

Aliasing. To avoid the overhead of a precise heap analysis, Clousot ignores
certain side-effects due to aliasing. For operations with side-effects, such as field
updates, Clousot unsoundly assumes that heap locations not explicitly aliased
in the code are non-aliasing and, thus, not affected.

As an example of this unsoundness, consider method M below. (We use the
keyword requires to denote preconditions.) Clousot assumes that array a is not

An Experimental Evaluation of Unsoundness in a Static Program Analyzer 5

modified by the update to array b, although a and b might point to the same
array in some calls to M. As a result, no warning is emitted.

void M(int [] a, int [] b) {
requires a != null && b != null ;
requires 0 < a.Length && 0 < b.Length ;

assumed a == null || !object.ReferenceEquals(a, b);

a[0] = 0;

assumed b == null || !object.ReferenceEquals(b, a);

b[0] = 1;
assert a[0] == 0;

}

Clousot abstracts the heap
by a heap-graph, which main-
tains equalities about access
paths. The nodes of the heap-
graph denote symbolic values,
which represent concrete val-
ues, such as object references
and primitive values. An edge
of the heap-graph denotes how the symbolic value of the target node is retrieved
from the symbolic value of the source node, for instance, by dereferencing a field
or calling a pure method. (Programmers may declare a method as pure to indi-
cate that it makes no visible state changes.) All access paths in the heap-graph
are rooted in a local variable or a method parameter. When two access paths
lead to the same symbolic value, they represent the same concrete value, that
is, must be aliases. However, when two access paths lead to distinct symbolic
values, they may represent the same or different concrete values, that is, may
or may not be aliases. Nevertheless, Clousot unsoundly assumes in this case
that updating the heap through one path will not affect values read through the
other.

We precisely capture this unsoundness by introducing an assumed statement
before every side-effecting operation that unsoundly affects the values in the
heap-graph, that is, when the side effect is reflected only on some symbolic
values, although other symbolic values may represent the same heap locations.
Specifically, for each field, property, or array update (side effects via calls are
discussed below), we determine the set of symbolic values that are distinct from
the symbolic value for the receiver r of the update, but may be aliases of r. This
set is computed based on the heap-graph in the pre-state of the update and on
type information. For each element s of this set, our explicit assumption has a
conjunct expressing that the concrete values represented by r and s (and given
by the access paths leading to the symbolic values) are non-aliasing.

In our example, Clousot’s heap abstraction uses distinct symbolic values for
the arrays a and b in the initial heap-graph. Thus, for the first array update,
r represents a and the set of possible aliases consists of b. Hence, the explicit
assumption expresses that a and b are not aliases. The explicit assumption for the
second array update is analogous. Note that we call ReferenceEquals since the
== operator may be overloaded in C#. We label this kind of explicit assumption
as “aliasing” (A).

Write effects. To avoid a non-modular, inter-procedural analysis or having to
provide explicit write effect specifications, Clousot uses unsound heuristics to
determine the set of heap locations that are modified by a method call. Clousot
then assumes that all other heap locations are not modified. This assumption is
unsound since the heuristics in general may not include all heap locations that
are modified by a call.

6 M. Christakis, P. Müller, and V. Wüstholz

class C {
int [] a;

void M() {
var b = new int [1];
a = b;
N();

assumed b == null || !writtenObjects().Contains(b));

assert b[0] == 0;
}

void N() {
if (a != null && 0 < a.Length) { a[0] = 1; }

}
}

The code on the right il-
lustrates this unsoundness.
Clousot assumes that the
call to method N in M mod-
ifies only the fields of the
receiver object, and leaves
the elements of the array
unchanged. As a result, it
does not emit a warning
for the assertion. Note that
this unsoundness is caused
by Clousot’s heuristics for write effects, regardless of whether a and b are aliases.

We capture this unsoundness by introducing an assumed statement after each
call, stating that all heap locations in the heap-graph that Clousot assumes to
remain unmodified by the call are indeed not modified. This is achieved by com-
paring all symbolic values in the heap-graph before and after the call and using
their access paths to retrieve the concrete values they represent. The explicit
assumption has a conjunct for each unmodified concrete object reference stating
that it is not contained in the actual write effect of the method for the last call.
To obtain the actual write effect, we instrument the program to provide the
function writtenObjects, which returns the set of objects that were modified
by the most recently executed call (including any objects that were modified
indirectly through method calls). We label this kind of explicit assumption as
“write effects” (W). Note that this explicit assumption subsumes the aliasing
unsoundness for calls because it covers all objects Clousot assumes to be left
unchanged by a call, no matter whether this assumption is caused by ignor-
ing certain aliasing situations or by the unsound heuristics for write effects. In
method M above, writtenObjects returns the set consisting of array a and, since
a and b refer to the same array, the explicit assumption is violated at runtime.

