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Abstract

The very large dimensionality of real world datasets is a challenging problem for

classification algorithms, since often many features are redundant or irrelevant for

classification. In addition, a very large number of features leads to a high com-

putational time for classification algorithms. Feature selection methods are used

to deal with the large dimensionality of data by selecting a relevant feature sub-

set according to an evaluation criterion. The vast majority of research on feature

selection involves conventional single-label classification problems, where each in-

stance is assigned a single class label; but there has been growing research on more

complex multi-label classification problems, where each instance can be assigned

multiple class labels.

This thesis proposes three types of new Multi-Label Correlation-based Feature

Selection (ML-CFS) methods, namely: (a) methods based on hill-climbing search,

(b) methods that exploit biological knowledge (still using hill-climbing search),

and (c) methods based on genetic algorithms as the search method.

Firstly, we proposed three versions of ML-CFS methods based on hill climbing

search. In essence, these ML-CFS versions extend the original CFS method by

extending the merit function (which evaluates candidate feature subsets) to the

multi-label classification scenario, as well as modifying the merit function in other

ways. A conventional search strategy, hill-climbing, was used to explore the space

of candidate solutions (candidate feature subsets) for those three versions of ML-
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CFS. These ML-CFS versions are described in detail in Chapter 4.

Secondly, in order to try to improve the performance of ML-CFS in cancer-

related microarray gene expression datasets, we proposed three versions of the

ML-CFS method that exploit biological knowledge. These ML-CFS versions are

also based on hill-climbing search, but the merit function was modified in a way

that favours the selection of genes (features) involved in pre-defined cancer-related

pathways, as discussed in detail in Chapter 5.

Lastly, we proposed two more sophisticated versions of ML-CFS based on Ge-

netic Algorithms (rather than hill-climbing) as the search method. The first ver-

sion of GA-based ML-CFS is based on a conventional single-objective GA, where

there is only one objective to be optimized; while the second version of GA-based

ML-CFS performs lexicographic multi-objective optimization, where there are two

objectives to be optimized, as discussed in detail in Chapter 6.

In this thesis, all proposed ML-CFS methods for multi-label classification

problems were evaluated by measuring the predictive accuracies obtained by two

well-known multi-label classification algorithms when using the selected features

namely: the Multi-Label K-Nearest neighbours (ML-kNN) algorithm and the

Multi-Label Back Propagation Multi-Label Learning Neural Network (BPMLL)

algorithm.

In general, the results obtained by the best version of the proposed ML-CFS

methods, namely a GA-based ML-CFS method, were competitive with the results

of other multi-label feature selection methods and baseline approaches. More pre-

cisely, one of our GA-based methods achieved the second best predictive accuracy

out of all methods being compared (both with ML-kNN and BPMLL used as clas-

sifiers), but there was no statistically significant difference between that GA-based

ML-CFS and the best method in terms of predictive accuracy. In addition, in the
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experiment with ML-kNN (the most accurate) method selects about twice as many

features as our GA-based ML-CFS; whilst in the experiments with BPMLL the

most accurate method was a baseline method that does not perform any feature

selection, and runs the classifier once (with all original features) for each of the

many class labels, which is a very computationally expensive baseline approach.

In summary, one of the proposed GA-based ML-CFS methods managed to

achieve substantial data reduction, (selecting a smaller subset of relevant features)

without a significant decrease in predictive accuracy with respect to the most ac-

curate method.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Feature Selection in Data Pre-processing

Feature selection is a type of data pre-processing method (a part of the broader

process of Knowledge Discovery [109]) which aims to select a relevant feature sub-

set according to an evaluation criterion [76]. In the real world, the amount of stored

data grows significantly and fast in many application domains. For example, mi-

croarray gene expression data analysis and document classification (a type of text

mining) are applications where datasets usually have thousands of features. As a

result, the very large dimensionality of the data is a crucial challenge for classifi-

cation algorithms. A very large number of features leads to a high computational

time for the classification algorithm and often most features are irrelevant or noisy,

potentially leading to an overfitting of the classification model to the data [39, 115].

Feature selection methods directly address the large dimensionality of the data

in the data pre-processing phase. A variety of feature selection methods has been

proposed in the literature. Broadly speaking, feature selection for classification

can be done using two approaches [19, 20, 25, 39, 44, 67, 76, 77, 79, 90, 97]: an

embedded approach (where the feature selection process is performed during the
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run of a classification algorithm) or a data preprocessing approach, where a fea-

ture subset is selected and then given to the classification algorithm. This research

focuses on the data preprocessing approach, which is more generic than the em-

bedded approach.

1.1.2 Multi-Label Classification

Classification is a data mining task where the system is given a dataset of instances

(records, objects) – each one described by a set of feature values and belonging

to a class – and then the system has to extract, from the dataset, a classification

model that predicts the class value (label) for an unseen instance, given the values

of the features describing that instance [116].

Multi-label classification is different from traditional single-label classification

because in multi-label classification each instance can be associated with a set of

class labels [21, 24, 92], while in traditional single-label classification each instance

is associated with only one class label.

The vast majority of research projects in classification involve single-label clas-

sification. However, there is a growing research trend in tackling the more difficult

problem of multi-label classification [15, 24, 26, 103, 105, 108, 111, 113]. This

is motivated by a number of real-world classification problems that are naturally

described as multi-label problems. For example, an article about social media can

be classified to both information technology and social activity class labels. A

document can be classified to the class labels education and linguistic at the same

time. A gene can be associated with many biological functions in an organism,

and an image can be annotated with sea, forest and mountain class labels.

2



1.2 The Goals and the Focus of This Research

This research focuses on feature selection, with the two related goals of proposing

new multi-label feature selection algorithms for multi-label classification problems

and evaluating the proposed algorithms’ predictive performance in a set of multi-

label datasets. The major research question addressed by this thesis is whether

the proposed multi-label feature selection methods can select the most relevant

and non-redundant features and improve the predictive accuracy when compared

with other multi-label feature selection methods in the literature.

Most of the multi-label feature selection methods proposed in this thesis are

generic in the sense that they can be applied to multi-label classification datasets

from any application domain. However, Chapter 5 of this thesis proposes fea-

ture selection methods specially designed for exploiting biological knowledge about

cancer-related pathways, in microarray gene expression datasets having more than

20,000 features, as will be described later.

1.3 Original Contributions

This thesis propose three types of new Multi-Label Correlation-based Feature Se-

lection (ML-CFS) methods, namely: (a) methods based on hill-climbing search,

(b) methods that exploit biological knowledge (still using hill-climbing search),

and (c) methods based on genetic algorithms as the search method. The summary

of the original contributions of this thesis is presented in Figure 1.1.
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Figure 1.1: Summary of Original Contributions: ML-CFS methods

1.3.1 Multi-Label Correlation-Based Feature Selection (ML-

CFS) Methods Based on Hill Climbing Search

We propose three versions of a new ML-CFS method that is an extension of the

single-label CFS method proposed by Hall [44] to the multi-label classification

problem. In essence, these ML-CFS versions extend the original CFS method by

extending the merit function used by the method to evaluate candidate solutions,

as discussed in detail in Chapter 4. These versions have in common the fact that

they use the same conventional search strategy to explore the space of candidate

solutions (candidate feature subsets), namely a well-known hill-climbing search

strategy.
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1.3.2 Multi-Label Correlation-Based Feature Selection (ML-

CFS) Methods that Exploit Biological Knowledge

We propose three versions of the ML-CFS method that exploit biological knowl-

edge, more precisely, the knowledge that some genes are involved in cancer-related

pathway. The motivation for this is to try to improve the performance of ML-CFS

in cancer-related microarray gene expression datasets, where features represent

genes, so that feature selection corresponds to selecting relevant genes to predict a

cancer-related class label. These ML-CFS versions are also based on hill-climbing

search (like the versions mentioned in the previous subsection), but they modify

ML-CFS’ evaluation function or the original set of features in a way that favours

the selection of genes (features) involved in pre-defined cancer-related pathways,

as discussed in detail in Chapter 5.

1.3.3 Multi-Label Correlation-Based Feature Selection (ML-

CFS) Methods Based on Evolutionary Algorithms

We propose two versions of a Genetic Algorithm (GA)-based ML-CFS method, de-

noted GA-ML-CFS. These versions replace the simple hill-climbing search method

used by the previous ML-CFS versions by a more sophisticated GA. The first ver-

sion of GA-ML-CFS is based on a conventional single-objective GA, where there

is only one objective to be optimized, namely ML-CFS’ evaluation function. The

second version of GA-ML-CFS is based on a somewhat more sophisticated type

of GA that performs lexicographic multi-objective optimization, where there are

two objectives to be optimized – namely ML-CFS’ evaluation function and the

number of selected features – and the objectives are optimized in decreasing or-

der of priority (called a lexicographic approach), as discussed in detail in Chapter 6.
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1.4 The Structure of the Thesis

This Section outlines the structure of the remaining Chapters of this thesis. In

essence, Chapters 2 and 3 describe the background on classification, feature selec-

tion and multi-label classification. Chapters 4 through 6 describe all versions of

the Multi-Label Correlation-based Feature Selection (ML-CFS) methods proposed

in this thesis. The summaries of Chapters 2 through 7 are as follows:

Chapter 2 – Background on Conventional Single-Label Classification

and Bioinformatics: This chapter will contain background about knowledge dis-

covery and data mining, focusing on conventional single-label feature selection for

the classification task. In particular, it will review both hill-climbing-based and

evolutionary algorithm-based methods for feature selection. It will also describe

the single-label correlation-based feature selection (CFS) method proposed by Hall

[44], which was the inspiration for the multi-label feature selection methods pro-

posed in this thesis. This chapter will also briefly describe general background

on bioinformatics and molecular biology, especially on microarray gene expression

data and other bioinformatics topics related with our research (e.g. KEGG Path-

way). This background is relevant for a better understanding of Chapter 5, which

focuses on feature selection for gene expression data.

Chapter 3 – Background on Multi-Label Classification and Multi-

Label Feature Selection: This chapter will present a survey of the multi-label

classification area. It will include multi-label problem transformation methods,

which transform a multi-label classification problem into one or more conventional

(single-label) classification problems. In addition, two well-known multi-label clas-

sification algorithms which are used in this thesis will be described: the Multi-Label

K-Nearest neighbours (ML-kNN) algorithm and the Multi-Label Back Propaga-

tion Multi-Label Learning Neural Network (BPMLL) algorithm. Also, multi-label

classification evaluation measures, and multi-label feature selection methods, will
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be reviewed.

Chapter 4 – The Proposed Multi-Label Correlation-Based Feature

Selection Method Based on Hill Climbing Search: This Chapter will pro-

pose new correlation-based feature selection methods, which are extensions from

the single-label CFS proposed by Hall [44], for the multi-label scenario. All ML-

CFS versions described in this Chapter are based on hill-climbing search. In gen-

eral, we describe the first version of ML-CFS and also other two types of extended

ML-CFS versions: (1) ML-CFS with the absolute value of correlation coefficient

and (2) ML-CFS using mutual information for class label weighting. This Chapter

will also present all details of our experiments; such as dataset descriptions, the

results from extensive experiments, comparisons with the results of other multi-

label feature selection methods, and the corresponding discussion of those results.

Chapter 5 – The Proposed Multi-Label Correlation-Based Feature

Selection Methods that Exploit Biological Knowledge: This Chapter will

describe the extensions of ML-CFS specific to microarray gene expression datasets,

which use background biological knowledge to help to guide the search for good fea-

ture subsets. This Chapter proposes three extensions of the ML-CFS method, in-

volving three different approaches to exploit knowledge about cancer-related genes

to select the most relevant features (genes) in microarray gene expression datasets.

Then, the experimental results of these extended versions of the ML-CFS method

will be presented and discussed.

Chapter 6 – The Proposed Multi-Label Correlation-Based Feature

Selection Methods Based on Evolutionary Algorithms: This chapter will

describe different versions of the ML-CFS method where a Genetic Algorithm

(GA) and a lexicographic multi-objective GA were used as the search method,

rather than using the simpler hill-climbing search method as in Chapters 4 and

5. The experimental results of the GA-based ML-CFS methods will be presented
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and discussed in this Chapter.

Chapter 7 – Conclusions and Future Research: This chapter will present

a summary of the contributions of the thesis and also discuss the weaknesses and

strengths of the proposed multi-label feature selection methods. Interesting future

research directions will also be introduced at the end of this chapter.

1.5 Publications derived from this Research

The research described in this thesis has led to the publication of five peer-reviewed

papers, mentioned next in chronological order of publication. The first and fifth

papers below were publiched in the proceedings of workshops colocated with in-

ternational conferences, whilst the other three papers were published in the pro-

ceedings of international conferences.

• S. Jungjit, A.A. Freitas, M. Michaelis and J. Cinatl, “A Multi-Label Correla-

tion Based Feature Selection Method for the Classification of Neuroblastoma

microarray data”, in Advances in Data Mining: 12th Industrial Conference

(ICDM 2012): Workshop Proceedings–Workshop on Data Mining in Life Sci-

ences (DMLS 2012), pp. 149–157, I. Bichindaritz, P. Perner, G. Rub, and

R. Schmidt, Eds, IBAI Publishing, July 2012.

• S. Jungjit, A.A. Freitas, M. Michaelis and J. Cinatl, “Two Extensions to

Multi-Label Correlation-Based Feature Selection: a case study in bioinfor-

matics,” in Proceedings of the 2013 IEEE International Conference on Sys-

tems, Man and Cybernetics, pp. 1519–1524, Manchester, UK, 2013.
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• S. Jungjit, A.A. Freitas, M. Michaelis and J. Cinatl, “Extending Multi-

Label Feature Selection with KEGG Pathway Information for Microarray

Data Analysis,” in Proceedings of the 2014 IEEE International Conference

on Computational Intelligence in Bioinformatics and Computational Biology

(CIBCB2014), pp. 1–8, Hawaii, USA, 21-25 May 2014.

• S. Jungjit, A.A. Freitas, “A New Genetic Algorithm for Multi-label Correla-

tion Based Feature Selection” In: Proceeding of the 23rd European Sympo-

sium on Artificial Neural Networks, Computational Intelligence and Machine

Learning, pp. 285–290, 22-14 April, 2015, Bruges, Belgium.

• S. Jungjit, A.A. Freitas, “Lexicographic Genetic Algorithm for Multi-label

Correlation Based Feature Selection” In: Proceeding of the Evolutionary

Rule-based Machine Learning Workshop: GECCO- Genetic and Evolution-

ary Computation Conference, pp. 989–996, 11-15 July, 2015, Madrid, Spain.
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Chapter 2

Background on Data mining and

Bioinformatics

This chapter contains background about knowledge discovery and data mining

focusing on the single-label classification task, feature selection for the classifi-

cation task, and evolutionary algorithms for feature selection. This chapter also

briefly describes general background on bioinformatics and molecular biology, in

particular on microarray data and other topics relate with our research. The more

complex task of multi-label classification will be discussed in Chapter 3.

2.1 Data Mining and Single-Label Classification

Data mining is one of three main phases of the Knowledge Discovery Process

(KDP), which aims to discover knowledge/patterns from data in a given appli-

cation domain. More precisely, as shown in Figure 2.1, the process of knowledge

discovery can be divided into 3 broad processes, or phases: (1) Data pre-processing

(2) Data mining and (3) Knowledge Post-processing [8, 13, 33, 45, 46, 62, 110]. The

third phase is out of the scope of this thesis, so we discuss next the first two phases.
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Figure 2.1: The three phases of the Knowledge Discovery Process

Data pre-processing step: The purpose of the data pre-processing phase is

transforming raw input data to an appropriate format for the data mining algo-

rithm. Data cleaning deals with noisy, missing values and irrelevant data. Data

integration consists of integrating data from a variety of data sources, while data

transformation methods consolidate data into an appropriate format before per-

forming data mining. Data selection methods select relevant data for the analysis

task. Feature selection is the type of data selection method which aims to selects

a relevant feature subset according to an evaluation criterion [76, 78], typically a

measure of predictive accuracy in the case of the classification task of data mining,

as will be explained later.

Data mining: In this phase, many modeling algorithms can be used according

to the target data mining task [17, 109, 116]. The summarization task aims to

provide a more compact representation of the data set, including visualization and

report generation. Clustering aims to group a set of objects based on their simi-

larity, where a cluster is a collection of similar objects. Data objects in different

clusters should have little or nothing in common. Regression consists of finding a

function with minimal prediction error to model the data, when the variable to be

predicted is continuous (real-valued). Regression analysis is widely used for pre-

diction and forecasting, it is also used to understand which independent variables
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(or features) are related to the dependent variable (the variable to be predicted),

and to explore the forms of these relationships. Association consists of looking

for association relationships or correlation between variables or objects. Typically,

associations are expressed in the rule form, showing attribute – values that occur

together frequently. Classification is a type of data mining task which aims to

learn the relationship between the values of the predictor attributes (or features)

of an instance and its class label. This relationship is learned (in the form of a

classification model) from pre-classified instances in the training set, and then the

learned classification model is used to predict the class label of previously unseen

instances in the test set. Note that in classification the class variable takes nomi-

nal values (labels) unlike regression, where the predicted variable takes continuous

values.

Traditionally, the classification task is defined as a single-label classification

problem, where each instance in the data set is associated with just one class label.

However, this research addresses a more difficult type of classification problem,

namely multi-label classification, as discussed in Chapter 3.

2.2 Single-Label Feature Selection for Classifica-

tion

Feature selection is a process which selects a relevant feature subset according to

an evaluation criterion [19, 20, 39, 54, 67, 76, 77, 79, 97]. In this work we are

interested in feature selection for the classification task of data mining. The main

objectives of feature selection are to avoid model overfitting and improve the pre-

dictive performance of the model [97]. Additional objectives of feature selection

are to eliminate irrelevant features and to reduce the computational time taken

by the classification algorithm (which will use only the selected feature subset).

However, this reduction in computational time is truly beneficial only if the time
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taken to perform feature selection is smaller than the corresponding reduction in

the time taken by the classification algorithm applied to the selected features.

Furthermore, in several types of applications, such as microarray data (review

in Section 2.5) and text document analysis, the data typically has a very high

dimensionality and a very small number of instances. In such cases, feature selec-

tion is particularly important and it can significantly decrease the risk of model

overfiting [39].

2.2.1 Feature Selection Approaches

Feature selection methods can be separated into 3 approaches; (1) the filter ap-

proach, (2) the wrapper approach and (3) the embedded approach [19, 20, 39, 67,

76, 77, 79, 97].

There are two groups of methods following the filter approach: (I) feature

ranking-based methods and (II) search-based methods. In general, a feature

ranking-based method applies statistical techniques to measure the relevance (broadly

speaking, correlation with class attribute) of each feature separately, ranks fea-

tures according to their relevance and selects the top k features from the ranked

list (where k is a predefined number). The drawback of this technique is that it

considers only one feature at a time (univariate method) and ignores the correla-

tions between features. One feature that is irrelevant by itself can be significantly

informative when considered together with other features [43]. Moreover, it tends

to select a redundant feature subset.

Another type of filter approach consists of search-based methods. This type

of method considers the relationship between features in a feature subset (being a

multivariate method), doing a search in the space of possible feature subsets. Each
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Figure 2.2: The filter approach for feature selection (adapted from [76])

feature subset considered by the search method represents a candidate solution,

which is evaluated by an evaluation function (e.g. a correlation-based function).

The advantage of this approach is feature redundancy elimination, assuming the

evaluation function penalizes redundant feature subsets. On the other hand, in

some cases, features with a moderate degree of redundancy are significantly infor-

mative when considered together with other features [43].

According to Figure 2.2, in the search-based filter approach, phase 1, the basic

flow of feature selection starts with feature subsets which are generated from the

full set of features using a search method. Next, each feature subset is evaluated

based on a specific criterion (or evaluation function). Both steps in phase 1 are

repeated until a stopping criterion is satisfied, e.g. until a fixed number of iter-

ations is performed or the quality of the current best feature subset cannot be

improved. Note that all mentioned steps in phase 1 are independent from the

classification algorithm, until the system gets the best feature subset. Only in

phase 2, executed after we got the best feature subset, the classification algorithm

is used. This approach was applied in the design of several feature selection meth-
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Figure 2.3: The wrapper approach for feature selection (adapted from [76])

ods, such as Correlation-based Feature Selection [44] and Fast Correlation-based

Feature Selection [39, 115, 119].

The filter approach is fast, scalable and independent of the classifier. More-

over, [78] highlighted that the most used feature selection approach in real-world

applications where the number of features is very large (such as in microarray data

and text mining) is the filter approach, because the structure of filter algorithms

is simple and it provides a simple way to calculate the relevance of features in

large-scale data in a short time.

On the other hand, the wrapper approach selects the best feature subset by

doing a search in the feature space guided by a classifier’s performance, i.e. using

a classifier’s accuracy as the evaluation function (Figure 2.3). In the wrapper ap-

proach, the classification algorithm used in phase 1 is the same as the algorithm

in phase 2, which will use the selected features to build a classifier to be applied

to the test set.
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The wrapper approach is usually more effective (in terms of maximizing pre-

dictive accuracy) than the filter approach because the wrapper approach directly

uses the accuracy of the classification model as the evaluation function of a feature

subset, but there is a risk of model overfitting [39, 97]. Moreover, the wrapper ap-

proach is usually much more computationally expensive than the filter approach

because a classification algorithm has to be run for each candidate feature subset,

which is not the case in the filter approach.

In the third approach, namely the embedded approach, the search for a good

feature subset is embedded into the classifier construction process. Hence, this

approach is classifier-specific too, and it also tends to be more computationally

expensive than the filter approach. An example of a type of classification algo-

rithm performing embedded feature selection is decision tree algorithms [93], where

during the tree construction process, a feature is selected at each internal node of

the tree.

Note that both the filter and the wrapper approaches are performed in a pre-

processing step, before applying the classification algorithm; whilst the embedded

approach is performed as part of the run of a classification algorithm. In this chap-

ter we focus only on feature selection methods performed in a preprocessing phase

using the filter approach, i.e., the wrapper and the embedded approach are out of

the scope of this work; for the sake of computational efficiency and scalability.

In the context of the filter approach, we can classify feature selection methods

into 2 types based on whether or not the method takes into account relationships

among features [76]. First, in the univariate filter feature selection approach, the

feature selection method measures the quality of just one feature at a time using

a given evaluation function, e.g. t-test, F-statistic or information-gain. The ad-

vantage of the univariate filter approach is that it fast and scalable [97], but there
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are some drawbacks, such as it ignores the dependencies and correlations between

features in the feature space.

Second, in the multivariate filter feature selection approach, the feature selec-

tion method measures the quality of a feature subset as a whole. That is, the

correlation between features in the subset is taken into account. This approach

takes more time to generate feature subsets and measure the quality of each fea-

ture subset, so it is usually slower than the univatiate approach. Examples of the

evaluation functions which are used to measure a feature subset’s quality are the

correlation-based feature selection (CFS) [44] and Maximize Relevance Minimize

Redundant (MRMR)[25, 90]. These evaluation functions will be discussed later in

this Chapter.

2.2.2 Feature Selection Methods’ Components

A feature selection method consists of two main components: (1) the search strat-

egy and (2) the evaluation function. The first component is a strategy for searching

through the space of feature subsets, as discussed next.

2.2.2.1 Search Strategies for Feature Selection

Search strategies can be classified into three broad types: complete, heuristic and

stochastic/nondeterministic search [19, 20, 76, 77, 79]

Complete search or exhaustive search evaluates the quality of every candidate

feature subset, and returns the best subset. Hence, this method guarantees to find

an optimal subset, but its use is not feasible in large-scale datasets, since its time

complexity is exponential upon the number of features. Recall that the number of

candidate feature subsets is on the order of 2n, where n is the number of features.
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Examples of complete search strategies are the well-known depth-first search and

breadth-first search [76].

Whereas complete search strategies are too computationaly expensive in prac-

tice, a heuristic search method can find a good solution in a relatively short time,

although it risks to miss an optimal solution. Well-known examples of heuristic

search methods are best-first search and hill climbing search [76]. The latter was

used in [44], and in the first version of our proposed feature selection methods [57],

to be described later.

Algorithm 2.1 shows the pseudocode of the best-first search method, adapted

from [76]. There are two queues of nodes in the Best-First algorithm: OpenQ is

the queue of nodes whose children have not been generated yet (open nodes), and

CloseQ is the queue of nodes whose children have already been generated (closed

nodes). The algorithm starts by initializing the flag Implement with the value

true and adding an initial node to OpenQ. Then Cbest is set to the best node in

OpenQ. Next, while the value of the Implement flag is true, the algorithm repeats

the following steps. First, it sets QualBest to the quality of Cbest and generates

the child nodes of Cbest. Second, it removes Cbest from OpenQ and adds it to

CloseQ. Third, for each child node, if that node has not been generated before

during the search, it adds that child node to OpenQ and evaluates it. Fourth,

it sets Cbest to the best child node. Fifth, if the quality of the best child node

is greater than QualBest, it sets the Implement flag to true. Otherwise, it sets

Cbest to the best node in OpenQ and checks if the best child node’s quality is

greater than QualBest. If so, the Implement flag will be set to true, otherwise the

Implement flag will be set to false, which will cause the while loop to terminate,

and then the algorithm terminates by returning Cbest as the best solution found.
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Algorithm 2.1: Pseudocode of Best-First Search()

1) Implement = true

2) OpenQ = a queue of nodes whose children have not been generated yet

3) CloseQ = a queue of nodes whose children have been generated

4) Add initial node to OpenQ

5) Cbest = best node in OpenQ

while Implement = True

do



QualBest = quality of Cbest

generate child nodes of Cbest

remove Cbest from OpenQ and add Cbest to CloseQ

for each child node

do


if child node has not been generated earlier

then

add child node to OpenQ

evaluate child node

Cbest = the best child node

if Cbest’s quality > QualBest

then Implement = True

else



Cbest = best node in OpenQ

if Cbest’s quality > QualBest

then Implement = true

else Implement = False

OUTPUT: Cbest
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Algorithm 2.2: Pseudocode of Hill-Climbing Search()

CurrentNode = empty feature subset

CurrentQuality = 0

Implement = true

while Implement = True

do



generate children of CurrentNode

BestChild = child with the best quality

BestQuality = quality of the best child

if BestQuality > CurrentQuality

then


CurrentNode = BestChild

CurrentQuality = BestQuality

Implement = True

else Implement = False

OUTPUT: CurrentNode

Algorithm 2.2 shows the Pseudocode of Hill Climbing search used in [44, 57,

58, 59]. The algorithm starts with the current node representing an empty feature

subset and the quality of the current feature subset (CurrentQuality) equal to zero.

Also, the flag Implement is set to true. Each iteration of the following while loop

performs the following operations. First, the algorithm generates the child nodes

from the current node. All child nodes are evaluated using the merit function.

After that, the algorithm selects the child node with the best quality, and sets it

as the BestChild. Also, the BestQuality is set with the quality of the best child.

Next, if BestQuality is greater than CurrentQuality, which means the algorithm

found a new child node better than the current node, then CurrentNode is set to

BestChild, CurrentQuality is set to BestQuality and the flag Implement is set to

True (to make sure the search will continue). Otherwise, the flag Implement is

set to false and the while loop terminates. At the end, the algorithm returns the
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CurrentNode as the best feature subset found by the hill-climbing search.

Unlike the complete and heuristic search methods mentioned earlier, a nonde-

terministic strategy searches for good feature subsets using random operators to

move in the feature subset space [76] Note, however, that in general a nondetermin-

istic strategy is not completely random, since the application of random operators

is guided by an evaluation function. An example of a type of nondeterministic

search method is Genetic Algorithms (GAs), which have been extensively used

in feature selection [34]. An example of another type of nondeterministic search

methods is Simulated Annealing (SA). The pseudocode and flowchart of GA are

shown in Algorithm 2.3 and Figure 2.4, respectively, as described below; whilst the

pseudocode and flowchart of SA, described further below, are shown in Algorithm

2.4 and Figure 2.5, respectively. More details about GAs for feature selection will

be discussed later in this Chapter. Note also that in general non-deterministic

methods are heuristic, i.e., they do not guarantee to find an optimal solution.
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Figure 2.4: General Flowchart of Genetic Algorithms
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Algorithm 2.3: Pseudocode of Genetic Algorithms()

Initialize candidate solutions

Evaluate each candidate solution

while (condition is not satisfied)

do



1) Select parents

2) Crossover pairs of parents

3) Mutate the result of Crossover

4) Evaluate new candidate solutions

5) Select individual for the next generation

Genetic Algorithms (GAs) are nondeterministic/random search algorithms based

on the evolutionary theory of natural selection and genetics. GAs show a successful

exploitation of a random search used to solve optimization problems in many appli-

cation domains. The main search operators of GAs are inherited from evolutionary

theory proposed by Charles Darwin. The key idea of his theory is the “survival

of the fittest”, which means that the individuals better adapted to their environ-

ment will survive in nature, while the rest of them will be vanished with time. As

shown as in Algorithm 2.3 and Figure 2.4, first, GAs start with a random indi-

vidual initialization process which generates a population of individuals – where

each inividual is a candidate solution to the target problem. Next, GA selects

parent individuals from all individual in an individual pool using some selection

approach, e.g. tournament selection or roulette wheel approach. Then, crossover

and mutation operations are applied to selected parents, in order to create new

individuals. Finally, GA selects survival individuals from offspring individuals and

go to next generation.
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Figure 2.5: General Flowchart of Simulated Annealing Algorithms

Algorithm 2.4: Pseudocode of Simulated Annealing()

Initialize a candidate solution X

Set Temperature t = T0

Set Xbest = X

while (condition is not satisfied)

do



for iteration = 1 to MaxIteration

do



S = move X by an operator

if f(S) < f(X)

then


X=S

if f(S) < f(Xbest)

then Xbest=S

else

if random < exp(−(f(S)− f(X))/t)

then X = S

t=update (t)

Simulated Annealing (SA) is special variety of hill climbing inspired by the
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annealing process in metallurgy [42]. As shown as in the pseudocode of Algorithm

2.4 and in the flowchart of Figure 2.5, first, SA generates a random solution and

calculates its fitness (quality) using some fitness function. After that, SA generates

a random neighbouring solution and calculates the new solution’s fitness. Then,

it compares them. If the fitness value of the new solution is smaller (better) than

the fitness value of the old solution, then it moves to the new solution. Otherwise,

it moves to the new solution with a probability given by the temperature param-

eter, which increases according to time. This process repeats until an acceptable

solution is found or the algorithm reaches some maximum number of iterations.

One major disadvantage of SA is the slow convergence speed.

2.2.2.2 Evaluation functions for Feature Selection

The second component of a feature selection method is an evaluation function,

which measures the quality of a candidate feature subset based on a predefined

criterion; such as the Mutual Information [26, 27, 71]; and Information Gain [74].

In this section, we classify evaluation functions into two main groups: Filter-based

evaluation functions and Wrapper-Based evaluation functions as illustrated in Fig-

ure 2.6.
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Figure 2.6: Types of Evaluation Function for Feature Selection
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In this section we will focus only on fitness functions based on the filter ap-

proach, which is the approach followed by the feature selection methods proposed

in this thesis, as mentioned earlier. Filter-based evaluation functions can be classi-

fied into two main groups: (1) Univariate measures, which evaluate the quality of

only one feature at a time; and (2) Multivariate measures, which aim to evaluate a

feature subset as a whole, taking feature interaction into account. There are many

univariate statistical techniques used to evaluate a feature - e.g. Symmetrical Un-

certainty and Information Gain.

Information Gain (IG) is a symmetrical measure used to measure the impurity

of a set. In other words, IG measures the amount of information in bits about a

random variable Y provided by a random variable X; or equivalently the amount of

information about X provided by Y [96]. IG is computed as shown in Equation 2.1,

IG = H(Y )−H(Y |X) = H(X)−H(X|Y ) (2.1)

where H(X) and H(Y ) is the entropy of the random variable X and Y, H(Y |X)

and H(X|Y ) is the conditional entropy of Y given X and of X given Y, respectively.

Mutual information (MI), an information-theoretic measure, was used in many

single-label feature selection works [25, 90] for finding the correlation between

feature and labels. MI is often used to measure dependencies between nominal

variables in feature selection. If the MI between two variables is near zero, this

would indicate that the variables are close to independent. The mutual informa-

tion I(X; Y) between the random variables (feature and class variable) X and Y

is shown in Equation 2.2, where p(x,y) denotes the joint probability of feature

values x and y, p(x) denotes the marginal probability of x (the probability of the

occurrence of event x), the log is in base 2, and the summation is over all values

of variables X and Y.
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MI(X;Y ) =
∑∑

p(x, y)log
p(x, y)

p(x)p(y)
(2.2)

Symmetric uncertainty (SU) is used to calculate the correlation of features and

the target class, as shown in Equation 2.3. A feature that has high value of SU

is high by correlated with the class variable. There are some benefits of SU, for

example, SU balances the bias of mutual information and gives a symmetrical

measure for feature correlation by dividing it by the sum of the entropies of X and

Y, it reduces the number of feature pairs whose correlations need to be computed

(by comparision with MI), since SU(i,j) is the same as SU(j,i); and SU values are

normalized. A value 1 of SU(X, Y) indicates that knowledge of one feature’s value

strongly represents the values of the other feature, and the SU(X, Y) value 0 in-

dicates the independence of X and Y.

SU(X, Y ) =
2(MI(X, Y ))

H(X) +H(Y )
(2.3)

Examples of multivariate evaluation functions which are used to measure a fea-

ture subset’s quality are Correlation-Based Feature Selection (CFS) and Maximize

Relevance Minimize Redundant (MRMR).

Peng et al proposed the MRMR (Max-Relevance and Min-Redundancy) mu-

tual information (MI)-based single-label feature selection method in 2005. This

approach aims to find a feature subset which has a high correlation to class labels

(high relevance) while the correlation between features in the feature subset is low

(low redundancy). They calculate the relevance and redundancy for discrete vari-

ables using Equations 2.4 and 2.5; and for continuous variables using Equations

2.6 and 2.7

Red(i, j) =
1

|S|2
∑
i,j∈S

MI(i, j) (2.4)
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Rel(i, h) =
1

|S|
∑
i∈S

MI(i, h) (2.5)

Red(i, j) =
1

|S|2
∑
i,j∈S

C(i, j) (2.6)

Rel(i, h) =
1

|S|
∑
i∈S

F (i, h) (2.7)

where Red(i, j) is the redundancy between features i and j

Rel(i, h) is the relevance value of feature i with respect to class h

S is the set of features being evaluated

MI(i, j) is mutual information between features i and j

F (i, h) is the value of the F-statistic between feature i and class h

C(i, j) is the correlation between features i and j

It should be noted that MRMR has the same basic idea as the Correlation-

based Feature Selection method (CFS) proposed by [44], in terms of minimizing

redundancy between selected features and maximizing the relevance of selected

features. The details of the CFS method are described in Section 2.3.
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Algorithm 2.5: Pseudocode of Relief()

INPUT: a set of training instances

n = the number of iterations - a user pre-defined number

f = the index of a feature

maxF = the total number of features in the selected instance

OUTPUT: the vector W of estimated feature qualities

SET: all weightsW[f] = 0;

for i = 1 to n

do



Randomly select an instance Ri

Find nearest hit instance H and nearest miss instance M to Ri

for f = 1 to maxF

do W[f] :=W[f] - diff(f,Ri, H)2 + diff(f,Ri,M)2;

A different type of evaluation function based on a multivariate measure of sim-

ilarity between instances (like in the nearest neighbour classifier) is used by the

Relief feature selection method [64]. The main idea of the basic Relief algorithm is

to estimate the quality of a feature subset according to how those features distin-

guish between two instances of different classes that are near to a given instance.

The pseudocode of Relief is shown in Algorithm 2.5. First, a randomly selected

training instance Ri and its two nearest neighbour instances are selected. Note

that one of the two nearest instances has the same class as Ri, called the near-

est hit H; and the other nearest instance has the different class, called the nearest

miss M. After that, the quality of estimation W[F] is updated for all features of Ri.

If instances Ri and H have different values of the feature f then the feature

f separates two instances with the same class, which decreases the quality esti-

mation of f. On the other hand, if instances Ri and M have different values of

the attribute f then the attribute f separates two instances with different class
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values, which is desirable, so we increase the quality estimation of f. The whole

process is repeated for n times, where n is a user-defined parameter representing

the number of iterations performed by Relief, which is the number of randomly

selected instances used to estimate the quality of the feature.

2.3 Single-Label Correlation-Based Feature Se-

lection (CFS)

[44] proposed a feature selection method named Correlation-based Feature Selec-

tion (CFS), a well-known filter method for single-label classification. They claimed

this method is simple and fast to execute and suitable for both nominal class and

continuous class problems (i.e., for both classification and regression problems, re-

spectively). In this research we are interested in this method only in the context

of classification problems.

Moreover, Hall stated that a good feature subset should have two main prop-

erties: (1) the correlation between each feature and other features in that subset

should be low, to minimize feature redundancy; and (2) the correlation between

each feature in that subset and the class attribute should be high. In his paper,

the merit of a feature subset is evaluated by Equation 2.8:

Merit =
krFL√

k + k(k − 1)rFF
(2.8)

Where (rFL) is the average feature-label correlation over all feature-label pairs

for all features in the current feature subset, (rFF ) is the average feature-feature

correlation over all pairs of features in the current feature subset F, and k is the

number of features in the current feature subset. In single-label correlation-based

feature selection, the quality of a feature subset F depends essentially on two

terms, namely (rFL) and (rFF ). The higher the value of the feature-class corre-
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lation and the lower the value of the feature-feature correlation, the higher the

quality of the feature subset F with respect to its ability to predict the labels of a

single class attribute. In the final experiment of Halls’ study, the best-first search

method (a popular heuristic search technique) was used for searching the feature

subset space [44].

Other study by [119] proposed a fast correlation-based filter approach. Their

approach applies Symmetrical Uncertainty (SU), – a measure based on information

theory, as a measure to evaluate the correlation between feature-class and feature-

feature pairs. The aim of their study was to find the feature subset which is

most correlated with the class attribute (according to the SU measure) and which

has least redundancy among feature pairs in the feature subset. Therefore, their

method is conceptually similar to the correlation-based feature selection method

proposed by [44].

2.4 A review of Evolutionary Algorithms for Fea-

ture Selection in a Data Preprocessing Phase

Evolutionary Algorithms (EAs) are stochastic (non-deterministic) search meth-

ods inspired by the process of natural selection, based on Darwin’s evolutionary

theory [32]. There are several types of EAs, e.g. Genetic Algorithms, Genetic

Programming, and Evolutionary Programming. In this thesis we focus on Genetic

Algorithms (GAs), since the vast majority of EAs for feature selection are GAs [34].

The basic principle of GAs as search methods have been discussed earlier in

this Chapter; hence, in this Section we discusses GAs specifically in the context of

feature selection for the classification task.
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In a GA, each individual (candidate solution) is evaluated by a fitness function

according to the target problem. In the context of a GA for feature selection (in

a data preprocessing phase), an individual is typically represented as a string of

bits where each bit takes the value 1 or 0 to indicate whether or not, respectively,

a feature is included in the selected feature subset.