How precisely we capture this unsoundness depends on the definition of func-
tion writtenObjects. If the function returns an over- or under-approximation
of the set of heap locations modified by the most recently executed call then our
assumptions over- or under-approximate Clousot’s unsoundness, respectively. In
our implementation, writtenObjects is precise for methods that we instrument,
but under-approximates the write effects of library methods (see Sect. 3).

Purity. Users may explicitly annotate a method with the Code Contracts at-
tribute Pure to express that the method makes no visible state changes. To avoid
the overhead of a purity analysis, Clousot assumes that all methods annotated
with the Pure attribute as well as all property getters indeed make no visible state
changes. (We will refer to property getters and methods annotated with Pure as
“pure methods”.) Moreover, Clousot uses unsound heuristics to determine which
heap locations affect the result of a pure method, that is, the method’s read
effect. Clousot then assumes that all pure methods deterministically return the
same value when called in states that are equivalent with respect to their assumed
read effects.

An Experimental Evaluation of Unsoundness in a Static Program Analyzer 7

We capture the first unsoundness with the explicit assumptions about write
effects described above. After each call to a pure method, we introduce an
assumed statement stating that all heap locations in the heap-graph remained
unmodified.

class C {
void M() {

var r = Random ();

assumed r == Random();

assert r == Random ();

assumed r == Random();

}

[Pure] int Random () {
return (new object ()) .GetHashCode ();

}
}

class D {
int [] a;

void N() {
requires a != null && 0 < a.Length ;
var v = First ();

assumed v == First();

a[0] = v + 1;

assumed v == First();

assert v == First ();

assumed v == First();

}

[Pure] int First () {
requires a != null && 0 < a.Length ;
return a[0];

}
}

Method M on the right illustrates
the second unsoundness. Clousot as-
sumes that both calls to the pure
method Random in M deterministi-
cally return the same value, and no
warning is emitted.

Method N on the right illustrates
another aspect of this unsoundness.
Clousot assumes that the result of
the pure method First depends only
on the state of its receiver, but not
on the state of array a. Therefore, no
warning is emitted about the asser-
tion in N even though a[0] is modi-
fied after the first call to First.

Clousot’s heap-graph maintains
information about which values may
be retrieved by calling a pure
method. For instance, after the first
call to Random in M, the heap-graph
maintains an equality of r and a call
to Random. This information becomes
unsound if (1) the pure method is not
deterministic, (2) an object is modi-
fied, but Clousot unsoundly assumes that the pure method does not depend on
that object, or (3) an object is modified, but Clousot does not reflect the mod-
ification correctly in the heap-graph. The latter case is covered by the explicit
assumptions for aliasing and write effects. We capture the former two cases as
follows: (1) We generate an explicit assumption after each call to a pure method
stating that the method still yields the value stored in the heap-graph. This
assumption under-approximates Clousot’s unsoundness due to non-determinism
since even a non-deterministic method might return the same result several times
in a row. (2) Whenever the heap-graph retains a value for a pure method call
across a statement that may modify the heap, we generate an explicit assump-
tion stating that the method still yields the value stored in the heap-graph. This
assumption precisely captures the case that Clousot may assume a too small read
effect, as for method First. We label these explicit assumptions as “purity” (P).
2.2 Method-Local Properties
We now present the sources of unsoundness in Clousot that are related to prop-
erties local to a method. We divide them into two categories, integral-type arith-
metic and exceptional control flow.

8 M. Christakis, P. Müller, and V. Wüstholz

Integral-type arithmetic. To reduce the number of false positives, Clousot
ignores overflow in integral-type arithmetic operations and conversions. That
is, Clousot treats bounded integral-type expressions as unbounded (except for
checked expressions, which raise an exception when an overflow occurs).

int a = ...;

assumed (long)(a + 1) == (long)a + (long)1;

a = a + 1;
assert int.MinValue < a;

The code on the right illustrates the
unsoundness for operations. Although
the assertion fails when an overflow oc-
curs, no warning is emitted.

We precisely capture this unsoundness by introducing an assumed state-
ment before each bounded arithmetic operation that might overflow (and is not
checked) stating that the operation returns the same value as its unbounded
counterpart. We encode this unbounded counterpart by performing the opera-
tion on operands with types for which no overflow will occur, for instance, long
instead of int as in the example above, or arbitrarily large integers (BigInteger)
instead of long. We label this kind of explicit assumption as “overflows” (O).

int a = int.MaxValue ;

assumed a == (short)a;

short b = (short)a;
assert (int)b == int.MaxValue ;

The code on the right illustrates the un-
soundness for conversions. Even though the
assertion fails due to an overflow that occurs
when converting a to a short integer, Clousot
does not emit any warnings.