In the wrapper approach, the fitness function uses the accuracy of a classifi-

cation model built with the features selected by the individual, while the filter

approach uses a simpler fitness function that is independent from the classification

algorithm to evaluate the quality of the feature subset represented by the individ-

ual.

A GA for feature selection starts with a population of individuals (candidate

feature subsets), and iteratively performs the operations of selecting individuals

based on fitness (so that better feature subsets have a higher chance of being se-

lected) and creating new “child” individuals based on variations of the “parent”

individuals just selected. This process is iteratively repeated until a stopping cri-

terion (e.g., a fixed number of iterations or generations) is satisfied. Since child

individuals tend to inherit characteristics (feature subsets) of good parents (which

were selected based on fitness), the population tends to evolve to a near-optimal

candidate solution (feature subset). GAs for feature selection have been shown

to obtain good predictive accuracy results in single-label classification, by com-

parison with more traditional search methods often used in feature selection for

single-label classification [34, 37, 66, 101].

There are many projects which employed EAs as a feature subset selection

method in single-label classification. For instance, [117] proposed the IG-GA ap-

proach. This approach is divided into two stages. The first stage is a filtering

method, using IG (Information Gain) to calculate the discriminative power of

each individual feature (ignoring feature interactions) and selecting the most in-
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formative features. The second stage uses a GA as a wrapper method to select,

out of all features selected in the filtering stage, a smaller subset of features. They

used the K-nearest neighbour method as an evaluator of the IG-GA.

The work by [15] proposed a hybrid IG-GA feature selection method for DNA

microarray data. In the first step they calculated a Information Gain-based feature

weight for each feature and selected a subset of relevant features based on that

criterion. Next, they generated a population for the GA (using features which

were obtained from the first step) and evaluated the fitness of an individual based

on the accuracy of k-NN. In addition to conventional crossover and mutation op-

erators, the GA uses local search to try to improve candidate solutions.

[110] proposed a different approach to select a feature subset. Their method

used multiple evaluation criteria (e.g. t-score, entropy-based and SVM recursive

feature elimination) to select a good feature subset in the feature subset space.

After that, the best feature subset according to all criteria, overall, was added in a

“feature pool” (collection of candidate features). In the next stage, a GA searched

for an optimal feature subset from that feature pool, evaluating each individual

(candidate fitness subset) using a fitness function based on the classification accu-

racy and number of selected features.

Next, we present a detailed review of GAs for feature selection in a data pre-

processing phase. In general, there are three main components that we need to

consider in the design of a GA for feature selection: (1) the individual representa-

tion, (2) the fitness function; and (3) the GA operators.

32



2.4.1 Individual Representation

We can classify individual representations for feature selection into three types:

(1) a bit string, (2) a list of feature indexes and (3) a two-part bit string. Most

publications used a bit string to represent a candidate solution. The bit string

is the simplest individual representation, and it is illustrated in Figure 2.7. As

mentioned earlier, the candidate solutions are encoded by a string of n bits where

n is the total number of features. The i-th bit with value “1” indicates that the

i-th feature was selected, while the i-th bit with value “0” indicates that the i-th

feature was not selected. The main drawback of a binary string is the size of the

chromosome (or individual) in high dimensional datasets. That is, if the number

of genes (n) is very large and we want to represent all genes, we would need a very

long chromosome [22]. Moreover, a bit string which has value “1” cannot indicate

the level of relevance of the corresponding feature in a chromosome.

 

Features 

Individual 1      0      1      0      1      1      0     0     1     1 

F0    F1     F2    F3    F4    F5    F6    F7   F8  F9 

Figure 2.7: Bit String individual representation

Another individual representation is a list of feature indexes [50, 69]. In this

case an individual can represent features in two ways: (1) a variable-length list

of feature indexes, where each individual consists of at most k feature indexes

(where k is a user-defined parameter) and each feature can occur more than once

in the list, in different positions, as shown in Figure 2.8. (2) a fixed-length list
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of feature indexes, where each chromosome consists of k genes and where each

gene represents either the index of a feature or the flag “0” representing no se-

lected feature. The advantage of this representation (in both versions) is that the

length of a chromosome does not depend directly on the number of input features.

Moreover, the degree of relevance of features can be indicated by the number of

occurrences of each feature. That is, a feature with more occurrences in the in-

dividual’s feature list can be interpreted as a more relevant feature, particularly

after many generations of evolution. In terms of crossover effect, if some relevant

genes were selected in different positions of the same individual, those genes will

have more chance of surviving in both children after performing the crossover op-

erator. However, this representation technique requires a new genetic operator

(delete attribute operator), which deletes all copies of a feature index from the

chromosome. Furthermore, if one feature occurs in more than one position in an

individual, it can act as a redundancy mechanism in the GA (but this redundancy

also can indicate relevance, as mentioned earlier).

 Individual  F0    F1    F0     F5    F8    F1    F1   F9   F6   F7 

 

Figure 2.8: A list of feature indexes individual representation

The last one is a two-part bit string representation, where each chromosome

represents a candidate solution with additional information on each selected fea-

ture. In [47] each individual is separated into two sections, as shown in Figure 2.9:

a selected feature section, which is a binary string; and a feature weight section,

which is represented by a real-value weight vector (with one weight per feature)

for the SVM classifier. The advantage of a two-part bit string is that each chro-

mosome contains both the selected features and other information for the GA or

classifier to be built using the selected features. On the other hand, a two-part bit
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string requires special crossover and mutation operators, and doubles the size of

the chromosome.

A list of the different types of individual representations used by many GAs

proposed in the literature is provided in Table 2.1

 

Individual   0       1        0        1       0      w1   w2    w3   w4   w5 

Selected Features Features Weight 

Figure 2.9: A two-part individual representation

2.4.2 Fitness Function

Another component of GAs is a fitness function, which aims to evaluate the fitness

of individuals. The vast majority of GAs for feature selection follow the wrapper

approach, where the fitness function involves the predictive performance of a clas-

sifier built using the features selected by the corresponding individual. However,

the filter approach could be used also, without using a classifier’s performance [34].

There are several types of feature ranking techniques used in the literature,

such as Between Group to Within group sum of square ratio (BW ratio) [15][47],

Entropy based [108], Information gain [5, 6, 15], T-statistics [108], the relative

approximity degree [82] and Wilcoxon rank sum [75].

A search method using correlation coefficient as the evaluation function [15]

and a search for the Markov blanket [125] of the class attribute are examples of a

search-based method following the filter approach for feature selection.

In the wrapper approach, the fitness function evaluates candidate solutions
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Individual Pool 

Evaluate each individual 
using fitness function 

Apply Genetic 
operators 

Survival Selection 

Figure 2.10: General scheme of GAs based on the filter approach

based on the accuracy of a classifier [6, 14, 40, 49, 70, 73, 86]. Some papers use

the accuracy of the classifier and another special criterion as a fitness function.

For instance, in [70] they use the accuracy of k-NN and the proportion of selected

features in the individual to the total number of features in the dataset; in [14]

they used the accuracy, the simplicity of decision tree (tree size); and number of

features in feature subset; and in [22] they used the accuracy of an SVM and the

number of selected features. A list of the different types of fitness functions used

by many GAs proposed in the literature is provided in Table 2.1

36



 

Individual Pool 

Run Classification 
algorithm on each 

individual 

Evaluate Fitness 
function 

Apply Genetic 
operators 

Survival Selection 

Figure 2.11: General scheme of GAs based on the wrapper approach

37



T
ab

le
2.

1:
A

su
m

m
ar

y
of

th
e

li
te

ra
tu

re
on

G
en

et
ic

A
lg

or
it

h
m

s
fo

r
F

ea
tu

re
S
el

ec
ti

on
in

a
d
at

a
p
re

p
ro

ce
ss

in
g

p
h
as

e

R
e
fe

re
n

ce
s

F
e
a
tu

re
S

e
le

ct
io

n
A

p
p

ro
a
ch

In
d

.R
e
p

.
F

it
n

e
ss

F
u

n
ct

io
n

C
ro

ss
o
v
e
r

M
u

ta
ti

o
n

O
th

e
r

O
p

e
ra

ti
o
n

[6
9]

F
il

t
&

W
ra

p
L

is
t

of
fe

at
u

re
in

d
ex

es
B

W
ra

ti
o

fo
r

fi
lt

er
ap

p
ro

ac
h

T
h

e
ac

cu
ra

cy
of

k
-N

N
fo

r
w

ra
p

p
er

ap
p

ro
ac

h
D

y
n

am
ic

D
y
n

am
ic

E
li

ti
st

st
ra

te
gy

[5
]

F
il

t
&

W
ra

p
B

it
st

ri
n

g
In

fo
rm

at
io

n
co

n
te

n
t

fo
r

fi
lt

er
an

d
T

h
e

ac
cu

ra
cy

of
D

ec
is

io
n

T
re

e,
th

e
cl

as
si

fi
ca

ti
on

co
st

fo
r

w
ra

p
p

er
ap

p
ro

ac
h

n
ot

m
en

ti
on

ed
n

ot
m

en
ti

on
ed

n
ot

m
en

ti
on

ed

[7
0]

W
ra

p
B

it
st

ri
n

g
T

h
e

ac
cu

ra
cy

of
k
-N

N
A

d
ap

ti
ve

p
ro

b
ab

il
it

y
A

d
ap

ti
ve

p
ro

b
ab

il
it

y
E

li
ti

st
st

ra
te

gy

[1
20

]
F

il
t

&
W

ra
p

B
it

st
ri

n
g

P
C

A
fo

r
fi

lt
er

ap
p

ro
ac

h
an

d
th

e
ac

cu
ra

cy
of

M
L

N
B

fo
r

w
ra

p
p

er
ap

p
ro

ac
h

U
n

if
or

m
n

ot
m

en
ti

on
ed

E
li

ti
st

st
ra

te
gy

[6
]

W
ra

p
B

it
st

ri
n

g
T

h
e

ac
cu

ra
cy

of
D

ec
is

io
n

T
re

e
an

d
si

ze
of

th
e

fe
at

u
re

su
b

se
t

n
ot

m
en

ti
on

ed
n

ot
m

en
ti

on
ed

n
ot

m
en

ti
on

ed

[1
08

]
F

il
t

&
W

ra
p

B
it

st
ri

n
g

E
n
tr

op
y

b
as

ed
,

T
-s

ta
ti

st
ic

s,
S

V
M

-r
ec

u
rs

iv
e

el
im

in
at

io
n

fo
r

fi
lt

er
ap

p
ro

ac
h

an
d

th
e

ac
cu

ra
cy

of
S

V
M

fo
r

w
ra

p
p

er
ap

p
ro

ac
h

S
in

gl
e-

p
oi

n
t

B
it

-fl
ip

n
ot

m
en

ti
on

ed

[4
0]

W
ra

p
B

it
st

ri
n

g
T

h
e

ac
cu

ra
cy

of
G

R
N

N
H

al
f

u
n

if
or

m
B

it
-fl

ip
S

im
u

la
te

d
A

n
n

ea
li

n
g

[1
4]

W
ra

p
L

is
t

of
fe

at
u

re
in

d
ex

es
T

h
e

ac
cu

ra
cy

an
d

si
m

p
li

ci
ty

of
D

ec
is

io
n

T
re

e
U

n
if

or
m

B
it

-fl
ip

D
el

et
e

F
ea

tu
re

[8
6]

W
ra

p
B

it
st

ri
n

g
F

ea
tu

re
su

b
se

t
ca

rd
in

al
it

y
an

d
th

e
ac

cu
ra

cy
of

1-
N

N
M

u
lt

i-
p

oi
n
t

B
it

-fl
ip

P
ro

b
le

m
–s

p
ec

ifi
c

op
er

at
io

n

[8
3]

F
il

t
&

W
ra

p
B

it
st

ri
n

g
T

h
e

re
la

ti
ve

p
ro

x
im

it
y

d
eg

re
e

fo
r

fi
lt

er
ap

p
ro

ac
h

an
d

th
e

ac
cu

ra
cy

of
k
-N

N
fo

r
w

ra
p

p
er

ap
p

ro
ac

h
M

u
lt

ip
le

-p
oi

n
t

B
it

-fl
ip

n
ot

m
en

ti
on

ed

[7
3]

W
ra

p
B

it
st

ri
n

g
T

h
e

ac
cu

ra
cy

of
S

V
M

S
in

gl
e-

p
oi

n
t

B
it

-fl
ip

n
ot

m
en

ti
on

ed

[1
5]

F
il

t
&

W
ra

p
B

it
st

ri
n

g
T

h
e

co
rr

el
at

io
n

b
as

ed
fe

at
u

re
w

ei
gh

ts
fo

r
ea

ch
fe

at
u

re
fo

r
fi

lt
er

ap
p

ro
ac

h
an

d
th

e
ac

cu
ra

cy
of

k
-N

N
fo

r
w

ra
p

p
er

ap
p

ro
ac

h
S

ta
n

d
ar

d
B

it
-fl

ip
T

ag
u

ch
i

m
et

h
o
d

[2
2]

F
il

t
&

W
ra

p
B

it
st

ri
n

g
M

R
an

ke
d

m
et

h
o
d

fo
r

fi
lt

er
ap

p
ro

ac
h

an
d

th
e

ac
cu

ra
cy

of
S

V
M

fo
r

w
ra

p
p

er
ap

p
ro

ac
h

S
in

gl
e-

p
oi

n
t

B
it

-fl
ip

n
ot

m
en

ti
on

ed

[1
17

]
F

il
t

&
W

ra
p

B
it

st
ri

n
g

In
fo

rm
at

io
n

G
ai

n
fo

r
fi

lt
er

ap
p

ro
ac

h
an

d
th

e
ac

cu
ra

cy
of

k
-N

N
fo

r
w

ra
p

p
er

ap
p

ro
ac

h
T

w
o-

p
oi

n
t

B
it

-fl
ip

n
ot

m
en

ti
on

ed

[5
1]

F
il

t
&

W
ra

p
B

it
st

ri
n

g

C
os

in
e

am
p

li
tu

d
e

m
et

h
o
d

an
d

al
p

h
a

cu
t

m
et

h
o
d

fo
r

fi
lt

er
ap

p
ro

ac
h

an
d

th
e

ac
cu

ra
cy

of
S

V
M

fo
r

w
ra

p
p

er
ap

p
ro

ac
h

O
n

e-
p

oi
n
t

M
u

lt
i-

u
n

if
or

m
E

li
ti

st
st

ra
te

gy

[7
5]

F
il

t
&

W
ra

p
B

it
st

ri
n

g
W

il
co

x
on

ra
n

k
su

m
te

st
fo

r
fi

lt
er

ap
p

ro
ac

h
an

d
th

e
ac

cu
ra

cy
of

S
V

M
fo

r
w

ra
p

p
er

ap
p

ro
ac

h
D

ou
b

le
on

e-
p

oi
n
t

B
it

-fl
ip

n
ot

m
en

ti
on

ed

[5
0]

W
ra

p
p

er
L

is
t

of
fe

at
u

re
in

d
ex

es
T

h
e

ac
cu

ra
cy

of
A

N
N

O
n

e-
p

oi
n
t

B
it

-fl
ip

S
p

ec
ia

ti
on

,
E

li
ti

st
st

ra
te

gy

[4
7]

F
il

t
&

W
ra

p
2

p
ar

ts
b

it
st

ri
n

g

B
W

ra
ti

o,
th

e
co

rr
el

at
io

n
co

effi
ci

en
t

,
th

e
F

is
h

er
’s

d
is

cr
im

in
an

t
cr

it
er

io
n

fo
r

fi
lt

er
ap

p
ro

ac
h

an
d

th
e

ac
cu

ra
cy

of
S

V
M

fo
r

w
ra

p
p

er
ap

p
ro

ac
h

S
p

ec
ia

li
ze

d
S

p
ec

ia
li

ze
d

E
li

ti
st

st
ra

te
gy

[1
25

]
F

il
t

B
it

st
ri

n
g

M
ai

n
ly

th
e

ge
n

er
al

iz
at

io
n

er
ro

r
fo

r
S

V
M

an
d

fe
at

u
re

su
b

se
t

ca
rd

in
al

it
y

as
a

ti
e-

b
re

ak
in

g
cr

it
er

io
n

S
ta

n
d

ar
d

B
it

-fl
ip

M
ar

ko
v

B
la

n
ke

t
B

as
ed

m
em

et
ic

op
er

at
io

n

38



Considering the feature selection approach, most works mentioned in the sec-

ond column of the table use the filter and wrapper approaches together, in a

sequential fashion. The advantage of using the filter approach before applying a

GA is the reduction of the number of features in the feature space, in order to allow

the subsequent use of a wrapper approach. In contrast, applying only the wrapper

approach to all original features would be much more computationally expensive.

On the other hand, in works like [125], they do not need to use the filter approach

(for feature elimination) because the number of features in the datasets mined in

those papers is no more than 100 features, which does not seem too large for a

wrapper-based GA for feature selection.

2.4.3 The Main GA Operators: Crossover and Mutation

Another component of GAs is one or more genetic operators which aim to cre-

ate a new individual(s) from an old one(s). There are two main types of genetic

operators: (1) Crossover and (2) Mutation operator. Crossover or recombination

merges information from two parents into one or two offspring. There are five

main categories of crossover in the literature: One-point crossover, Multi-point

crossover, Uniform crossover, Dynamic crossover, and a special crossover.

One-point crossover randomly selects only one crossover position in the par-

ent individuals and swaps gene values to the right of the crossover point between

parents producing two children, as illustrated in Figure 2.12. One-point crossover

was used in [15, 22, 50, 51, 73, 108].

Multi-point crossover works by first choosing a random number m of crossover

points and then the gene values between every two gene sections are swapped

between two parents, where a gene section consists of the genes between two suc-

cessive crossover points. Note that there are two types of multi-point crossover;
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 Parent 1  0       1       0      1      1       0       1 

 0       1       1      1      0       0       0 Parent 2 

Child 1  0       1       0      1      0       0       0 

 0       1       1      1      1       0       1 Child 2 

Figure 2.12: One-Point Crossover

odd section swap and even section swap. For example, in even section swap, the

section between the first gene and the first crossover point is not swapped, it swaps

only the even sections in individuals, e.g. swapping even sections with the genes

between the 1st and 2nd crossover points, the 3rd and 4th crossover points, and so

on; and vice-versa for odd section swap. An example of even section swap multi-

point crossover, with two crossover points, is shown in Figure 2.13. This technique

was used in [75, 83, 86, 118] .

Uniform crossover works as follow. First, it generates a string of L random

variables between [0, 1], where L is the number of genes. In each position, if the

value of that random variable is lower than a pre-defined number p (the probabil-

ity of crossover per gene), the gene values in this position are swapped between

the two parents, to create two children. This type of crossover was used in [14, 120].
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Child 1  0       1       0      1      0       0       1 

 0       1       1      1      1       0       0 Child 2 

Parent 1  0       1       0      1      1       0       1 

 0       1       1      1      0       0       0 Parent 2 

Figure 2.13: m-Point Crossover, m=2

In general, one-point crossover has a high position bias, while uniform crossover

tends to have a high distribution bias. In this context, position bias means that,

when the GA chooses a crossover point (one point), genes which are close together

in an individual are more likely to have their values passed together to children.

Note that uniform crossover does not have position bias because the probability

of the values of a gene being swapped between the two parents is independent of

the position of the gene in an individual.

Uniform crossover has a high distribution bias because the number of swapped

genes depended on the probability of crossover per gene, which can be different

from 50 %. In [40] another kind of uniform crossover was applied, the half uni-

form crossover. It calculates the Hamming distance (the number of differing bits)
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between the parents. Only half of the different bits of two parents will be swapped.

 
Parent 1  0       1       0      1      1       0       1 

 0       1       1      1      0       0       0 Parent 2 

Child 1  0       1       1      1      0       0       1 

 0       1       0      1      1       0       0 Child 2 

0.4       0.2         0.7       0.6       0.9       0.2        0.8    Random  values 

Figure 2.14: Uniform Crossover

Note that GA chooses crossover points (in one-point and multi-point crossover)

and gene position (in uniform crossover) without considering the fitness values of

individuals.

Dynamic crossover or adaptive crossover was used in [69, 70]. The probability

of adaptive crossover is varied depending on the fitness value of solutions [106, 107].

The advantage of adaptive crossover is that it improves the convergence rate of

the GA and avoids the GA being trapped in a local minimum.

In [47] researchers use a special crossover operator, which is designed for

the two-part bit string representation discussed earlier. In that paper, a spe-

cial crossover conserves the genes shared by the parents (for the first part of an
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individual) and the SVM weight information in the second part of individual.

Another type of genetic operation is mutation, which considers each gene sep-

arately and allows each gene to flip (bit-flip mutation) according to the mutation

rate (a user-specified parameter). Usually, a large value of mutation rate would

lead the GA into a purely random search. To avoid this problem, the mutation

rate is usually small, typically in the range of 0.005-0.05 (i.e.,0.5-5%). Most pa-

pers on GA for feature selection used bit-flip mutation in their study. Instead of a

fixed mutation rate, [69, 70] applied adaptive mutation, where the mutation rate

is a dynamic value, which iteratively changes based on the fitness value of parent

chromosomes. Those papers claim that using adaptive mutation and crossover can

balance the capacity of exploitation and exploration of GA.

The list of the different types of crossover and mutation operators used by

many GAs for feature selection proposed in the literature is provided in the fifth

and sixth columns of Table 2.1, respectively.

2.4.4 Other Operations

Finally, most papers also use other operations/techniques to increase the per-

formance of GAs such as an elitist strategy and speciation strategy. The elitist

strategy, which is used in [47, 51, 69, 70, 120], aims to preserve the best individuals,

which have the highest fitness values, for the next generation (without performing

any genetic operation on those individuals). It is used in GAs to make sure the

best individual survive and to guarantee that the best fitness value of each gener-

ation would not be worse than the one in the previous generation.

In addition, [50] used another technique called Speciation, which is used to

identify a species of solutions within the population. In general, this technique
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uses a distance function to evaluate similarity between two solutions (individuals)

in the population. If the similarity value of those individuals is too low they are

considered to belong to different species and the crossover operator does not op-

erate between those individuals. The speciation is promising for obtaining diverse

solutions of high accuracy.

Other specific techniques are a delete feature operator which uses only one par-

ent to produce a child in [14], Taguchis’ method which is used in [15] for improving

local search in GA and a Markov Blanket based operation for removing or adding

features in a feature subset in [125].

2.5 Background on Gene Expression from a Bioin-

formatics Perspective

The development of microarray technology has lead to a new direction of biological

research, and provided a new type of problem for machine learning research. The

small glass chip or gene expression microarray is used to measure the gene expres-

sion levels in tissue samples. Gene expression levels can distinguish among groups

of patients’ tissue conditions, and help physicians to diagnose whether a patient

has disease or not. Microarray technology was developed for measuring the gene

expression levels of tens of thousands of gene simultaneously. Surely, the main

challenge for machine learning or data mining algorithms is the dimensionality of

the data (the number of genes), which is very high compared to the typically very

small number of samples (instances) [80]. In this section, we will first describe

general background on bioinformatics such as basic concepts of gene expression

and microarray data. Next, the challenge of microarray data for data mining will

be described.
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2.5.1 Gene Expression

Gene expression is a biological process which converts the information encoded in

genes into proteins. Genes are contained in DNA (Deoxyribonucleic Acid) strains.

The basic flow of sequential transformation, where DNA is transformed to pro-

teins, can be separated into two stages: (1) DNA transcription, in this stage DNA

is transcribed to mRNA (messenger Ribonucleic Acid) and (2) Translation stage,

in this stage RNA is translated to protein [31, 80].

According to Figure 2.15, the process of protein synthesis starts with the DNA

replication process. In this stage, a DNA strain is replicated from one strain to two

strains. After that, DNA strain transcript information is coded into a temporary

molecule, called mRNA. Finally, the protein is built using sequential information

(sequential order of amino acids) from mRNA in the translation stage.

 

 

 

 
 

 

DNA mRNA Protein 
Transcription Translation 

DNA Replication 

Figure 2.15: Sequential process for protein synthesis from DNA

2.5.2 Characteristics of DNA Microarray

DNA microarray is a chip-based technology which is widely used to study biomed-

ical samples [31]. A microarray may contain thousands of spots; each spot on the

chip represents a different coding sequence from different genes. In a microarray
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experiment, the example tissue is grown in two different conditions (a reference

condition and a test condition). Next, RNA is extracted from the two cells, and

is labelled with different dyes (red and green) during the synthesis of cDNA (com-

plementary DNA) by reverse transcriptase. Note that cDNA is a double-stranded

DNA synthesized from RNA. After that, cDNA is hybridized onto the microarray

slide. The microarray slide is placed inside a dark box where it is scanned with a

laser at suitable wavelengths to detect the red and green dyes. Finally, the result

of hybridization is stored as a file for further analysis [4].

 

 

(a) 

 

𝑴 = [

𝒂𝟏𝟏 ⋯ 𝒂𝟏𝒏
⋮ ⋱ ⋮

𝒂𝒎𝟏 ⋯ 𝒂𝒎𝒏
] 

(b) 

Instances Gene 1 Gene 2 Gene 3 ... Gene n Class 

1 
      

2 
      

... 
      

m 
      

Figure 2.16: Two types of data structure to store microarray data: (a) table or
(b) matrix

According to Figure 2.16, data from microarray can be stored in a table or

matrix where each row represents a data instance or sample (or cell line in the

case of our experiments reported later), and each column represents a feature

or attribute (corresponding to a gene). The cell i,j in the matrix is the gene

expression value of gene j in instance i., i=1,...,m; j =1,...,n, where m is the number

of instances and n is the number of genes.
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2.5.3 The Challenge of Microarray Data for Data Mining

The main challenge of microarray data related to the data mining area is its high

dimensionality; the number of features (genes) is very large, typically many thou-

sand genes; while the number of instances is small, typically a few tens of instances

[31, 39]. Microarray data usually has tens of thousands of genes (features), while

it often has only a few tens of samples (instances). The problems are that the

large number of features (genes) can lead to high computational time for the data

mining algorithm and most features are irrelevant or very noisy, potentially leading

to an overfitting of the classification model to the data as explained later – note

that in this research we focus on the classification task of data mining. Due to the

very high dimensionality of microarray data, it is desirable to employ some data

mining methods which can select informative feature subsets in microarray data.

Hence, the feature selection methods proposed in this thesis can be used to

select features in microarray data. This will be shown in Chapter 5, where we

will propose feature selection methods tailored to exploiting biological background

knowledge and evaluate those methods in microarray datasets.

2.6 Summary

This Chapter presented background on data mining and bioinformatics, focusing

on conventional single-label feature selection for the classification task. First, filter

and wrapper feature selection approach were described in Section 2.2.1. In addi-

tion, this chapter described the feature selection algorithms’ components: (1) the

search method, and (2) the evaluation (fitness) function. In particular, it reviewed

both hill-climbing based and evolutionary algorithm-based methods for feature se-

lection in Section 2.2.2.1.
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Section 2.2.2.2 described the evaluation function component of feature selec-

tion methods. Evaluation functions based on the filter approach; such as Mutual

Information, Information Gain, and Symmetric uncertainty were reviewed. Also,

examples of multivariate evaluation functions such as the correlation-based feature

selection (CFS) and Maximize Relevance Minimize Redundant (MRMR) were de-

scribed.

Moreover, Section 2.4 reviewed evolutionary algorithms for feature selection,

including: (1) individual representation, (2) fitness function, and (3) the main

evolutionary search operators. Last, general background on bioinformatics and

molecular biology, especially on microarray data and other topics related with our

research, was briefly reviewed in Section 2.5.
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Chapter 3

Multi-Label Classification and

Feature Selection

In this chapter we present the background on multi-label classification problems,

multi-label feature selection methods, and multi-label classification algorithms.

We also discuss several multi-label classification evaluation measures.

3.1 Multi-Label Classification Problems

Multi-label classification is different from traditional single-label classification be-

cause in multi-label classification each instance can be associated with a set of

class labels, while in traditional single-label classification each instance is associ-

ated with only one class label. For example, an article about social media can be

classified to both information technology and social activity class labels. A doc-

ument can be classified to the class labels education and economics at the same

time. A gene can be associated with many biological functions in an organism,

and an image can be annotated with both sea and mountain class labels.

Multi-label classification is used in many areas; such as, text classification,

scene classification, music classification, bioinformatics and medical diagnosis [113].

The basic idea of multi-label classification is illustrated in Table 3.1, where each
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Table 3.1: An example of multi-label data set

InstanceID Class 1 Class 2 Class 3
1 X
2 X
3 X X X
4 X
5 X X

instance can belong to more than one category (class label).

Predicting class labels for multi-label classification problem is more complicated

when compared with traditional single-label classification problems. Generally,

multi-label classification methods can be classified into two groups: (1) problem

transformation methods, which transform a multi-label classification problem into

single-label classification problems and predict each class label separately using a

single-label classification algorithm; and (2) algorithm adaptation methods, which

modify a single label classification algorithm to perform multi-label classification

directly [24, 112].

3.2 Multi-Label Problem Transformation Meth-

ods

In this section we review the main methods that transform a multi-label classifi-

cation problem to one or more single-label classification problems [24].

Firstly, some problem transformation methods transform a multi-label classifi-

cation problem to just one single-label classification problem, such as the dubbed

PT1 method or Label Elimination method, which randomly selects one of the

multiple labels of each multi-label instance and discards the other labels of that

instance. PT1 is illustrated in Table 3.2, which shows a possible result of applying

PT1 to the data in Table 3.1. It is also possible to select the labels to be discarded
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Table 3.2: Transformed data using PT1

InstanceID Class 1 Class 2 Class 3
1 X
2 X
3 X
4 X
5 X

Table 3.3: Transformed data using PT2

InstanceID Class 1 Class 2 Class 3
1 X
2 X
4 X

from each multi-label instance using a non-random criterion such as selecting the

label with maximum or minimum frequency in the dataset [10, 92].

Other method, dubbed PT2 (also called Instance Elimination method), re-

moves all instances which have multiple labels from the dataset and uses the re-

maining instances for data mining. Table 3.3 shows the result of applying PT2 to

the data in Table 3.1. A clear weakness of both PT1 and PT2 is that they lead to

an information loss, because these techniques tend to eliminate lots of data from

the original data set. [94, 95] applied these methods in their research.

The PT3 method or Label Power set method also proposed in [112], which

creates a single label for each element in the power set of the set of labels (i.e., for

each possible combination of labels) that is observed in the dataset. This method

does not lead to information loss like PT1 and PT2, but PT3 can lead to a large

number of class labels. This is a serious problem particularly when the number

of instances is small, since in this case there would be too few instances for some

class labels, making it very difficult to reliably predict those labels. This technique

is used in [95, 111, 114]. A variation of PT3 is the pruned transformation method,

which was proposed by [94]. This method prunes away label sets that occur a
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Table 3.4: Transformed data using PT3

InstanceID Class 1 Class 2 Class 3
Class 2 &
Class 3

Class 1& Class2
& Class 3

1 X
2 X
3 X
4 X
5 X

Table 3.5: Transformed data using PT4

InstanceID Class1 ¬Class1
1 X
2 X
3 X
4 X
5 X

InstanceID Class2 ¬Class2
1 X
2 X
3 X
4 X
5 X

InstanceID Class3 ¬Class3
1 X
2 X
3 X
4 X
5 X

number of times smaller than a small user predefined threshold. The result of

applying the PT3 method to the data in Table 3.1 is shown in Table 3.4.

PT4, also call Binary Relevance, is a method which transforms the original

data set into |L| new data sets (where L is set of labels). Each data set contains

all data instances of the original dataset. In the i-th dataset, i = 1,. . . , |L|, each

instance is assigned a single label, which is i if the instance contained the i-th label

in the original dataset, and ¬i otherwise. This technique is used in [23] and [111].

Table 3.5 shows the result of applying PT4 to the data in Table 3.1. Note that
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Table 3.6: Transformed data using PT5

InstanceID Class
1 Class1
2 Class2
3 Class1
3 Class2
3 Class3
4 Class2
5 Class2
5 Class3

PT4 creates three single-label datasets, so three classifiers need to be trained.

The last problem transformation method is PT5. This method decomposes

each instance into n rows (where n is the number of true labels for the current

instance), where those rows have the same attribute values but different classes.

However, this method leads to a large amount of data replication in the dataset.

The result of applying PT5 to the data in Table 3.1 is shown Table 3.6. Note

that PT5 creates a dataset where some instances are duplicated with respect to

the features, differing only in their class labels. This would be a problem for most

conventional classification algorithms, so this method is rarely used in practice.

The second group of multi-label classification methods consists of algorithm

adaptation methods. These methods modify a conventional single-label classifica-

tion algorithm to solve a multi-label classification problem. Some of these methods

are briefly discussed in Subsection 3.3. In any case, note that these methods are

not the focus of this research (which focuses on data preprocessing methods).

A similar taxonomy, using somewhat different terminology was introduced in

[21], who classified multi-label classification methods into two main types: (1) al-

gorithm independent and (2) algorithm dependent. Algorithm independent meth-

ods correspond to the problem transformation method proposed by [112]. Algo-
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Table 3.7: A comparison of problem transformation methods proposed or discussed
in different works.

Methods Advantages Disadvantages
Number of
classifiers

Number of
instances

1) PT1: Label elimination
Simple and easy
to implement

Information loss one
Same as for
original data set

2) PT2: Instance elimination
Simple and easy
to implement

Information loss one Reduced

3) PT3: Label creation or
Label power set (LP)

Considers some
relationship
between labels

A large increase in the
number of class labels,
increasing the risk of
model overfitting

one
Same as for
original data set

4) PT4: Label based transformation
or Binary Relevance (BR)

Simple and
easy to
implement

Considers each label
separately, ignoring
label correlations;
slow (leads to many runs
of a classification
algorithm)

Increased:
Equal to the number
of labels

Increased in total
(over all new data sets)

5) PT5
Simple and easy
to implement

create duplicated
instances regarding to
feature values and
instances with inconsistent
class

one Increased

rithm independent methods can be used with any type of classification algorithm,

whereas algorithm dependent methods use a specific type of algorithm for dealing

with multi-label classification problems.

Table 3.7 shows a comparative study of problem transformation methods pro-

posed or discussed by different authors. For each method, the first column men-

tions its name, the second and third columns mention the advantage(s) and dis-

advantage(s) of that method, the fourth column indicates the effect of using the

method on the number of single-label classifiers that need to be trained after the

data has been transformed, and the fifth column indicates the effect of using the

method on the number of instances in the data being mined.

3.3 Multi-Label Classification Algorithms

Several single-label classification algorithms have been modified for multi-label

classification. For example, the C4.5 algorithm (a well-known decision tree induc-

tion algorithm proposed in [93]) was modified by [16]. In order to extend C4.5 to
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a multi-label scenario, Clair and King adapted the formula of entropy calculation

for multi-label classification. In this Section we focus only on the two multi-label

classification algorithms used in our experiments reported in Chapter 4-6, namely

multi-label extensions of the kNN (K nearest neighbour) and Backpropagation

Neural Network algorithms. Each of these is described in a separate subsection,

in the following.

3.3.1 Multi-Label K-Nearest Neighbours Algorithm

A multi-label classification algorithm based on an extension of a traditional single-

label k-nearest neighbours (kNN) algorithm, called ML-kNN was proposed [124].

This algorithm works as follows. For each test instance unseen, ML-kNN identi-

fies that instance’s k nearest neighbours in the training set and considers which

of those neighbours are labelled as positive or negative. Next, in order to trans-

fer class labels from those neighbours to that unseen instance, in essence, this

approach uses the k-NN algorithm independently for each label in the label set.

More specifically, it counts the number of neighbours associated with each label

and uses a maximum a posteriori principle to define the label set for the unseen

instance.

For an unknown-class instance x, the predicted value (0 or 1) of each class label

Yj is computed by Equation 3.1,

Yj =

1, ifP (cj|Yj = 1)P (Yj = 1) ≥ P (cj|Yj = 0)P (Yj = 0)

0, otherwise

(3.1)

where:

cj is the count of the nearest neighbours of instance x which have the j -th label

(i.e., nearest neighbours with Yj = 1), P (cj|yj = 1) is the probability of the count

value cj conditioned on the event that instance x has the j-th label, P (cj|Yj = 0) is
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the analogous probability conditioned on the event that x does not have the j -th

label, P (Yj = 1) and P (Yj = 0) are the prior probability of the j -th label taking

the value 1 or 0 (estimated by taking into account the relative frequency of yj = 1

and yj = 0 in the entire training set).

The ML-kNN method was used in multi-label classification of music into emo-

tions [111], multi-label classification for video annotation [23] and multi-label learn-

ing with label-specific features [121]. Moreover, [111] pointed out that ML-kNN is

a high performance representative of problem adaptation methods.

An aspect of the original single-label kNN which is inherited to ML-kNN is

the distance measure. For distance-based classification methods like kNN using

the Euclidean distance measure, feature normalization is an important step, be-

cause it prevents a feature with initially (before normalization) large range from

outweighing a feature with initially smaller range when computing the distance

between two instances. Feature normalization equalizes the range of values of all

features [2, 72, 100]. The Euclidean distance is used to measure the distance be-

tween instances in ML-kNN; therefore, the original features need to be normalized

in a pre-processing process, before the application of ML-kNN.

3.3.2 Multi-Label Neural Network Algorithm

An extension of the traditional feed-forward neural network for multi-label classi-

fication problem, Backpropagation Multi-Label Learning (BPMLL), was proposed

by [123]. A feed-forward neural network has a multi-layer architecture. The first

layer represents an input layer and the last layer is the output of the algorithm.

Layers in the middle, called hidden layers have no connection with the external

world. Each layer has many neurons (nodes), which connect to all nodes in the

next layer, while there is no connection between nodes in the same layer. Note
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that the output layer has one node for each of the class labels.

 

Where 

Y is the set of class labels 
d is the number of input nodes (the dimensionality of the feature vector) 
Q is the number of output nodes, each corresponding to one of the possible class labels 
M is the number of nodes in the hidden layer 
Vhs is the weight of the connection between input node h and hidden node s, (1 ≤ ℎ ≤ 𝑑, 1 ≤ 𝑠 ≤ 𝑀) 
Wsj is the weight of the connection between input node j and hidden node s, (1 ≤ 𝑗 ≤ 𝑄, 1 ≤ 𝑠 ≤ 𝑀) 
a0 ,…,ad are the input nodes (a0 is the bias node) 
b0 ,…,bM are the hidden nodes (b0 is the bias node) 
c0 ,…,cQ are the output nodes (representing class labels) 

Output layer 

Hidden layer 

Input layer 

Figure 3.1: Backpropagation Multi-Label Learning (BPMLL) architecture
(adapted from [123])

This kind of architecture is show in Figure 3.1. There are d units in the input

layer each one corresponding to each feature while there are q unit of output layer

where each unit corresponding to class label.