We precisely capture this unsoundness by introducing an assumed statement
for each integral-type conversion to a type with smaller value range stating that
the value before the conversion is equal to the value after the conversion, as
shown above. We label this kind of explicit assumption as “conversions” (CO).

Exceptional control flow. Exceptions add a large number of control-flow
transitions and, thus, complicate static analysis. To avoid losing efficiency and
precision, many static analyzers ignore exceptional control flow. Clousot ignores
catch blocks and assumes that the code in a finally block is executed only after
a non-exceptional exit point of the corresponding try block has been reached.

try {
throw new Exception ();

} catch (Exception) {

assumed false;

assert false ;
}

The code on the right illustrates the unsoundness
for catch blocks. Since Clousot ignores the catch
block, no warning is emitted about the assertion.

We precisely capture this unsoundness by intro-
ducing an assumed statement at the beginning of
each catch block stating that the block is unreachable, as shown in the code
above. We label this kind of explicit assumption as “catch blocks” (C).

bool b = false ;

bool $noException$ = false;

try {
if (*)

throw new Exception ();
b = true ;

$noException$ = true;

} finally {

assumed $noException$;

assert b;
}

The code on the right illustrates the unsound-
ness for finally blocks. Since Clousot assumes
that the finally block is entered only when the
try block executes normally, no warning is emit-
ted about the assertion. (We use * to denote an
arbitrary boolean condition.)

We precisely capture this unsoundness by intro-
ducing an assumed statement at the beginning of
each finally block stating that the block is entered

An Experimental Evaluation of Unsoundness in a Static Program Analyzer 9

only when the try block terminates normally. This is expressed by introducing
a fresh boolean variable for each try block, which is initially false and set to
true at all non-exceptional exit points of the try block, as shown in the code.
The assumed statement then states that this variable is true. We label this kind
of explicit assumption as “finally blocks” (F).

2.3 Static Class Members
Here, we describe the sources of unsoundness for static fields and main methods.

Static fields. To avoid the complications of class initialization [5] and to reduce
the annotation overhead and the number of false positives, Clousot assumes that
static fields of reference types contain non-null values.

static int [] a;

void M() {

assumed a != null;

assert a != null ;
}

As an example of this unsoundness, consider the code
on the right, for which no warnings are emitted.

We precisely capture this unsoundness by introducing
an assumed statement for each read access to a static field
of reference type stating that the field is non-null, as shown
in the code. We label this kind of explicit assumption as “static fields” (S).

Main methods. When a main method is invoked by the runtime system, the
array of strings that is passed to the method and the array elements are never
null. To relieve its users from providing preconditions for main methods, Clousot
assumes that the string array passed to a main method and its elements are non-
null for all invocations of the method.

void M() {
Main(null);

}

public static void Main(string [] args) {

assumed args != null && forall arg in args | arg != null;

assert args != null ;
assert args.Length == 0 || args [0] != null ;

}

As an example, con-
sider the code on the
right. Although method
M calls Main with a null
argument, no warning is
emitted about the asser-
tions in Main.

We precisely capture this unsoundness by introducing an assumed statement
at the beginning of each main method stating that the parameter array and its
elements are non-null, as shown in the code above. (We use the forall keyword
to denote Code Contracts’ universal quantifiers.) We label this kind of explicit
assumption as “main methods” (M).

2.4 Uninstrumented Unsoundness
In the rest of this section, we give an overview of the remaining sources of
unsoundness in Clousot, which we do not instrument:
- Concurrency: Clousot does not reason about concurrency and assumes that
the analyzed code runs without interference from other threads.

- Reflection: Clousot assumes that the analyzed method does not use reflection.
- Unmanaged code: Clousot checks memory safety for unmanaged code, but does
not consider its effects on the analyzed method.

- Static initialization: Clousot assumes that the analyzed code runs without
interference from a static initializer.

10 M. Christakis, P. Müller, and V. Wüstholz

- Iterators: Clousot does not analyze iterator methods (C#’s yield statements).
- Library contracts: Clousot assumes that the contracts provided for libraries
such as the .NET API are correct.

- Floating-point numbers: Under certain circumstances, Clousot assumes that
operations on floating-point numbers are commutative.
A very coarse way of capturing the first five sources of unsoundness would be

to introduce an assumed false statement at each program point that starts a
thread, invokes reflection, or contains unmanaged code, as well as in each static
initializer and for each yield statement. Such an instrumentation would grossly
over-approximate Clousot’s unsound assumptions (for instance, many static ini-
tializers do not interfere with the execution of the analyzed method). However, a
more precise instrumentation is complicated and would require explicit assump-
tions for most statements, for instance, to detect data races. Incorrect library
contracts could be detected by introducing an explicit assumption for the post-
condition of each call into the library. We omit these assumptions because they
are orthogonal to the design of the static analyzer. Finally, we do not instru-
ment the unsoundness about floating-point numbers because we were not able
to precisely determine where the assumptions occur.