The neural network is trained with the gradient descendent and error back
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propagation with an error function. The global error function is shown in Equa-

tion 3.2. The error term for the i -th instance is calculated as the accumulated

difference between the output of each pair for nodes where one node (cik) repre-

sents a label belonging to instance i and another node (cil) represents a label not

belonging to instance i. Note that the bigger the difference (cik − cil), the better

the predictive performance of the neural network, since the output of cik should be

as high as possible (label k occurs in instance i) and the output of cil should be as

low as possible (label l does not occur in instance i).

E =
m∑
i=1

Ei =
m∑
i=1

1

|Yi||Yi|

∑
(k,l)∈Yi×Yi

exp(−(cik − cil)) (3.2)

where

Yi is the set of labels occurring in the instance i

Yi is the complementary set of Yi (i.e., set of labels not occurring in instance i)

cik − cil is the difference between the output of the node for one label belonging to

instance i (k ∈ Yi) and one label not belonging to instance i (l ∈ Yi)

k is the index of a label belonging to label set Yi

l is the index of a label belonging to label set Yi

m is the number of instances in a multi-label training set

In Equation 3.2, the larger the value of cik − cil, the smaller the value of

exp(−(cik − cil)), and so the smaller the error associated with the pair of labels

k and l. The summation of these errors for each pair of labels is then normalized

by dividing that summation by the total number of label pairs (|Yi||Yi|), for each

instance i, and finally the errors for all instances are added up to calculate the

global error E.
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3.4 Multi-Label Feature Selection Methods

There are a small number of published studies on filter-based feature selection

methods for multi-label classification following the data preprocessing (rather than

the embedded) approach, as follows.

Several works first transform the multi-label problem into a single label prob-

lem and then use a single-label feature selection method. In [26] proposed to use

a problem transformation method to transform data from a multi-label problem

to a single-label problem, and used the mutual information (MI) as an evaluation

function for feature subset selection in the filter approach. The Pruned Problem

Transformation Method (PPT) is a variation of the Power Set problem transfor-

mation method (PT3) defined in [112], which simply considers each different label

subset in the original data as a single label (as in PT3 method) and removes from

the data set the new labels with a number of instances smaller than a predefined

threshold. Then they used greedy forward feature selection based on MI to select

features. Similarly, in [27] the PPT method was applied for transforming data and

multivariate mutual information was used to select features. This paper claims

that using multivariate mutual information can deal with redundancy between

features in the feature subset. However, these studies cannot deal with multi-label

problems directly.

RF-BR used the binary relevance (BR) transformation technique to transform

multi-label data to single-label data and then evaluated each feature subset using

ReliefF (RF). This approach also cannot directly deal with multi-label datasets

[103].

The main drawback of using a problem transformation method in those studies

is that they cannot cope with the correlation between labels. Other multi-label

feature selection methods which avoid to use a problem transformation method
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were proposed in several studies, as follows.

Multivariate mutual information for multi-label feature selection without using

problem transformation was proposed by [71]. This approach avoids the informa-

tion loss during the problem transformation process. However, this approach needs

a user pre-defined number (the number of features in the selected feature subset),

which equals to three in their paper.

In [68], authors modified the idea from the fast correlation-based feature selec-

tion (FCFS) method which was proposed by [119] and applied it in a multi-label

scenario. They used maximum spanning tree (MST) and symmetrical uncertainty

(SU) in their filter approach to select features in a multi-label classification task.

They built a SU matrix which considers feature-feature correlations and feature-

label correlations using SU as a criterion to measure correlations. However, they

assumed all features were discrete, a drawback in datasets where many features

are continuous. Continuous features can be discretized in a preprocessing step, but

this leads to loss of relevant information, especially in microarray datasets with

more than 20,000 continuous features such as the data used in our experiments

reported in Chapter 5.

A multi-label feature selection method using an MF-statistic and MreliefF

based approach was proposed by [65]. These two approaches take the label cor-

relation into account by using the multi-label F-statistic and multi-label reliefF

method to evaluate the correlation between a feature and labels, but they cannot

consider the correlation between features.

Also, [120] performed feature selection for classification with multi-label naive

Bayes. First they used Principle Component Analysis (PCA) to remove redun-

dant features, and after that they used a Genetic Algorithm (GA) for selecting

a relevant feature subset. In their paper the learning problem was addressed by
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multi-label naive Bayes (MLNB). Their study performed feature selection in a

multi-label scenario because the GA uses the predictive performance of MLNB to

guide the search for features, following a wrapper approach. However, note that

PCA is an unsupervised learning method for dimensionality reduction, whereas the

datasets used in our experiments are appropriate for supervised learning methods.

In addition, PCA creates new features that are difficult to be interpreted by users,

whilst a dimensionality reduction approach based on feature selection has the ad-

vantage of preserving the meaning of the original features, facilitating the user’s

interpretation of the classifier built with the selected features [97] [76].

Relief for multi-label feature selection (RF-ML) was proposed by Spolaor and

others in 2013. This approach searches for k nearest multi-label instances by using

a dissimilarity function. RF-ML considers the effect of feature interaction when

computing the dissimilarity between instances. The dissimilarity function used in

their paper is the normalization of Hamming Distance. Another method proposed

by [103], IG-ML selects feature subsets which have a multi-label information gain

(IG) value greater than or equal to a pre-defined threshold. This method has the

drawback of requiring an ad-hoc user-defined threshold value.

In [74], authors proposed the multi-label feature selection via information gain

(IGMF). This approach evaluates the information gain between a feature and the

label set and after that eliminates irrelevant features (using the average of the

information gain across all features as a threshold). They claim that this ap-

proach can deal with the multi-label problem directly. However, a discretization

technique was used before calculating information gain, and as mentioned earlier

this involves information loss especially in datasets with many continuous features.

Also, [91] adopted the information gain-based feature selection for multi-label

scenario. This approach computes a multi-label information gain score for all

features then ranks all features before selecting the top k features, where k is a
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Table 3.8: A Summary of work on Filter-based Multi-Label Feature Selection
Methods

Ref.
PT

Method
Eval.

Function
Disadvantages

[26, 27] Power set MI
• Cannot deal with multi-label problem directly
• Loss of information associated with discretized data
• Need user pre-defined number of selected features

[65] None F-statistic
• Ignore the correlations between pairs of features
• Need user pre-defined number of selected features

[71] None MMI
• Loss of information associated with discretized data
• Need user pre-defined number of selected features

[68] None SU
• Loss of information associated with discretized data
• Need user pre-defined number of selected features

[103] BR ReliefF
• Need user pre-defined number of selected features
• Cannot deal with multi-label problem directly

[74, 91, 103] None IG
• Need user pre-defined number of selected features
• Loss of information associated with discretized data

[105] None RFML • Need user pre-defined number of selected features

[104] BR IG
• Need user pre-defined number selected features
• Loss of information associated with discretized data

user-defined parameter.

Another method is proposed by [104]. The main idea of this approach is to deal

with label dependency. This method constructs a new label from an original label

pair for q times (while q is a user-predefined number, the number of constructed

labels, where q is smaller than the total number of labels). After generating the

q new labels then BR was applied to a new dataset which consists of the original

dataset plus q constructed labels. The main drawbacks of this approach is that it

needs a user-predefined number (q), also, there are many ways to generate a new

label (by using AND, XOR or XNOR operator) and the user needs to specify how

to select a pair of labels. Moreover, this approach increases the number of labels

in the dataset regarding to the size of q.

Table 3.8 shows a summary of the previously discussed feature selection meth-

ods based on the filter approach.
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3.5 Multi-Label Classification Evaluation Mea-

sures

In multi-label classification, the predictive accuracy measures are different from

conventional measures for single-label classification. The main measurers for eval-

uating multi-label predictive accuracy are Hamming-loss, Ranking-loss, One-error,

Coverage, Precision, Recall, Exact Match, F-measure and Accuracy [113]. These

measures are described below.

3.5.1 Hamming-Loss

Hamming Loss is an evaluation function which takes into account prediction errors

(an incorrect label is predicted) and omission errors (a label is not predicted). The

Hamming loss is defined as:

HammingLoss =
1

|D|

|D|∑
i=1

|Y14Zi|
|L|

(3.3)

Where

D is a multi-label test data set, consisting of |D| multi-label instances (xi, Yi), i =

1..|D|

Yi is the set of class labels associated with the i-th instance, Yi ⊆ L

L is the set of class labels

|L| is the number of labels in L.

Zi is the set of labels predicted by the multi-label classifier for the i-th instance

4 is the symmetric difference of two sets and corresponds to the XOR operation in

Boolean logic. That is, a class label belongs to the set of labels defined by Yi4Zi
if and only if that label occurs in either Yi or Zi, but not in both sets.
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3.5.2 Ranking loss

Ranking Loss is an evaluation function which expresses the number of times that

irrelevant labels are ranked higher (better) than relevant labels, averaged over all

instances in the test data set. A label is said to be relevant (irrelevant) for an

instance if that instance has (does not have) that label. For each instance, labels

are ranked in decreasing order of their probability of belonging to that instance,

as estimated by the classification algorithm.

RankingLoss =
1

|D|

|D|∑
i=1

1

|Yi||Yi|
|
{

(y1, y2)|f(xi, y1) ≤ f(xi, y2), (y1, y2) ∈ Yi × Y l)
}
|

(3.4)

Where

Yi is the set of true labels of instance xi

Yi is the complementary set of Yi with respect to the label set L

|D| is the number of instances in the test data set

y1 and y2 are a pair of relevant and irrelevant labels for xi respectively

xi is the set of predictor attribute values in the i -th instance

f(xi, yi) is the score of label yi in instance xi computed by the multi-label classifier

(the higher score, the higher probability of xi being associated with label yj)

3.5.3 One Error

One error evaluates how many times the top-ranked label is not in the set of

relevant (true) labels of the instance. The top-ranked label for an instance is the

label with the highest estimated probability of belonging to that instance, and the

one error value is averaged over all test instances.

OneError =
1

|D|

|D|∑
i=1

δ(argmin
λεYi

ri(λ)) (3.5)
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Where

|D| is the number of instances in the test data set

λ is a label belong to the label set L

δ(λ) = 1 if λ /∈ Yi , 0 otherwise

ri(λ) is the ranking of label λ in the i-th instance

Yi is the set of labels associated with the i-th instance

3.5.4 Coverage

Coverage evaluates how far we need to go down the ranked list of labels (in de-

creasing order of label probability as estimated by the multi-label classifier) in

order to cover all the relevant (true) labels of an instance, averaged over all test

instances.

Cov =
1

|D|

|D|∑
i=1

max
λεYi

ri(λ) (3.6)

Where

|D| is the number of instances in the test data set

ri(λ) is the ranking of label λ in the i-th instance

3.5.5 Precision

Precision evaluates the proportion of relevant (true) labels that are selected over

the set of predicted labels for an instance, averaged over all test instances.

Precision =
1

|D|

|D|∑
i=1

|Yi ∩ Zi|
|Zi|

(3.7)

Where

D is a multi-label test data set, consisting of |D| multi-label instances (xi, Yi), i =

1..|D|
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xi is the set of predictor attribute values in the i-th instance

Yi is the set of class labels associated with the i-th instance. Yi ⊆ L

L is the set of class labels

Zi is the set of labels predicted by the multi-label classifier for the i-th instance

3.5.6 Recall

Recall evaluates the proportion of relevant (true) labels that are selected over the

set of true class labels associated with an instance, averaged over all test instances.

Recall =
1

|D|

|D|∑
i=1

|Yi ∩ Zi|
|Yi|

(3.8)

Where

D is a multi-label test data set, consisting of |D| multi-label instances (xi, Yi), i =

1..|D|

xi is the set of predictor attribute values in the i-th instance

Yi is the set of class labels associated with the i-th instance. Yi ⊆ L

L is the set of class labels

Zi is the set of labels predicted by the multi-label classifier for the i-th instance

3.5.7 Exact Match

Exact Match calculates only fully correct predictions of all class labels.

EM =
1

|D|

|D|∑
i=1

I(Yi = Zi) (3.9)

Where

D is a multi-label test data set, consisting of |D| multi-label instances (xi, Yi), i =

1..|D|

xi is the set of predictor attribute values in the i-th instance
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Yi is the set of class labels associated with the i-th instance. Yi ⊆ L

L is the set of class labels

Zi is the set of labels predicted by the multi-label classifier for the i-th instance

I(·) is the indicator function, that return 1 if its argument is true and 0 otherwise.

3.5.8 Accuracy

Accuracy evaluates the proportion of relevant (true) labels that are predicted over

the total number of predicted or actual labels for an instance, averaged over all

test instances.

Precision =
1

|D|

|D|∑
i=1

|Yi ∩ Zi|
|Yi ∪ Zi|

(3.10)

Where

D is a multi-label test data set, consisting of |D| multi-label instances (xi, Yi), i =

1..|D|

xi is the set of predictor attribute values in the i-th instance

Yi is the set of class labels associated with the i-th instance, Yi ⊆ L

L is the set of class labels

Zi is the set of labels predicted by the multi-label classifier for the i-th instance

3.5.9 F-measure

F-measure evaluates the proportion of relevant (true) labels that are predicted

over the summation of the number of predicted and actual labels for an instance,

averaged over all test instances. It combines the ideas of prediction and recall into

a single formula.

F −measure =
1

|D|

|D|∑
i=1

2× |Yi ∩ Zi|
|Yi|+ |Zi|

(3.11)
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Where

D is a multi-label test data set, consisting of |D| multi-label instances (xi, Yi), i =

1..|D|

xi is the set of predictor attribute values in the i-th instance

Yi is the set of class labels associated with the i-th instance. Yi ⊆ L

L is the set of class labels

Zi is the set of labels predicted by the multi-label classifier for the i-th instance

3.5.10 Summary of Multi-Label Predictive Accuracy Mea-

sures

For each evaluation measure, the prediction of class labels for an instance is mea-

sured from a “fully correct” or “partly correct” perspective (depending on the

level of correctness). Also, the multi-label evaluation method can be classified

from different perspectives into example-based, label-based and a ranking-based

measures. Label-based measures compute some measure for predictive accuracy

separately for each label and average the results. Such measures are out of the

scope of our experiments. We focus instead on example-based and ranking-based

measures, some of which are used in our experiments reported in Chapter 4-6.

Table 3.9 shows the summary of all evaluation measures from different perspec-

tives. Only one measure, namely the Exact Match measure, takes into account

only fully correct predictions and completely ignores partly corrected predictions.

The rest of the measures take both fully correct and partly correct perspectives

into account.

From a multi-label classification point of view, no single predictive accuracy

measure is enough to capture different aspects of multi-label classification, due to

the complexity of multi-label classification [18, 112]. Hence, five different popular
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Table 3.9: A summary of multi-label predictive accuracy measures from different
perspectives

Measure Type Fully correct Partly correct

Example-Based Exact Match
Hamming-Loss, Accuracy,
Precision,Recall, F-measure

Ranking-Based None
One-Error, Coverage,
Ranking-loss,Average Precision,

measures of multi-label predictive accuracy were used in our experiment: Average

Precision (Avg.Pre), which is to be maximized, while Coverage (Cov.), Hamming

Loss (H.Loss), One-error (One-Err) and Ranking Loss (R.Loss) are to be mini-

mized. These measures were used because they seem the most used ones in the

literature, and represent a good diversity of perspectives to evaluate multi-label

predictive accuracy.

3.6 Summary

This Chapter has reviewed the main concepts and methods for multi-label feature

selection. First, the multi-label classification problem and problem transformation

methods were introduced. The differences among problem transformation methods

were discussed in Section 3.2. Then, two well-known multi-label classification algo-

rithms which are used in our experiments in Chapters 4 through 6 were described

(see Section 3.3). Next, in Section 3.4, the advantages and disadvantages of the

filter-based multi-label feature selection methods proposed in the literature were

reviewed and discussed. Finally, a number of well-known multi-label classification

evaluation measures were reviewed in Section 3.5.
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Chapter 4

New Multi-Label

Correlation-Based Feature

Selection Methods Based on Hill

Climbing Search

This chapter describes several versions of the proposed Multi-Label Correlation-

based Feature Selection (ML-CFS) method [58] based on hill climbing search. This

method extends the single-label CFS method to the more complex multi-label clas-

sification scenario. We first describe the first version of the ML-CFS method in

Section 4.1, and then describe two different generic extensions of this method

[58][59] in Section 4.2. These extensions are generic in the sense of being inde-

pendent of the application domain of the data being mined. By contrast, Chapter

5 will present ML-CFS extensions specifically designed for biological datasets. In

Section 4.3 we describe the datasets used in the experiments. In Section 4.4 we

report computational results comparing the first version of ML-CFS and the two

generic extensions of ML-CFS. In Section 4.5 we report results comparing ML-CFS

with baseline multi-label feature selection methods. A general discussion of the

results will be presented in Section 4.6.
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4.1 The First Version of the Multi-Label Correlation-

Based Feature Selection (ML-CFS) Method

The essential idea of the multi-label CFS method is to extend the evaluation func-

tion of the single-label CFS method proposed in [44]. Recall that, in single-label

CFS, the evaluation function is used to measure the quality (merit) of a candidate

feature subset using Equation 4.1, where rFL is the average feature-label correla-

tion over all feature-label pairs and rFF is the average feature-feature correlation

over all pairs of features, F is the candidate feature subset being evaluated, L is

the set of class labels, and k is the number of features in F.

Merit =
krFL√

k + k(k − 1)rFF
(4.1)

rFF =

∑|F |
fi=1,fj=1,i 6=j rfifj

fp
(4.2)

rfL =

∑|L|
i=1 rfLi

|L|
(4.3)

rFL =

∑|F |
f=1 rfL
|F |

(4.4)

In the multi-label approach, like in the single-label approach [44], we use Equa-

tion (4.2) to estimate the term rFF . This is because, for a given dataset, both

the single-label and the multi-label problems use the same set of features.

In order to compute rFF , Equation (4.2) is computed for each pair of features

fi and fj in the dataset, and then the results are averaged dividing the total sum-

mation of all results by the number of pairs of features, denoted fp in Equation(4.2).

The difference between the conventional single-label approach and our multi-

label approach is in the way that the term rFL is estimated. The basic idea is that
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we calculate the average feature-label correlation using the arithmetic mean of all

feature-label pairs (i.e., the average value of the correlation coefficient between

each feature in a candidate subset F and each label in the set of all class labels)

by using Equation (4.3) and (4.4). By contrast, in the conventional single-label

CFS method, the computation of rFL is substantially simpler, requiring only the

mean of the correlation between each feature in F and the single class attribute -

i.e, using only Equation (4.4).

The Pearson’s correlation coefficient (r) between two continuous variables x

and y is shown in Equation (4.5).

rxy =

∑n
i=1 (xi − x)(yi − y)√∑n

i=1 (xi − x)
∑n

i=1 (yi − y)
(4.5)

Where

xi and x are the value of variable x in the i -th instance and the average value of

x, yi and y are the value of variable y in the i -th instance and the average value

of y; and n is the number of instances in the training set.

Another important component of a feature selection method is the search ap-

proach, which is used for creating the candidate feature subsets to be evaluated.

Hill-Climbing search, a well-known heuristic search approach [76], was used in

the proposed ML-CFS method. Heuristic search can find a good solution in a

relatively short time, although it risks to lose an optimal solution. However, in

practice heuristic methods are needed because the size of the search space (i.e.,

the number of candidate feature subsets) grows exponentially with the number of

features.

ML-CFS’ pseudocode, shown in Algorithm 4.1, works as follows. Firstly, we

set the merit of the current feature subset (Curr-Merit) to -1, and set the merit of
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the best feature subset (Best-Merit) to 0. The former two variables are used for

checking the termination criterion at each iteration of the while loop. Then the

best feature subsets (Best-Feat-SS) and the current feature subset (Curr-Feat-SS)

are initialized with the empty set. Secondly, we compare the best merit with the

current merit. If Best-Merit is smaller than or equal to Curr-Merit then the while

loop will stop, otherwise the system will update the values of the variables contain-

ing the current feature subset’s merit, the current feature subset and the feature

subset list. Note that at the start of the first iteration of the while in iteration

loop the condition (Best-Merit > Curr-Merit) is true, since those two variables

were initialised with 0 and -1, respectively; but at the start of each of the other

while loop iterations that condition will be true (so that the loop proceeds) only

if the previous iteration was successful in finding a new feature subset which had

a better merit than the previously known Best-Merit.

Next, for each feature f which is not in the current feature subset (Curr-Feat-

SS), we create a new feature subset (New-Feat-SS) by computing the union of the

current feature subset with feature f, and then we calculate the merit of the new

feature subset (New-Feat-SS) using Equation (4.1). After that, we update the

feature subset list (Feat-SS-List) by adding the pair of new feature subset and new

merit into the list.

Finally, we select the new feature subset with the highest value of new merit

in the feature subset list and assign that feature subset to the best feature subset

(Best-Feat-SS) and its merit to the best merit (Best-Merit) in this while loop’s

iteration. After that, we move to the next iteration, and so on, until the loop’s

exit condition is satisfied.
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Algorithm 4.1: ML-CFS with hill-climbing search()

Set Curr-Merit = -1 /* Merit of the current feature subset */

Set Best-Merit = 0 /* Merit of the best feature subset found so far */

Set Best-Feat-SS = empty set /* Best feature subset produced so far */

Set Curr-Feat-SS = empty set /* Current feature subset */

while (Best-Merit > Curr-Merit)

do



Set Curr-Merit = Best-Merit

Set Curr-Feat-SS = Best-Feat-SS

Feat-SS-List = [ ]

for each feature f not in Curr-Feat-SS

do


Set New-Feat-SS = Curr-Feat-SS ∪ f

Set New-Merit = Merit of New-Feat-SS, measured by Eq. (4.1)

Add pair (New-Feat-SS, New-Merit) to Feat-SS-List

Select the New-Feat-SS with highest value of New-Merit in Feat-SS-List

Set Best-Feat-SS = selected New-Feat-SS

Set Best-Merit = selected New-Merit

4.2 Two Generic Extensions of the ML-CFS Method

The two extensions of ML-CFS described in this Section are generic in the sense

that they are independent of the type of dataset being mined. By contrast, Chapter

5 will describe three extensions of ML-CFS that exploit biological knowledge, and

were designed to be used in biological datasets.
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4.2.1 ML-CFS Using the Absolute Value of Correlation

Coefficient

In the original multi-label ML-CFS method described in Section 4.1 and the orig-

inal single-label CFS method [8], Pearson’s linear correlation coefficient (r) was

used to estimate the terms rFF and rFL in Equation (4.1). In general, there

are two types of correlation: positive correlation and negative correlation. Both

of them can represent redundancy between a pair of features, or represent the

relevance of a feature to predict a set of labels, as follows. For the purpose of

measuring redundancy between two features, what matters is the absolute value

of the correlation coefficient (r), regardless of its sign. E.g., both r = +0.8 and r=

−0.8 represent a strong degree of redundancy. However, in the original single-label

and multi-label CFS methods, the values of the merit formulas depend on both the

value and the sign of r. If a feature subset contains, say, one pair of features with r

= +0.8 and another pair of features with r = −0.8, these two values would cancel

each other resulting in an average r over those two feature pairs of 0; a misleading

value, since the two r values actually suggest a large degree of redundancy in each

of those feature pairs.

To avoid the aforementioned problems, we use the absolute (without sign) value

of the correlation coefficient in all occurrences of the correlation coefficient r in

Equation (4.1) when calculating the value of the average correlation between fea-

tures in a feature subset F (rFF ) and the average correlation between features

and labels (rFL). Hence, the average correlation between features in a feature

subset F (rFF ) is computed by Equation (4.6), where fp is the number of feature

pairs in feature subset F. The average value of the correlation coefficient between

features and labels is given by Equation (4.7), which uses Equation(4.8) to com-

pute the average value of the correlation coefficient between each single feature

and all labels. Note that rfifj and rfLreturn a value in [0..1].
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rFF =

∑|F |
fi=1,fj=1,i 6=j

∣∣rfifj ∣∣
fp

(4.6)

rFL =

∑|F |
f=1

∣∣rfL∣∣
|F |

(4.7)

rfL =

∑|L|
i=1 |rfLi

|
|L|

(4.8)

4.2.2 ML-CFS Using Mutual Information for Class Label

Weighting

In the original ML-CFS method, Equation (4.3) computes, for a given feature f,

the arithmetic average of the correlation between that feature and a class label

over all labels, implicitly assuming that all labels are equally relevant and ignor-

ing dependencies between labels. However, in real-world datasets there might be

a significant degree of dependence between some labels, where the occurrence of

one label would increase the probability of another label for a given instance. For

example, in multi-label classification of emotions in a music dataset, the class label

‘Sadness’ might be more correlated with the class label ‘Depressing’ than with the

class label ‘Cheerful’. The correlation between labels is important in multi-label

classification [122]. If the labels were independent from each other, we could sim-

ply transform a multi-label problem into a set of single-label problems using the

binary relevance method. However, when there are strong dependences among

labels in the data, simply using an approach that ignores label correlations, like

binary relevance or computing the arithmetic average of correlations across all la-

bels may not be sufficient to cope well with the label-dependence problem.

To take label dependences into account, we used mutual information (MI) to

measure the degree of dependence between each pair of labels. We use MI, rather

than Pearson’s correlation coefficient, because labels are nominal, rather than nu-
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merical, and MI is often used to measure dependencies between nominal variables

in feature selection [71][65][26]. If the MI between two variables is near zero, this

would indicate that the variables are close to independent.

The mutual information MI(X;Y) between the random variables (class at-

tributes) X and Y is shown in Equation (4.9), where p(x,y) denotes the joint

probability of class labels x and y, p(x) denotes the marginal probability of x, the

log is in base 2, and the summation is over all values of variables X and Y. To

use MI as a measure of label dependence, we first compute the average MI of each

label Li (AvgMI(Li)) as defined in Equation (4.10). This is simply the mean of

the MI between label Li and each of the other class labels Lj (j 6= i).

MI(X;Y ) =
∑∑

p(x, y)log
p(x, y)

p(x)p(y)
(4.9)

AvgMI(Li) =

∑|L|
i=1,j 6=iMI(LiLj)

|L| − 1
(4.10)

The AvgMI(Li) value for each label Li can then be used to modify the Merit

function as follows. When computing the correlation between a feature and a

set of labels, Equation (4.3) is extended by assigning a different weight to each

feature-label correlation term (for each label Li), where the weights are based

on the AvgMI values computed by Equation (4.10). We investigated two oppo-

site approaches to assign such weights, based on two opposite rationales, as follows.

On one hand, it could be argued that a greater weight should be assigned to

feature-label correlations involving labels with greater AvgMI values. The ratio-

nale for this is that, if a given label Li is highly correlated with the other labels

– i.e., AvgMI (Li) is large, one should reward features which are strong predictors

of that label because a multi-label classification algorithm exploiting label corre-

lations could use an accurate prediction of that label to improve the accuracy in

the prediction of other labels. Hence, one approach investigated in this work is to
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Table 4.1: Main Characteristics of the Datasets used in the experiments

Dataset
Symbol

Dataset
Name

Dataset Description
Instances Features Labels Label Cardinality Label Density Distinct Labels

N1 CAL500 502 68 174 26.044 0.150 502
N2 Scene 2407 294 6 1.074 0.179 15
N3 Emotions 593 72 6 1.869 0.311 27
N4 Yeast 2417 103 14 4.237 0.303 198
N5 Business 11314 21924 30 1.600 0.053 158
N6 Art 7484 23146 26 1.659 0.063 404
N7 Education 12030 27534 33 1.455 0.044 348
N8 Recreation 12828 30324 22 1.428 0.065 369
N9 Health 9205 30635 32 1.635 0.051 235
N10 Entertainment 12730 32001 21 1.405 0.067 246
N11 Computer 12444 34096 33 1.518 0.046 296
N12 Science 6428 37187 40 1.471 0.037 332
B1 Enron 1702 1001 53 3.378 0.064 753
B2 Medical 978 1449 45 1.245 0.028 94

extend Equation (4.3) with Equation (4.11).

rfL =

∑|L|
i=1 |rfLi

|AvgMI(Li)∑|L|
i=1AvgMI(Li)

(4.11)

rfL =

∑|L|
i=1 |rfLi

| (1− AvgMI(Li))∑|L|
i=1 (1− AvgMI(Li))

(4.12)

On the other hand, it could be argued that a greater weight should be assigned

to feature-label correlations involving labels with smaller AvgMI values. The ra-

tionale for this is that, if a given label Li is weakly correlated with the other labels

– i.e., AvgMI (Li) is small, a multi-label classification algorithm exploiting label

correlations would not be able to use an accurate prediction of other labels to

improve the accuracy in the prediction of label Li, and therefore features which

are strong predictors of that label should be rewarded regardless of their ability to

predict other labels. Hence, one approach investigated in this work is to extend

Equation (4.3) with Equation (4.12) In Equations (4.11) and (4.12), the denomi-

nators normalize the weight values so that the sum of weights across labels is 1.

78



4.3 Datasets Used in the Experiments

Table 4.1 shows the main characteristics of all the multi-label datasets used in our

experiments. There are two different groups of datasets based on the data type

of their features and their application domain: (1) N1-N12, multi-label datasets

with continuous (real-valued) features; and (2) B1-B2, multi-label datasets with

binary features. The datasets in Table 4.1 were obtained from MULAN repository

[http://mulan.sourceforge.net/datasets.html].

The datasets are described in Table 4.1. In this table, the titles of the first five

columns have self-explanatory meanings. The meanings of the last three columns

are as follows.

Label Cardinality (LCard) is the average number of labels per instance. Label

Density (LDen) is the label cardinality divided by the number of labels. Distinct

Labels (DistL) is the total number of distinct label combinations observed in the

dataset [112]. The formal definitions of Label Cardinality, Label Density and Dis-

tinct Label are as follows.

LCard =
1

|D|

|D|∑
i=1

|Yi| (4.13)

LDen =
LCard

L
(4.14)

DistL = |Yi ⊆ L|∃(xi, Yi) ∈ D| (4.15)

where |D| is the number of instances in dataset D, Yi is the set of class labels

occurring in the i -th instance, L is the set of class labels and (xi, yi) denotes the

i -th instance’s feature set and label set.
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4.3.1 Pre-processing of the Multi-Label Datasets

Zero-mean normalization was used to normalize all features in all datasets con-

sisting of continuous features (N1-N12). I.e., a feature’s mean value is normalized

to 0, and the value of a feature for an instance was normalized to the number of

standard deviations above or below the feature’s mean. Since datasets N5-N12 and

B1-B2 have a large number of features (varying from 1,001 to 37187 - see Table

4.1), we use a simple and fast univariate filter approach to select a subset of the

most relevant features before running our proposed feature selection methods.

The main objective of this initial univariate filter stage is to remove features

which have a low correlation with class labels before running (any version of) the

ML-CFS method. The average correlation between each feature and all labels is

measured using Equation (4.8). The features are then ranked in decreasing order

of average correlation with the class labels and then only the top k features are

selected, where k is a user specified parameter, whose value defines the size of the

feature space to be searched by the greedy search strategy implemented in the

ML-CFS methods. We did experiments where the number of features selected by

the univariate filter method, i.e; the feature space size varied between 100, 200,

300 and 400. It should be note that this kind of initial univariate filter stage is

also often used in the conventional single-label classification literature [15, 108, 118]
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4.4 Computational Results Comparing the First

Version of ML-CFS and the Two Generic Ex-

tensions of ML-CFS

4.4.1 Experimental Methodology

The experiments reported in this Section 4.4 are devided into two parts, as follows.

First, we ran an experiment for comparing the first version of ML-CFS (described

in Section 4.1) with one extension of the ML-CFS method which uses the absolute

value of correlation coefficient, which was described in Section 4.2.1. Second, we

compare the best of those two ML-CFS versions, which turned out to be ML-CFS

with absolute value of the correlation coefficient, againt two versions of ML-CFS

based on Mutual Information, which were described in Section 4.2.2.

In each of these two types of experiments, in order to evaluate the predic-

tive performance of the different versions of ML-CFS, the feature subset selected

by each ML-CFS version was given to two different types of multi-label classifica-

tion algorithm, namely the Multi-Label k-Nearest Neighbour (ML-kNN) classifica-

tion algorithm proposed by [124] and the Back-Propagation Multi-Label Learning

(BPMLL) Classification algorithm [123]. These two algorithms were run using

their default parameters, which were mentioned in their corresponding paper. Af-

ter that, the predictive accuracy of each classification model was measured, for

each ML-CFS version, on the test set, containing data instances which were not

included in the training set, therefore measuring the generalization ability of the

classification model. For all datasets mentioned in Table 4.1, we used the prede-

fined partition of each dataset into trainning and test sets provided by the MULAN

repository website: http://mulan.sourceforge.net/datasets.html.

From a multi-label classification perspective we can measure the predictive ac-
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curacy using different accuracy measures, such as: Hamming-loss, Ranking-loss,

One-error, Coverage and Average Precision [113], as reviewed in Chapter 2. To

evaluate the effectiveness of our proposed multi-label CFS method, we compare all

mentioned predictive accuracy measure values obtained by ML-KNN and BPMLL

when using each of the three above mentioned versions of the ML-CFS feature

selection method. In all 14 datasets (N1-N12 and B1-B2) used in this experiment

we used the zero-mean normalization method, described earlier.

4.4.2 Experimental Results for the First version of ML-

CFS and ML-CFS with the Absolute Value of Cor-

relation Coefficient using ML-kNN Classifier

Tables 4.2 - 4.6 show the predictive performance of the first version of ML-CFS

and the ML-CFS with absolute value of correlation coefficient. Table 4.2 shows

results for the four datasets having less than 300 features. In these datasets, ML-

CFS was applied to the full set of features. However, the other datasets have more

than 1,000 features. For these datasets with very large dimentionality, Tables 4.3

- 4.6 report results for different feature space sizes, i.e, different numbers of fea-

tures pre-selected by the previously mentioned univariate filter method, namely

100, 200, 300 and 400 features, respectively. For each ML-CFS version, each table

reports the values of each of the five measures of multi-label predictive accuracy

mentioned earlier.

In Tables 4.2 - 4.6, ML-CFS stands for the first version of ML-CFS; and ML-

CFSabs stands for ML-CFS with the Absolute value of correlation coefficient. The

numbers in each column titled “R” denote the ranks achieved by each method ac-

cording to the accuracy measure in the corresponding left column. The ranks

vary in the range from 1 (best) to 2 (worst). The tables also report, in the last

column, the average rank (AR) of each method across all five predictive accuracy
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Table 4.2: Values of five multi-label predictive accuracy measures for the first
version of ML-CFS and ML-CFS with absolute value of correlation coefficient
using ML-kNN as the classifier - small datasets (with less than 300 features)

Dataset Methods
Predictive Accuracy Measures and Ranking

Avg-Pre R Cov. R H-Loss R OneErr. R R-Loss R AR

CAL500
ML-CFS 0.485 2 131.368 2 0.140 2 0.124 2 0.1862 2 2

ML-CFSabs 0.491 1 130.954 1 0.139 1 0.116 1 0.1845 1 1

Scene
ML-CFS 0.756 2 0.902 2 0.134 2 0.389 2 0.1595 2 2

ML-CFSabs 0.798 1 0.731 1 0.117 1 0.329 1 0.1254 1 1

Emotions
ML-CFS 0.740 2 2.267 2 0.264 2 0.342 2 0.2341 2 2

ML-CFSabs 0.796 1 1.975 1 0.210 1 0.272 1 0.1777 1 1

Yeast
ML-CFS 0.745 2 6.530 2 0.205 2 0.241 2 0.1811 2 2

ML-CFSabs 0.758 1 6.459 1 0.200 1 0.230 1 0.1733 1 1

MEAN
ML-CFS 2 2 2 2 2 2

ML-CFSabs 1 1 1 1 1 1

measures, for each dataset. The last two rows of each table show the mean rank

for each method across all the datasets, In those last two rows, the mean value

of each accuracy measure is not reported because that mean value would not be

vary meaningful, since the different datasets have different degrees of difficult for

a classification algorithm, so that different accuracies across datasets cannot be

fairly compared. On the other hand, it is fair to compare the ML-CFS version

across all datasets, so the mean ranks are reported. Finally the last column of the

last two rows shows the average ranks over the five predictive accuracy measures

and over all the datasets.

Clearly, in Tables 4.2 - 4.6, ML-CFSabs obtained substantially better predic-

tive accuracy (substantially lower mean rank) than ML-CFS for each of the five

accuracy measures in every table, as follows.

In Table 4.2 ML-CFSabs outperforms ML-CFS on all four datasets with overall

average rank = 1.0. Also, ML-CFSabs obtains the better rank for all five predic-

tive accuracy measures. In Table 4.3 - 4.6, when the feature space size was set to

100, 200, 300 and 400 respectively, ML-CFSabs obtained clearly better predictive

accuracy (lower overall average rank) than ML-CFS for every feature space size.

More precisely, ML-CFSabs outperforms ML-CFS on 8 - 9 datasets (out of 10
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Table 4.3: Values of five multi-label predictive accuracy measures for the first
version of ML-CFS and ML-CFS with absolute value of correlation coefficient
using ML-kNN as the classifier - feature space size = 100

Dataset Methods
Predictive Accuracy Measures and Ranking

Avg-Pre R Cov. R H-Loss R OneErr. R R-Loss R AR

Business
ML-CFS 0.867 1 2.490 2 0.028 1 0.129 1 0.046 2 1.4

ML-CFSabs 0.866 2 2.418 1 0.029 2 0.135 2 0.044 1 1.6

Art
ML-CFS 0.443 2 6.098 2 0.063 2 0.735 2 0.175 2 2

ML- CFSabs 0.523 1 5.307 1 0.060 1 0.610 1 0.133 1 1

Education
ML-CFS 0.494 2 4.316 2 0.044 2 0.659 2 0.103 2 2

ML- CFSabs 0.544 1 3.872 1 0.041 1 0.604 1 0.091 1 1

Recreation
ML-CFS 0.413 2 4.983 2 0.064 2 0.760 2 0.193 2 2

ML- CFSabs 0.536 1 4.327 1 0.059 1 0.600 1 0.158 1 1

Health
ML-CFS 0.628 2 3.825 2 0.050 2 0.480 2 0.077 2 2

ML- CFSabs 0.629 1 3.803 1 0.050 1 0.479 1 0.075 1 1

Enter.ment
ML-CFS 0.492 2 3.770 2 0.065 2 0.699 2 0.147 2 2

ML- CFSabs 0.578 1 3.186 1 0.056 1 0.570 1 0.120 1 1

Computer
ML-CFS 0.607 2 4.590 2 0.044 2 0.473 2 0.099 2 2

ML- CFSabs 0.633 1 4.200 1 0.040 1 0.452 1 0.089 1 1

Science
ML-CFS 0.406 2 7.440 1 0.036 2 0.746 2 0.150 1 1.6

ML- CFSabs 0.419 1 7.462 2 0.036 1 0.718 1 0.151 2 1.4

Enron
ML-CFS 0.562 2 14.192 2 0.059 2 0.435 2 0.106 1 1.8

ML- CFSabs 0.570 1 13.553 1 0.058 1 0.389 1 0.107 2 1.2

Medical
ML-CFS 0.561 2 4.712 2 0.026 2 0.583 2 0.087 2 2

ML- CFSabs 0.767 1 3.202 1 0.018 1 0.304 1 0.052 1 1

MEAN
ML-CFS 1.9 1.9 1.9 1.9 1.8 1.88

ML- CFSabs 1.1 1.1 1.1 1.1 1.2 1.12

Table 4.4: Values of five multi-label predictive accuracy measures for the first
version of ML-CFS and ML-CFS with absolute value of correlation coefficient
using ML-kNN as the classifier - feature space size = 200

Dataset Methods
Predictive Accuracy Measures and Ranking

Avg-Pre R Cov. R H-Loss R OneErr. R R-Loss R AR

Business
ML-CFS 0.867 2 2.356 1 0.029 1 0.134 1 0.043 2 1.4

ML-CFSabs 0.868 1 2.363 2 0.029 2 0.136 2 0.043 1 1.6

Art
ML-CFS 0.456 2 5.867 2 0.063 2 0.714 2 0.168 2 2

ML- CFSabs 0.522 1 5.395 1 0.060 1 0.604 1 0.150 1 1

Education
ML-CFS 0.495 2 4.282 2 0.044 2 0.657 2 0.102 2 2

ML- CFSabs 0.551 1 3.838 1 0.041 1 0.592 1 0.090 1 1

Recreation
ML-CFS 0.413 2 5.013 2 0.063 2 0.761 2 0.193 2 2

ML- CFSabs 0.572 1 4.120 1 0.055 1 0.545 1 0.148 1 1

Health
ML-CFS 0.628 2 3.825 2 0.050 2 0.480 2 0.077 2 2

ML- CFSabs 0.675 1 3.444 1 0.045 1 0.415 1 0.065 1 1

Enter.ment
ML-CFS 0.498 2 3.697 2 0.064 2 0.690 2 0.143 2 2

ML- CFSabs 0.602 1 3.122 1 0.054 1 0.530 1 0.115 1 1

Computer
ML-CFS 0.608 2 4.533 2 0.043 2 0.472 2 0.098 2 2

ML- CFSabs 0.631 1 4.280 1 0.039 1 0.451 1 0.091 1 1

Science
ML-CFS 0.407 2 7.355 1 0.036 1 0.741 2 0.148 1 1.4

ML- CFSabs 0.422 1 7.401 2 0.036 2 0.713 1 0.149 2 1.6

Enron
ML-CFS 0.570 2 14.320 2 0.059 2 0.394 2 0.106 2 2

ML- CFSabs 0.587 1 13.382 1 0.058 1 0.375 1 0.098 1 1

Medical
ML-CFS 0.640 2 3.736 2 0.023 2 0.498 2 0.066 2 2

ML- CFSabs 0.820 1 2.772 1 0.015 1 0.225 1 0.045 1 1

MEAN
ML-CFS 2 1.8 1.8 1.9 1.9 1.88

ML- CFSabs 1 1.2 1.2 1.1 1.1 1.12
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Table 4.5: Values of five multi-label predictive accuracy measures for the first
version of ML-CFS and ML-CFS with absolute value of correlation coefficient
using ML-kNN as the classifier - feature space size = 300

Dataset Methods
Predictive Accuracy Measures and Ranking

Avg-Pre R Cov. R H-Loss R OneErr. R R-Loss R AR

Business
ML-CFS 0.867 2 2.409 2 0.029 1.5 0.132 1 0.043 2 1.7

ML-CFSabs 0.868 1 2.371 1 0.029 1.5 0.136 2 0.041 1 1.3

Art
ML-CFS 0.453 2 5.830 2 0.063 2 0.717 2 0.167 2 2

ML- CFSabs 0.509 1 5.487 1 0.060 1 0.621 1 0.153 1 1

Education
ML-CFS 0.496 2 4.254 2 0.044 2 0.654 2 0.102 2 2

ML- CFSabs 0.560 1 3.766 1 0.040 1 0.580 1 0.088 1 1

Recreation
ML-CFS 0.425 2 4.865 2 0.063 2 0.748 2 0.188 2 2

ML- CFSabs 0.585 1 3.988 1 0.055 1 0.530 1 0.143 1 1

Health
ML-CFS 0.672 2 3.454 2 0.045 2 0.419 2 0.067 2 2

ML- CFSabs 0.681 1 3.358 1 0.045 1 0.415 1 0.063 1 1

Enter.ment
ML-CFS 0.501 2 3.657 2 0.064 2 0.687 2 0.142 2 2

ML- CFSabs 0.609 1 3.023 1 0.054 1 0.529 1 0.111 1 1

Computer
ML-CFS 0.619 2 4.454 2 0.042 2 0.454 2 0.095 2 2

ML- CFSabs 0.641 1 4.187 1 0.039 1 0.437 1 0.088 1 1

Science
ML-CFS 0.408 2 7.351 1 0.036 2 0.741 2 0.148 1 1.6

ML- CFSabs 0.422 1 7.410 2 0.036 1 0.715 1 0.149 2 1.4

Enron
ML-CFS 0.567 2 14.124 2 0.060 2 0.409 2 0.106 2 2

ML- CFSabs 0.584 1 13.218 1 0.059 1 0.383 1 0.097 1 1

Medical
ML-CFS 0.631 2 3.777 2 0.024 2 0.513 2 0.067 2 2

ML- CFSabs 0.811 1 2.845 1 0.017 1 0.239 1 0.045 1 1

MEAN
ML-CFS 2 1.9 1.95 1.9 1.9 1.93

ML- CFSabs 1 1.1 1.05 1.1 1.1 1.07

datasets) with overall average rank equal to 1.12, 1.12, 1.07 and 1.13 in Tables

4.3 through 4.6, respectively; while the first version of ML-CFS has much larger

(worse) average ranks (1.88, 1.88, 1.93 and 1.87, respectively).

Table 4.7 shows the summary of results reported in Tables 4.2 through 4.6, by

reporting the average rank and the average number of features selected by ML-CFS

and ML-CFSabs on all datasets. For CAL500, Scene, Yeast and Emotion datasets,

where all features were available to ML-CFS and ML-CFSabs, ML-CFSabs obtains

the best average rank (1.0); while ML-CFS obtains the worst rank (2.0). For the

other large datasets the table reports average results over all those datasets for

each feature space size used in our experiments (feature space size = 100, 200, 300

and 400). In those datasets, ML-CFSabs obtains the best ranks (1.12, 1.12, 1.07

and 1.13, respectively); while ML-CFS obtains much worse ranks (1.88, 1.88, 1.93

and 1.83, respectively). In terms of the number of selected features, ML-CFSabs

selected the larger number of features in most cases, except in the Scene dataset

85



Table 4.6: Values of five multi-label predictive accuracy measures for the first
version of ML-CFS and ML-CFS with absolute value of correlation coefficient
using ML-kNN as the classifier - feature space size = 400

Dataset Methods
Predictive Accuracy Measures and Ranking

Avg-Pre R Cov. R H-Loss R OneErr. R R-Loss R AR

Business
ML-CFS 0.868 1 2.386 2 0.029 1 0.131 1 0.043 1.5 1.3

ML-CFSabs 0.866 2 2.385 1 0.029 2 0.137 2 0.043 1.5 1.7

Art
ML-CFS 0.452 2 5.849 2 0.063 2 0.719 2 0.167 2 2

ML-CFSabs 0.517 1 5.414 1 0.060 1 0.613 1 0.150 1 1

Education
ML-CFS 0.497 2 4.226 2 0.044 2 0.656 2 0.100 2 2

ML-CFSabs 0.563 1 3.796 1 0.040 1 0.573 1 0.089 1 1

Recreation
ML-CFS 0.413 2 5.046 2 0.063 2 0.760 2 0.195 2 2

ML-CFSabs 0.587 1 4.010 1 0.053 1 0.527 1 0.145 1 1

Health
ML-CFS 0.670 2 3.440 2 0.045 2 0.426 2 0.066 2 2

ML-CFSabs 0.709 1 3.177 1 0.042 1 0.372 1 0.058 1 1

Enter.ment
ML-CFS 0.504 2 3.657 2 0.065 2 0.680 2 0.142 2 2

ML-CFSabs 0.620 1 2.974 1 0.054 1 0.511 1 0.109 1 1

Computer
ML-CFS 0.617 2 4.455 2 0.042 2 0.458 2 0.095 2 2

ML-CFSabs 0.642 1 4.190 1 0.038 1 0.434 1 0.088 1 1

Science
ML-CFS 0.410 2 7.229 1 0.036 1 0.742 2 0.147 1 1.4

ML-CFSabs 0.421 1 7.409 2 0.036 2 0.713 1 0.149 2 1.6

Enron
ML-CFS 0.563 2 14.394 2 0.059 2 0.406 2 0.107 2 2

ML-CFSabs 0.586 1 13.321 1 0.058 1 0.380 1 0.098 1 1

Medical
ML-CFS 0.622 2 4.061 2 0.024 2 0.501 2 0.072 2 2

ML-CFSabs 0.811 1 2.876 1 0.017 1 0.240 1 0.046 1 1

MEAN
ML-CFS 1.9 1.9 1.8 1.9 1.85 1.87

ML-CFSabs 1.1 1.1 1.2 1.1 1.15 1.13

(as shown in column titled “S.F”).

Hence, it seems that one factor contributing to the worse predictive accuracy

obtained by ML-CFS is that it tends to select substantially fewer features than ML-

CFSabs; i.e, ML-CFS seems to remove more relevant features than ML-CFSabs.

The number of features selected by ML-CFS is particularly low on the CAL500

and Emotions datasets, where it selected only 3 and 5 features, respectively.

4.4.3 Experimental Results for the First version of ML-

CFS and ML-CFS with the Absolute Value of Cor-

relation Coefficient using the BPMLL Classifier

This Section reports the results of experiments using the same experimental method-

ology used to produce the results reported in the previous section. The difference
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Table 4.7: Summary of average ranking (AR) and the number of selected features
(Sel.F) for ML-CFS and ML-CFSabs when using ML-kNN as the classifier

Datasets and
feature space size

ML-CFS ML-CFSabs
AR Sel.F AR Sel.F

Emotion 2.00 3.00 1.00 10.00

CAL500 2.00 5.00 1.00 10.00

Scene 2.00 23.00 1.00 22.00

Yeast 2.00 19.00 1.00 23.00

100 1.88 18.60 1.12 31.70

200 1.88 30.60 1.12 49.20

300 1.93 40.20 1.07 60.50

400 1.83 47.70 1.13 73.20

is that this section reports results obtained with the BPMLL classifier, rather than

the ML-kNN classifier used in the previous section.

In Tables 4.8 - 4.12, ML-CFSabs obtains the best predictive accuracy and out-

performs the first version of ML-CFS in all cases. For example; in Table 4.8,

reporting results for small datasets (with less than 300 features) ML-CFSabs ob-

tains overall rank 1.0; which is much better than ML-CFS, which has overall rank

2.0.

In Table 4.9 - 4.12, when we set the feature space size equal to 100, 200, 300 and

400 respectively (after applying the previously described univariate filter method

in a pre-processing step), ML-CFSabs obtained better predictive accuracy (lower

average rank) than ML-CFS for every feature space size, i.e., in all four tables. In

addition, ML-CFSabs outperforms the first version of ML-CFS for nearly all five

predictive accuracy measures in Tables 4.9 - 4.12. The only exceptions are that

ML-CFSabs and ML-CFS obtain the same mean rank (1.5) for the H-loss measure

in Tables 4.9 and 4.10 as well as for the OneErr (OneError) measure in Table 4.10.

Table 4.13 shows the summary of results reported in Tables 4.9 through 4.12,

showing the average rank and the average number of features selected by ML-CFS
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Table 4.8: Values of five multi-label predictive accuracy measures for the first
version of ML-CFS and ML-CFS with absolute value of correlation coefficient
using BPMLL as the classifier - small datasets

Dataset Methods
Predictive Accuracy

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

CAL500
ML-CFS 0.498 2.0 129.659 2.0 0.283 2.0 0.116 1.0 0.180 2.0 1.8

ML-CFSabs 0.500 1.0 129.458 1.0 0.273 1.0 0.118 2.0 0.180 1.0 1.2

Scene
ML-CFS 0.745 2.0 0.873 2.0 0.169 2.0 0.421 2.0 0.153 2.0 2.0

ML-CFSabs 0.771 1.0 0.761 1.0 0.154 1.0 0.389 1.0 0.132 1.0 1.0

Emotions
ML-CFS 0.761 2.0 2.104 2.0 0.272 2.0 0.337 2.0 0.212 2.0 2.0

ML-CFSabs 0.776 1.0 2.005 1.0 0.225 1.0 0.328 1.0 0.189 1.0 1.0

Yeast
ML-CFS 0.740 2.0 6.630 1.0 0.231 2.0 0.245 2.0 0.187 2.0 1.8

ML-CFSabs 0.742 1.0 6.643 2.0 0.230 1.0 0.244 1.0 0.183 1.0 1.2

MEAN
ML-CFS 2.0 1.8 2.0 1.8 2.0 1.9

ML-CFSabs 1.0 1.3 1.0 1.3 1.0 1.1

and ML-CFSabs on all datasets when using BPMLL as the classifier. Clearly,

ML-CFSabs outperformed ML-CFS with the best average ranking in every case.

In terms of the number of selected features, ML-CFSabs selected a larger number

of features in most cases, except on the Scene dataset (as shown in column titled

“S.F”), as point out earlier in the discussion of Table 4.7 (with the summary of

results for the ML-kNN classifier). It should be noted that the value of the “S.F”.

column in Table 4.13 (for BPMLL classifier) are exactly the same as the values of

that column in Table 4.7, since both ML-CFS and ML-CFSabs are filter feature

selection methods that select a set of features independent from the classifier that

will use the selected features.

4.4.4 Experimental Results Comparing ML-CFS with the

Absolute Value of Correlation Coefficient and ML-

CFS Using Mutual Information for Class Label Weight-

ing Using the ML-kNN Classifier

The previous two Sections (4.4.2 and 4.4.3) have reported results clearly showing

that ML-CFS with Absolute Value of Correlation Coefficient obtained in general

much better predictive accuracy than the first version of ML-CFS, both when us-

ing ML-kNN and when using BPMLL as the multi-label classifier. Hence, Tables

4.14 - 4.18 report results comparing ML-CFSabs and ML-CFS using MI (Mutual
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Table 4.9: Values of five multi-label predictive accuracy measures for the first
version of ML-CFS and ML-CFS with absolute value of correlation coefficient
using BPMLL as the classifier - feature space size = 100

Dataset Methods
Predictive Accuracy Measures and Ranking

Avg-Pre R Cov. R H-Loss R OneErr. R R-Loss R AR

Business
ML-CFS 0.847 2 2.875 2 0.037 1 0.139 1.5 0.051 1.5 1.6

ML-CFSabs 0.848 1 2.872 1 0.040 2 0.139 1.5 0.051 1.5 1.4

Art
ML-CFS 0.436 1 5.985 1 0.138 1 0.752 1.5 0.174 1 1.1

ML- CFSabs 0.436 2 5.989 2 0.189 2 0.752 1.5 0.175 2 1.9

Education
ML-CFS 0.477 2 4.648 2 0.112 1 0.681 1.5 0.110 2 1.7

ML- CFSabs 0.479 1 4.603 1 0.123 2 0.681 1.5 0.109 1 1.3

Recreation
ML-CFS 0.378 1 5.415 1 0.178 1 0.804 1 0.217 1 1

ML- CFSabs 0.376 2 5.571 2 0.184 2 0.805 2 0.222 2 2

Health
ML-CFS 0.619 2 3.953 2 0.413 2 0.485 1 0.077 2 1.8

ML- CFSabs 0.620 1 3.935 1 0.129 1 0.488 2 0.077 1 1.2

Enter.ment
ML-CFS 0.473 2 3.939 2 0.198 2 0.715 2 0.153 2 2

ML- CFSabs 0.530 1 3.437 1 0.155 1 0.648 1 0.130 1 1

Computer
ML-CFS 0.598 2 4.893 1.5 0.091 2 0.475 1.5 0.102 1 1.6

ML- CFSabs 0.599 1 4.893 1.5 0.073 1 0.475 1.5 0.103 2 1.4

Science
ML-CFS 0.398 1 7.688 1 0.119 1 0.758 1.5 0.155 1 1.1

ML- CFSabs 0.397 2 7.747 2 0.124 2 0.758 1.5 0.156 2 1.9

Enron
ML-CFS 0.566 2 13.350 2 0.568 2 0.419 2 0.099 2 2

ML- CFSabs 0.574 1 13.302 1 0.090 1 0.380 1 0.098 1 1

Medical
ML-CFS 0.544 2 4.134 2 0.052 2 0.637 2 0.075 2 2

ML- CFSabs 0.733 1 2.642 1 0.025 1 0.384 1 0.042 1 1

MEAN
ML-CFS 1.7 1.65 1.5 1.55 1.55 1.59

ML- CFSabs 1.3 1.35 1.5 1.45 1.45 1.41

Table 4.10: Values of five multi-label predictive accuracy measures for the first
version of ML-CFS and ML-CFS with absolute value of correlation coefficient
using BPMLL as the classifier - feature space size = 200

Dataset Methods
Predictive Accuracy Measures and Ranking

Avg-Pre R Cov. R H-Loss R OneErr. R R-Loss R AR

Business
ML-CFS 0.847 2 2.873 2 0.041 1 0.139 1.5 0.051 2 1.7

ML-CFSabs 0.849 1 2.818 1 0.045 2 0.139 1.5 0.050 1 1.3

Art
ML-CFS 0.436 2 6.006 2 0.191 1 0.752 1.5 0.175 2 1.7

ML- CFSabs 0.437 1 5.963 1 0.195 2 0.752 1.5 0.174 1 1.3

Education
ML-CFS 0.476 2 4.679 2 0.114 1 0.681 2 0.111 2 1.8

ML- CFSabs 0.476 1 4.667 1 0.132 2 0.681 1 0.110 1 1.2

Recreation
ML-CFS 0.377 2 5.461 1 0.184 1 0.805 1 0.219 2 1.4

ML- CFSabs 0.380 1 5.486 2 0.217 2 0.805 2 0.217 1 1.6

Health
ML-CFS 0.617 2 3.943 2 0.411 2 0.488 1 0.077 2 1.8

ML- CFSabs 0.618 1 3.900 1 0.115 1 0.489 2 0.075 1 1.2

Enter.ment
ML-CFS 0.473 2 3.932 2 0.194 2 0.715 2 0.153 2 2

ML- CFSabs 0.529 1 3.449 1 0.165 1 0.648 1 0.131 1 1

Computer
ML-CFS 0.598 1 4.949 1 0.077 1 0.475 1.5 0.103 1 1.1

ML- CFSabs 0.595 2 5.003 2 0.080 2 0.475 1.5 0.106 2 1.9

Science
ML-CFS 0.396 1 7.803 1 0.131 2 0.758 1.5 0.156 1 1.3

ML- CFSabs 0.396 2 7.866 2 0.126 1 0.758 1.5 0.158 2 1.7

Enron
ML-CFS 0.567 1 13.719 2 0.161 2 0.390 1 0.102 2 1.6

ML- CFSabs 0.559 2 13.116 1 0.088 1 0.402 2 0.097 1 1.4

Medical
ML-CFS 0.550 2 3.808 2 0.041 2 0.655 2 0.069 2 2

ML- CFSabs 0.748 1 2.650 1 0.024 1 0.359 1 0.043 1 1

MEAN
ML-CFS 1.7 1.7 1.5 1.5 1.8 1.64

ML- CFSabs 1.3 1.3 1.5 1.5 1.2 1.36
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Table 4.11: Values of five multi-label predictive accuracy measures for the first
version of ML-CFS and ML-CFS with absolute value of correlation coefficient
using BPMLL as the classifier - feature space size = 300

Dataset Methods
Predictive Accuracy Measures and Ranking

Avg-Pre R Cov. R H-Loss R OneErr. R R-Loss R AR

Business
ML-CFS 0.848 2 2.846 2 0.042 2 0.139 1.5 0.050 2 1.9

ML-CFSabs 0.849 1 2.825 1 0.038 1 0.139 1.5 0.050 1 1.1

Art
ML-CFS 0.436 1 6.009 2 0.192 1 0.752 1.5 0.176 2 1.5

ML- CFSabs 0.436 2 5.963 1 0.207 2 0.752 1.5 0.174 1 1.5

Education
ML-CFS 0.476 2 4.695 2 0.129 2 0.681 1.5 0.111 2 1.9

ML- CFSabs 0.481 1 4.560 1 0.122 1 0.681 1.5 0.108 1 1.1

Recreation
ML-CFS 0.376 2 5.571 1 0.180 1 0.805 1.5 0.222 1 1.3

ML- CFSabs 0.376 1 5.662 2 0.269 2 0.805 1.5 0.225 2 1.7

Health
ML-CFS 0.618 2 3.967 2 0.127 2 0.489 1 0.077 2 1.8

ML- CFSabs 0.623 1 3.908 1 0.126 1 0.489 2 0.074 1 1.2

Enter.ment
ML-CFS 0.472 2 3.953 2 0.209 2 0.715 2 0.154 2 2

ML- CFSabs 0.518 1 3.559 1 0.188 1 0.662 1 0.136 1 1

Computer
ML-CFS 0.595 1 5.025 2 0.086 2 0.475 1.5 0.105 1 1.5

ML- CFSabs 0.595 2 5.003 1 0.083 1 0.475 1.5 0.106 2 1.5

Science
ML-CFS 0.396 2 7.866 2 0.133 2 0.758 1.5 0.158 2 1.9

ML- CFSabs 0.396 1 7.815 1 0.129 1 0.758 1.5 0.157 1 1.1

Enron
ML-CFS 0.556 2 13.792 2 0.089 1 0.406 2 0.102 2 1.8

ML- CFSabs 0.568 1 13.231 1 0.089 2 0.392 1 0.098 1 1.2

Medical
ML-CFS 0.558 2 3.746 2 0.047 2 0.643 2 0.069 2 2

ML- CFSabs 0.804 1 2.347 1 0.020 1 0.271 1 0.036 1 1

MEAN
ML-CFS 1.8 1.9 1.7 1.6 1.8 1.76

ML- CFSabs 1.2 1.1 1.3 1.4 1.2 1.24

Table 4.12: Values of five multi-label predictive accuracy measures for the first
version of ML-CFS and ML-CFS with absolute value of correlation coefficient
using BPMLL as the classifier - feature space size = 400

Dataset Methods
Predictive Accuracy Measures and Ranking

Avg-Pre R Cov. R H-Loss R OneErr. R R-Loss R AR

Business
ML-CFS 0.848 2 2.872 2 0.041 2 0.139 1.5 0.051 2 1.9

ML-CFSabs 0.849 1 2.804 1 0.039 1 0.139 1.5 0.050 1 1.1

Art
ML-CFS 0.436 2 6.016 2 0.195 1 0.752 1.5 0.176 2 1.7

ML- CFSabs 0.436 1 6.000 1 0.197 2 0.752 1.5 0.175 1 1.3

Education
ML-CFS 0.478 1 4.662 1 0.142 2 0.681 1.5 0.110 1 1.3

ML- CFSabs 0.476 2 4.689 2 0.131 1 0.681 1.5 0.111 2 1.7

Recreation
ML-CFS 0.376 1 5.583 1 0.205 1 0.805 1.5 0.222 1 1.1

ML- CFSabs 0.373 2 5.818 2 0.330 2 0.805 1.5 0.229 2 1.9

Health
ML-CFS 0.616 2 3.998 2 0.131 2 0.489 2 0.077 2 2

ML- CFSabs 0.617 1 3.848 1 0.116 1 0.489 1 0.074 1 1

Enter.ment
ML-CFS 0.473 2 3.935 2 0.209 2 0.715 2 0.154 2 2

ML- CFSabs 0.498 1 3.589 1 0.189 1 0.705 1 0.139 1 1

Computer
ML-CFS 0.595 2 5.011 2 0.070 1 0.475 1.5 0.106 2 1.7

ML- CFSabs 0.596 1 4.980 1 0.086 2 0.475 1.5 0.106 1 1.3

Science
ML-CFS 0.396 1 7.810 2 0.136 2 0.758 1.5 0.157 1 1.5

ML- CFSabs 0.396 2 7.787 1 0.129 1 0.758 1.5 0.157 2 1.5

Enron
ML-CFS 0.547 2 13.979 2 0.088 1 0.404 2 0.105 2 1.8

ML- CFSabs 0.559 1 13.188 1 0.089 2 0.396 1 0.097 1 1.2

Medical
ML-CFS 0.566 2 3.941 2 0.041 2 0.630 2 0.070 2 2

ML- CFSabs 0.795 1 2.504 1 0.019 1 0.276 1 0.040 1 1

MEAN
ML-CFS 1.7 1.8 1.6 1.7 1.7 1.7

ML- CFSabs 1.3 1.2 1.4 1.3 1.3 1.3
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Table 4.13: Summary of average ranking (AR) and the number of selected features
(Sel.F) for ML-CFS and ML-CFSabs when using BPMLL as the classifier

Datasets and
feature space size

ML-CFS ML-CFSabs
AR Sel.F AR Sel.F

CAL500 2.00 5.0 1.00 10.0
Scene 2.00 23.0 1.00 22.0

Emotions 2.00 3.0 1.00 10.0
Yeast 2.00 19.0 1.00 23.0
100 1.59 18.6 1.41 31.7
200 1.64 30.6 1.36 49.2
300 1.76 40.2 1.24 60.5
400 1.70 47.7 1.30 73.2

Information) for class label weighting. Recall that there are two versions of ML-

CFS using MI. gmiML-CFS stands for the ML-CFS version where class labels with

greater MI (Mutual Information) are assigned greater weights, while smiML-CFS

stands for the ML-CFS version where class labels with smaller MI are assigned

greater weights, as described in Section 4.2.2.

It is important to mention that gmiML-CFS and smiML-CFS also use the abso-

lute value of the correlation coefficient (like ML-CFSabs). Hence, when comparing

gmiML-CFS and smiML-CFS versus ML-CFSabs, we are evaluating the effective-

ness of using mutual information for class label weighting in a controlled way.

The results are reported in Table 4.14 for the small datasets, where all features

are available to the ML-CFS methods and in Table 4.15 through 4.18 for the large

datasets (with more than 1000 features), where the univariate filter method was

applied to reduce the feature space size, as described earlier.

The gmiML-CFS method obtains the best predictive accuracy and outperforms

ML-CFSabs and smiML-CFS in general. For example; in Table 4.14 ML-CFS ob-

tains overall average rank 1.60 (across all datasets and all accuracy measures),

which is better than the ML-CFS and smiML-CFS methods, which obtain overall
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Table 4.14: Values of five multi-label predictive accuracy measures for ML-CFSabs
and two versions of ML-CFS using mutual information for class label weighting
using ML-kNN as the classifier - small datasets

Dataset Methods
Predictive Accuracy Measures and Ranking

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

Emotion
gmiML-CFS 0.800 1.0 1.921 1.0 0.215 1.0 0.282 2.0 0.174 2.0 1.40
smiML-CFS 0.789 2.0 1.965 2.0 0.228 2.0 0.277 1.0 0.173 1.0 1.60
ML-CFSabs 0.740 3.0 2.267 3.0 0.264 3.0 0.342 3.0 0.234 3.0 3.00

CAL500
gmiML-CFS 0.492 2.0 131.068 2.0 0.139 1.0 0.120 2.0 0.185 2.0 1.80
smiML-CFS 0.492 1.0 130.498 1.0 0.139 2.0 0.116 1.0 0.184 1.0 1.20
ML-CFSabs 0.485 3.0 131.368 3.0 0.140 3.0 0.124 3.0 0.186 3.0 3.00

Scene
gmiML-CFS 0.499 2.0 2.161 2.0 0.210 2.0 0.715 2.0 0.411 2.0 2.00
smiML-CFS 0.485 3.0 2.290 3.0 0.262 3.0 0.745 3.0 0.438 3.0 3.00
ML-CFSabs 0.756 1.0 0.902 1.0 0.134 1.0 0.389 1.0 0.160 1.0 1.00

Yeast
gmiML-CFS 0.756 1.0 6.495 2.0 0.204 1.0 0.230 1.0 0.176 1.0 1.20
smiML-CFS 0.747 2.0 6.470 1.0 0.210 3.0 0.253 3.0 0.179 2.0 2.20
ML-CFSabs 0.745 3.0 6.530 3.0 0.205 2.0 0.241 2.0 0.181 3.0 2.60

MEAN
gmiML-CFS 1.50 1.75 1.25 1.75 1.75 1.60
smiML-CFS 2.00 1.75 2.50 2.00 1.75 2.00
ML-CFSabs 2.50 2.50 2.25 2.25 2.50 2.40

rank 2.4 and 2.0, respectively.

In Tables 4.15 - 4.18, when we set the feature space size equal to 100, 200,

300 and 400 respectively, gmiML-CFS obtained better predictive accuracy (lower

overall average rank) than ML-CFSabs for every feature space size, i.e., in all four

tables. In addition, gmiML-CFS outperforms the ML-CFSabs and smiML-CFS

for all five predictive accuracy measures in Table 4.17, when we set feature space

size equal to 300.

Table 4.19 reports the summary of results in terms of the overall average rank-

ing and the number of selected features of ML-CFSabs and the two versions of

ML-CFS using MI for class label weighting when using MLkNN as classifier. The

table has one row for each of the small datasets, where all features were used as

input. For the other (large) datasets, the table reports average results over all

datasets for each feature space size used in the experiments.

Overall, in Table 4.19, gmiML-CFS obtained the best results, being the win-

ner (with the smallest average rank) in 6 of 8 rows in that Table. For the small

datasets, the difference between the average ranks of ML-CFSabs and gmiML-CFS
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Table 4.15: Values of five multi-label predictive accuracy measures for ML-CFSabs
and two versions of ML-CFS using mutual information for class label weighting
using ML-kNN as the classifier - feature space size = 100

Dataset Methods
Predictive Accuracy Measures and Ranking

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

Enron
gmiML-CFS 0.583 1.0 13.679 2.0 0.057 1.0 0.389 1.5 0.100 1.0 1.30
smiML-CFS 0.577 2.0 13.857 3.0 0.059 3.0 0.399 3.0 0.101 2.0 2.60
ML-CFSabs 0.570 3.0 13.553 1.0 0.058 2.0 0.389 1.5 0.107 3.0 2.10

Medical
gmiML-CFS 0.760 2.0 3.372 2.0 0.017 1.0 0.301 1.0 0.055 2.0 1.60
smiML-CFS 0.741 3.0 3.546 3.0 0.019 3.0 0.329 3.0 0.058 3.0 3.00
ML-CFSabs 0.767 1.0 3.202 1.0 0.018 2.0 0.304 2.0 0.052 1.0 1.40

Business
gmiML-CFS 0.874 1.0 2.371 1.0 0.028 1.0 0.123 1.0 0.043 1.0 1.00
smiML-CFS 0.872 2.0 2.391 2.0 0.028 2.0 0.126 2.0 0.043 2.0 2.00
ML-CFSabs 0.866 3.0 2.418 3.0 0.029 3.0 0.135 3.0 0.044 3.0 3.00

Art
gmiML-CFS 0.528 1.0 5.398 2.0 0.059 1.0 0.588 1.0 0.150 2.0 1.40
smiML-CFS 0.504 3.0 5.437 3.0 0.061 3.0 0.629 3.0 0.152 3.0 3.00
ML-CFSabs 0.523 2.0 5.307 1.0 0.060 2.0 0.610 2.0 0.133 1.0 1.60

Education
gmiML-CFS 0.543 2.0 3.982 3.0 0.042 2.0 0.603 1.0 0.093 3.0 2.20
smiML-CFS 0.541 3.0 3.905 2.0 0.042 3.0 0.606 3.0 0.092 2.0 2.60
ML-CFSabs 0.544 1.0 3.872 1.0 0.041 1.0 0.604 2.0 0.091 1.0 1.20

Recreation
gmiML-CFS 0.535 2.0 4.349 3.0 0.059 1.0 0.601 2.0 0.159 3.0 2.20
smiML-CFS 0.528 3.0 4.346 2.0 0.059 2.5 0.612 3.0 0.159 2.0 2.50
ML-CFSabs 0.536 1.0 4.327 1.0 0.059 2.5 0.600 1.0 0.158 1.0 1.30

Health
gmiML-CFS 0.634 1.0 3.747 1.0 0.049 1.0 0.476 1.0 0.075 2.0 1.20
smiML-CFS 0.628 3.0 3.811 3.0 0.050 3.0 0.480 3.0 0.077 3.0 3.00
ML-CFSabs 0.629 2.0 3.803 2.0 0.050 2.0 0.479 2.0 0.075 1.0 1.80

Ent.ment
gmiML-CFS 0.593 1.0 3.158 1.0 0.056 1.0 0.548 1.0 0.119 1.0 1.00
smiML-CFS 0.548 3.0 3.325 3.0 0.059 3.0 0.627 3.0 0.125 3.0 3.00
ML-CFSabs 0.578 2.0 3.186 2.0 0.056 2.0 0.570 2.0 0.120 2.0 2.00

Computer
gmiML-CFS 0.623 3.0 4.416 2.0 0.040 2.0 0.450 2.0 0.094 2.0 2.20
smiML-CFS 0.624 2.0 4.418 3.0 0.041 3.0 0.449 1.0 0.094 3.0 2.40
ML-CFSabs 0.633 1.0 4.200 1.0 0.040 1.0 0.452 3.0 0.089 1.0 1.40

Science
gmiML-CFS 0.463 1.0 6.965 2.0 0.034 1.0 0.662 1.0 0.137 1.0 1.20
smiML-CFS 0.443 2.0 6.952 1.0 0.035 2.0 0.700 2.0 0.137 2.0 1.80
ML-CFSabs 0.419 3.0 7.462 3.0 0.036 3.0 0.718 3.0 0.151 3.0 3.00

MEAN
gmiML-CFS 1.50 1.90 1.20 1.25 1.80 1.53
smiML-CFS 2.60 2.50 2.75 2.60 2.50 2.59
ML-CFSabs 1.90 1.60 2.05 2.15 1.70 1.88
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Table 4.16: Values of five multi-label predictive accuracy measures for ML-CFSabs
and two versions of ML-CFS using mutual information for class label weighting
using ML-kNN as the classifier - feature space size = 200

Dataset Methods
Predictive Accuracy Measures and Ranking

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

Enron
gmiML-CFS 0.580 3.0 13.719 3.0 0.059 3.0 0.396 2.0 0.101 3.0 2.80
smiML-CFS 0.583 2.0 13.567 2.0 0.058 2.0 0.404 3.0 0.100 2.0 2.20
ML-CFSabs 0.587 1.0 13.382 1.0 0.058 1.0 0.375 1.0 0.098 1.0 1.00

Medical
gmiML-CFS 0.807 2.0 2.929 3.0 0.016 3.0 0.231 2.0 0.046 2.0 2.40
smiML-CFS 0.795 3.0 2.923 2.0 0.016 2.0 0.268 3.0 0.046 3.0 2.60
ML-CFSabs 0.820 1.0 2.772 1.0 0.015 1.0 0.225 1.0 0.045 1.0 1.00

Business
gmiML-CFS 0.873 1.0 2.357 2.0 0.028 1.0 0.124 1.0 0.042 2.0 1.40
smiML-CFS 0.871 2.0 2.326 1.0 0.028 2.0 0.132 2.0 0.041 1.0 1.60
ML-CFSabs 0.868 3.0 2.363 3.0 0.029 3.0 0.136 3.0 0.043 3.0 3.00

Art
gmiML-CFS 0.537 1.0 5.323 2.0 0.059 1.0 0.579 1.0 0.148 2.0 1.40
smiML-CFS 0.525 2.0 5.287 1.0 0.060 3.0 0.605 3.0 0.146 1.0 2.00
ML-CFSabs 0.522 3.0 5.395 3.0 0.060 2.0 0.604 2.0 0.150 3.0 2.60

Education
gmiML-CFS 0.551 1.0 3.918 3.0 0.041 1.5 0.583 1.0 0.092 3.0 1.90
smiML-CFS 0.544 3.0 3.899 2.0 0.042 3.0 0.600 3.0 0.092 2.0 2.60
ML-CFSabs 0.551 2.0 3.838 1.0 0.041 1.5 0.592 2.0 0.090 1.0 1.50

Recreation
gmiML-CFS 0.572 2.0 4.223 3.0 0.054 1.0 0.540 1.0 0.152 3.0 2.00
smiML-CFS 0.556 3.0 4.215 2.0 0.056 3.0 0.571 3.0 0.152 2.0 2.60
ML-CFSabs 0.572 1.0 4.120 1.0 0.055 2.0 0.545 2.0 0.148 1.0 1.40

Health
gmiML-CFS 0.685 1.0 3.400 1.0 0.042 1.0 0.392 1.0 0.063 1.0 1.00
smiML-CFS 0.672 3.0 3.469 3.0 0.045 3.0 0.413 2.0 0.066 3.0 2.80
ML-CFSabs 0.675 2.0 3.444 2.0 0.045 2.0 0.415 3.0 0.065 2.0 2.20

Ent.ment
mi-ML-CFSabs 0.604 1.0 3.117 2.0 0.054 1.0 0.513 1.0 0.113 1.0 1.20

smiML-CFS 0.583 3.0 3.096 1.0 0.058 3.0 0.580 3.0 0.115 2.5 2.50
ML-CFSabs 0.602 2.0 3.122 3.0 0.054 2.0 0.530 2.0 0.115 2.5 2.30

Computer
gmiML-CFS 0.638 1.0 4.181 1.0 0.039 1.5 0.436 1.0 0.089 1.0 1.10
smiML-CFS 0.630 3.0 4.258 2.0 0.040 3.0 0.446 2.0 0.091 3.0 2.60
ML-CFSabs 0.631 2.0 4.280 3.0 0.039 1.5 0.451 3.0 0.091 2.0 2.30

Science
gmiML-CFS 0.484 1.0 6.808 2.0 0.034 1.5 0.638 1.0 0.133 2.0 1.50
smiML-CFS 0.451 2.0 6.780 1.0 0.034 1.5 0.690 2.0 0.133 1.0 1.50
ML-CFSabs 0.422 3.0 7.401 3.0 0.036 3.0 0.713 3.0 0.149 3.0 3.00

MEAN
gmiML-CFS 1.40 2.20 1.55 1.20 2.00 1.67
smiML-CFS 2.60 1.70 2.55 2.60 2.05 2.30
ML-CFSabs 2.00 2.10 1.90 2.20 1.95 2.03
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Table 4.17: Values of five multi-label predictive accuracy measures for ML-CFSabs
and two versions of ML-CFS using mutual information for class label weighting
using ML-kNN as the classifier - feature space size = 300

Dataset Methods
Predictive Accuracy Measures and Ranking

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

Enron
gmiML-CFS 0.581 3.0 13.432 3.0 0.058 1.0 0.406 3.0 0.098 3.0 2.60
smiML-CFS 0.587 1.0 13.290 2.0 0.059 3.0 0.387 2.0 0.097 1.5 1.90
ML-CFSabs 0.584 2.0 13.218 1.0 0.059 2.0 0.383 1.0 0.097 1.5 1.50