Note that we do not consider Clousot’s inference of method contracts and
object invariants in this paper. In the presence of inference, an unsound as-
sumption in a method m might affect not only the analysis of m but also of
methods whose analysis assumes properties inferred from m, in particular, m’s
postcondition and the object invariant of the class containing m. One solution is
to introduce an explicit assumption whenever Clousot assumes a postcondition
or invariant that was inferred unsoundly; one can then determine easily which
methods have been analyzed soundly by inspecting the instrumented method
body. Another solution is to rely on the existing instrumentation, which is suf-
ficient to reveal unsound inference during the execution of the program. If the
postcondition of a method or constructorm was inferred unsoundly, we detect an
assumption violation when executing a call to m, and analogously if m violates
an inferred invariant.

3 Implementation
To evaluate whether Clousot’s sources of unsoundness are violated in practice, we
have implemented a tool chain that instruments code with explicit assumptions
and checks them at runtime.
Instrumentation. The instrumentation stage runs Clousot on a given .NET
program, which contains code and optionally specifications expressed in Code
Contracts, and instruments the sources of unsoundness of the tool as described in
the previous section. For this purpose, we have implemented Inspector-Clousot, a
wrapper around Clousot that uses the debug output emitted during the analysis
to instrument the program (at the binary level).
Runtime checking. In the runtime checking stage, we first run the exist-
ing Code Contracts binary rewriter to transform Code Contracts specifications
into runtime checks. We subsequently run a second rewriter, called Explicit-

An Experimental Evaluation of Unsoundness in a Static Program Analyzer 11

Application Description CC Analyzed Methods
methods with violations

BCrypt.Net1 Password-hashing library no 21 1 / 12 (8.3%)
Boogie2 Verification language and engine yes 299 2 / 119 (1.7%)
ClueBuddy3 GUI application for board game yes 139 16 / 67 (23.9%)
Codekicker.BBCode4 BBCode-to-HTML translator no 179 2 / 58 (3.4%)
DSA5 Data structures and algorithms library no 213 26 / 99 (26.3%)
Scrabble (for WPF)6 GUI application for Scrabble yes 127 8 / 41 (19.5%)

Tab. 1: Applications selected for our experiments. The first two columns describe
the C# applications. The third column indicates whether the applications con-
tain Code Contracts. The fourth column shows the number of analyzed methods
per project. The fifth column shows how many of the methods with explicit
assumptions that were hit at runtime contained assumption violations.

Assumption-Rewriter, that transforms all assumed statements of the instru-
mented program into logging operations. More specifically, this rewriter replaces
each explicit assumption assumed P by an operation that logs the program
point of the assumed statement, which kind of unsoundness it expresses, and
whether the assumed property P is violated. If P contains method calls, we do
not further log assumed properties in the callees.

The Explicit-Assumption-Rewriter also instruments each method to compute
its set of written objects by keeping track of all object allocations and updates
to instance fields and array elements. The set of written objects of a method
consists of the objects that have been modified but are not newly allocated by
the method. The set of written objects for a call to an uninstrumented (library)
method is always empty, that is, our instrumentation under-approximates the
objects actually modified by such a method.

4 Experimental Evaluation
In this section, we present our experiments for evaluating whether Clousot’s
unsound assumptions are violated in practice and whether these violations cause
Clousot to miss errors.

For our experiments, we used code from six open-source C# projects (see
Tab. 1) from different application domains. We selected only applications that
come with a test suite so that the experiments achieve good code coverage. We
chose three applications to contain Code Contracts specifications to evaluate the
explicit assumptions about object invariants. We ran our tool chain on at least
one substantial DLL from these applications to perform the instrumentation de-
scribed in the previous sections. For invoking Clousot, we enabled all checks,
set the warning level to the maximum, and disabled all inference options. We

1 http://bcrypt.codeplex.com, rev: d05159e21ce0
2 http://boogie.codeplex.com, rev: 8da19707fbf9
3 https://github.com/AArnott/ClueBuddy, rev: c1b64ae97c01fec249b2212018f589c2d8119b59
4 http://bbcode.codeplex.com, rev: 80132
5 http://dsa.codeplex.com, rev: 96133
6 http://wpfscrabble.codeplex.com, rev: 20226

http://bcrypt.codeplex.com
http://boogie.codeplex.com
https://github.com/AArnott/ClueBuddy
http://bbcode.codeplex.com
http://dsa.codeplex.com
http://wpfscrabble.codeplex.com

12 M. Christakis, P. Müller, and V. Wüstholz

0 1 2 3 4 5 10 15 20 25 30
0

20

40

60

Number of assumed statements

M
et
ho

ds
(%

)

BCrypt.Net Boogie ClueBuddy
Codekicker.BBCode DSA Scrabble

Fig. 1: The percentage of analyzed methods from each project versus the number
of assumed statements in the methods.

subsequently ran tests from the test suite of each application and logged which
explicit assumptions were hit at runtime and which of those were violated. Fi-
nally, we manually inspected a large number of methods to determine whether
Clousot misses any errors because of its unsound assumptions.
4.1 Experimental Results: Instrumentation
Fig. 1 presents the percentage of analyzed methods from each project versus the
number of assumed statements in the methods. An analyzed method is checked
by Clousot but not necessarily hit at runtime by the test suite of a project. We
analyzed a total of 978 methods with Clousot. As shown in the figure, the major-
ity of these methods (860) contain less than 5 assumed statements, and a large
number of those (326) are soundly checked, that is, do not contain any explicit
assumptions. There are only 20 methods with more than 10 assumed statements.
In these methods, the prevailing sources of unsoundness are “invariants at call
sites” (IC), “write effects” (W), “purity” (P), and “overflows” (O).

Fig. 2 shows the average number of bytecode instructions in the analyzed
methods versus the number of assumed statements in the methods. Notice that
most methods that are soundly checked contain only a small number of bytecode
instructions. A manual inspection of these methods showed that many of them
are setters, getters, or (default) constructors. Our results indicate that methods
with more instructions contain a larger number of assumed statements.

0 1 2 3 4 5 10 15 20 25 30
0

100

200

300

Number of assumed statements

N
um

be
r
of

in
st
ru
ct
io
ns

BCrypt.Net
Boogie
ClueBuddy
Codekicker.BBCode
DSA
Scrabble

Fig. 2: The average number of bytecode instructions in the analyzed methods
from each project versus the number of assumed statements in the methods.

An Experimental Evaluation of Unsoundness in a Static Program Analyzer 13

0 100 200 300 400 500 600 700

Invariants at method entries (IE)
Invariants at call sites (IC)

Aliasing (A)
Write effects (W)

Purity (P)
Overflows (O)

Conversions (CO)
Catch blocks (C)
Finally blocks (F)

Static fields (S)
Main methods (M)

Number of assumed statements

BCrypt.Net
Boogie
ClueBuddy
Codekicker.BBCode
DSA
Scrabble

Fig. 3: Clousot’s sources of unsoundness versus the number of assumed state-
ments that are introduced in the analyzed methods of each project.

Fig. 3 shows Clousot’s sources of unsoundness versus the number of assumed
statements that are introduced in the analyzed methods of each project. The
results are dominated by the assumptions that are introduced for each method
(IE) or for common statements (IC, W, P). The unsound treatment of aliasing
(A) affects relatively few methods, even though it could be introduced for each
field, property, or array update. Assumptions about “main methods” (M) were
not introduced because there are either no main methods at all (for instance, in
libraries) or not in the portions of the code that we analyzed and instrumented.

4.2 Experimental Results: Runtime Checking

The experimental results for the instrumentation alone provide very limited in-
sight into the impact of Clousot’s unsoundness. For instance, while some explicit
assumptions reflect details of the analysis (such as A and W, which are based
on Clousot’s heap-graph), others merely indicate the existence of a syntactic
element (for instance, we generate one assumption of kind C per catch-block).
Moreover, some explicit assumptions are not violated in any concrete program
execution; for instance, the assumptions of kind M always hold if a program
does not call a main method. To better understand the impact of Clousot’s un-
sound assumptions, we measure how often the generated explicit assumptions
are violated during concrete program executions.

Tab. 2 shows the number and percentage of violated explicit assumptions
per application and kind of assumption. These numbers include all executions of
a single assumed statement. That is, different executions of the same assumed
statement in different method invocations or loop iterations are counted sep-
arately. Tab. 3 shows the corresponding numbers when counting only per oc-
currence of an assumed statement rather than per execution. For example, in
BCrypt.Net, the assumption violations shown in Tab. 2 occur in only 4 assumed
statements (see Tab. 3), which are all in the body of the same loop.

14 M. Christakis, P. Müller, and V. Wüstholz

BCrypt.Net Boogie ClueBuddy Codekicker.BBCode DSA Scrabble
IE - 0/1694124 (0%) 275/27318 (1.01%) - - -
IC - 0/628448 (0%) 0/9759 (0%) - - -
A 0/25844436 (0%) 0/24771 (0%) - - 131/992 (13.21%) -
W 0/6419169 (0%) 0/372851 (0%) 0/3589 (0%) 82/11577 (0.71%) 0/613 (0%) 25/5011 (0.50%)
P 0/6405279 (0%) 27/108506 (0.02%) 12198/241385 (5.05%) 0/10311 (0%) 0/1008 (0%) 425/21580 (1.97%)
O 102488804/326722626 (31.37%) 0/569258 (0%) 0/547 (0%) 0/1196 (0%) 0/6053 (0%) 0/909 (0%)
CO 0/6633876 (0%) - - - - 0/2 (0%)
C - - - - 1/1 (100%) -
F - 0/53246 (0%) 0/325 (0%) 0/114 (0%) 0/43 (0%) 0/65 (0%)
S 0/708 (0%) 1/155080 (0%) - 0/7 (0%) 129/640 (20.16%) 0/15 (0%)
M - - - - - -