Medical
gmiML-CFS 0.819 1.0 2.831 2.0 0.016 2.0 0.225 1.0 0.044 1.0 1.40
smiML-CFS 0.814 2.0 2.769 1.0 0.015 1.0 0.234 2.0 0.044 2.0 1.60
ML-CFSabs 0.811 3.0 2.845 3.0 0.017 3.0 0.239 3.0 0.045 3.0 3.00

Business
gmiML-CFS 0.876 1.0 2.292 1.0 0.028 1.0 0.127 1.0 0.040 1.0 1.00
smiML-CFS 0.872 2.0 2.293 2.0 0.029 2.0 0.131 2.0 0.041 3.0 2.20
ML-CFSabs 0.868 3.0 2.371 3.0 0.029 3.0 0.136 3.0 0.041 2.0 2.80

Art
gmiML-CFS 0.540 1.0 5.278 2.0 0.058 1.0 0.575 1.0 0.145 1.0 1.20
smiML-CFS 0.525 2.0 5.246 1.0 0.060 2.0 0.603 2.0 0.145 2.0 1.80
ML-CFSabs 0.509 3.0 5.487 3.0 0.060 3.0 0.621 3.0 0.153 3.0 3.00

Education
gmiML-CFS 0.552 2.0 3.895 3.0 0.041 2.0 0.588 2.0 0.091 3.0 2.40
smiML-CFS 0.548 3.0 3.836 2.0 0.042 3.0 0.597 3.0 0.090 2.0 2.60
ML-CFSabs 0.560 1.0 3.766 1.0 0.040 1.0 0.580 1.0 0.088 1.0 1.00

Recreation
gmiML-CFS 0.581 2.0 4.147 3.0 0.054 1.0 0.530 1.5 0.150 3.0 2.10
smiML-CFS 0.575 3.0 4.122 2.0 0.055 2.5 0.543 3.0 0.149 2.0 2.50
ML-CFSabs 0.585 1.0 3.988 1.0 0.055 2.5 0.530 1.5 0.143 1.0 1.40

Health
gmiML-CFS 0.699 1.0 3.303 1.0 0.042 1.0 0.380 1.0 0.061 1.0 1.00
smiML-CFS 0.677 3.0 3.400 3.0 0.045 3.0 0.420 3.0 0.065 3.0 3.00
ML-CFSabs 0.681 2.0 3.358 2.0 0.045 2.0 0.415 2.0 0.063 2.0 2.00

Ent.ment
gmiML-CFS 0.627 1.0 3.004 1.0 0.054 1.0 0.494 1.0 0.110 1.0 1.00
smiML-CFS 0.587 3.0 3.062 3.0 0.058 3.0 0.574 3.0 0.113 3.0 3.00
ML-CFSabs 0.609 2.0 3.023 2.0 0.054 2.0 0.529 2.0 0.111 2.0 2.00

Computer
gmiML-CFS 0.646 1.0 4.161 1.0 0.038 1.0 0.427 1.0 0.088 1.0 1.00
smiML-CFS 0.630 3.0 4.284 3.0 0.040 3.0 0.450 3.0 0.091 3.0 3.00
ML-CFSabs 0.641 2.0 4.187 2.0 0.039 2.0 0.437 2.0 0.088 2.0 2.00

Science
gmiML-CFS 0.489 1.0 6.622 1.0 0.034 1.5 0.629 1.0 0.129 1.0 1.10
smiML-CFS 0.446 2.0 6.842 2.0 0.034 1.5 0.694 2.0 0.135 2.0 1.90
ML-CFSabs 0.422 3.0 7.410 3.0 0.036 3.0 0.715 3.0 0.149 3.0 3.00

MEAN
gmiML-CFS 1.40 1.80 1.25 1.35 1.60 1.48
smiML-CFS 2.40 2.10 2.40 2.50 2.35 2.35
ML-CFSabs 2.20 2.10 2.35 2.15 2.05 2.17
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Table 4.18: Values of five multi-label predictive accuracy measures for ML-CFSabs
and two versions of ML-CFS using mutual information for class label weighting
using ML-kNN as the classifier - feature space size = 400

Dataset Methods
Predictive Accuracy Measures and Ranking

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

Enron
gmiML-CFS 0.575 3.0 13.624 3.0 0.059 3.0 0.406 3.0 0.100 3.0 3.00
smiML-CFS 0.586 2.0 13.263 1.0 0.058 2.0 0.396 2.0 0.098 2.0 1.80
ML-CFSabs 0.586 1.0 13.321 2.0 0.058 1.0 0.380 1.0 0.098 1.0 1.20

Medical
gmiML-CFS 0.819 1.0 2.812 1.0 0.016 2.0 0.225 1.0 0.044 1.0 1.20
smiML-CFS 0.811 2.0 2.871 2.0 0.016 1.0 0.240 2.5 0.046 2.0 1.90
ML-CFSabs 0.811 3.0 2.876 3.0 0.017 3.0 0.240 2.5 0.046 3.0 2.90

Business
gmiML-CFS 0.877 1.0 2.299 2.0 0.028 1.0 0.123 1.0 0.041 2.0 1.40
smiML-CFS 0.875 2.0 2.276 1.0 0.028 2.0 0.127 2.0 0.040 1.0 1.60
ML-CFSabs 0.866 3.0 2.385 3.0 0.029 3.0 0.137 3.0 0.043 3.0 3.00

Art
gmiML-CFS 0.536 1.0 5.298 2.0 0.057 1.0 0.582 1.0 0.146 2.0 1.40
smiML-CFS 0.527 2.0 5.213 1.0 0.059 2.0 0.602 2.0 0.143 1.0 1.60
ML-CFSabs 0.517 3.0 5.414 3.0 0.060 3.0 0.613 3.0 0.150 3.0 3.00

Education
gmiML-CFS 0.559 2.0 3.848 3.0 0.040 2.0 0.574 2.0 0.090 3.0 2.40
smiML-CFS 0.551 3.0 3.807 2.0 0.041 3.0 0.592 3.0 0.089 2.0 2.60
ML-CFSabs 0.563 1.0 3.796 1.0 0.040 1.0 0.573 1.0 0.089 1.0 1.00

Recreation
gmiML-CFS 0.590 1.0 4.052 3.0 0.054 2.0 0.517 1.0 0.146 3.0 2.00
smiML-CFS 0.570 3.0 3.971 1.0 0.055 3.0 0.552 3.0 0.144 1.0 2.20
ML-CFSabs 0.587 2.0 4.010 2.0 0.053 1.0 0.527 2.0 0.145 2.0 1.80

Health
gmiML-CFS 0.721 1.0 3.193 2.0 0.040 1.0 0.348 1.0 0.058 1.0 1.20
smiML-CFS 0.691 3.0 3.267 3.0 0.044 3.0 0.400 3.0 0.062 3.0 3.00
ML-CFSabs 0.709 2.0 3.177 1.0 0.042 2.0 0.372 2.0 0.058 2.0 1.80

Ent.ment
gmiML-CFS 0.624 1.0 3.002 2.0 0.053 1.0 0.491 1.0 0.109 2.0 1.40
smiML-CFS 0.585 3.0 3.060 3.0 0.057 3.0 0.578 3.0 0.113 3.0 3.00
ML-CFSabs 0.620 2.0 2.974 1.0 0.054 2.0 0.511 2.0 0.109 1.0 1.60

Computer
gmiML-CFS 0.646 1.0 4.184 2.0 0.038 1.0 0.429 1.0 0.088 2.0 1.40
smiML-CFS 0.641 3.0 4.134 1.0 0.040 3.0 0.437 3.0 0.087 1.0 2.20
ML-CFSabs 0.642 2.0 4.190 3.0 0.038 2.0 0.434 2.0 0.088 3.0 2.40

Science
gmiML-CFS 0.485 1.0 6.741 1.0 0.034 1.5 0.629 1.0 0.132 1.0 1.10
smiML-CFS 0.441 2.0 6.874 2.0 0.034 1.5 0.699 2.0 0.135 2.0 1.90
ML-CFSabs 0.421 3.0 7.409 3.0 0.036 3.0 0.713 3.0 0.149 3.0 3.00

MEAN
gmiML-CFS 1.30 2.10 1.55 1.30 2.00 1.65
smiML-CFS 2.50 1.70 2.35 2.55 1.80 2.18
ML-CFSabs 2.20 2.20 2.10 2.15 2.20 2.17

Table 4.19: Summary of results in terms of average ranking (Avg.R) and the
number of selected (S.F) features of ML-CFSabs and two versions of ML-CFS
using Mutual Information for class label weighting using MLkNN as the classifier

Datasets and
feature space size

gmi-ML-CFS smiML-CFS ML-CFSabs
S.F Avg.R S.F Avg.R S.F Avg.R

Emotion 10.00 1.40 10.00 1.60 10.00 3.00
CAL500 12.90 1.80 12.40 1.20 10.00 3.00
Scene 36.00 2.00 24.00 3.00 22.00 1.00
Yeast 22.00 1.20 24.00 2.20 23.00 2.60
100 22.40 1.53 28.80 2.59 31.70 1.88
200 34.30 1.67 48.30 2.30 49.20 2.03
300 44.10 1.48 60.60 2.35 60.50 2.17
400 57.00 1.65 70.00 2.18 73.20 2.17
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was quite large in Emotions, CAL500 and Yeast (1.60, 1.20 and 1.40, respectively).

with gmiML-CFS winning (lower rank) in these 3 datasets. However, ML-CFSabs

obtained the best average rank on the Scene dataset. In this dataset, the difference

between the average ranks of ML-CFSabs and gmiML-CFS was 1.0. On the other

hand, the difference between the average ranks of gmiML-CFS and smiML-CFS

was small on the Emotions dataset (0.20), somewhat larger (0.6) on the CAL500

dataset, and larger on the Scene and Yeast datasets (1.0 on both datasets).

Turning to the last 4 rows of Table 4.19, the difference between the average

ranks of ML-CFSabs and gmiML-CFS was small for the two smallest feature space

sizes: a difference of 0.35 (1.88 - 1.53) for feature space size = 100 (Table 4.15)

and a difference of 0.36 (2.03 - 1.67) for feature space size = 200 (Table 4.16).

However, the difference between the average rank of ML-CFSabs and gmiML-CFS

rise up to 0.69 (2.17 - 1.48) for feature space = 300 (Table 4.17) and a difference of

0.52 (2.17 - 1.65) for feature space size = 400 (Table 4.18). On the other hand, the

difference between the average ranks of gmiML-CFS and smiML-CFS was large

for all feature space sizes: the difference was 1.06, 0.63, 0.87 and 0.60 for feature

space size equal to 100, 200, 300 and 400, respectively (Tables 4.15 - 4.18).

Table 4.20 presents a summary of the results from another perspective, report-

ing the average ranks (in terms of predictive accuracy) for each dataset. In each

cell of the table, the first value is the average rank computed by averaging the

corresponding ranks in Tables 4.15 - 4.18 (i.e, averaging over four feature space

sizes); whilst the value between brackets is the “rank of the average ranks”. This

latter value was used for the statistical test of significance mentioned next.

Using the results shown in Table 4.20, we run the Friedman test and confidently

conclude that there is a significant difference among the 3 methods on the 14

evaluation datasets at the 0.05 level of significance for a two tailed test (p value =

0.01817). Running the Holm’s posthoc test on these data using gmiML-CFS as the
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Table 4.20: Summary of overall average ranking (AR) across four feature space
size for two versions of ML-CFS using MI for class label weighting and ML-CFSabs
method using ML-kNN as the classifier

Dataset
Overall Average Rank (AR)
across 4 individual lengths

gmiML-CFS smiML-CFS ML-CFSabs
CAL500 1.8(2) 1.2(1) 3(3)
Scene 2(2) 3(3) 1(1)
Emotions 1.4(1) 1.6(2) 3(3)
Yeast 1.2(1) 2.2(2) 2.6(3)
Enron 2.43(3) 2.13(2) 1.45(1)
Medical 1.65(1) 2.28(3) 2.08(2)
Business 1.2(1) 1.85(2) 2.95(3)
Art 1.35(1) 2.1(2) 2.55(3)
Education 2.23(2) 2.6(3) 1.18(1)
Recreation 2.08(2) 2.45(3) 1.48(1)
Health 1.1(1) 2.95(3) 1.95(2)
Ent.ment 1.15(1) 2.88(3) 1.98(2)
Computer 1.43(1) 2.55(3) 2.03(2)
Science 1.23(1) 1.78(2) 3(3)
Average 1.59(1.43) 2.25(2.43) 2.16(2.14)

control method, there are no significant differences when comparing gmiML-CFS

versus ML-CFSabs at the 0.05 significance level, but there is a significant difference

between gmiML-CFS versus smiML-CFS at the same level of significance (p value

= 0.02445).

4.4.5 Experimental Results Comparing ML-CFS with the

Absolute Value of Correlation Coefficient and ML-

CFS Using Mutual Information for Class Label Weight-

ing Using the BPMLL Classifier

This Section’s contents is analogous to the contents of the previous Section 4.4.4.

The difference is that this Section reports results using BPMLL classifier, rather

than the ML-kNN classifier.

In Tables 4.21 - 4.25, the gmiML-CFS method obtains the best predictive ac-

curacy and outperforms ML-CFSabs and smiML-CFS in most cases, although in
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these tables the superiority of gmiML-CFS over the other ML-CFS methods is

not as clear as when using ML-kNN in the previous section. In Table 4.21 (with

results for the small datasets), ML-CFSabs obtains a somewhat better overall av-

erage rank (1.90) than the gmiML-CFS and smiML-CFS methods, which have

overall average rank 2.0 and 2.2, respectively.

Tables 4.22 - 4.25 show the experimental results when we set the feature space

size equal to 100, 200, 300 and 400, respectively; when using the univariate filter

method to pre-process the large datasets. In these experiments, gmiML-CFS ob-

tained better predictive accuracy (lower overall average rank) than ML-CFSabs for

every feature space size, i.e., in all four tables; although the difference was small

in two out of the four tables.

More precisely, the difference between the average ranks of ML-CFSabs and

gmiML-CFS was small for the two smallest feature space sizes: a difference of 0.12

(2.02 - 1.90) for feature space size = 100 (Table 4.22) and a difference of 0.13 (2.14

- 2.01) for feature space size = 200 (Table 4.23). However, the difference between

the average rank of ML-CFSabs and gmiML-CFS was substantially larger for the

two largest feature space sizes. More precisely, the difference was 0.52 (2.24 - 1.72)

for feature space = 300 (Table 4.24) and a difference of 0.66 (2.20 - 1.54) for feature

space size = 400 (Table 4.25).

Note also that gmiML-CFS obtains the best rank for all five predictive accu-

racy measures in Tables 4.24 - 4.25. However, when the feature space size equals

to 200 smiML-CFS obtains the best (smallest) overall average rank (1.85), while

gmiML-CFS and ML-CFSabs obtain overall average rank 2.01 and 2.14, respec-

tively.

Table 4.26 reports the summary of results in Table 4.21 - 4.25. Table 4.26 shows

a similar pattern to Table 4.19 (for MLkNN). That is, focusing on the results in
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Table 4.21: Values of five multi-label predictive accuracy measures for ML-CFSabs
and two versions of ML-CFS using mutual information for class label weighting
using BPMLL as the classifier - small datasets

Dataset Methods
Predictive Accuracy Measures and Ranking

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

Emotion
gmiML-CFS 0.795 1.0 1.930 1.0 0.220 1.0 0.294 1.0 0.172 1.0 1.00
smiML-CFS 0.788 2.0 1.985 2.0 0.225 2.0 0.313 2.0 0.185 2.0 2.00
ML-CFSabs 0.776 3.0 2.005 3.0 0.225 3.0 0.328 3.0 0.189 3.0 3.00

CAL500
gmiML-CFS 0.501 2.0 129.622 2.0 0.280 3.0 0.122 3.0 0.179 1.0 2.20
smiML-CFS 0.501 1.0 129.631 3.0 0.278 2.0 0.117 1.0 0.179 2.0 1.80
ML-CFSabs 0.500 3.0 129.458 1.0 0.273 1.0 0.118 2.0 0.180 3.0 2.00

Scene
gmiML-CFS 0.497 3.0 1.918 3.0 0.272 3.0 0.789 3.0 0.361 3.0 3.00
smiML-CFS 0.517 2.0 1.725 2.0 0.270 2.0 0.771 2.0 0.326 2.0 2.00
ML-CFSabs 0.771 1.0 0.761 1.0 0.154 1.0 0.389 1.0 0.132 1.0 1.00

Yeast
gmiML-CFS 0.742 2.0 6.644 3.0 0.228 1.0 0.245 2.0 0.183 3.0 2.20
smiML-CFS 0.740 3.0 6.596 1.0 0.232 3.0 0.246 3.0 0.183 1.0 2.20
ML-CFSabs 0.742 1.0 6.643 2.0 0.230 2.0 0.244 1.0 0.183 2.0 1.60

MEAN
gmiML-CFS 2.00 2.25 2.00 2.25 2.00 2.10
smiML-CFS 2.00 2.00 2.25 2.00 1.75 2.00
ML-CFSabs 2.00 1.75 1.75 1.75 2.25 1.90

the last four rows of Table 4.26, we can observe that the difference of average rank

between gmiML-CFS and ML-CFSabs is small for the two smallest feature space

size (100 and 200), but it is substantial for the two largest feature space sizes (300

and 400).

Table 4.27 shows the overall average rank of three versions of ML-CFS methods

for each dataset average over all four feature space size - except for the first four

(small) datasets, where all features were used as input. The first value in each cell

is the actual average rank, whilst the value between brackets is the “rank of the

average rank”. This later value was used in the Friedman test. We conclude that

there are no significant difference among the 3 algorithms on the 14 evaluation

datasets at the 0.05 significance level for a two tailed test.
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Table 4.22: Values of five multi-label predictive accuracy measures for ML-CFSabs
and two versions of ML-CFS using mutual information for class label weighting
using ML-kNN as the classifier - feature space size = 100

Dataset Methods
Predictive Accuracy Measures and Ranking

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

Enron
gmiML-CFS 0.567 3.0 13.207 1.0 0.089 2.0 0.403 3.0 0.097 1.0 2.00
smiML-CFS 0.576 1.0 13.270 2.0 0.086 1.0 0.377 1.0 0.098 3.0 1.60
ML-CFSabs 0.574 2.0 13.302 3.0 0.090 3.0 0.380 2.0 0.098 2.0 2.40

Medical
gmiML-CFS 0.557 3.0 3.604 3.0 0.050 3.0 0.655 3.0 0.066 3.0 3.00
smiML-CFS 0.727 2.0 2.687 2.0 0.027 2.0 0.383 1.0 0.045 2.0 1.80
ML-CFSabs 0.733 1.0 2.642 1.0 0.025 1.0 0.384 2.0 0.042 1.0 1.20

Business
gmiML-CFS 0.853 1.0 2.751 2.0 0.042 2.0 0.139 1.0 0.048 1.0 1.40
smiML-CFS 0.852 2.0 2.731 1.0 0.044 3.0 0.139 2.5 0.049 2.0 2.10
ML-CFSabs 0.848 3.0 2.872 3.0 0.040 1.0 0.139 2.5 0.051 3.0 2.50

Art
gmiML-CFS 0.436 1.0 6.006 2.0 0.184 1.0 0.752 1.5 0.175 2.0 1.50
smiML-CFS 0.436 2.0 6.010 3.0 0.185 2.0 0.753 3.0 0.175 3.0 2.60
ML-CFSabs 0.436 3.0 5.989 1.0 0.189 3.0 0.752 1.5 0.175 1.0 1.90

Education
gmiML-CFS 0.480 1.0 4.532 1.0 0.134 3.0 0.679 1.0 0.107 1.0 1.40
smiML-CFS 0.478 3.0 4.622 3.0 0.119 1.0 0.681 2.0 0.110 3.0 2.40
ML-CFSabs 0.479 2.0 4.603 2.0 0.123 2.0 0.681 3.0 0.109 2.0 2.20

Recreation
gmiML-CFS 0.380 2.0 5.402 2.0 0.190 3.0 0.802 2.0 0.215 2.0 2.20
smiML-CFS 0.388 1.0 5.306 1.0 0.190 2.0 0.797 1.0 0.211 1.0 1.20
ML-CFSabs 0.376 3.0 5.571 3.0 0.184 1.0 0.805 3.0 0.222 3.0 2.60

Health
gmiML-CFS 0.623 1.0 3.927 1.0 0.108 2.0 0.481 1.5 0.076 1.0 1.30
smiML-CFS 0.621 2.0 3.963 3.0 0.099 1.0 0.481 1.5 0.077 3.0 2.10
ML-CFSabs 0.620 3.0 3.935 2.0 0.129 3.0 0.488 3.0 0.077 2.0 2.60

Ent.ment
gmiML-CFS 0.529 3.0 3.460 3.0 0.149 1.0 0.649 3.0 0.132 3.0 2.60
smiML-CFS 0.530 2.0 3.437 1.0 0.164 3.0 0.648 1.0 0.131 2.0 1.80
ML-CFSabs 0.530 1.0 3.437 2.0 0.155 2.0 0.648 2.0 0.130 1.0 1.60

Computer
gmiML-CFS 0.599 1.0 4.867 1.0 0.084 3.0 0.475 2.0 0.101 1.0 1.60
smiML-CFS 0.598 3.0 4.954 3.0 0.072 1.0 0.475 2.0 0.103 3.0 2.40
ML-CFSabs 0.599 2.0 4.893 2.0 0.073 2.0 0.475 2.0 0.103 2.0 2.00

Science
gmiML-CFS 0.396 2.0 7.819 2.0 0.128 2.0 0.758 2.0 0.157 2.0 2.00
smiML-CFS 0.396 3.0 7.857 3.0 0.129 3.0 0.758 2.0 0.157 3.0 2.80
ML-CFSabs 0.397 1.0 7.747 1.0 0.124 1.0 0.758 2.0 0.156 1.0 1.20

MEAN
gmiML-CFS 1.80 1.80 2.20 2.00 1.70 1.90
smiML-CFS 2.10 2.20 1.90 1.70 2.50 2.08
ML-CFSabs 2.10 2.00 1.90 2.30 1.80 2.02
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Table 4.23: Values of five multi-label predictive accuracy measures for ML-CFSabs
and two versions of ML-CFS using mutual information for class label weighting
using ML-kNN as the classifier - feature space size = 200

Dataset Methods
Predictive Accuracy Measures and Ranking

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

Enron
gmiML-CFS 0.559 3.0 13.293 3.0 0.087 1.0 0.405 3.0 0.098 3.0 2.60
smiML-CFS 0.560 1.0 13.231 2.0 0.089 3.0 0.400 1.0 0.098 2.0 1.80
ML-CFSabs 0.559 2.0 13.116 1.0 0.088 2.0 0.402 2.0 0.097 1.0 1.60

Medical
gmiML-CFS 0.758 2.0 2.475 1.0 0.026 3.0 0.341 2.0 0.040 1.0 1.80
smiML-CFS 0.794 1.0 2.662 3.0 0.020 1.0 0.280 1.0 0.043 2.0 1.60
ML-CFSabs 0.748 3.0 2.650 2.0 0.024 2.0 0.359 3.0 0.043 3.0 2.60

Business
gmiML-CFS 0.853 1.0 2.751 1.0 0.041 1.0 0.139 1.0 0.049 1.0 1.00
smiML-CFS 0.848 3.0 2.858 3.0 0.042 2.0 0.139 2.0 0.051 3.0 2.60
ML-CFSabs 0.849 2.0 2.818 2.0 0.045 3.0 0.139 3.0 0.050 2.0 2.40

Art
gmiML-CFS 0.437 3.0 5.985 3.0 0.185 1.0 0.752 2.0 0.175 3.0 2.40
smiML-CFS 0.438 1.0 5.940 1.0 0.197 3.0 0.752 2.0 0.174 1.0 1.60
ML-CFSabs 0.437 2.0 5.963 2.0 0.195 2.0 0.752 2.0 0.174 2.0 2.00

Education
gmiML-CFS 0.480 1.0 4.477 1.0 0.142 3.0 0.681 2.5 0.107 1.0 1.70
smiML-CFS 0.478 2.0 4.625 2.0 0.132 1.0 0.681 2.5 0.109 2.0 1.90
ML-CFSabs 0.476 3.0 4.667 3.0 0.132 2.0 0.681 1.0 0.110 3.0 2.40

Recreation
gmiML-CFS 0.379 3.0 5.530 3.0 0.206 1.0 0.803 1.0 0.219 3.0 2.20
smiML-CFS 0.380 2.0 5.495 2.0 0.210 2.0 0.804 2.0 0.218 2.0 2.00
ML-CFSabs 0.380 1.0 5.486 1.0 0.217 3.0 0.805 3.0 0.217 1.0 1.80

Health
gmiML-CFS 0.617 3.0 3.976 3.0 0.113 1.0 0.489 3.0 0.077 3.0 2.60
smiML-CFS 0.618 1.0 3.890 1.0 0.118 3.0 0.488 1.0 0.075 1.0 1.40
ML-CFSabs 0.618 2.0 3.900 2.0 0.115 2.0 0.489 2.0 0.075 2.0 2.00

Ent.ment
gmiML-CFS 0.506 3.0 3.533 3.0 0.172 2.0 0.688 3.0 0.135 3.0 2.80
smiML-CFS 0.529 1.0 3.432 1.0 0.176 3.0 0.648 1.0 0.131 1.0 1.40
ML-CFSabs 0.529 2.0 3.449 2.0 0.165 1.0 0.648 2.0 0.131 2.0 1.80

Computer
gmiML-CFS 0.601 1.0 4.810 1.0 0.084 3.0 0.475 2.0 0.101 1.0 1.60
smiML-CFS 0.598 2.0 4.854 2.0 0.083 2.0 0.475 2.0 0.102 2.0 2.00
ML-CFSabs 0.595 3.0 5.003 3.0 0.080 1.0 0.475 2.0 0.106 3.0 2.40

Science
gmiML-CFS 0.396 1.0 7.811 1.0 0.129 2.0 0.758 2.0 0.157 1.0 1.40
smiML-CFS 0.396 2.0 7.814 2.0 0.134 3.0 0.758 2.0 0.157 2.0 2.20
ML-CFSabs 0.396 3.0 7.866 3.0 0.126 1.0 0.758 2.0 0.158 3.0 2.40

MEAN
gmiML-CFS 2.10 2.00 1.80 2.15 2.00 2.01
smiML-CFS 1.60 1.90 2.30 1.65 1.80 1.85
ML-CFSabs 2.30 2.10 1.90 2.20 2.20 2.14
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Table 4.24: Values of five multi-label predictive accuracy measures for ML-CFSabs
and two versions of ML-CFS using mutual information for class label weighting
using ML-kNN as the classifier - feature space size = 300

Dataset Methods
Predictive Accuracy Measures and Ranking

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

Enron
gmiML-CFS 0.567 2.0 13.217 2.0 0.089 1.0 0.400 2.0 0.097 2.0 1.80
smiML-CFS 0.563 3.0 13.103 1.0 0.090 3.0 0.401 3.0 0.097 1.0 2.20
ML-CFSabs 0.568 1.0 13.231 3.0 0.089 2.0 0.392 1.0 0.098 3.0 2.00

Medical
gmiML-CFS 0.796 3.0 2.344 1.0 0.021 3.0 0.282 3.0 0.036 2.0 2.40
smiML-CFS 0.799 2.0 2.595 3.0 0.020 1.0 0.278 2.0 0.041 3.0 2.20
ML-CFSabs 0.804 1.0 2.347 2.0 0.020 2.0 0.271 1.0 0.036 1.0 1.40

Business
gmiML-CFS 0.853 1.0 2.762 1.0 0.034 1.0 0.139 2.0 0.049 1.0 1.20
smiML-CFS 0.850 2.0 2.789 2.0 0.042 3.0 0.139 2.0 0.050 2.0 2.20
ML-CFSabs 0.849 3.0 2.825 3.0 0.038 2.0 0.139 2.0 0.050 3.0 2.60

Art
gmiML-CFS 0.433 3.0 6.014 3.0 0.205 2.0 0.752 2.0 0.177 3.0 2.60
smiML-CFS 0.437 1.0 5.973 2.0 0.199 1.0 0.752 2.0 0.174 2.0 1.60
ML-CFSabs 0.436 2.0 5.963 1.0 0.207 3.0 0.752 2.0 0.174 1.0 1.80

Education
gmiML-CFS 0.482 1.0 4.474 1.0 0.122 1.0 0.678 1.0 0.106 1.0 1.00
smiML-CFS 0.476 3.0 4.702 3.0 0.131 3.0 0.681 2.5 0.111 3.0 2.90
ML-CFSabs 0.481 2.0 4.560 2.0 0.122 2.0 0.681 2.5 0.108 2.0 2.10

Recreation
gmiML-CFS 0.379 1.0 5.561 2.0 0.222 1.0 0.802 1.0 0.220 2.0 1.40
smiML-CFS 0.378 2.0 5.528 1.0 0.260 2.0 0.805 2.5 0.219 1.0 1.70
ML-CFSabs 0.376 3.0 5.662 3.0 0.269 3.0 0.805 2.5 0.225 3.0 2.90

Health
gmiML-CFS 0.612 3.0 3.906 2.0 0.122 1.0 0.490 3.0 0.076 3.0 2.40
smiML-CFS 0.624 1.0 3.898 1.0 0.129 3.0 0.489 1.0 0.074 1.0 1.40
ML-CFSabs 0.623 2.0 3.908 3.0 0.126 2.0 0.489 2.0 0.074 2.0 2.20

Ent.ment
gmiML-CFS 0.529 2.0 3.455 2.0 0.154 1.0 0.649 2.0 0.132 2.0 1.80
smiML-CFS 0.530 1.0 3.418 1.0 0.181 2.0 0.648 1.0 0.131 1.0 1.20
ML-CFSabs 0.518 3.0 3.559 3.0 0.188 3.0 0.662 3.0 0.136 3.0 3.00

Computer
gmiML-CFS 0.600 1.0 4.861 1.0 0.083 1.0 0.475 2.0 0.102 1.0 1.20
smiML-CFS 0.598 2.0 4.947 2.0 0.085 3.0 0.475 2.0 0.104 2.0 2.20
ML-CFSabs 0.595 3.0 5.003 3.0 0.083 2.0 0.475 2.0 0.106 3.0 2.60

Science
gmiML-CFS 0.397 1.0 7.749 1.0 0.134 2.0 0.758 2.0 0.156 1.0 1.40
smiML-CFS 0.395 3.0 7.835 3.0 0.139 3.0 0.758 2.0 0.159 3.0 2.80
ML-CFSabs 0.396 2.0 7.815 2.0 0.129 1.0 0.758 2.0 0.157 2.0 1.80

MEAN
gmiML-CFS 1.80 1.60 1.40 2.00 1.80 1.72
smiML-CFS 2.00 1.90 2.40 2.00 1.90 2.04
ML-CFSabs 2.20 2.50 2.20 2.00 2.30 2.24
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Table 4.25: Values of five multi-label predictive accuracy measures for ML-CFSabs
and two versions of ML-CFS using mutual information for class label weighting
using ML-kNN as the classifier - feature space size = 400

Dataset Methods
Predictive Accuracy Measures and Ranking

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

Enron
gmiML-CFS 0.565 1.0 13.340 3.0 0.087 1.0 0.394 1.0 0.098 2.0 1.60
smiML-CFS 0.556 3.0 13.295 2.0 0.091 3.0 0.418 3.0 0.098 3.0 2.80
ML-CFSabs 0.559 2.0 13.188 1.0 0.089 2.0 0.396 2.0 0.097 1.0 1.60

Medical
gmiML-CFS 0.804 1.0 2.395 1.0 0.020 3.0 0.267 1.0 0.037 1.0 1.40
smiML-CFS 0.799 2.0 2.569 3.0 0.018 1.0 0.276 3.0 0.041 3.0 2.40
ML-CFSabs 0.795 3.0 2.504 2.0 0.019 2.0 0.276 2.0 0.040 2.0 2.20

Business
gmiML-CFS 0.857 1.0 2.668 1.0 0.037 1.0 0.139 2.0 0.047 1.0 1.20
smiML-CFS 0.853 2.0 2.735 2.0 0.038 2.0 0.139 2.0 0.049 2.0 2.00
ML-CFSabs 0.849 3.0 2.804 3.0 0.039 3.0 0.139 2.0 0.050 3.0 2.80

Art
gmiML-CFS 0.435 3.0 5.997 1.0 0.202 2.0 0.752 2.0 0.176 3.0 2.20
smiML-CFS 0.436 2.0 6.008 3.0 0.210 3.0 0.752 2.0 0.175 2.0 2.40
ML-CFSabs 0.436 1.0 6.000 2.0 0.197 1.0 0.752 2.0 0.175 1.0 1.40

Education
gmiML-CFS 0.482 1.0 4.531 1.0 0.111 1.0 0.681 2.0 0.107 1.0 1.20
smiML-CFS 0.477 2.0 4.668 2.0 0.131 3.0 0.681 2.0 0.110 2.0 2.20
ML-CFSabs 0.476 3.0 4.689 3.0 0.131 2.0 0.681 2.0 0.111 3.0 2.60

Recreation
gmiML-CFS 0.376 1.0 5.650 1.0 0.266 1.0 0.805 2.0 0.223 1.0 1.20
smiML-CFS 0.375 2.0 5.743 2.0 0.293 2.0 0.805 2.0 0.227 2.0 2.00
ML-CFSabs 0.373 3.0 5.818 3.0 0.330 3.0 0.805 2.0 0.229 3.0 2.80

Health
gmiML-CFS 0.621 1.0 3.821 1.0 0.120 2.0 0.487 1.0 0.073 1.0 1.20
smiML-CFS 0.613 3.0 3.961 3.0 0.128 3.0 0.489 3.0 0.077 3.0 3.00
ML-CFSabs 0.617 2.0 3.848 2.0 0.116 1.0 0.489 2.0 0.074 2.0 1.80

Ent.ment
gmiML-CFS 0.505 2.0 3.590 3.0 0.194 3.0 0.688 2.0 0.139 3.0 2.60
smiML-CFS 0.529 1.0 3.436 1.0 0.182 1.0 0.648 1.0 0.131 1.0 1.00
ML-CFSabs 0.498 3.0 3.589 2.0 0.189 2.0 0.705 3.0 0.139 2.0 2.40

Computer
gmiML-CFS 0.599 2.0 4.888 1.0 0.084 1.0 0.475 2.0 0.103 1.0 1.40
smiML-CFS 0.599 1.0 4.898 2.0 0.088 3.0 0.475 2.0 0.103 2.0 2.00
ML-CFSabs 0.596 3.0 4.980 3.0 0.086 2.0 0.475 2.0 0.106 3.0 2.60

Science
gmiML-CFS 0.397 1.0 7.733 1.0 0.146 2.0 0.758 2.0 0.156 1.0 1.40
smiML-CFS 0.395 3.0 7.900 3.0 0.150 3.0 0.758 2.0 0.159 3.0 2.80
ML-CFSabs 0.396 2.0 7.787 2.0 0.129 1.0 0.758 2.0 0.157 2.0 1.80

MEAN
gmiML-CFS 1.40 1.40 1.70 1.70 1.50 1.54
smiML-CFS 2.10 2.30 2.40 2.20 2.30 2.26
ML-CFSabs 2.50 2.30 1.90 2.10 2.20 2.20

Table 4.26: Summary of results in terms of average ranking (Avg.R)and the num-
ber of selected features (S.F) of ML-CFSabs and two versions of ML-CFS using
Mutual Information for class label weighting using BPMLL as classifier

Datasets and
feature space size

gmi-ML-CFS smiML-CFS ML-CFSabs
S.F Avg.R S.F Avg.R S.F Avg.R

Emotion 10.00 1.00 10.00 2.00 10.00 3.00
CAL500 12.90 2.20 12.40 1.80 10.00 2.00
Scene 36.00 3.00 24.00 2.00 22.00 1.00
Yeast 22.00 2.20 24.00 2.20 23.00 1.60
100 22.40 1.90 28.80 2.08 31.70 2.02
200 34.30 2.01 48.30 1.85 49.20 2.14
300 44.10 1.72 60.60 2.04 60.50 2.24
400 57.00 1.54 70.00 2.26 73.20 2.20

104



Table 4.27: Summary of overall average ranking (Avg.R) across four individual
lengths for two versions of ML-CFS using MI for class label weighting and ML-
CFSabs methods using BPMLL as classifier

Dataset
Overall Average Rank (AR)
across 4 individual lengths

gmiML-CFS smiML-CFS ML-CFSabs
CAL500 2.2(3) 1.8(1) 2(2)
CAL500 2.2(3) 1.8(1) 2(2)
Scene 3(3) 2(2) 1(1)
Emotions 1(1) 2(2) 3(3)
Yeast 2.2(2) 2.2(2) 1.6(1)
Enron 2(2) 2.1(3) 1.9(1)
Medical 2.15(3) 2(2) 1.85(1)
Business 1.2(1) 2.23(2) 2.58(3)
Art 2.18(3) 2.05(2) 1.78(1)
Education 1.33(1) 2.35(3) 2.33(2)
Recreation 1.75(2) 1.73(1) 2.53(3)
Health 1.88(1) 1.98(2) 2.15(3)
Ent.ment 2.45(3) 1.35(1) 2.2(2)
Computer 1.45(1) 2.15(2) 2.4(3)
Science 1.55(1) 2.65(3) 1.8(2)
Average 1.88(1.93) 2.04(2) 2.08(2)

4.5 Computational Results Comparing the Best

Version of ML-CFS (gmiML-CFS) and Other

Multi-Label Feature Selection Methods

4.5.1 Methods Being Compared and Experimental Method-

ology

In this Section we compare the best version of our ML-CFS method according to

the results reported in previous Section, namely gmiML-CFS, with several other

multi-label feature selection methods, namely Relief for Multi-Label feature se-

lection (RFML) and three different baseline approaches: Binary Relevance (BR),

Correlation-Based Feature Selection with the union operator (CFS-U) and No fea-

ture selection (NoFS). The details of each method or approach are described next.

The RFML method is a well-known multi-label feature selection method pro-
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posed in [105]. This method was discussed in Section 3.4. We used the RFML

implementation kindly provided by the authors; with its default parameter set-

ting. After running RFML and obtaining the corresponsding feature ranking, we

selected the top k features in the ranking, where k is the same number of features

selected by gmiML-CFS.

Binary Relevance (BR) is provided in the multi-label classification repository.

This approach was discussed in Section 3.2 and it essentially consists of the base

classifier (in our case kNN and multi-layer perceptron, which are provided on the

Weka website). The base classifier was used with its default parameter setting.

The CFS-U approach, which was first introduced by the author of this thesis

in [57], consists of running a conventional single-label CFS method for selecting

a feature subset for each class label separately and then returning the union of

those selected feature subsets as the set of features to be given to the multi-label

classification algorithm. The CFS implementation used in our experiments was

the single-label CFSSubsetEval method in the well-known Weka data mining tool

[44]. This method was used with its default parameters, and it evaluates candidate

feature subsets according to Equation (4.1).