IE : invariants at method entries P : purity F : finally blocks
IC : invariants at call sites O : overflows S : static fields
A : aliasing CO : conversions M : main methods
W : write effects C : catch blocks

Tab. 2: The number and percentage (rounded to two decimal places) of violated
explicit assumptions per application and kind of assumption. These numbers
include all executions of a single assumed statement. Cells with non-zero values
are highlighted; the “-” indicates that no explicit assumptions are hit at runtime.

BCrypt.Net Boogie ClueBuddy Codekicker.BBCode DSA Scrabble
IE - 0/108 (0%) 7/44 (15.91%) - - -
IC - 0/60 (0%) 0/59 (0%) - - -
A 0/16 (0%) 0/1 (0%) - - 16/46 (34.78%) -
W 0/30 (0%) 0/32 (0%) 0/43 (0%) 2/61 (3.28%) 0/51 (0%) 1/25 (4.00%)
P 0/7 (0%) 1/40 (2.50%) 10/81 (12.35%) 0/130 (0%) 0/86 (0%) 11/85 (12.94%)
O 4/11 (36.36%) 0/11 (0%) 0/5 (0%) 0/25 (0%) 0/134 (0%) 0/13 (0%)
CO 0/3 (0%) - - - - 0/1 (0%)
C - - - - 1/1 (100%) -
F - 0/3 (0%) 0/5 (0%) 0/3 (0%) 0/8 (0%) 0/2 (0%)
S 0/18 (0%) 1/31 (3.23%) - 0/2 (0%) 16/18 (88.88%) 0/2 (0%)
M - - - - - -

IE : invariants at method entries P : purity F : finally blocks
IC : invariants at call sites O : overflows S : static fields
A : aliasing CO : conversions M : main methods
W : write effects C : catch blocks

Tab. 3: The number and percentage (rounded to two decimal places) of violated
explicit assumptions per application and kind of assumption. These numbers
are per occurrence of a single assumed statement. Cells with non-zero values are
highlighted; the “-” indicates that no explicit assumptions are hit at runtime.

4.3 Manual Inspection

We manually inspected a large number of explicit assumptions, including all
violated assumptions, and made the following observations.
- “Invariants at method entries” (IE): Only Boogie and ClueBuddy contain in-
variant specifications, and all violations are found in ClueBuddy. These viola-
tions are all caused by constructors that call property setters in their body.
The object invariants are, therefore, violated on entry to the setters since the
constructors have not yet established the invariants. Objects that escape from
their constructors are a well-known problem; a possible solution is to annotate

An Experimental Evaluation of Unsoundness in a Static Program Analyzer 15

methods that may operate on partially-initialized objects and, thus, must not
assume their invariants [16].

- “Invariants at call sites” (IC): These assumptions are never violated because
in all of our applications, sub-classes do not strengthen the object invariants
of their super-classes such that calls to inherited methods could violate them.

- “Aliasing” (A): These assumptions are violated only in DSA. All violations
occur in nine methods of two classes implementing singly and doubly-linked
lists. For example, one violation occurs in method AddAfter when expressions
this.Tail, this.Head, and the node to be added are aliased. The small num-
ber of these violations suggests that there is only a limited practical need for
performing a sound, but expensive heap analysis. However, an analyzer could
optionally allow users to run a sound heap analysis, for instance, for methods
with violations of “aliasing” assumptions.

- “Write effects” (W): Tab. 3 shows that these assumptions are hardly ever
violated. By inspecting assumptions of this kind that are not violated, we
confirmed that the write effects assumed by Clousot are usually conservative.

- “Purity” (P): Most of these assumptions are violated for pure methods that
return newly-allocated objects, that is, for non-deterministic methods. In ap-
plications without Code Contracts, these assumptions are introduced only in
property getters, but are never violated.

- “Overflows” (O): These assumptions are violated only in BCrypt.Net. All viola-
tions occur in an unchecked block, which suppresses overflow exceptions. This
indicates that, in this application, overflows are actually expected to occur or
even intended.

- “Conversions” (CO): These assumptions are never violated. Our manual in-
spection showed that the value ranges of the converted expressions are suffi-
ciently small such that no overflow may occur.

- “Catch blocks” (C): Only one assumption of this kind was introduced in a
method that removes a value from an AVL tree in application DSA. An auxil-
iary method throws an exception when the AVL tree is empty. Catching this
exception violates the assumption. This violation could be avoided by using
an out-parameter instead of an exception to signal that the tree was empty.

- “Finally blocks” (F): Our instrumentation introduced only 39 assumptions
about “finally blocks”. The majority of these finally blocks are added by the
compiler to desugar foreach statements. If the body of the foreach statement
does not throw an exception, these assumptions are not violated.

- “Static fields” (S): The violations of these assumptions are, in some cases, due
to static fields being lazily initialized, that is, being assigned non-null values
after having first been read. Supporting lazy initialization via a language con-
struct, such as Scala’s “lazy val” declarations, could help avoid such violations.
In other cases, the values of static fields are passed as arguments to library
methods, which are designed to handle null arguments.

Missed errors. The violation of an explicit assumption does not necessarily
mean that Clousot misses errors since the resulting unsoundness may be irrele-
vant for the subsequent checks. To determine whether the assumption violations

16 M. Christakis, P. Müller, and V. Wüstholz

detected in our experiments might lead to missed errors, we manually inspected
the containing methods of all 70 violations (computed from Tab. 3). We did not
find any runtime errors or assertion violations that Clousot missed due to its
unsound assumptions. With the exception of a few cases, it was fairly straight-
forward to determine whether an assumption violation could conceal an error.
For instance, violations of explicit assumptions about “purity” (P) are harmless
when there is only a single call to the pure method. The same holds for explicit
assumptions about “aliasing” (A) when the updated field, property, or array
element is not accessed after the update.

The fact that we did not find any missed errors due to assumption violations
possibly indicates that providing slightly weaker soundness guarantees in cer-
tain situations in favor of performance, precision, and low annotation overhead
does not compromise Clousot’s effectiveness; its unsound assumptions are not
problematic in the code and executions we investigated.

4.4 Threats to Validity

We identified the following threats to the validity of our experiments:
– Instrumentation: It is possible that we missed some of Clousot’s unsound

assumptions. Since we elicited the assumptions very diligently, it seems
unlikely that we overlooked any major sources of unsoundness. There are
several sources of unsoundness that we identified, but do not capture (see
Sect. 2.4). For most of these sources, a syntactic check suffices to deter-
mine whether a program might be affected. Moreover, even though our in-
strumentation captures most of Clousot’s unsound assumptions precisely, it
under-approximates the unsound treatment of write effects for calls to unin-
strumented (library) methods and of non-deterministic pure methods. As a
result, it is possible that Clousot’s analysis of a method is unsound even
though all runtime checks for explicit assumptions pass (this is very unlikely
for non-deterministic pure methods).

– Runtime checking: We measured assumption violations in executions of the
projects’ test suites. There were no failing tests, that is, any errors detected
by the test suites have been fixed. This explains in part why we did not
find any errors missed by Clousot. However, in our manual inspection of the
violated assumptions, we checked the entire method, that is, all execution
paths of the method for all its input states, not just the code covered by the
test suite. Thus, we could have detected errors that the tests missed.

– Project selection and sample size: The projects in our experiments were cho-
sen from different application domains. All projects were required to include
a test suite. We selected projects with and without Code Contracts. Since
Clousot analyzes each method modularly, we were able to pick those DLLs
that have the most comprehensive test suites. We ran Clousot on 978 meth-
ods; assumed statements were added in 652 methods, 396 out of which were
hit during the execution of the projects’ test suites. Therefore, we believe
that our projects are representative for a large class of C# code bases.

An Experimental Evaluation of Unsoundness in a Static Program Analyzer 17

5 Related Work
To the best of our knowledge, there is no existing work on experimentally eval-
uating sources of deliberate unsoundness in static analyzers.

There are, however, several approaches for ensuring soundness of static ana-
lyzers and checkers, ranging from manual proofs [14], over interactive and auto-
matic proofs [3,4], to less formal techniques, such as “smoke checking” [1].

Many static analyzers compromise soundness to improve on other qualities
such as precision or efficiency (see Cousot and Cousot [7] for an overview), and
there is existing work on evaluating these other qualities of analyzers in prac-
tice. For instance, Sridharan and Fink [15] evaluate the efficiency of Andersen’s
pointer analysis, and Liang et al. [11] evaluate the precision of different heap ab-
stractions. We show that such evaluations are also possible for the unsoundness
in static analyzers, and propose a practical approach for doing so.

Our explicit assumptions could be used to express semantic environment
conditions inferred from a base program, as in VMV [13]; a new version of the
program could then be instrumented with these inferred conditions (in the form
of assumptions) to reduce the number of warnings reported by Clousot. More-
over, our technique could be applied in “probabilistic static analyzers” [12] to
determine the probabilities of their judgments about analyzed code. Specifically,
one could estimate the probability that an unsound assumption holds (or is
violated) based on its value along a number of concrete executions.