In the NoFS approach, we give all original features in the dataset to the multi-

label classifier, in the case of the “small” (with less than 300 features) datasets

(CAL500, Emotion, Scene and Yeast datasets); while in the case of all the large

datasets (with more than 1,000 features), we apply the initial univariate approach,

based on Equation (4.3), in order to select a subset of features to be given to the

multi-label classifier; as explained earlier.

Hence, note that the name “NoFS” refers to the lack of use of a sophisticated

and multivariate feature selection method like ML-CFS; it does not refer to a com-

plete lack of feature selection in the case of the large datasets.
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Similarly, to the previous Sections of results in this Chapter, in the next two

Sections we report results separately for the experiments using ML-kNN and

BPMLL as the classifier. In addition, in each Section we report in a separate

table the results for the small datasets (with less than 300 features), where all

original features were given to each feature selection method; and report in sep-

arate tables the results for other large datasets (with more than 1,000 features),

where a univariate filter method was applied in a pre-processing phase to reduce

the feature space size.

4.5.2 Experimental Results for gmiML-CFS and Other Multi-

Label Feature Selection Methods Using the ML-kNN

Classifier

Clearly, in Tables 4.28 - 4.32, gmiML-CFS obtained substantially better predic-

tive accuracy (substantially lower overall average rank) across all datasets and all

accuracy measures than NoFS, BR and RFML in most cases. In Table 4.28, re-

porting results for small datasets, gmiML-CFS obtained the same average rank as

CFS-U (1.9); while NoFS, BR and RFML obtained substantially larger average

ranks (2.5, 3.3 and 3.9, respectively). Moreover, gmiML-CFS outperforms CFS-U

according to three different predictive accuracy measures: Coverage, OneErr and

R-Loss.

Tables 4.29 - 4.32 report results for the large datasets, with the feature space

size varying from 100 to 400. In Table 4.29, when the feature space size equals

to 100, CFS-U obtained the best overall average rank (1.9); while gmiML-CFS

and NoFS jointly obtained the second best overall average rank 2.3 and outper-

form BR and RFML, which obtained overall average rank 4.6 and 3.9, respectively.

In Table 4.30, the best method was CFS-U, with an overall average rank of
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Table 4.28: Values of five multi-label predictive accuracy measures for gmiML-
CFS and other feature selection methods using MLkNN as the classifier - small
datasets

Dataset Methods
Predictive Accuracy

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

CAL500

NoFS 0.490 4.0 130.950 4.0 0.139 2.0 0.120 2.5 0.184 3.0 3.1
BR(kNN) 0.502 1.0 129.738 2.0 0.251 5.0 0.142 5.0 0.181 2.0 3.0

CFS-U 0.500 2.0 129.260 1.0 0.130 1.0 0.140 4.0 0.178 1.0 1.8
RFML 0.486 5.0 130.234 3.0 0.139 4.0 0.116 1.0 0.185 5.0 3.6

gmi-ML-CFS 0.492 3.0 131.068 3.0 0.139 1.0 0.120 1.0 0.185 1.0 1.8

Scene

NoFS 0.540 1.0 1.960 2.0 0.235 4.0 0.667 1.0 0.370 2.0 2.0
BR(kNN) 0.531 2.0 1.793 1.0 0.257 5.0 0.722 4.0 0.341 1.0 2.6

CFS-U 0.528 3.0 2.066 4.0 0.198 2.0 0.668 2.0 0.392 4.0 3.0
RFML 0.506 4.0 2.028 3.0 0.192 1.0 0.727 5.0 0.389 3.0 3.2

gmi-ML-CFS 0.499 3.0 2.161 3.0 0.210 2.0 0.715 3.0 0.411 3.0 2.8

Emotions

NoFS 0.797 4.0 1.876 2.0 0.209 2.0 0.282 2.5 0.159 1.0 2.3
BR(kNN) 0.800 2.0 1.853 1.0 0.211 3.0 0.291 4.0 0.162 3.0 2.6

CFS-U 0.808 1.0 1.891 3.0 0.196 1.0 0.248 1.0 0.161 2.0 1.6
RFML 0.758 5.0 2.104 5.0 0.262 5.0 0.347 5.0 0.203 5.0 5.0

gmi-ML-CFS 0.800 1.0 1.921 1.0 0.215 2.0 0.282 3.0 0.174 2.0 1.8

Yeast

NoFS 0.757 2.0 6.364 2.0 0.198 2.0 0.242 4.0 0.171 2.0 2.4
BR(kNN) 0.741 5.0 6.610 5.0 0.226 5.0 0.257 5.0 0.189 5.0 5.0

CFS-U 0.761 1.0 6.341 1.0 0.196 1.0 0.237 2.0 0.169 1.0 1.2
RFML 0.749 4.0 6.543 4.0 0.205 4.0 0.240 3.0 0.183 4.0 3.8

gmi-ML-CFS 0.756 1.0 6.495 1.0 0.204 1.0 0.230 1.0 0.176 1.0 1.0

MEAN

NoFS 2.8 2.5 2.5 2.5 2.0 2.5
BR(kNN) 2.5 2.3 4.5 4.5 2.8 3.3

CFS-U 1.8 2.3 1.3 2.3 2.0 1.9
RFML 4.5 3.8 3.5 3.5 4.3 3.9

gmi-ML-CFS 2.0 2.0 1.5 2.0 1.8 1.9

1.7. The second best method was gmiML-CFS, which outperforms NoFS, BR and

RFML with overall average rank = 2.3.

In Table 4.31 the best methods were CFS-U and gmiML-CFS, both with an

overall average rank of 1.8. These two methods outperform NoFS, BR and RFML,

which obtained overall average rank = 2.8, 4.8 and 3.7, respectively.

In table 4.32 the best method was CFS-U, with an overall average rank of 1.8;

while the second best method was gmiML-CFS, which outperformed NoFS, BR

and RFML with overall average Rank = 1.9.

Table 4.33 reports the summary of results in terms of the overall average rank-

ing and the number of selected features of gmiML-CFSabs and multi-label feature

selection approaches when using MLkNN as the classifier. Like in previous Sec-
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Table 4.29: Values of five multi-label predictive accuracy measures for gmiML-
CFS and other feature selection methods using MLkNN as the classifier - feature
space size = 100

Dataset Methods
Predictive Accuracy

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

Business

NoFS 0.874 3.0 2.369 1.0 0.028 2.0 0.124 3.0 0.043 1.0 2.0
BR(kNN) 0.854 5.0 2.725 5.0 0.042 5.0 0.139 5.0 0.048 5.0 5.0

CFS-U 0.875 1.0 2.379 3.0 0.028 1.0 0.122 1.0 0.043 2.5 1.7
RFML 0.867 4.0 2.467 4.0 0.029 4.0 0.132 4.0 0.045 4.0 4.0

gmi-ML-CFS 0.874 2.0 2.371 2.0 0.028 3.0 0.123 2.0 0.043 2.5 2.3

Art

NoFS 0.529 2.0 5.306 2.0 0.059 3.0 0.592 3.0 0.146 2.0 2.4
BR(kNN) 0.432 5.0 5.971 5.0 0.229 5.0 0.752 5.0 0.176 5.0 5.0

CFS-U 0.533 1.0 5.272 1.0 0.059 2.0 0.586 1.0 0.145 1.0 1.2
RFML 0.466 4.0 5.911 4.0 0.062 4.0 0.689 4.0 0.168 4.0 4.0

gmi-ML-CFS 0.528 3.0 5.398 3.0 0.059 1.0 0.588 2.0 0.150 3.0 2.4

Education

NoFS 0.543 2.5 3.938 2.0 0.041 1.5 0.602 2.0 0.093 3.0 2.2
BR(kNN) 0.476 5.0 4.645 5.0 0.145 5.0 0.681 5.0 0.110 5.0 5.0

CFS-U 0.545 1.0 3.921 1.0 0.041 1.5 0.597 1.0 0.092 1.0 1.1
RFML 0.486 4.0 4.421 4.0 0.045 4.0 0.678 4.0 0.107 4.0 4.0

ML-CFS 0.543 2.5 3.982 3.0 0.042 3.0 0.603 3.0 0.093 2.0 2.7

Recreation

NoFS 0.536 1.0 4.333 2.0 0.058 1.0 0.595 1.0 0.157 2.0 1.4
BR(kNN) 0.376 5.0 5.603 4.0 0.346 5.0 0.805 5.0 0.222 5.0 4.8

CFS-U 0.535 3.0 4.302 1.0 0.059 3.0 0.598 2.0 0.157 1.0 2.0
RFML 0.385 4.0 5.665 5.0 0.065 4.0 0.795 4.0 0.218 4.0 4.2

gmi-ML-CFS 0.535 2.0 4.349 3.0 0.059 2.0 0.601 3.0 0.159 3.0 2.6

Health

NoFS 0.631 3.0 3.784 3.0 0.049 1.5 0.476 1.0 0.075 2.0 2.1
BR(kNN) 0.616 5.0 4.062 5.0 0.129 5.0 0.489 5.0 0.078 4.0 4.8

CFS-U 0.632 2.0 3.767 2.0 0.049 1.5 0.477 3.0 0.075 1.0 1.9
RFML 0.624 4.0 3.900 4.0 0.050 4.0 0.482 4.0 0.078 5.0 4.2

gmi-ML-CFS 0.634 1.0 3.747 1.0 0.049 3.0 0.476 2.0 0.075 3.0 2.0

Enter.ment

NoFS 0.597 1.0 3.135 1.0 0.056 3.0 0.537 1.0 0.116 1.0 1.4
BR(kNN) 0.465 5.0 3.984 5.0 0.281 5.0 0.715 5.0 0.159 5.0 5.0

CFS-U 0.583 3.0 3.194 3.0 0.055 1.0 0.548 3.0 0.118 2.0 2.4
RFML 0.491 4.0 3.920 4.0 0.064 4.0 0.678 4.0 0.151 4.0 4.0

gmi-ML-CFS 0.593 2.0 3.158 2.0 0.056 2.0 0.548 2.0 0.119 3.0 2.2

Computer

NoFS 0.630 2.0 4.289 1.0 0.040 2.5 0.443 2.0 0.091 2.0 1.9
BR(kNN) 0.599 5.0 4.840 5.0 0.112 5.0 0.475 5.0 0.101 5.0 5.0

CFS-U 0.631 1.0 4.291 2.0 0.040 2.5 0.442 1.0 0.091 1.0 1.5
RFML 0.610 4.0 4.533 4.0 0.042 4.0 0.471 4.0 0.097 4.0 4.0

gmi-ML-CFS 0.623 3.0 4.416 3.0 0.040 1.0 0.450 3.0 0.094 3.0 2.6

Science

NoFS 0.456 3.0 6.852 2.0 0.035 3.0 0.676 3.0 0.134 2.0 2.6
BR(kNN) 0.391 5.0 8.112 5.0 0.236 5.0 0.758 5.0 0.165 5.0 5.0

CFS-U 0.462 2.0 6.812 1.0 0.035 2.0 0.668 2.0 0.133 1.0 1.6
RFML 0.418 4.0 7.248 4.0 0.036 4.0 0.724 4.0 0.143 4.0 4.0

gmi-ML-CFS 0.463 1.0 6.965 3.0 0.034 1.0 0.662 1.0 0.137 3.0 1.8

Enron

NoFS 0.584 2.0 13.380 1.0 0.058 3.0 0.396 3.5 0.097 1.0 2.1
BR(kNN) 0.547 5.0 14.109 5.0 0.098 5.0 0.413 5.0 0.106 5.0 5.0

CFS-U 0.587 1.0 13.501 2.0 0.057 2.0 0.390 2.0 0.098 2.0 1.8
RFML 0.580 4.0 13.883 4.0 0.059 4.0 0.396 3.5 0.103 4.0 3.9

gmi-ML-CFS 0.583 3.0 13.679 3.0 0.057 1.0 0.389 1.0 0.100 3.0 2.2

Medical

NoFS 0.717 5.0 3.614 5.0 0.019 5.0 0.374 5.0 0.062 5.0 5.0
BR(kNN) 0.796 1.0 2.299 1.0 0.017 3.0 0.281 1.0 0.037 1.0 1.4

CFS-U 0.758 4.0 3.505 4.0 0.018 4.0 0.301 3.5 0.059 4.0 3.9
RFML 0.765 2.0 3.461 3.0 0.017 2.0 0.299 2.0 0.057 3.0 2.4

gmi-ML-CFS 0.760 3.0 3.372 2.0 0.017 1.0 0.301 3.5 0.055 2.0 2.3

MEAN

NoFS 2.5 2.0 2.6 2.5 2.1 2.3
BR(kNN) 4.6 4.5 4.8 4.6 4.5 4.6

CFS-U 1.9 2.0 2.1 2.0 1.7 1.9
RFML 3.8 4.0 3.8 3.8 4.0 3.9

gmi-ML-CFS 2.3 2.5 1.8 2.3 2.8 2.3
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Table 4.30: Values of five multi-label predictive accuracy measures for gmiML-
CFS and other feature selection methods using MLkNN as the classifier - feature
space size = 200

Dataset Methods
Predictive Accuracy

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

Business

NoFS 0.874 3.0 2.369 1.0 0.028 2.0 0.124 3.0 0.043 1.0 2.0
BR(kNN) 0.853 5.0 2.726 5.0 0.042 5.0 0.139 5.0 0.049 5.0 5.0

CFS-U 0.877 1.0 2.262 1.0 0.028 2.0 0.124 1.0 0.040 1.0 1.2
RFML 0.863 4.0 2.488 4.0 0.029 4.0 0.137 4.0 0.046 4.0 4.0

gmi-ML-CFS 0.873 3.0 2.357 3.0 0.028 2.0 0.124 3.0 0.042 3.0 2.8

Art

NoFS 0.519 3.0 5.319 2.0 0.059 3.0 0.605 3.0 0.147 2.0 2.6
BR(kNN) 0.414 5.0 7.523 5.0 0.557 5.0 0.752 5.0 0.226 5.0 5.0

CFS-U 0.541 1.0 5.190 1.0 0.058 1.0 0.572 1.0 0.141 1.0 1.0
RFML 0.452 4.0 5.959 4.0 0.064 4.0 0.712 4.0 0.171 4.0 4.0

gmi-ML-CFS 0.537 2.0 5.323 3.0 0.059 2.0 0.579 2.0 0.148 3.0 2.4

Education

NoFS 0.544 3.0 3.895 2.0 0.041 3.0 0.602 3.0 0.092 2.0 2.6
BR(kNN) 0.467 5.0 5.435 5.0 0.271 5.0 0.681 5.0 0.125 5.0 5.0

CFS-U 0.549 2.0 3.876 1.0 0.041 1.0 0.592 2.0 0.091 1.0 1.4
RFML 0.486 4.0 4.426 4.0 0.044 4.0 0.678 4.0 0.107 4.0 4.0

ML-CFS 0.551 1.0 3.918 3.0 0.041 2.0 0.583 1.0 0.092 3.0 2.0

Recreation

NoFS 0.553 3.0 4.321 3.0 0.056 3.0 0.570 3.0 0.158 3.0 3.0
BR(kNN) 0.314 5.0 7.562 5.0 0.559 5.0 0.803 5.0 0.311 5.0 5.0

CFS-U 0.571 2.0 4.166 1.0 0.055 2.0 0.540 1.0 0.152 1.0 1.4
RFML 0.407 4.0 5.172 4.0 0.065 4.0 0.765 4.0 0.199 4.0 4.0

gmi-ML-CFS 0.572 1.0 4.223 2.0 0.054 1.0 0.540 2.0 0.152 2.0 1.6

Health

NoFS 0.673 3.0 3.453 3.0 0.044 3.0 0.412 3.0 0.065 3.0 3.0
BR(kNN) 0.607 5.0 4.037 5.0 0.158 5.0 0.489 5.0 0.081 5.0 5.0

CFS-U 0.684 2.0 3.380 1.0 0.043 2.0 0.402 2.0 0.063 1.0 1.6
RFML 0.667 4.0 3.578 4.0 0.045 4.0 0.422 4.0 0.068 4.0 4.0

gmi-ML-CFS 0.685 1.0 3.400 2.0 0.042 1.0 0.392 1.0 0.063 2.0 1.4

Enter.ment

NoFS 0.624 1.0 2.982 1.0 0.056 3.0 0.500 1.0 0.108 1.0 1.4
BR(kNN) 0.451 5.0 4.843 5.0 0.460 5.0 0.715 5.0 0.192 5.0 5.0

CFS-U 0.613 2.0 3.049 2.0 0.054 2.0 0.513 3.0 0.111 2.0 2.2
RFML 0.501 4.0 3.762 4.0 0.064 4.0 0.669 4.0 0.145 4.0 4.0

gmi-ML-CFS 0.604 3.0 3.117 3.0 0.054 1.0 0.513 2.0 0.113 3.0 2.4

Computer

NoFS 0.647 2.0 4.125 2.0 0.038 2.0 0.424 2.0 0.087 1.5 1.9
BR(kNN) 0.589 5.0 5.099 5.0 0.160 5.0 0.475 5.0 0.110 5.0 5.0

CFS-U 0.648 1.0 4.115 1.0 0.038 1.0 0.423 1.0 0.087 1.5 1.1
RFML 0.619 4.0 4.408 4.0 0.041 4.0 0.456 4.0 0.094 4.0 4.0

gmi-ML-CFS 0.638 3.0 4.181 3.0 0.039 3.0 0.436 3.0 0.089 3.0 3.0

Science

NoFS 0.476 3.0 6.617 2.0 0.034 3.0 0.654 3.0 0.129 2.0 2.6
BR(kNN) 0.386 5.0 8.877 5.0 0.490 5.0 0.758 5.0 0.182 5.0 5.0

CFS-U 0.487 1.0 6.563 1.0 0.034 1.0 0.640 2.0 0.127 1.0 1.2
RFML 0.437 4.0 7.131 4.0 0.036 4.0 0.702 4.0 0.141 4.0 4.0

gmi-ML-CFS 0.484 2.0 6.808 3.0 0.034 2.0 0.638 1.0 0.133 3.0 2.2

Enron

NoFS 0.596 1.0 13.404 2.0 0.057 1.0 0.373 1.0 0.097 2.0 1.4
BR(kNN) 0.566 5.0 14.288 5.0 0.094 5.0 0.413 5.0 0.103 5.0 5.0

CFS-U 0.589 2.0 13.325 1.0 0.058 3.0 0.383 2.0 0.096 1.0 1.8
RFML 0.578 4.0 13.636 3.0 0.058 2.0 0.406 4.0 0.101 4.0 3.4

gmi-ML-CFS 0.580 3.0 13.719 4.0 0.059 4.0 0.396 3.0 0.101 3.0 3.4

Medical

NoFS 0.745 5.0 3.557 5.0 0.019 5.0 0.321 5.0 0.060 5.0 5.0
BR(kNN) 0.825 1.0 2.228 1.0 0.016 2.0 0.231 1.5 0.033 1.0 1.3

CFS-U 0.769 4.0 3.242 4.0 0.018 4.0 0.292 4.0 0.053 4.0 4.0
RFML 0.805 3.0 2.892 2.0 0.017 3.0 0.257 3.0 0.044 2.0 2.6

gmi-ML-CFS 0.807 2.0 2.929 3.0 0.016 1.0 0.231 1.5 0.046 3.0 2.1

MEAN

NoFS 2.6 2.4 2.8 2.6 2.4 2.6
BR(kNN) 4.6 4.6 4.7 4.7 4.6 4.6

CFS-U 1.8 1.4 1.9 1.9 1.5 1.7
RFML 3.9 3.7 3.7 3.9 3.8 3.8

gmi-ML-CFS 2.1 2.9 1.9 2.0 2.8 2.3
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Table 4.31: Values of five multi-label predictive accuracy measures for gmiML-
CFS and other feature selection methods using MLkNN as the classifier - feature
space size = 300

Dataset Methods
Predictive Accuracy

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

Business

NoFS 0.876 2.0 2.288 2.0 0.028 1.0 0.124 2.0 0.041 3.0 2.0
BR(kNN) 0.854 5.0 2.736 5.0 0.044 5.0 0.139 4.0 0.049 5.0 4.8

CFS-U 0.877 1.0 2.280 1.0 0.028 2.0 0.123 1.0 0.040 1.5 1.3
RFML 0.862 4.0 2.456 4.0 0.030 4.0 0.140 5.0 0.045 4.0 4.2

gmi-ML-CFS 0.876 3.0 2.292 3.0 0.028 3.0 0.127 3.0 0.040 1.5 2.7

Art

NoFS 0.521 3.0 5.256 2.0 0.060 3.0 0.607 3.0 0.144 2.0 2.6
BR(kNN) 0.234 5.0 8.567 5.0 0.627 5.0 0.978 5.0 0.269 5.0 5.0

CFS-U 0.543 1.0 5.108 1.0 0.059 2.0 0.572 1.0 0.139 1.0 1.2
RFML 0.453 4.0 5.926 4.0 0.064 4.0 0.716 4.0 0.169 4.0 4.0

gmi-ML-CFS 0.540 2.0 5.278 3.0 0.058 1.0 0.575 2.0 0.145 3.0 2.2

Education

NoFS 0.541 3.0 3.914 3.0 0.041 3.0 0.604 3.0 0.092 3.0 3.0
BR(kNN) 0.151 5.0 10.153 5.0 0.470 5.0 0.987 5.0 0.284 5.0 5.0

CFS-U 0.548 2.0 3.877 1.0 0.041 2.0 0.596 2.0 0.091 1.0 1.6
RFML 0.491 4.0 4.347 4.0 0.044 4.0 0.669 4.0 0.105 4.0 4.0

ML-CFS 0.552 1.0 3.895 2.0 0.041 1.0 0.588 1.0 0.091 2.0 1.4

Recreation

NoFS 0.552 3.0 4.296 3.0 0.056 3.0 0.573 3.0 0.157 3.0 3.0
BR(kNN) 0.154 5.0 9.750 5.0 0.674 5.0 0.995 5.0 0.414 5.0 5.0

CFS-U 0.576 2.0 4.074 1.0 0.055 2.0 0.542 2.0 0.147 1.0 1.6
RFML 0.421 4.0 4.977 4.0 0.065 4.0 0.754 4.0 0.191 4.0 4.0

gmi-ML-CFS 0.581 1.0 4.147 2.0 0.054 1.0 0.530 1.0 0.150 2.0 1.4

Health

NoFS 0.674 3.0 3.441 3.0 0.045 3.0 0.418 3.0 0.065 3.0 3.0
BR(kNN) 0.602 5.0 4.386 5.0 0.220 5.0 0.489 5.0 0.089 5.0 5.0

CFS-U 0.682 2.0 3.373 2.0 0.044 2.0 0.407 2.0 0.063 2.0 2.0
RFML 0.660 4.0 3.603 4.0 0.046 4.0 0.429 4.0 0.068 4.0 4.0

gmi-ML-CFS 0.699 1.0 3.303 1.0 0.042 1.0 0.380 1.0 0.061 1.0 1.0

Enter.ment

NoFS 0.608 3.0 3.034 3.0 0.057 3.0 0.523 3.0 0.111 3.0 3.0
BR(kNN) 0.211 5.0 7.262 5.0 0.513 5.0 0.923 5.0 0.324 5.0 5.0

CFS-U 0.612 2.0 2.975 1.0 0.055 2.0 0.517 2.0 0.108 1.0 1.6
RFML 0.510 4.0 3.666 4.0 0.063 4.0 0.663 4.0 0.142 4.0 4.0

gmi-ML-CFS 0.627 1.0 3.004 2.0 0.054 1.0 0.494 1.0 0.110 2.0 1.4

Computer

NoFS 0.651 1.0 4.086 2.0 0.037 2.0 0.423 1.0 0.086 2.0 1.6
BR(kNN) 0.251 5.0 8.628 5.0 0.507 5.0 0.939 5.0 0.205 5.0 5.0

CFS-U 0.651 2.0 4.067 1.0 0.037 1.0 0.424 2.0 0.086 1.0 1.4
RFML 0.625 4.0 4.359 4.0 0.040 4.0 0.450 4.0 0.092 4.0 4.0

gmi-ML-CFS 0.646 3.0 4.161 3.0 0.038 3.0 0.427 3.0 0.088 3.0 3.0

Science

NoFS 0.475 3.0 6.611 2.0 0.034 2.0 0.660 3.0 0.130 3.0 2.6
BR(kNN) 0.119 5.0 14.552 5.0 0.559 5.0 0.967 5.0 0.332 5.0 5.0

CFS-U 0.477 2.0 6.535 1.0 0.035 3.0 0.657 2.0 0.128 1.0 1.8
RFML 0.423 4.0 7.242 4.0 0.036 4.0 0.712 4.0 0.145 4.0 4.0

gmi-ML-CFS 0.489 1.0 6.622 3.0 0.034 1.0 0.629 1.0 0.129 2.0 1.6

Enron

NoFS 0.567 3.0 13.629 3.0 0.059 4.0 0.404 3.0 0.100 3.0 3.2
BR(kNN) 0.554 5.0 14.808 5.0 0.147 5.0 0.508 5.0 0.113 5.0 5.0

CFS-U 0.567 4.0 13.584 2.0 0.058 2.5 0.396 2.0 0.100 2.0 2.5
RFML 0.581 2.0 13.884 4.0 0.058 2.5 0.389 1.0 0.102 4.0 2.7

gmi-ML-CFS 0.581 1.0 13.432 1.0 0.058 1.0 0.406 4.0 0.098 1.0 1.6

Medical

NoFS 0.738 4.0 3.578 5.0 0.019 4.0 0.336 4.0 0.060 5.0 4.4
BR(kNN) 0.694 5.0 2.816 1.0 0.028 5.0 0.411 5.0 0.047 2.0 3.6

CFS-U 0.776 3.0 3.222 4.0 0.018 3.0 0.292 3.0 0.052 4.0 3.4
RFML 0.805 2.0 2.983 3.0 0.015 1.0 0.248 2.0 0.047 3.0 2.2

gmi-ML-CFS 0.819 1.0 2.831 2.0 0.016 2.0 0.225 1.0 0.044 1.0 1.4

MEAN

NoFS 2.8 2.8 2.8 2.8 3.0 2.8
BR(kNN) 5.0 4.6 5.0 4.9 4.7 4.8

CFS-U 2.1 1.5 2.2 1.9 1.6 1.8
RFML 3.6 3.9 3.6 3.6 3.9 3.7

gmi-ML-CFS 1.5 2.2 1.5 1.8 1.9 1.8
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Table 4.32: Values of five multi-label predictive accuracy measures for gmiML-
CFS and other feature selection methods using MLkNN as the classifier - feature
space size = 400

Dataset Methods
Predictive Accuracy

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

Business

NoFS 0.881 1.0 2.26 2.0 0.028 1.0 0.119 1.0 0.039 1.0 1.2
BR(kNN) 0.767 5.0 4.01 5.0 0.294 5.0 0.139 5.0 0.075 5.0 5.0

CFS-U 0.879 2.0 2.24 1.0 0.028 2.0 0.123 2.5 0.039 2.0 1.9
RFML 0.865 4.0 2.454 4.0 0.029 4.0 0.137 4.0 0.045 4.0 4.0

gmi-ML-CFS 0.877 3.0 2.299 3.0 0.028 3.0 0.123 2.5 0.041 3.0 2.9

Art

NoFS 0.509 3.0 5.34 3.0 0.060 3.0 0.631 3.0 0.147 3.0 3.0
BR(kNN) 0.150 5.0 12.52 5.0 0.468 5.0 0.980 5.0 0.424 5.0 5.0

CFS-U 0.546 1.0 5.08 1.0 0.058 2.0 0.569 1.0 0.137 1.0 1.2
RFML 0.461 4.0 5.885 4.0 0.064 4.0 0.700 4.0 0.166 4.0 4.0

gmi-ML-CFS 0.536 2.0 5.298 2.0 0.057 1.0 0.582 2.0 0.146 2.0 1.8

Education

NoFS 0.535 3.0 3.95 3.0 0.042 3.0 0.611 3.0 0.093 3.0 3.0
BR(kNN) 0.143 5.0 9.95 5.0 0.508 5.0 0.999 5.0 0.272 5.0 5.0

CFS-U 0.555 2.0 3.78 1.0 0.041 2.0 0.589 2.0 0.089 1.0 1.6
RFML 0.487 4.0 4.382 4.0 0.044 4.0 0.674 4.0 0.106 4.0 4.0

ML-CFS 0.559 1.0 3.848 2.0 0.040 1.0 0.574 1.0 0.090 2.0 1.4

Recreation

NoFS 0.552 3.0 4.24 3.0 0.057 3.0 0.576 3.0 0.155 3.0 3.0
BR(kNN) 0.176 5.0 10.93 5.0 0.684 5.0 0.949 5.0 0.452 5.0 5.0

CFS-U 0.578 2.0 4.06 2.0 0.055 2.0 0.539 2.0 0.147 2.0 2.0
RFML 0.430 4.0 4.820 4.0 0.064 4.0 0.740 4.0 0.185 4.0 4.0

gmi-ML-CFS 0.590 1.0 4.052 1.0 0.054 1.0 0.517 1.0 0.146 1.0 1.0

Health

NoFS 0.692 3.0 3.30 3.0 0.043 3.0 0.395 3.0 0.061 3.0 3.0
BR(kNN) 0.378 5.0 5.17 5.0 0.303 5.0 0.957 5.0 0.114 5.0 5.0

CFS-U 0.701 2.0 3.25 2.0 0.043 2.0 0.378 2.0 0.060 2.0 2.0
RFML 0.674 4.0 3.514 4.0 0.044 4.0 0.412 4.0 0.067 4.0 4.0

gmi-ML-CFS 0.721 1.0 3.193 1.0 0.040 1.0 0.348 1.0 0.058 1.0 1.0

Enter.ment

NoFS 0.617 3.0 3.00 2.0 0.057 3.0 0.510 3.0 0.110 3.0 2.8
BR(kNN) 0.221 5.0 6.82 5.0 0.567 5.0 0.961 5.0 0.297 5.0 5.0

CFS-U 0.630 1.0 2.89 1.0 0.054 2.0 0.495 2.0 0.105 1.0 1.4
RFML 0.520 4.0 3.581 4.0 0.064 4.0 0.649 4.0 0.137 4.0 4.0

gmi-ML-CFS 0.624 2.0 3.002 3.0 0.053 1.0 0.491 1.0 0.109 2.0 1.8

Computer

NoFS 0.655 2.0 4.03 2.0 0.037 2.0 0.418 2.0 0.084 2.0 2.0
BR(kNN) 0.213 5.0 8.45 5.0 0.584 5.0 0.967 5.0 0.213 5.0 5.0

CFS-U 0.655 1.0 4.01 1.0 0.037 1.0 0.417 1.0 0.084 1.0 1.0
RFML 0.628 4.0 4.315 4.0 0.040 4.0 0.448 4.0 0.092 4.0 4.0

gmi-ML-CFS 0.646 3.0 4.184 3.0 0.038 3.0 0.429 3.0 0.088 3.0 3.0

Science

NoFS 0.462 3.0 6.68 2.0 0.035 3.0 0.671 3.0 0.132 2.0 2.6
BR(kNN) 0.145 5.0 13.28 5.0 0.593 5.0 0.980 5.0 0.293 5.0 5.0

CFS-U 0.482 2.0 6.53 1.0 0.034 2.0 0.648 2.0 0.128 1.0 1.6
RFML 0.434 4.0 7.101 4.0 0.036 4.0 0.703 4.0 0.141 4.0 4.0

gmi-ML-CFS 0.485 1.0 6.741 3.0 0.034 1.0 0.629 1.0 0.132 3.0 1.8

Enron

NoFS 0.583 1.0 13.40 1.0 0.056 1.0 0.382 1.0 0.098 1.0 1.0
BR(kNN) 0.471 5.0 14.22 5.0 0.165 5.0 0.760 5.0 0.113 5.0 5.0

CFS-U 0.580 2.0 13.47 2.0 0.057 2.0 0.385 2.0 0.099 2.0 2.0
RFML 0.579 3.0 13.814 4.0 0.058 3.0 0.392 3.0 0.102 4.0 3.4

gmi-ML-CFS 0.575 4.0 13.624 3.0 0.059 4.0 0.406 4.0 0.100 3.0 3.6

Medical

NoFS 0.728 4.0 3.72 4.0 0.020 4.0 0.349 4.0 0.063 4.0 4.0
BR(kNN) 0.110 5.0 13.81 5.0 0.420 5.0 0.980 5.0 0.291 5.0 5.0

CFS-U 0.768 3.0 3.34 3.0 0.019 3.0 0.295 3.0 0.055 3.0 3.0
RFML 0.810 2.0 3.005 2.0 0.017 2.0 0.226 2.0 0.047 2.0 2.0

gmi-ML-CFS 0.819 1.0 2.812 1.0 0.016 1.0 0.225 1.0 0.044 1.0 1.0

MEAN

NoFS 2.6 2.5 2.6 2.6 2.5 2.6
BR(kNN) 5.0 5.0 5.0 5.0 5.0 5.0

CFS-U 1.8 1.5 2.0 2.0 1.6 1.8
RFML 3.7 3.8 3.7 3.7 3.8 3.7

gmi-ML-CFS 1.9 2.2 1.7 1.8 2.1 1.9
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Table 4.33: Summary of results in terms of average ranking (AR) and the number
of selected features (Sel.F) of gmiML-CFS and other multi-label feature selection
methods using ML-kNN as the classifier

Datasets and
feature space size

NoFS BR(kNN) CFS-U RFML gmi-ML-CFS
AR Sel.F AR Sel.F AR Sel.F AR Sel.F AR Sel.F

Emotion 2.30 72.00 2.60 72.00 1.60 52.00 5.00 10.00 1.80 10.00
CAL500 3.10 68.00 3.00 68.00 1.80 51.00 3.60 12.90 1.80 12.90
Scene 2.00 294.00 2.60 294.00 3.00 234.00 3.20 36.00 2.80 36.00
Yeast 2.40 103.00 5.00 103.00 1.20 74.00 3.80 22.00 1.00 22.00
100 2.31 100.00 4.60 100.00 1.91 73.90 3.87 22.40 2.31 22.40
200 2.55 200.00 4.63 200.00 1.69 128.40 3.80 34.30 2.33 34.30
300 2.84 300.00 4.84 300.00 1.84 174.80 3.71 44.10 1.77 44.10
400 2.56 400.00 5.00 400.00 1.77 214.40 3.74 57.00 1.93 57.00

tions, the results in the last four rows are an average over results for all datasets,

for each feature space size.

In Table 4.33, CFS-U obtains the best average rank with the larger selected

feature subset when compared with RFML and gmiML-CFS in general. For ex-

ample; in CAL500, CFS-U selects a feature subset about four times larger than

the one selected by gmiML-CFS (51 and 12.90 features, respectively). The dif-

ference between the average ranks of CFS-U and gmiML-CFS was small in most

cases (between 0.04 and 0.4) except when the feature space sizes was equal to 200:

the difference is 0.64 (2.33 - 1.69). Moreover, RFML, which has the same size

of selected feature subset as gmiML-CFS, obtains much worse average rank when

compared with gmiML-CFS; while NoFS and BR, which use either the full set of

features for small datasets or the feature subset selected by the univariate approach

(original feature space size), still obtain a larger average rank than gmiML-CFS.

Figure 4.1 shows the overall average ranking (AR) for gmiML-CFS and the

other multi-label feature selection methods plotted against the average size of se-

lected features across all dataset and feature space sizes, when using ML-kNN as

the classifier. Clearly, gmi-ML-CFS occupies a very good position in this plot. Its

average ranking is just slightly worse than the one of CFS-U, but gmi-ML-CFS

is much more to the left (selects a smaller number of features) than CFS-U. In
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Figure 4.1: Overall average ranking (AR) for gmiML-CFS and the other multi-
label feature selection methods plotted against the average size of selected features
across all datasets and feature space sizes, when using ML-kNN as the classifier

addition gmi-ML-CFS and RFML are in the same position along axis X (number

of selected features), but gmi-ML-CFS is in a much lower position along the Y axis

(better average ranking) than RFML. That is, the graph shows that gmi-ML-CFS

achieves a very good trade-off between predictive accuracy and number of selected

features.

In general, gmiML-CFS selected the smallest feature subset while obtaining the

second best predictive accuracy out of five different multi-label feature selection

approaches.

Table 4.34 presents a summary of the results from another perspective, re-

porting the average ranks (in terms of predictive accuracy) for each dataset -

i.e, averaging over different feature space sizes. In the first four rows (for small
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Table 4.34: Summary of overall average ranking (AR) for gmiML-CFS and other
multi-label feature selection methods across four feature space sizes using ML-kNN
as the classifier

Dataset
Overall Average Rank (AR) across 4 feature space sizes

NoFS BR(kNN) CFS-U RFML gmi-ML-CFS
CAL500 3.1(4) 3(3) 1.8(1) 3.6(5) 1.8(1)
Scene 2(1) 2.6(2) 3(4) 3.2(5) 2.8(3)
Emotions 2.3(3) 2.6(4) 1.6(1) 5(5) 1.8(2)
Yeast 2.4(3) 5(5) 1.2(2) 3.8(4) 1(1)
Enron 1(1) 5(5) 2(2) 3.4(3) 3.6(4)
Medical 4(4) 5(5) 3(3) 2(2) 1(1)
Business 1.2(1) 5(5) 1.9(2) 4(4) 2.9(3)
Art 3(3) 5(5) 1.2(1) 4(4) 1.8(2)
Education 3(3) 5(5) 1.6(2) 4(4) 1.4(1)
Recreation 3(3) 5(5) 2(2) 4(4) 1(1)
Health 3(3) 5(5) 2(2) 4(4) 1(1)
Ent.ment 2.8(3) 5(5) 1.4(1) 4(4) 1.8(2)
Computer 2(2) 5(5) 1(1) 4(4) 3(3)
Science 2.6(3) 5(5) 1.6(1) 4(4) 1.8(2)
Average 2.53(2.64) 4.51(4.57) 1.81(1.79) 3.79(4) 1.91(1.93)

datasets) in each cell the first value is taken directly from Table 4.28. For the

other rows (large datasets), in each cell of the table, the first value is the average

rank computed by averaging the corresponding ranks in Tables 4.29 - 4.32. In all

cells of the table, the value between brackets is the “rank of the average ranks”.

This latter value was used for the statistical test of significance mentioned next.

Using the results shows in Table 4.34, we ran the Friedman test and confidently

conclude that there is a significant difference among the 5 methods on the 14 eval-

uation datasets at the 0.05 level of significance for a two tailed test (p value <

0.00001). Running the Holm’s posthoc test on these data using gmiGA-wrap as the

control method, there are no significant differences when comparing gmiML-CFS

versus CFS-U and NoFS at the 0.05 significance level, but there is a significant

difference between gmiML-CFS versus BR, as well as between gmiML-CFS and

and RFML at the same level of significance (p value = 0.00012 and 0.00461, re-

spectively).
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4.5.3 Experimental Results for gmiML-CFS and Other Multi-

Label Feature Selection Methods Using the BPMLL

Classifier

Clearly, in Tables 4.35 - 4.39, gmiML-CFS obtained substantially better predic-

tive accuracy (substantially lower mean rank) than NoFS, CFS-U and RFML in

most cases. In Table 4.35, reporting results for the small datasets, gmiML-CFS

obtained the best overall average rank, 1.9; while NoFS, BR, CFS-U and RFML

obtained larger overall average ranks (3.7, 2.3, 2.3 and 3.4, respectively). More-

over, gmiML-CFS outperformed all other approaches according to two predictive

accuracy measures: Avg-Pre and R-Loss; and it was also the best method (jointly

with BR) according to the OneError measure.

In Table 4.36, reporting results for the large datasets with feature space size

equal to 100, BR obtained the best overall average rank (1.3); while gmiML-CFS

obtained overall average rank 2.7 and outperformed NoFS, CFS-U and RFML with

average rank 4.0, 3.3 and 3.7, respectively.

In Table 4.37, where the feature space size is equal to 200, again BR ob-

tained the best result, with overall average rank 1.3. In addition, gmiML-CFS

outperformed NoFS, CFS-U and RFML, with overall average rank = 2.6. Also,

gmiML-CFS obtained better ranks than those three approaches on all five predic-

tive accuracy measures in this table.

In Tables 4.38 and 4.39 again BR was the winner, with overall mean rank 1.3.

In addition, in these two tables, gmiML-CFS outperformed NoFS, BR and RFML

on all ten datasets, with overall average rank = 2.4 and 2.3, respectively. More-

over, gmiML-CFS obtained better ranks than those three approaches on all five

predictive accuracy measures when the feature space size is equal to 300 or 400
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Table 4.35: Values of five multi-label predictive accuracy measures for the best
ML-CFS and other feature selection method using BPMLL as the classifier - small
datasets

Dataset Methods
Predictive Accuracy

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

CAL500

NoFS 0.503 2.0 129.093 2.0 0.260 3.0 0.136 4.0 0.181 4.0 3.0
BR(BPNN) 0.490 5.0 130.950 5.0 0.139 1.0 0.120 2.0 0.184 5.0 3.6

CFS-U 0.507 1.0 127.480 1.0 0.257 2.0 0.152 5.0 0.176 1.0 2.0
RFML 0.499 4.0 129.450 3.0 0.301 5.0 0.116 1.0 0.180 3.0 3.2

gmi-ML-CFS 0.501 2.0 129.622 3.0 0.280 2.0 0.122 1.0 0.179 1.0 1.8

Scene

NoFS 0.501 4.0 1.994 5.0 0.301 5.0 0.747 4.0 0.380 5.0 4.6
BR(BPNN) 0.540 3.0 1.960 4.0 0.235 2.0 0.667 3.0 0.370 4.0 3.2

CFS-U 0.564 1.0 1.737 1.0 0.255 3.0 0.649 1.0 0.323 1.0 1.4
RFML 0.553 2.0 1.885 2.0 0.228 1.0 0.655 2.0 0.357 2.0 1.8

gmi-ML-CFS 0.497 3.0 1.918 3.0 0.272 3.0 0.789 3.0 0.361 3.0 3.0

Emotions

NoFS 0.791 4.0 1.889 3.0 0.214 2.0 0.309 4.0 0.168 3.0 3.2
BR(BPNN) 0.797 1.0 1.876 2.0 0.209 1.0 0.282 1.0 0.159 1.0 1.2

CFS-U 0.795 3.0 1.857 1.0 0.216 3.0 0.307 3.0 0.165 2.0 2.4
RFML 0.779 5.0 1.995 5.0 0.238 5.0 0.331 5.0 0.193 5.0 5.0

gmi-ML-CFS 0.795 1.0 1.930 1.0 0.220 2.0 0.294 3.0 0.172 2.0 1.8

Yeast

NoFS 0.738 5.0 6.619 3.0 0.227 2.0 0.263 5.0 0.190 5.0 4.0
BR(BPNN) 0.757 1.0 6.364 1.0 0.198 1.0 0.242 2.0 0.171 1.0 1.2

CFS-U 0.742 3.0 6.601 2.0 0.229 4.0 0.256 4.0 0.187 4.0 3.4
RFML 0.741 4.0 6.674 5.0 0.232 5.0 0.237 1.0 0.187 3.0 3.6

gmi-ML-CFS 0.742 1.0 6.644 1.0 0.228 1.0 0.245 1.0 0.183 1.0 1.0

MEAN

NoFS 3.8 3.3 3.0 4.3 4.3 3.7
BR(BPNN) 2.5 3.0 1.3 2.0 2.8 2.3

CFS-U 2.0 1.3 3.0 3.3 2.0 2.3
RFML 3.8 3.8 4.0 2.3 3.3 3.4

gmi-ML-CFS 1.8 2.0 2.0 2.0 1.8 1.9

(Tables 4.38 and 4.39).

Table 4.40 reports the summary of results in terms of the overall average rank

and the number of selected features obtained by gmiML-CFS and multi-label fea-

ture selection approaches when using BPMLL as classifier. BR obtains the best

average rank regarding accuracy but the largest used feature subset when com-

pared with others (RFML, CFS-U and gmiML-CFS). For example; in CAL500, BR

uses a feature subset about five times larger than the one selected by gmiML-CFS

(68 and 12.90 features, respectively); and when we set the feature space size to 400

BR obtains the best predictive accuracy with a used feature subset about 7 times

larger than the one selected by gmiML-CFS (400 and 57 features, respectively).

The difference between the average ranks of BR and gmiML-CFS was small for

the small datasets (where the original number of features is below 300) except on

the CAL500 dataset, where the difference is 1.8. Note that the difference in the
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Table 4.36: Values of five multi-label predictive accuracy measures for the best ML-
CFS and other feature selection method using BPMLL as the classifier - feature
space size = 100

Dataset Methods
Predictive Accuracy

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

Business

NoFS 0.853 2.0 2.730 2.0 0.043 4.0 0.139 4.0 0.049 3.0 3.0
BR(BPNN) 0.874 1.0 2.369 1.0 0.028 1.0 0.124 1.0 0.043 1.0 1.0

CFS-U 0.850 4.0 2.818 4.0 0.043 5.0 0.139 4.0 0.050 4.0 4.2
RFML 0.849 5.0 2.826 5.0 0.042 2.0 0.139 4.0 0.050 5.0 4.2

gmi-ML-CFS 0.853 3.0 2.751 3.0 0.042 3.0 0.139 2.0 0.048 2.0 2.6

Art

NoFS 0.431 5.0 6.054 5.0 0.238 5.0 0.752 3.5 0.179 5.0 4.7
BR(BPNN) 0.529 1.0 5.306 1.0 0.059 1.0 0.592 1.0 0.146 1.0 1.0

CFS-U 0.438 2.0 5.909 2.0 0.218 4.0 0.752 3.5 0.172 2.0 2.7
RFML 0.436 3.5 6.006 4.0 0.190 3.0 0.752 3.5 0.175 3.5 3.5

gmi-ML-CFS 0.436 3.5 6.006 3.0 0.184 2.0 0.752 3.5 0.175 3.5 3.1

Education

NoFS 0.476 5.0 4.697 5.0 0.146 4.0 0.681 4.0 0.111 5.0 4.6
BR(BPNN) 0.543 1.0 3.938 1.0 0.041 1.0 0.602 1.0 0.093 1.0 1.0

CFS-U 0.476 4.0 4.683 4.0 0.133 2.0 0.681 4.0 0.111 4.0 3.6
RFML 0.478 3.0 4.576 3.0 0.146 5.0 0.681 4.0 0.109 3.0 3.6

gmi-ML-CFS 0.480 2.0 4.532 2.0 0.134 3.0 0.679 2.0 0.107 2.0 2.2

Recreation

NoFS 0.376 5.0 5.648 5.0 0.350 5.0 0.804 3.5 0.224 5.0 4.7
BR(BPNN) 0.536 1.0 4.333 1.0 0.058 1.0 0.595 1.0 0.157 1.0 1.0

CFS-U 0.381 2.0 5.447 3.0 0.224 4.0 0.804 3.5 0.215 2.0 2.9
RFML 0.377 4.0 5.461 4.0 0.191 3.0 0.805 5.0 0.219 4.0 4.0

gmi-ML-CFS 0.380 3.0 5.402 2.0 0.190 2.0 0.802 2.0 0.215 3.0 2.4

Health

NoFS 0.612 4.0 4.040 5.0 0.130 4.0 0.489 4.0 0.079 5.0 4.4
BR(BPNN) 0.631 1.0 3.784 1.0 0.049 1.0 0.476 1.0 0.075 1.0 1.0

CFS-U 0.611 5.0 4.024 4.0 0.130 5.0 0.489 5.0 0.078 4.0 4.6
RFML 0.618 3.0 4.002 3.0 0.114 3.0 0.488 3.0 0.078 3.0 3.0

gmi-ML-CFS 0.623 2.0 3.927 2.0 0.108 2.0 0.481 2.0 0.076 2.0 2.0

Enter.ment

NoFS 0.495 4.0 3.547 4.0 0.233 5.0 0.715 5.0 0.137 4.0 4.4
BR(BPNN) 0.597 1.0 3.135 1.0 0.056 1.0 0.537 1.0 0.116 1.0 1.0

CFS-U 0.523 3.0 3.460 3.0 0.162 3.0 0.662 3.0 0.132 3.0 3.0
RFML 0.473 5.0 3.932 5.0 0.184 4.0 0.715 4.0 0.153 5.0 4.6

gmi-ML-CFS 0.529 2.0 3.460 2.0 0.149 2.0 0.649 2.0 0.132 2.0 2.0

Computer

NoFS 0.598 4.0 4.876 3.0 0.093 5.0 0.475 2.0 0.103 4.0 3.6
BR(BPNN) 0.630 1.0 4.289 1.0 0.040 1.0 0.443 1.0 0.091 1.0 1.0

CFS-U 0.594 5.0 4.876 4.0 0.089 4.0 0.475 4.0 0.104 5.0 4.4
RFML 0.598 3.0 4.893 5.0 0.073 2.0 0.475 4.0 0.102 3.0 3.4

gmi-ML-CFS 0.599 2.0 4.867 2.0 0.084 3.0 0.475 4.0 0.101 2.0 2.6

Science

NoFS 0.393 5.0 7.873 5.0 0.212 5.0 0.758 3.5 0.158 5.0 4.7
BR(BPNN) 0.456 1.0 6.852 1.0 0.035 1.0 0.676 1.0 0.134 1.0 1.0

CFS-U 0.397 3.0 7.682 2.0 0.160 4.0 0.758 3.5 0.155 2.0 2.9
RFML 0.397 2.0 7.747 4.0 0.123 2.0 0.758 3.5 0.155 3.0 2.9

gmi-ML-CFS 0.397 4.0 7.747 3.0 0.124 3.0 0.758 3.5 0.156 4.0 3.5

Enron

NoFS 0.576 2.0 13.913 5.0 0.091 5.0 0.409 5.0 0.100 5.0 4.4
BR(BPNN) 0.584 1.0 13.380 2.0 0.058 1.0 0.396 1.0 0.097 2.0 1.4

CFS-U 0.573 3.0 13.811 4.0 0.090 3.0 0.397 2.0 0.100 4.0 3.2
RFML 0.569 4.0 13.465 3.0 0.091 4.0 0.402 3.0 0.099 3.0 3.4

gmi-ML-CFS 0.567 5.0 13.207 1.0 0.089 2.0 0.403 4.0 0.097 1.0 2.6

Medical

NoFS 0.796 2.0 2.606 2.0 0.018 1.0 0.271 2.0 0.042 2.0 1.8
BR(BPNN) 0.717 3.0 3.614 4.0 0.019 3.0 0.374 3.0 0.062 3.0 3.2

CFS-U 0.805 1.0 2.296 1.0 0.018 2.0 0.265 1.0 0.035 1.0 1.2
RFML 0.582 4.0 3.808 5.0 0.052 5.0 0.588 4.0 0.070 5.0 4.6

gmi-ML-CFS 0.557 5.0 3.604 3.0 0.050 4.0 0.655 5.0 0.066 4.0 4.2

MEAN

NoFS 3.8 4.1 4.3 3.7 4.3 4.0
BR(BPNN) 1.2 1.4 1.2 1.2 1.3 1.3

CFS-U 3.2 3.1 3.6 3.4 3.1 3.3
RFML 3.7 4.1 3.3 3.8 3.8 3.7

gmi-ML-CFS 3.2 2.3 2.6 3.0 2.6 2.7
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Table 4.37: Values of five multi-label predictive accuracy measures for the best ML-
CFS and other feature selection method using BPMLL as the classifier - feature
space size = 200

Dataset Methods
Predictive Accuracy

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

Business

NoFS 0.853 3.0 2.728 3.0 0.041 2.0 0.139 4.0 0.049 4.0 3.2
BR(BPNN) 0.876 1.0 2.299 1.0 0.028 1.0 0.124 1.0 0.041 1.0 1.0

CFS-U 0.855 2.0 2.705 2.0 0.041 3.0 0.139 4.0 0.048 2.0 2.6
RFML 0.847 5.0 2.873 5.0 0.044 5.0 0.139 4.0 0.051 5.0 4.8

gmi-ML-CFS 0.853 4.0 2.751 4.0 0.041 4.0 0.139 2.0 0.049 3.0 3.4

Art

NoFS 0.404 5.0 7.565 5.0 0.548 5.0 0.752 3.5 0.230 5.0 4.7
BR(BPNN) 0.519 1.0 5.319 1.0 0.059 1.0 0.605 1.0 0.147 1.0 1.0

CFS-U 0.428 4.0 6.184 4.0 0.287 4.0 0.752 3.5 0.183 4.0 3.9
RFML 0.436 3.0 6.016 3.0 0.193 3.0 0.752 3.5 0.176 3.0 3.1

ML-CFS 0.437 2.0 5.985 2.0 0.185 2.0 0.752 3.5 0.175 2.0 2.3

Education

NoFS 0.469 5.0 5.298 5.0 0.261 5.0 0.681 3.5 0.122 5.0 4.7
BR(BPNN) 0.544 1.0 3.895 1.0 0.041 1.0 0.602 1.0 0.092 1.0 1.0

CFS-U 0.476 4.0 4.687 4.0 0.154 4.0 0.681 3.5 0.111 4.0 3.9
RFML 0.477 3.0 4.631 3.0 0.128 2.0 0.681 3.5 0.110 3.0 2.9

gmi-ML-CFS 0.480 2.0 4.477 2.0 0.142 3.0 0.681 3.5 0.107 2.0 2.5

Recreation

NoFS 0.346 5.0 6.917 5.0 0.548 5.0 0.802 2.0 0.278 5.0 4.4
BR(BPNN) 0.553 1.0 4.321 1.0 0.056 1.0 0.570 1.0 0.158 1.0 1.0

CFS-U 0.370 4.0 5.939 4.0 0.386 4.0 0.805 4.5 0.237 4.0 4.1
RFML 0.376 3.0 5.591 3.0 0.207 3.0 0.805 4.5 0.222 3.0 3.3

gmi-ML-CFS 0.379 2.0 5.530 2.0 0.206 2.0 0.803 3.0 0.219 2.0 2.2

Health

NoFS 0.606 5.0 4.148 5.0 0.158 5.0 0.489 4.0 0.082 5.0 4.8
BR(BPNN) 0.673 1.0 3.453 1.0 0.044 1.0 0.412 1.0 0.065 1.0 1.0

CFS-U 0.609 4.0 4.098 4.0 0.152 4.0 0.489 4.0 0.080 4.0 4.0
RFML 0.616 3.0 4.012 3.0 0.103 2.0 0.488 2.0 0.078 3.0 2.6

gmi-ML-CFS 0.617 2.0 3.976 2.0 0.113 3.0 0.489 4.0 0.077 2.0 2.6

Enter.ment

NoFS 0.417 5.0 5.087 5.0 0.476 5.0 0.788 5.0 0.199 5.0 5.0
BR(BPNN) 0.624 1.0 2.982 1.0 0.056 1.0 0.500 1.0 0.108 1.0 1.0

CFS-U 0.480 3.0 3.799 3.0 0.266 4.0 0.715 3.5 0.149 3.0 3.3
RFML 0.473 4.0 3.934 4.0 0.193 3.0 0.715 3.5 0.153 4.0 3.7

gmi-ML-CFS 0.506 2.0 3.533 2.0 0.172 2.0 0.688 2.0 0.135 2.0 2.0

Computer

NoFS 0.582 4.0 5.111 5.0 0.169 5.0 0.475 3.5 0.111 5.0 4.5
BR(BPNN) 0.647 1.0 4.125 1.0 0.038 1.0 0.424 1.0 0.087 1.0 1.0

CFS-U 0.570 5.0 5.087 4.0 0.114 4.0 0.475 3.5 0.110 4.0 4.1
RFML 0.598 3.0 4.904 3.0 0.072 2.0 0.475 3.5 0.103 3.0 2.9

gmi-ML-CFS 0.601 2.0 4.810 2.0 0.084 3.0 0.475 3.5 0.101 2.0 2.5

Science

NoFS 0.382 5.0 9.138 5.0 0.478 5.0 0.758 3.5 0.188 5.0 4.7
BR(BPNN) 0.476 1.0 6.617 1.0 0.034 1.0 0.654 1.0 0.129 1.0 1.0

CFS-U 0.393 4.0 8.007 4.0 0.250 4.0 0.758 3.5 0.161 4.0 3.9
RFML 0.398 2.0 7.689 2.0 0.131 3.0 0.758 3.5 0.154 2.0 2.5

gmi-ML-CFS 0.396 3.0 7.811 3.0 0.129 2.0 0.758 3.5 0.157 3.0 2.9

Enron

NoFS 0.562 4.0 14.326 5.0 0.098 5.0 0.418 5.0 0.105 5.0 4.8
BR(BPNN) 0.596 1.0 13.404 3.0 0.057 1.0 0.373 1.0 0.097 1.0 1.4

CFS-U 0.572 3.0 13.969 4.0 0.092 4.0 0.409 4.0 0.102 4.0 3.8
RFML 0.574 2.0 13.367 2.0 0.088 3.0 0.396 2.0 0.099 3.0 2.4

gmi-ML-CFS 0.559 5.0 13.293 1.0 0.087 2.0 0.405 3.0 0.098 2.0 2.6

Medical

NoFS 0.759 2.0 2.588 4.0 0.019 3.0 0.353 4.0 0.041 3.0 3.2
BR(BPNN) 0.745 4.0 3.557 5.0 0.019 2.0 0.321 2.0 0.060 5.0 3.6

CFS-U 0.836 1.0 2.200 1.0 0.014 1.0 0.219 1.0 0.033 1.0 1.0
RFML 0.698 5.0 2.534 3.0 0.030 5.0 0.460 5.0 0.043 4.0 4.4

ML-CFS 0.758 3.0 2.475 2.0 0.026 4.0 0.341 3.0 0.040 2.0 2.8

MEAN

NoFS 4.3 4.7 4.5 3.8 4.7 4.4
BR(BPNN) 1.3 1.6 1.1 1.1 1.4 1.3

CFS-U 3.4 3.4 3.6 3.5 3.4 3.5
RFML 3.3 3.1 3.1 3.5 3.3 3.3

gmi-ML-CFS 2.7 2.2 2.7 3.1 2.2 2.6
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Table 4.38: Values of five multi-label predictive accuracy measures for the best ML-
CFS and other feature selection method using BPMLL as the classifier - feature
space size = 300

Dataset Methods
Predictive Accuracy

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

Business

NoFS 0.842 5.0 2.841 5.0 0.052 5.0 0.139 3.5 0.052 5.0 4.7
BR(BPNN) 0.876 1.0 2.288 1.0 0.028 1.0 0.124 1.0 0.041 1.0 1.0

CFS-U 0.853 2.0 2.757 3.0 0.038 3.0 0.139 3.5 0.049 4.0 3.1
RFML 0.852 4.0 2.752 2.0 0.042 4.0 0.139 3.5 0.049 3.0 3.3

gmi-ML-CFS 0.853 3.0 2.762 4.0 0.034 2.0 0.139 3.5 0.049 2.0 2.9

Art

NoFS 0.167 5.0 10.195 5.0 0.626 5.0 0.973 5.0 0.347 5.0 5.0
BR(BPNN) 0.521 1.0 5.256 1.0 0.060 1.0 0.607 1.0 0.144 1.0 1.0

CFS-U 0.421 4.0 7.123 4.0 0.519 4.0 0.752 3.0 0.212 4.0 3.8
RFML 0.436 2.0 6.016 3.0 0.196 2.0 0.752 3.0 0.176 2.0 2.4

gmi-ML-CFS 0.433 3.0 6.014 2.0 0.205 3.0 0.752 3.0 0.177 3.0 2.8

Education

NoFS 0.213 5.0 9.325 5.0 0.495 5.0 0.917 5.0 0.247 5.0 5.0
BR(BPNN) 0.541 1.0 3.914 1.0 0.041 1.0 0.604 1.0 0.092 1.0 1.0

CFS-U 0.472 4.0 4.983 4.0 0.169 4.0 0.681 3.5 0.117 4.0 3.9
RFML 0.477 3.0 4.631 3.0 0.135 3.0 0.681 3.5 0.110 3.0 3.1

gmi-ML-CFS 0.482 2.0 4.474 2.0 0.122 2.0 0.678 2.0 0.106 2.0 2.0

Recreation

NoFS 0.184 5.0 8.551 5.0 0.702 5.0 0.972 5.0 0.356 5.0 5.0
BR(BPNN) 0.552 1.0 4.296 1.0 0.056 1.0 0.573 1.0 0.157 1.0 1.0

CFS-U 0.370 4.0 6.133 4.0 0.481 4.0 0.805 3.5 0.242 4.0 3.9
RFML 0.376 3.0 5.601 3.0 0.217 2.0 0.805 3.5 0.222 3.0 2.9

gmi-ML-CFS 0.379 2.0 5.561 2.0 0.222 3.0 0.802 2.0 0.220 2.0 2.2

Health

NoFS 0.595 5.0 4.348 5.0 0.189 5.0 0.489 3.0 0.088 5.0 4.6
BR(BPNN) 0.674 1.0 3.441 1.0 0.045 1.0 0.418 1.0 0.065 1.0 1.0

CFS-U 0.606 4.0 4.254 4.0 0.181 4.0 0.489 3.0 0.084 4.0 3.8
RFML 0.608 3.0 4.109 3.0 0.109 2.0 0.489 3.0 0.082 3.0 2.8

gmi-ML-CFS 0.612 2.0 3.906 2.0 0.122 3.0 0.490 5.0 0.076 2.0 2.8

Enter.ment

NoFS 0.217 5.0 7.002 5.0 0.532 5.0 0.951 5.0 0.304 5.0 5.0
BR(BPNN) 0.608 1.0 3.034 1.0 0.057 1.0 0.523 1.0 0.111 1.0 1.0

CFS-U 0.471 4.0 4.054 4.0 0.314 4.0 0.715 3.5 0.157 4.0 3.9
RFML 0.473 3.0 3.930 3.0 0.204 3.0 0.715 3.5 0.153 3.0 3.1

gmi-ML-CFS 0.529 2.0 3.455 2.0 0.154 2.0 0.649 2.0 0.132 2.0 2.0

Computer

NoFS 0.235 5.0 8.556 5.0 0.475 5.0 0.971 5.0 0.211 5.0 5.0
BR(BPNN) 0.651 1.0 4.086 1.0 0.037 1.0 0.423 1.0 0.086 1.0 1.0

CFS-U 0.588 4.0 5.205 4.0 0.207 4.0 0.475 2.0 0.111 4.0 3.6
RFML 0.595 2.5 5.006 3.0 0.083 2.0 0.475 3.5 0.106 2.5 2.7

gmi-ML-CFS 0.595 2.5 5.003 2.0 0.083 3.0 0.475 3.5 0.106 2.5 2.7

Science

NoFS 0.153 5.0 12.225 5.0 0.546 5.0 0.981 5.0 0.268 5.0 5.0
BR(BPNN) 0.475 1.0 6.611 1.0 0.034 1.0 0.660 1.0 0.130 1.0 1.0

CFS-U 0.388 4.0 8.727 4.0 0.453 4.0 0.758 3.0 0.177 4.0 3.8
RFML 0.399 2.0 7.664 2.0 0.132 3.0 0.758 3.0 0.154 2.0 2.4

gmi-ML-CFS 0.396 3.0 7.815 3.0 0.129 2.0 0.758 3.0 0.157 3.0 2.8

Enron

NoFS 0.583 1.0 14.041 4.0 0.106 5.0 0.425 3.0 0.101 3.0 3.2
BR(BPNN) 0.567 3.0 13.629 2.0 0.059 1.0 0.404 2.0 0.100 2.0 2.0

CFS-U 0.569 2.0 14.361 5.0 0.090 3.0 0.427 4.0 0.104 5.0 3.8
RFML 0.552 5.0 13.768 3.0 0.093 4.0 0.432 5.0 0.103 4.0 4.2

gmi-ML-CFS 0.567 4.0 13.217 1.0 0.089 2.0 0.400 1.0 0.097 1.0 1.8

Medical

NoFS 0.215 5.0 9.014 5.0 0.198 5.0 0.940 5.0 0.181 5.0 5.0
BR(BPNN) 0.738 4.0 3.578 4.0 0.019 2.0 0.336 3.0 0.060 4.0 3.4

CFS-U 0.847 1.0 2.078 1.0 0.014 1.0 0.205 1.0 0.031 1.0 1.0
RFML 0.753 3.0 2.810 3.0 0.023 4.0 0.339 4.0 0.045 3.0 3.4

gmi-ML-CFS 0.796 2.0 2.344 2.0 0.021 3.0 0.282 2.0 0.036 2.0 2.2

MEAN

NoFS 4.6 4.9 5.0 4.5 4.8 4.8
BR(kNN) 1.5 1.4 1.1 1.3 1.4 1.3

CFS-U 3.3 3.7 3.5 3.0 3.8 3.5
RFML 3.1 2.8 2.9 3.6 2.9 3.0

gmi-ML-CFS 2.6 2.2 2.5 2.7 2.2 2.4
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Table 4.39: Values of five multi-label predictive accuracy measures for the best ML-
CFS and other feature selection method using BPMLL as the classifier - feature
space size = 400

Dataset Methods
Predictive Accuracy

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

Business

NoFS 0.579 5.0 4.664 5.0 0.349 5.0 0.475 5.0 0.100 5.0 5.0
BR(BPNN) 0.881 1.0 2.258 1.0 0.028 1.0 0.119 1.0 0.039 1.0 1.0

CFS-U 0.856 3.0 2.646 2.0 0.041 3.0 0.139 3.5 0.047 2.0 2.7
RFML 0.855 4.0 2.675 4.0 0.042 4.0 0.139 2.0 0.047 4.0 3.6

gmi-ML-CFS 0.857 2.0 2.668 3.0 0.037 2.0 0.139 3.5 0.047 3.0 2.7

Art

NoFS 0.151 5.0 11.617 5.0 0.460 4.0 0.984 5.0 0.397 5.0 4.8
BR(BPNN) 0.509 1.0 5.342 1.0 0.060 1.0 0.631 1.0 0.147 1.0 1.0

CFS-U 0.337 4.0 8.150 4.0 0.544 5.0 0.843 4.0 0.257 4.0 4.2
RFML 0.436 2.0 6.000 3.0 0.199 2.0 0.752 2.5 0.175 2.0 2.3

gmi-ML-CFS 0.435 3.0 5.997 2.0 0.202 3.0 0.752 2.5 0.176 3.0 2.7

Education

NoFS 0.121 5.0 11.883 5.0 0.497 5.0 0.987 5.0 0.342 5.0 5.0
BR(BPNN) 0.535 1.0 3.950 1.0 0.042 1.0 0.611 1.0 0.093 1.0 1.0

CFS-U 0.470 4.0 5.194 4.0 0.233 4.0 0.681 3.0 0.120 4.0 3.8
RFML 0.475 3.0 4.710 3.0 0.133 3.0 0.681 3.0 0.112 3.0 3.0

gmi-ML-CFS 0.482 2.0 4.531 2.0 0.111 2.0 0.681 3.0 0.107 2.0 2.2

Recreation

NoFS 0.159 5.0 10.782 5.0 0.567 5.0 0.975 5.0 0.447 5.0 5.0
BR(BPNN) 0.552 1.0 4.238 1.0 0.057 1.0 0.576 1.0 0.155 1.0 1.0

CFS-U 0.334 4.0 6.674 4.0 0.547 4.0 0.840 4.0 0.270 4.0 4.0
RFML 0.375 3.0 5.693 3.0 0.259 2.0 0.805 2.5 0.225 3.0 2.7

gmi-ML-CFS 0.376 2.0 5.650 2.0 0.266 3.0 0.805 2.5 0.223 2.0 2.3

Health

NoFS 0.308 5.0 7.135 5.0 0.404 5.0 0.883 5.0 0.173 5.0 5.0
BR(BPNN) 0.692 1.0 3.303 1.0 0.043 1.0 0.395 1.0 0.061 1.0 1.0

CFS-U 0.587 4.0 4.688 4.0 0.217 4.0 0.489 3.5 0.096 4.0 3.9
RFML 0.608 3.0 4.045 3.0 0.121 3.0 0.489 3.5 0.080 3.0 3.1

gmi-ML-CFS 0.621 2.0 3.821 2.0 0.120 2.0 0.487 2.0 0.073 2.0 2.0

Enter.ment

NoFS 0.202 5.0 7.131 5.0 0.576 5.0 0.974 5.0 0.310 5.0 5.0
BR(BPNN) 0.617 1.0 2.997 1.0 0.057 1.0 0.510 1.0 0.110 1.0 1.0

CFS-U 0.461 4.0 4.371 4.0 0.367 4.0 0.715 3.0 0.169 4.0 3.8
RFML 0.473 3.0 3.950 3.0 0.246 3.0 0.715 4.0 0.154 3.0 3.2

gmi-ML-CFS 0.505 2.0 3.590 2.0 0.194 2.0 0.688 2.0 0.139 2.0 2.0

Computer

NoFS 0.135 5.0 11.156 5.0 0.574 5.0 0.983 5.0 0.301 5.0 5.0
BR(BPNN) 0.655 1.0 4.030 1.0 0.037 1.0 0.418 1.0 0.084 1.0 1.0

CFS-U 0.363 4.0 7.035 4.0 0.451 4.0 0.848 4.0 0.158 4.0 4.0
RFML 0.595 3.0 5.006 3.0 0.083 2.0 0.475 2.5 0.106 3.0 2.7

gmi-ML-CFS 0.599 2.0 4.888 2.0 0.084 3.0 0.475 2.5 0.103 2.0 2.3

Science

NoFS 0.128 5.0 14.598 5.0 0.592 5.0 0.980 5.0 0.329 5.0 5.0
BR(BPNN) 0.462 1.0 6.680 1.0 0.035 1.0 0.671 1.0 0.132 1.0 1.0

CFS-U 0.269 4.0 10.384 4.0 0.489 4.0 0.893 4.0 0.219 4.0 4.0
RFML 0.398 2.0 7.708 2.0 0.144 2.0 0.758 2.5 0.156 2.0 2.1

gmi-ML-CFS 0.397 3.0 7.733 3.0 0.146 3.0 0.758 2.5 0.156 3.0 2.9

Enron

NoFS 0.553 4.0 14.663 4.0 0.124 5.0 0.431 4.0 0.111 4.0 4.2
BR(BPNN) 0.583 1.0 13.397 2.0 0.056 1.0 0.382 1.0 0.098 2.0 1.4

CFS-U 0.552 5.0 14.828 5.0 0.096 4.0 0.435 5.0 0.112 5.0 4.8
RFML 0.564 3.0 13.407 3.0 0.092 3.0 0.403 3.0 0.100 3.0 3.0

gmi-ML-CFS 0.565 2.0 13.340 1.0 0.087 2.0 0.394 2.0 0.098 1.0 1.6

Medical

NoFS 0.154 5.0 14.135 5.0 0.325 5.0 0.940 5.0 0.292 5.0 5.0
BR(BPNN) 0.728 4.0 3.716 4.0 0.020 2.0 0.349 4.0 0.063 4.0 3.6

CFS-U 0.788 2.0 2.196 1.0 0.017 1.0 0.318 3.0 0.033 1.0 1.6
RFML 0.780 3.0 2.514 3.0 0.022 4.0 0.299 2.0 0.041 3.0 3.0

gmi-ML-CFS 0.804 1.0 2.395 2.0 0.020 3.0 0.267 1.0 0.037 2.0 1.8

MEAN

NoFS 4.9 4.9 4.9 4.9 4.9 4.9
BR(BPNN) 1.3 1.4 1.1 1.3 1.4 1.3

CFS-U 3.8 3.6 3.7 3.7 3.6 3.7
RFML 2.9 3.0 2.8 2.8 2.9 2.9

gmi-ML-CFS 2.1 2.1 2.5 2.4 2.2 2.3
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Table 4.40: Summary of results in terms of average ranking (AR) and the number
of selected features (Sel.F) of gmiML-CFS and other multi-label feature selection
methods using BPMLL as the classifier

Datasets and
feature space size

NoFS BR(BPNN) CFS-U RFML gmi-ML-CFS
AR Sel.F AR Sel.F AR Sel.F AR Sel.F AR Sel.F

Emotion 3.20 72.00 1.20 72.00 2.40 52.00 5.00 10.00 1.80 10.00
CAL500 3.00 68.00 3.60 68.00 2.00 51.00 3.20 12.90 1.80 12.90
Scene 4.60 294.00 3.20 294.00 1.40 234.00 1.80 36.00 3.00 36.00
Yeast 4.00 103.00 1.20 103.00 3.40 74.00 3.60 22.00 1.00 22.00
100 4.03 100.00 1.26 100.00 3.27 73.90 3.72 22.40 2.72 22.40
200 4.40 200.00 1.30 200.00 3.46 128.40 3.26 34.30 2.58 34.30
300 4.75 300.00 1.34 300.00 3.46 174.80 3.03 44.10 2.42 44.10
400 4.90 400.00 1.30 400.00 3.68 214.40 2.87 57.00 2.25 57.00

average rank of BR and gmiML-CFS is particularly small (just 0.2) on the Scene

and Yeast datasets. For the large datasets, the difference is decreasing from 1.46

to 1.28, 1.08 and 0.95 when the feature space size is equal to 100, 200, 300 and

400 respectively.

Figure 4.2 shows the overall average ranking (AR) for gmiML-CFS and the

other multi-label feature selection methods plotted against the average size of se-

lected features across all datasets and feature space sizes, when using BPMLL as

the classifier. Again, clearly, gmi-ML-CFS obtains a very good tread-off between

predictive accuracy (minimizing average ranking) and minimizing the number of

selected features (analogous to the situation in Figure 4.1).

In general, gmiML-CFS selected the smallest feature subset while obtaining the

second best predictive accuracy out of five different multi-label feature selection

approaches.

Table 4.41 shows the overall average rank of five multi-label feature selection

methods for each dataset (averaged across the 4 feature space sizes). The first

value in each cell is the actual average rank, whilst the value between brackets is

the “rank of the average rank”. This later value was used in the Friedman and

Holm’s test. Using the Friedman’s test we confidently conclude that there are sig-
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Figure 4.2: Overall average ranking (AR) for gmiML-CFS and the other multi-
label feature selection methods plotted against the average size of selected features
across all datasets and feature space sizes, when using BPMLL as the classifier

nificant differences among the 5 algorithms on 14 evaluation datasets at the 0.05

significance level for a two tailed test. Then, the Holm’s posthoc test was applied

on these data using gmiML-CFS as the control method. There is a significant

difference between gmiML-CFS and NoFS at the 0.05 significant level (p value

= 0.00012) but there are no significance differences between gmiML-CFS and the

other 4 methods at the same level of significance.

4.6 Conclusion

This Chapter presented four versions of the Multi-Label Correlation Based Fea-

ture Selection (ML-CFS) method, based on hill climbing search. The first version

of ML-CFS [57] extends the single-label CFS method to the more complex multi-
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Table 4.41: Summary of overall average ranking (AR) gmiML-CFS and other
multi-label feature selection methods across four feature space sizes using BPMLL
as the classifier

Dataset
Overall Average Rank (AR) across 4 feature space sizes
NoFS BR(BPNN) CFS-U RFML gmi-ML-CFS

CAL500 3(3) 3.6(5) 2(2) 3.2(4) 1.8(1)
Scene 4.6(5) 3.2(4) 1.4(1) 1.8(2) 3(3)
Emotions 3.2(4) 1.2(1) 2.4(3) 5(5) 1.8(2)
Yeast 4(5) 1.2(2) 3.4(3) 3.6(4) 1(1)
Enron 4.2(4) 1.4(1) 4.8(5) 3(3) 1.6(2)
Medical 5(5) 3.6(4) 1.6(1) 3(3) 1.8(2)
Business 5(5) 1(1) 2.7(2) 3.6(4) 2.7(2)
Art 4.8(5) 1(1) 4.2(4) 2.3(2) 2.7(3)
Education 5(5) 1(1) 3.8(4) 3(3) 2.2(2)
Recreation 5(5) 1(1) 4(4) 2.7(3) 2.3(2)
Health 5(5) 1(1) 3.9(4) 3.1(3) 2(2)
Ent.ment 5(5) 1(1) 3.8(4) 3.2(3) 2(2)
Computer 5(5) 1(1) 4(4) 2.7(3) 2.3(2)
Science 5(5) 1(1) 4(4) 2.1(2) 2.9(3)
Average 4.56(4.71) 1.59(1.79) 3.29(3.21) 3.02(3.14) 2.15(2.07)

label classification scenario by computing the correlation between a feature and

each of the multiple class labels. Then other three extensions of ML-CFS were pro-

posed [58] namely; (1) ML-CFS with the Absolute Value of Correlation Coefficient

(ML-CFSabs), (2) the ML-CFS version where class labels with greater mutual in-

formation (with respect to other labels) are assigned greater weight when comput-

ing feature-label correlations (gmiML-CFS); and (3) the ML-CFS version where

class labels with greater mutual information are assigned smaller weights (smiML-

CFS). Importantly, both gmiML-CFS and smiML-CFS also use the absolute value

of correlation coefficient, since ML-CFSabs obtained in general substantially bet-

ter results than the first version of ML-CFS.

We have run experiments with those four versions of ML-CFS and other multi-

label feature selection methods to compare the predictive accuracy associated with

their selected features when those features are used by two well-known multi-label

classification algorithms: ML-kNN and BPMLL. From the experimental results

reported in this Chapter, gmiML-CFS clearly outperforms ML-CFS, ML-CFSabs

and smiML-CFS in general. Moreover, when comparing gmiML-CFS with other
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multi-label feature selection methods, gmiML-CFS still shows a good predictive

performance (it obtained the second best predictive accuracy out of five feature

selection approaches) when using both classifiers. In addition, gmiML-CFS selects

substantially smaller feature subsets than other methods which obtained the best

predictive accuracy with both classifiers.
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Chapter 5

Multi-Label Correlation-Based

Feature Selection Methods that

Exploit Biological Knowledge

In chapter 4, we proposed several versions of the Multi-Label Correlation-Based

Feature Selection method (ML-CFS) and applied it to 14 multi-label datasets from

a number of different application domains. In this Chapter we present extended

versions of ML-CFS that exploit cancer-related information, in order to select a

better set of genes (features) for cancer-related microarray datasets. This Chapter

is organized as follows. Section 5.1 describes the general information about KEGG

pathway. Section 5.2 describes three different versions of ML-CFS using KEGG

pathway information. Section 5.3 describes the multi-label microarray datasets

used in our experiments and Section 5.4 describes the experimental methodology.