Finally, we refer the reader to http://soundiness.org for the “soundiness”
movement in static program analysis, which brings forward the ubiquity of un-
soundness in static analyzers, draws a distinction between analyzers with specific,
well-defined soundness trade-offs and tools that are not concerned with sound-
ness at all, and issues a call to the research community to clearly identify the
nature and extent of unsoundness in static analyzers.

6 Conclusion
In this paper, we report on the first systematic effort to document and evalu-
ate the sources of deliberate unsoundness in a widely used, commercial static
analyzer. Our technique is general and applicable to any analyzer whose un-
soundness is expressible using a code instrumentation. In particular, we have
explained how to derive the instrumentation by concretizing relevant portions of
the abstract state (in our case, the heap-graph). We believe that this approach
generalizes to a large class of assumptions made by static analyzers.

Our work can help designers of static analyzers in finding good trade-offs.
We encourage them to document all compromises of soundness and to motivate
them empirically. Such a documentation facilitates tool integration since other
static analyzers or test case generators could be applied to compensate for the
explicit assumptions. Information about violated assumptions (for instance, col-
lected during testing) could also be valuable in identifying methods that require
special attention during testing and code reviews. Finally, our results could be
used to derive programming guidelines and language designs that mitigate the
unsoundness of a static analyzer.

http://soundiness.org

18 M. Christakis, P. Müller, and V. Wüstholz

Acknowledgments. We are especially grateful to Francesco Logozzo for nu-
merous discussions and his active support; this work would not have been pos-
sible without his help. We also thank Mike Barnett, Manuel Fähndrich, and
Herman Venter for their valuable help and feedback, and the reviewers for their
constructive comments.

References
1. M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie:

A modular reusable verifier for object-oriented programs. In FMCO, volume 4111
of LNCS, pages 364–387. Springer, 2005.

2. A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C.-H. Gros, A. Kam-
sky, S. McPeak, and D. R. Engler. A few billion lines of code later: Using static
analysis to find bugs in the real world. CACM, 53:66–75, 2010.

3. F. Besson, P.-E. Cornilleau, and T. P. Jensen. Result certification of static program
analysers with automated theorem provers. In VSTTE, volume 8164 of LNCS,
pages 304–325. Springer, 2013.

4. S. Blazy, V. Laporte, A. Maroneze, and D. Pichardie. Formal verification of a C
value analysis based on abstract interpretation. In SAS, volume 7935 of LNCS,
pages 324–344. Springer, 2013.

5. M. Christakis, P. Emmisberger, and P. Müller. Dynamic test generation with static
fields and initializers. In RV, volume 8734 of LNCS, pages 269–284. Springer, 2014.

6. M. Christakis, P. Müller, and V. Wüstholz. Collaborative verification and testing
with explicit assumptions. In FM, volume 7436 of LNCS, pages 132–146. Springer,
2012.

7. P. Cousot, R. Cousot, J. Feret, A. Miné, L. Mauborgne, D. Monniaux, and X. Rival.
Varieties of static analyzers: A comparison with ASTRÉE. In TASE, pages 3–20.
IEEE Computer Society, 2007.

8. S. Drossopoulou, A. Francalanza, P. Müller, and A. J. Summers. A unified frame-
work for verification techniques for object invariants. In ECOOP, volume 5142 of
LNCS, pages 412–437. Springer, 2008.

9. M. Fähndrich, M. Barnett, and F. Logozzo. Embedded contract languages. In
SAC, pages 2103–2110. ACM, 2010.

10. M. Fähndrich and F. Logozzo. Static contract checking with abstract interpreta-
tion. In FoVeOOS, volume 6528 of LNCS, pages 10–30. Springer, 2010.

11. P. Liang, O. Tripp, M. Naik, and M. Sagiv. A dynamic evaluation of the precision
of static heap abstractions. In OOPSLA, pages 411–427. ACM, 2010.

12. B. Livshits and S. K. Lahiri. In defense of probabilistic static analysis. In APPROX,
2014.

13. F. Logozzo, S. K. Lahiri, M. Fähndrich, and S. Blackshear. Verification modulo
versions: Towards usable verification. In PLDI, pages 294–304. ACM, 2014.

14. J. Midtgaard, M. D. Adams, and M. Might. A structural soundness proof for
Shivers’s escape technique: A case for Galois connections. In SAS, volume 7460 of
LNCS, pages 352–369. Springer, 2012.

15. M. Sridharan and S. J. Fink. The complexity of Andersen’s analysis in practice.
In SAS, volume 5673 of LNCS, pages 205–221. Springer, 2009.

16. A. J. Summers and P. Müller. Freedom before commitment: A lightweight type
system for object initialisation. In OOPSLA, pages 1013–1032. ACM, 2011.

	An Experimental Evaluation of Deliberate Unsoundness in a Static Program Analyzer