Section 5.5 reports experimental results and Section 5.6 presents this Chapter’s

conclusion.
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5.1 A Feature Subset Evaluation Function for

Exploiting Biological Knowledge

Recall that the original ML-CFS method evaluates the quality of a candidate

feature subset by using a merit function, which rewards features that are highly

correlated with the class attributes and have a low degree of redundancy with re-

spect to other features. Hence, the merit function was designed to be independent

from the application domain. Hence, in the context of the microarray datasets

analyzed in this Chapter (datasets described in Section 5.3), the merit function

has the limitation that it does not incorporate any biological knowledge about

cancer-related genes. To improve the predictive accuracy and the potential for

biological interpretation, int the context of cancer-related microarray datasets, we

propose to extend the ML-CFS method with an evaluation function that uses some

biological knowledge about cancer-related pathways.

Intuitively, the use of such biological knowledge would allow the ML-CFS

method’s search to focus on genes which are already known to be cancer-related,

which could help to improve the predictive performance associated with the ML-

CFS method or help to select genes whose role in cancer-related drug resistance

or sensitivity is more likely to be meaningful to biologists.

More precisely, we use knowledge about cancer-related KEGG pathways, which

is a well-known type of biological pathway, as part of the function that evaluates

a candidate feature subset. [61, 84, 85].

A KEGG pathway is a set of genes or proteins and their interactions, broadly

represented in the form of a graph. Each node typically represents a gene or pro-

tein, and an edge represents a type of interaction between genes or proteins. Some

edges denote that a gene activates another, other edges denote that a gene or pro-
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tein inhibits the activity of another, etc.

Moreover, KEGG pathways cover a wide range of organisms and are easy to

use because each pathway is stored in well-known formats such as XML format

files, text files and so on. KEGG pathways are widely used in literature [7, 41, 63].

Note that we utilize only 16 cancer-related KEGG pathways, which were se-

lected based on current knowledge about the biology of cancer. The selection was

made by Prof. Michaelis (School of BioSciences at University of Kent), an expert

in cancer biology. Our experiments aim to select genes which are relevant for pre-

dicting drug sensitivity/resistance in cancer patients. So, it would not be effective

to employ all pathways in the KEGG database. The selected 16 cancer-related

KEGG pathways are:

• DNA replication

• Base excision repair

• Nucleotide excision repair

• Mismatch repair

• Homologous recombination

• Non-homologous end-joining

• Fanconi anemia pathway

• ABC transporters

• Wnt signaling pathway

• Notch signaling pathway

• Hedgehog signaling pathway

• Cell cycle

• Apoptosis

• p53 signaling pathway

• Pathways in cancer

• Transcriptional misregulation in cancer
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Detailed information about these cancer-related pathways is provided on the

KEGG website (http://www.genome.jp/kegg/). We assume that if some genes are

related with cancer-related drug resistance/sensitivity, they are likely to occur in

some of the above cancer-related pathways.

In order to quantify the strength of the relationship between the genes in a can-

didate feature subset and the aforementioned cancer-related pathways, we propose

to compute “the Average Relative Frequency of Pathways per gene” (AvgRFP):

AvgRFPFSSi
=

∑k
f=1RFPf

k
(5.1)

where the average is computed over all the k features selected to be included in

the i -th candidate feature subset (FSSi), as shown in Equation (5.1).

For each selected feature f in FSSi, the relative frequency of pathways for f, de-

noted by RFPf , is the number of cancer-related KEGG pathways in which the

gene corresponding to f occurs divided by the number of user-specified pathways

(16 in our case). Each RFPf has a value in [0..1], so AvgRFPFSSi
also has a value

in [0..1]. Hence, the AvgRFP term rewards feature subsets where most genes in

the subset are involved in several cancer-related pathways, and penalizes feature

subsets where most genes do not occur in any cancer-related pathway.

5.2 Three extensions of Multi-Label Correlation-

Based Feature Selection (ML-CFS) using

KEGG Pathway Information

In this Section we propose three extensions to the original ML-CFS method, which

exploit cancer-related knowledge. Two of these extensions use Equation (5.1),
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whilst the third extension consists of using as input features only genes occurring

in the selected KEGG pathways.

5.2.1 ML-CFS using a Weighted Formula to Combine the

Merit Function and KEGG Pathway Information

In this approach, the evaluation function of the i -th FSS is defined by the follow-

ing weighted formula:

EvaluationFunction = α×MeritFSSi
+ (1− α)× AvgRFPFSSi

(5.2)

where α is a weight in [0..1] which is a user-defined parameter, whilst MeritFSSi

and AvgRFPFSSi
were discussed earlier.

The advantage of this approach is its simplicity: it computes the value of the

merit of a candidate feature subset and its AvgRFP value separately (represent-

ing two different perspectives, one statistical and another biological, respectively).

More precisely, the merit function evaluates candidate feature subsets using the

concept of statistical correlation; while AvgRFP evaluates candidate feature sub-

sets in terms of how often the genes in a feature subset occur in cancer-related

KEGG pathways. An important point of our experiments is that we use α ≥ 0.5

i.e, the weight α assigned to the merit function (MeritFSSi
) is greater than or

equal to the weight (1− α) assigned to AvgRFP. This is because we consider the

predictive accuracy (evaluated by the merit function) as the primary evaluation

criterion of a feature subset, while AvgRFP is a secondary (but still important to

users) criterion supporting the discovery of biologically relevant features. There is

no point in discovering biologically relevant features with low accuracy.
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5.2.2 ML-CFS Embedding KEGG Pathway Information

into the Merit Function

We also tried to embed the value of AvgRFP into the merit function in order

to avoid the need to specify user-defined weights (α) in our evaluation function.

In this approach, the formula to calculate the average value of the correlation

between all features in a feature subset F and all the labels in class label set L

is different from the formula in the original ML-CFS. The new formula is as follows:

rFL =

∑|F |
f=1

∣∣rfL∣∣×RFPf∑|F |
f=1RFPf

(5.3)

The idea behind this formula is that we want to reward the feature-label corre-

lation values in proportion to the strength of the association between the genes in

a feature subset and the cancer-related KEGG pathways (as measured by the RFP

term), while the average correlation between pairs of features in a feature subset

(to detect redundancy) is computed in the same way as in the original ML-CFS

algorithm.

The effect of using this formula with the hill climbing search used by ML-CFS

is that the algorithm will select only genes which occur in some KEGG pathway

in the first iteration of hill climbing search. This is because in the first iteration

of the search each candidate feature subset contains just one feature (gene), and

if that gene does not occur in any KEGG pathway the value of (rFL) is equal to

zero because RFPf = 0. In that case the value of the merit function is equal to

zero because in the first iteration the average correlation between feature pairs in

the feature subset (rFF ) is ignored (there is no feature pair in the feature subset),

so that only the correlation between features and labels (rFL) is considered.

After the first iteration of the hill climbing search, the candidate feature sub-

sets will have at least one gene which occurs in at least one cancer-related KEGG
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pathway and the correlation between features and labels (rFL) is taken into ac-

count. Therefore, a selected feature subset returned by ML-CFS will have at least

one gene occurring in a cancer-related KEGG pathway; and the rest of the genes

selected by ML-CFS’s hill climbing search are expected not only to be highly cor-

related with class labels but also to have little redundancy with the other selected

genes.

5.2.3 ML-CFS Using as Input Only Genes Occurring in

the Selected KEGG Pathways

When using the approach of embedding KEGG pathway information into the merit

function, there is a chance that the ML-CFS method selects a feature subset which

has only one gene occurring in some cancer-related pathways and the rest of the

selected genes are not occurring in any cancer related pathway at all. Note that,

in our datasets, only 3.13 % of the genes (690 out of 22,060 genes) occur in some

cancer-related KEGG pathway, and most of those genes have an RFP value lower

than 0.15. Hence, we decided to do experiments with another approach which se-

lects only genes which occur in cancer-related KEGG pathways. The idea behind

this approach is to investigate what will happen if we force our feature selection

method (ML-CFS) to select a feature subset from a feature space containing only

the genes (features) that occur in some cancer-related pathway. Hence, in this

approach we remove all genes which do not occur in any cancer-related pathway

from the feature space. After that we give all the remaining genes (i.e. all the

genes occurring in some cancer-related KEGG pathway) as input to the ML-CFS

method.
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Table 5.1: Main Characteristics of the Datasets used in the experiments

Dataset
Symbol

Dataset
Name

Dataset Description
Instances Features Labels Label Cardinality Label Density Distinct Labels

M1 Nutlin.Rita 24 22060 3 0.869 0.434 4
M2 Cis.Car.Oxy 24 22058 3 1.304 0.434 4

5.3 Datasets Used in the Experiments

In our experiments, we have analysed two multi-label microarray gene expression

datasets (Table 5.1). Unlike the other datasets analyzed in the previous Chapter,

the two multi-label microarray datasets are not publically available; they were

prepared for data mining by the author of this thesis, using data provided by

Prof. Michaelis, School of Bioscience, University of Kent. Both these datasets

were obtained from the resistant cancer cell line (RCCL) collection [22]. The first

one (referred to as dataset M1) consists of 28,536 features (genes), 24 instances

(cell lines) and 2 class attributes. More precisely, each feature represents the (real-

valued) expression level of a different gene, for each cell line (instance) in the

dataset. The two class attributes stand for two drugs which are used to treat neu-

roblastoma (a type of cancer), namely: ‘Nutlin-3’, which can take two class labels

(sensitive and resistant), and ‘RITA’, which can take three class labels (sensitive,

resistant and highly resistant) for each cell line. Hence, the goal of the multi-label

classification algorithm is to produce a classification model that, given the values

of the features (gene expression levels) for a cell line, predicts whether that cell

line would be sensitive or resistant to the drug Nutlin-3, and predicts whether that

cell line would be sensitive, resistant or highly resistant to the drug RITA.

In order to prepare dataset M1 for the application of a multi-label algorithm,

first we decompose the two class attributes into three binary class labels. The

first binary class label (L1) indicates whether a cell line (an instance) is sensitive

or resistant to drug Nutlin-3. The situation is more complicated in the case of

the class attribute for the RITA drug, which can take 3 values, since conventional

multi-label algorithms can cope only with binary class labels. Hence, we decom-
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posed the 3 class values for RITA into two binary attributes: L2 takes the value

yes or no to indicate whether or not a cell line is sensitive to the RITA drug; whilst

L3 takes the value yes or no to indicate whether or not a cell line is highly resistant

to RITA. Hence, at most one of labels L2 and L3 can take the value yes for a given

cell line. If both L2 and L3 take the value no for a cell line, this means the cell line

is resistant to the drug RITA. Also, if L1, L2 and L3 take the value no for a cell

line, this means the cell line is sensitive to Nutlin-3 and resistant to RITA. Note

that the fact that several cell lines have this pattern of three labels with value no

leads to an average value of label cardinality smaller than 1, since label cardinality

is computed by counting the number of yes values in labels.

The second multi-label microarray dataset – referred to as M2 – also has 28,536

features (genes) and 24 instances (cell lines), but it has 3 binary class attributes

(different drugs used to treat neuroblastoma), namely: Cisplatin, Carboplatin and

Oxaliplating.

Moreover, in both dataset M1 and M2, we remove genes with unknown names

because we aimed at selecting genes whose relevance to drug resistance/sensitivity

can be interpreted by biologists. After removing unknown genes, the number of

features (genes) that remained in dataset M1 is 22060, and 22,058 genes (features)

remained in dataset M2 (each dataset had about 22.7% of genes with unknown

names).

5.4 Experimental Methodology

The experiments reported in this Chapter are devided into five parts, as follows.

First, we ran an experiment for comparing the two different versions of ML-CFS:

(1) the first version of ML-CFS (described in Section 4.1); and (2) the ML-CFS

method using the absolute value of correlation coefficient (ML-CFSabs), which
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Table 5.2: Five different versions of ML-CFS using a weighted formula to combine
the merit function and KEGG pathway information

Methods α 1− α
ML-CFSk55 0.5 0.5
ML-CFSk64 0.6 0.4
ML-CFSk73 0.7 0.3
ML-CFSk82 0.8 0.2
ML-CFSk91 0.9 0.1

was described in Section 4.2.1.

Second, we ran an experiment for comparing 5 different parameter (α) settings

of ML-CFS using a weighted formula to combine the merit function and KEGG

pathway information, as described in Section 5.2. The pre-defined weights (α) and

(1− α) used in Equation (5.2) are shown in Table 5.2.

Third, we compare the best version of ML-CFS using a weighted formula to

combine the merit function and KEGG pathway information against other two

versions of ML-CFS: (1) ML-CFSabs; and (2) gmiML-CFS, the ML-CFS ver-

sion where class labels with greater MI (Mutual Information) are assigned greater

weights (described in Section 4.2.2). The idea of this experiment is to evalu-

ate what extent the use of mutual information and KEGG pathway information

improve over ML-CFSabs ability to select a high quality feature subset. It is im-

portant to mention that gmiML-CFS also uses the absolute value of the correlation

coefficient (like ML-CFSabs).

Fourth, we compare the best version of ML-CFS according to the result of the

previous experiment against other two ML-CFS versions using KEGG pathway in-

formation: (1) ML-CFS with embedded KEGG pathway Information to the Merit

Function (described in Section 5.2.2); and (2) ML-CFS selecting only genes that

occur in KEGG pathways (described in Section 5.2.3).
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Fifth, we compare the best version of our ML-CFS method in the previous

experiment against Relief for Multi-Label feature selection (RFML), and the pro-

posed Correlation-Based Feature Selection with the union operator (CFS-U) .

These are the same baseline approaches used in the previous Chapter, and the

details of each approach are described in Section 4.5.1.

The results of these five experiments are reported in Sections 5.5.1 through

5.5.5, respectively. In each of these five experiments, in order to evaluate the

predictive performance of the different versions of ML-CFS, the feature subset

selected by each ML-CFS version was given to two different types of multi-label

classification algorithm, namely the Multi-Label k-Nearest Neighbour (ML-kNN)

classification algorithm proposed in [124] and the Back-Propagation Multi-Label

Learning (BPMLL) classification algorithm [123]. These two algorithms were run

using their default parameters, which were mentioned in their corresponding pa-

per. After that, the predictive accuracy of each classification model was measured,

for each ML-CFS version, on the test set, containing data instances, which were

not included in the training set, therefore measuring the generalization ability of

the classification model. For the two microarray datasets (M1 and M2) we used

the well-known leave one out cross-validation procedure [116].

Like in Chapter 4, we measure predictive accuracy using five different accuracy

measures, namely: Hamming-loss, Ranking-loss, One-error, Coverage and Average

Precision [113], as reviewed in Chapter 2.

136



5.5 Experimental Results

5.5.1 Experimental Results for the First version of ML-

CFS and ML-CFS with the Absolute Value of Cor-

relation Coefficient

Tables 5.3 and 5.4 show the predictive performance of the first version of ML-CFS

(denoted simply by ML-CFS) and the ML-CFS with absolute value of correlation

coefficient (ML-CFSabs) on two microarray datasets (described in Section 5.3). In

these datasets, ML-CFS was applied to the full set of features; which was feasible

despite the very large number of features, because the number of instances is very

small.

In Tables 5.3 and 5.4 the numbers in each column titled “R” denote the ranks

achieved by each method according to the accuracy measure in the corresponding

left column. The ranks vary in the range from 1 (best) to 2 (worst). The tables

also report, in the last column, the average rank (AR) of each method across all

five predictive accuracy measures, for each dataset.

The last two rows of each table show the mean rank for each method across

two datasets, In those last two rows, the mean value of each accuracy measure

is not reported because that mean value would not be vary meaningful, since the

different datasets have different degrees of difficult for a classification algorithm, so

that different accuracies across datasets cannot be fairly compared, as mentioned

In Chapter 4. On the other hand, it is fair to compare the rank of the ML-CFS

versions across the two datasets, so the mean ranks are reported. Finally the last

column of the last two rows shows the average ranks over the five predictive accu-

racy measures and over the two datasets.
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Table 5.3: Values of five multi-label predictive accuracy measures for the first
version of ML-CFS and ML-CFS with absolute value of correlation coefficient
using ML-kNN as the classifier

Dataset Method.
Predictive Accuracy

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

M1
ML-CFS 0.868 2.0 0.333 2.0 0.375 2.0 0.417 2.0 0.208 2.0 2.0
ML-CFSabs 0.974 1.0 0.167 1.0 0.292 1.0 0.250 1.0 0.042 1.0 1.0

M2
ML-CFS 0.618 2.0 0.750 2.0 0.333 2.0 0.500 2.0 0.125 2.0 2.0
ML-CFSabs 0.640 1.0 0.708 1.0 0.319 1.0 0.458 1.0 0.083 1.0 1.0

Mean
ML-CFS 2.00 2.00 2.00 2.00 2.00 2.0
ML-CFSabs 1.00 1.00 1.00 1.00 1.00 1.0

Table 5.4: Values of five multi-label predictive accuracy measures for the first
version of ML-CFS and ML-CFS with absolute value of correlation coefficient
using BPMLL as the classifier

Dataset Method.
Predictive Accuracy

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

M1
ML-CFS 0.842 2.0 0.375 2.0 0.421 2.0 0.458 2.0 0.250 2.0 2.0
ML-CFSabs 0.974 1.0 0.167 1.0 0.175 1.0 0.250 1.0 0.042 1.0 1.0

M2
ML-CFS 0.994 2.0 0.633 2.0 0.189 2.0 0.383 2.0 0.008 2.0 2.0
ML-CFSabs 1.000 1.0 0.625 1.0 0.175 1.0 0.375 1.0 0.000 1.0 1.0

Mean
ML-CFS 2.00 2.00 2.00 2.00 2.00 2.0
ML-CFSabs 1.00 1.00 1.00 1.00 1.00 1.0

Clearly, in Tables 5.3 and 5.4, ML-CFSabs obtained substantially better pre-

dictive accuracy (substantially lower mean rank) than ML-CFS for each of the five

accuracy measures in both tables. ML-CFSabs outperforms ML-CFS on the two

datasets with overall average rank = 1.0. Since, ML-CFSabs obtains the better

rank for all five predictive accuracy measures with both classifiers.

Table 5.5 shows the summary of results reported in Tables 5.3 and 5.4, by re-

porting the average rank and the average number of features selected by ML-CFS

and ML-CFSabs on the two microarray datasets, where all features were available

to ML-CFS and ML-CFSabs. ML-CFSabs obtains the best average rank (1.0);

while ML-CFS obtains the worst rank (2.0). In terms of the number of selected

features, ML-CFSabs selected a larger number of features in all cases, across the

two datasets and using both ML-kNN and BPMLL classifiers (as shown in the

column titled “S.F”).
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Table 5.5: Summary of average ranking (Avg.R) and the number of selected fea-
tures (S.F) obtained by the first version of ML-CFS and ML-CFS with absolute
value of correlation coefficient using ML-kNN and BPMLL as classifiers

MLkNN

Dataset
ML-CFS ML-CFSabs

S.F. Avg.R S.F. Avg.R
M1 2.96 2.0 8.79 1.0
M2 2.96 2.0 2.96 1.0
Mean 2.96 2.0 5.87 1.0

BPMLL

Dataset
ML-CFS ML-CFSabs

S.F. Avg.R S.F. Avg.R
M1 2.96 2.0 8.79 1.0
M2 2.96 2.0 2.96 1.0
Mean 2.96 2.0 5.87 1.0

5.5.2 Experimental Results for Five Versions of ML-CFS

Using a Weighted Formula to Combine the Merit

Function and KEGG Pathway Information

Tables 5.6 and 5.7 show the predictive performance of five versions of ML-CFS

using a weighted formula to combine the merit function and KEGG pathway infor-

mation on the two microarray datasets using ML-kNN and BPMLL, respectively.

Recall that, ML-CFSk55, ML-CFSk64, ML-CFSk73, ML-CFSk82 and ML-CFSk91

stand for the ML-CFSabs using Equation 5.2 to combine the merit function and

KEGG pathway information, where the number after “k” refers to the different

weight settings (α and 1− α) as mentioned in Table 5.2.

Clearly, in Table 5.6, ML-CFSk91 (where α = 0.9 and 1 − α = 0.1) obtained

substantially better predictive accuracy (substantially lower mean rank) than the

other ML-CFS versions for each of the five accuracy measures. As can be seen in

Equation(5.2), ML-CFSk91 assigns the largest weight to the merit function and

the smallest weight to the AvgRFP term (exploiting biological knowledge about

cancer-relates pathways). However, there is no general correlation between larger
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value of α and better ranks, since the second best overall rank was obtained by

ML-CFSk55, which has the lowest value of α (0.5) among the 5 versions of ML-

CFS in Table 5.2.

ML-CFSk91 outperforms other versions of ML-CFS using a weighted formula

to combine the merit function and KEGG pathway information on the two datasets

with overall average rank = 1.2. Also, ML-CFSabs obtains the better rank for all

five predictive accuracy measures on ML-kNN classifiers.

In Tables 5.7, ML-CFSk91 outperforms other versions of ML-CFS using a

weighted formula to combine the merit function and KEGG pathway Information

on two microarray datasets with overall average rank = 1.4. Also, ML-CFSk91

obtains the better rank for all five predictive accuracy measures with the BPMLL

classifier. However, again there is no clear correlation between the value of α and

the corresponding overall average rank. The average ranks alternate decrease and

increase as the value of α is varied from 0.5 to 0.9.

Table 5.8 shows the summary of results reported in Tables 5.6, and 5.7, by

reporting the average rank and the average number of features selected by five dif-

ferent versions of ML-CFS using a weighted formula to combine the merit function

and KEGG pathway information on the two microarray datasets, where all fea-

tures were available. When using ML-kNN as the classifier, ML-CFSk91 obtains

the best average rank (1.2); while ML-CFSk55 wins the second place with the

average rank equal to 2.25 and the worst method is ML-CFSk64 which obtains the

worst rank (4.05) with ML-kNN. When using the BPMLL classifier, ML-CFSk91

obtains the best average rank (1.4); while ML-CFSk55 wins the second place with

the average rank equal to 2.25 and the worst method is ML-CFSk55 which obtains

the worst rank (3.95).

In terms of the mean of selected features across the two datasets M1 and

140



Table 5.6: Values of five multi-label predictive accuracy measures for five versions
of ML-CFS using a weighted formula to combine the merit function and KEGG
pathway information using ML-kNN as the classifier

Dataset ML-CFS versions
Predictive Accuracy

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

M1

ML-CFSk55 0.974 3.5 0.167 3.5 0.396 2.5 0.250 3.5 0.042 3.5 3.3
ML-CFSk64 0.974 3.5 0.167 3.5 0.417 4.5 0.250 3.5 0.042 3.5 3.7
ML-CFSk73 0.974 3.5 0.167 3.5 0.417 4.5 0.250 3.5 0.042 3.5 3.7
ML-CFSk82 0.974 3.5 0.167 3.5 0.396 2.5 0.250 3.5 0.042 3.5 3.3
ML=CFSk91 1.000 1.5 0.125 1.0 0.271 2.0 0.208 1.0 0.000 1.5 1.4

M2

ML-CFSk55 1.000 1.0 0.625 1.0 0.194 2.0 0.375 1.0 0.000 1.0 1.2
ML-CFSk64 0.917 4.5 0.750 4.5 0.347 4.0 0.500 4.5 0.125 4.5 4.4
ML-CFSk73 0.972 2.0 0.667 2.0 0.097 1.0 0.417 2.0 0.042 2.0 1.8
ML-CFSk82 0.944 3.0 0.708 3.0 0.347 5.0 0.458 3.0 0.083 3.0 3.4
ML-CFSk91 0.917 1.0 0.750 1.0 0.306 1.0 0.500 1.0 0.125 1.0 1.0

MEAN

ML-CFSk55 2.25 2.25 2.25 2.25 2.25 2.25
ML-CFSk64 4.00 4.00 4.25 4.00 4.00 4.05
ML-CFSk73 2.75 2.75 2.75 2.75 2.75 2.75
ML-CFSk82 3.25 3.25 3.75 3.25 3.25 3.35
ML-CFSk91 1.25 1.00 1.50 1.00 1.25 1.20

Table 5.7: Values of five multi-label predictive accuracy measures for five versions
of ML-CFS using a weighted formula to combine the merit function and KEGG
pathway information using BPMLL as the classifier

Dataset ML-CFS version
Predictive Accuracy

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

M1

ML-CFSk55 0.974 5.0 0.167 5.0 0.171 2.5 0.250 5.0 0.042 5.0 4.5
ML-CFSk64 0.984 2.0 0.150 2.0 0.171 2.5 0.233 2.0 0.025 2.0 2.1
ML-CFSk73 0.984 2.0 0.150 2.0 0.167 1.0 0.233 2.0 0.025 2.0 1.8
ML-CFSk82 0.979 4.0 0.158 4.0 0.188 4.0 0.242 4.0 0.033 4.0 4.0
ML-CFSk91 0.984 3.0 0.150 1.0 0.188 1.0 0.233 1.0 0.025 3.0 1.8

M2

ML-CFSk55 1.000 3.0 0.625 3.0 0.253 5.0 0.375 3.0 0.000 3.0 3.4
ML-CFSk64 1.000 3.0 0.625 3.0 0.236 2.0 0.375 3.0 0.000 3.0 2.8
ML-CFSk73 1.000 3.0 0.625 3.0 0.244 4.0 0.375 3.0 0.000 3.0 3.2
ML-CFSk82 1.000 3.0 0.625 3.0 0.242 3.0 0.375 3.0 0.000 3.0 3.0
ML-CFSk91 1.000 1.0 0.625 1.0 0.197 1.0 0.375 1.0 0.000 1.0 1.0

MEAN

ML-CFSk55 4.00 4.00 3.75 4.00 4.00 3.95
ML-CFSk64 2.50 2.50 2.25 2.50 2.50 2.45
ML-CFSk73 2.50 2.50 2.50 2.50 2.50 2.50
ML-CFSk82 3.50 3.50 3.50 3.50 3.50 3.50
ML-CFSk91 2.00 1.00 1.00 1.00 2.00 1.40

M2, as shown in Table 5.8, ML-CFSk55 tends to select the smallest number of

features (4.25) when compared with ML-CFSk64, ML-CFSk73, ML-CFSk82 and

ML-CFSk91 (which on average select 4.75, 5.46, 6.38 and 7.67 features as shown

in the column titled “S.F” for those 4 methods, respectively).
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Table 5.8: Summary of average ranking (Avg.R) and the number of selected fea-
tures (S.F.) for five versions of ML-CFS using a weighted formula to combine the
merit function and KEGG pathway information using ML-kNN and BPMLL as
classifiers

ML-kNN

Dataset
ML-CFSk55 ML-CFSk64 ML-CFSk73 ML-CFSk82 ML-CFSk91
S.F. Avg.R S.F. Avg.R S.F. Avg.R S.F. Avg.R S.F. Avg.R

M1 2.96 3.30 3.00 3.70 3.38 3.70 5.67 3.30 9.67 1.40
M2 5.54 1.20 6.46 4.40 7.54 1.80 7.08 3.40 5.67 1.00
MEAN 4.25 2.25 4.73 4.05 5.46 2.75 6.38 3.35 7.67 1.20

BPMLL

Dataset
ML-CFSk55 ML-CFSk64 ML-CFSk73 ML-CFSk82 ML-CFSk91
S.F. Avg.R S.F. Avg.R S.F. Avg.R S.F. Avg.R S.F. Avg.R

M1 2.96 4.50 3.00 2.10 3.38 1.80 5.67 4.00 9.67 1.80
M2 5.54 3.40 6.46 2.80 7.54 3.20 7.08 3.00 5.67 1.00
MEAN 4.25 3.95 4.73 2.45 5.46 2.50 6.38 3.50 7.67 1.40

5.5.3 Experimental Results Comparing the Best Version of

ML-CFS Using a Weighted Formula, ML-CFS with

the Absolute Value of Correlation Coefficient and

ML-CFS Using Mutual Information

Tables 5.9 and 5.10 show the predictive performance of ML-CFSk91 (the ML-CFS

version which obtained the best results in the previous Section), ML-CFSabs; and

gmiML-CFS using ML-kNN and BPMLL as classifier. Recall that ML-CFSk91 is

the version of ML-CFS using the weighted formula (shown in Equation (5.2)) to

combine the merit function and KEGG pathway Information (with α = 0.9 and 1

- α = 0.1); ML-CFSabs stands for ML-CFS with the Absolute value of correlation

coefficient; and gmiML-CFS stands for the ML-CFS version where class labels with

greater MI (Mutual Information) are assigned greater wrights. These tables report

the predictive performance across the two microarray datasets using ML-kNN and

BPMLL as classifiers, respectively.

Note that both gmiML-CFS and ML-CFSk91 also use the absolute value of the

correlation coefficient (like ML-CFSabs). Hence, the experiment in this Section
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allow us to observe the effect of using mutual information and exploiting biological

knowledge on cancer-related pathways in a controlled manner. In addition, note

that ML-CFSabs can be seen as a particular case of the use of Equation (5.2)

where α = 1.0 and 1 – α = 0.

In Table 5.9, ML-CFSk91 obtained substantially better predictive accuracy

(substantially lower mean rank) than ML-CFSabs and gmiML-CFS. ML-CFSk91

outperforms other versions of ML-CFS on the two datasets with overall average

rank = 1.8, while gmiML-CFS and ML-CFSabs obtain average rank 2.0 and 2.3

respectively when using ML-kNN classifier.

In Table 5.10, ML-CFSk91 outperforms ML-CFSabs and gmiML-CFS on the

two microarray datasets with overall average rank = 1.8 while gmiML-CFS and

ML-CFSabs both obtain average rank 2.1 respectively. Also, ML-CFSk91 obtains

the better rank for all five predictive accuracy measures with the BPMLL classifier.

Table 5.11 shows the summary of the results reported in Tables 5.9 and 5.10,

by reporting the average rank and the average number of features selected by

gmiML-CFS, ML-CFSabs and ML-CFSk91. When using ML-kNN classifier, ML-

CFSk91 obtains the best average rank (1.75); while gmiML-CFS takes the second

place with the average rank equal to 2.00 and ML-CFSabs obtains the worst rank

(2.25). When using BPMLL classifier, ML-CFSk91 again obtains the best average

rank (1.8); while gmiML-CFS and ML-CFSabs obtain the same average rank (2.1).

In terms of the average number of selected features, as shown in Table 5.11,

ML-CFSk91 tends to select the largest number of features (on average 7.67 over

the two datasets), while the smallest number of selected features is obtained by

ML-CFSabs, which selected on average 5.87 features over the two datasets (as

shown in the column titled “S.F”). Overall, each of those three methods select less

than 0.04% of all features in dataset.
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Table 5.9: Values of five multi-label predictive accuracy measures for ML-CFSk91,
ML-CFSabs and gmiML-CFS using ML-kNN as the classifier

Dataset Method
Predictive Accuracy

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

M1
gmiML-CFS 0.974 2.5 0.167 2.5 0.271 1.5 0.250 2.5 0.042 2.5 2.3
ML-CFSk91 1.000 1.0 0.125 1.0 0.271 1.5 0.208 1.0 0.000 1.0 1.1
ML-CFSabs 0.974 2.5 0.167 2.5 0.292 3.0 0.250 2.5 0.042 2.5 2.6

M2
gmiML-CFS 0.944 1.0 0.708 1.5 0.347 3.0 0.458 1.5 0.083 1.5 1.7
ML-CFSk91 0.917 2.0 0.750 3.0 0.306 1.0 0.500 3.0 0.125 3.0 2.4
ML-CFSabs 0.640 3.0 0.708 1.5 0.320 2.0 0.458 1.5 0.083 1.5 1.9

Mean
gmiML-CFS 1.75 2.00 2.25 2.00 2.00 2.0
ML-CFSk91 1.50 2.00 1.25 2.00 2.00 1.8
ML-CFSabs 2.75 2.00 2.50 2.00 2.00 2.3

Table 5.10: Values of five multi-label predictive accuracy measures for ML-CFSk91,
ML-CFSabs and gmiML-CFS using BPMLL as the classifier

Dataset Method
Predictive Accuracy

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

M1
gmiML-CFS 0.974 2.5 0.167 2.5 0.179 2.0 0.250 2.5 0.042 2.5 2.4
ML-CFSk91 0.984 1.0 0.150 1.0 0.188 3.0 0.233 1.0 0.025 1.0 1.4
ML-CFSabs 0.974 2.5 0.167 2.5 0.175 1.0 0.250 2.5 0.042 2.5 2.2

M2
gmiML-CFS 1.000 2.0 0.625 2.0 0.172 1.0 0.375 2.0 0.000 2.0 1.8
ML-CFSk91 1.000 2.0 0.625 2.0 0.197 3.0 0.375 2.0 0.000 2.0 2.2
ML-CFSabs 1.000 2.0 0.625 2.0 0.175 2.0 0.375 2.0 0.000 2.0 2.0

Mean
gmiML-CFS 2.25 2.25 1.50 2.25 2.25 2.1
ML-CFSk91 1.50 1.50 3.00 1.50 1.50 1.8
ML-CFSabs 2.25 2.25 1.50 2.25 2.25 2.1

5.5.4 Experimental Results Comparing the Best Version of

ML-CFS Using a Weighted Formula (ML-CFSk91),

ML-CFS with Embedded KEGG pathway Informa-

tion and ML-CFS Using Only Genes that Occur in

KEGG Pathway

Tables 5.12 and 5.13 show the predictive performance of ML-CFSk91 (the ML-CFS

version which obtained the best results in the previous Section), ML-CFSkemb;

and ML-CFSflt using ML-kNN and BPMLL as classifiers. Recall that ML-CFSk91

is the version of ML-CFS using the weighted formula (shown in Equation (5.2))

to combine the merit function and KEGG pathway information (with α = 0.9 anf

1 – α = 0.1); ML-CFSemb stands for ML-CFS with KEGG pathway Information

embedded into the merit Function; and ML-CFSflt stands for ML-CFS with “fil-
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Table 5.11: Summary of average ranking (Avg.R) and the number of selected
features (S.F) for for ML-CFSk91, ML-CFSabs and gmiML-CFS using ML-kNN
and BPMLL as classifiers

MLkNN

Dataset
gmiML-CFS ML-CFSk91 ML-CFSabs
S.F. Avg.R S.F. Avg.R S.F. Avg.R

M1 9.00 2.30 9.67 1.10 8.79 2.60
M2 5.00 1.70 5.67 2.40 2.96 1.90
Mean 7.00 2.00 7.67 1.75 5.87 2.25

BPMLL

Dataset
gmiML-CFS ML-CFSk91 ML-CFSabs
S.F. Avg.R S.F. Avg.R S.F. Avg.R

M1 9.00 2.4 9.67 1.4 8.79 2.2
M2 5.00 1.8 5.67 2.2 2.96 2.0
Mean 7.00 2.1 7.67 1.8 5.87 2.1

tered” genes, i.e, selecting only genes that occur in KEGG pathway. These tables

report the predictive performance across the two microarray datasets using ML-

kNN and BPMLL as classifiers, respectively.

Note that both ML-CFSemb and ML-CFSflt also use the absolute value of the

correlation coefficient (like ML-CFSk91 and ML-CFSabs).

In Table 5.12, ML-CFSk91 obtained substantially better predictive accuracy

(substantially lower mean rank) than ML-CFSemb and ML-CFSflt. ML-CFSk91

outperformed other versions of ML-CFS using KEGG pathway information on the

two datasets with overall average rank = 1.3, while ML-CFSemb and ML-CFSflt

obtained average rank 2.3 and 2.4 respectively when using ML-kNN classifier.

Also, ML-CFSk91 obtained the better rank for four predictive accuracy measures

(except H-Loss) when using the ML-kNN classifier.

In Table 5.13, ML-CFSk91 outperformed ML-CFSemb and ML-CFSflt on the

two microarray datasets with overall average rank = 1.2; while ML-CFSemb and

ML-CFSflt obtained average rank 2.9 and 2.0 respectively. Also, ML-CFSk91 ob-
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Table 5.12: Values of five multi-label predictive accuracy measures for ML-CFSk91,
ML-CFS with KEGG pathway information embedded into the Merit Function and
ML-CFS selecting only genes that occur in KEGG pathway using ML-kNN as the
classifier

Dataset Method
Predictive Accuracy

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

M1
ML-CFSk91 1.000 1.0 0.125 1.0 0.271 1.0 0.208 1.0 0.000 1.0 1.0
ML-CFSemb 0.947 2.0 0.208 2.0 0.396 2.0 0.292 2.0 0.083 2.0 2.0
ML-CFSflt 0.921 3.0 0.250 3.0 0.438 3.0 0.333 3.0 0.125 3.0 3.0

M2
ML-CFSk91 0.917 1.5 0.750 1.5 0.306 2.0 0.500 1.5 0.125 1.5 1.6
ML-CFSemb 0.856 3.0 0.875 3.0 0.292 1.0 0.542 3.0 0.167 3.0 2.6
ML-CFSflt 0.917 1.5 0.750 1.5 0.347 3.0 0.500 1.5 0.125 1.5 1.8

Mean
ML-CFSk91 1.25 1.25 1.50 1.25 1.25 1.3
ML-CFSemb 2.50 2.50 1.50 2.50 2.50 2.3
ML-CFSflt 2.25 2.25 3.00 2.25 2.25 2.4

Table 5.13: Values of five multi-label predictive accuracy measures for ML-CFSk91,
ML-CFS with KEGG pathway information embedded into the Merit Function and
ML-CFS selecting only genes that occur in KEGG pathway using BPMLL as the
classifier

Dataset Method
Predictive Accuracy

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

M1
ML-CFSk91 0.984 1.0 0.150 1.0 0.1875 1.0 0.233 1.0 0.025 1.0 1.0
ML-CFSemb 0.968 3.0 0.175 3.0 0.225 3.0 0.258 3.0 0.050 3.0 3.0
ML-CFSflt 0.974 2.0 0.167 2.0 0.208 2.0 0.25 2.0 0.042 2.0 2.0

M2
ML-CFSk91 1.000 1.0 0.625 1.0 0.197 1.0 0.375 2.0 0.000 1.5 1.3
ML-CFSemb 0.913 2.0 0.775 3.0 0.350 3.0 0.475 3.0 0.100 3.0 2.8
ML-CFSflt 0.8 3.0 0.652 2.0 0.290 2.0 0.348 1.0 0 1.5 1.9

Mean
ML-CFSk91 1.00 1.00 1.00 1.50 1.25 1.2
ML-CFSemb 2.50 3.00 3.00 3.00 3.00 2.9
ML-CFSflt 2.50 2.00 2.00 1.50 1.75 2.0

tains the better rank for all five predictive accuracy measures with the BPMLL

classifier.

Table 5.14 shows the summary of the results reported in Tables 5.12 and 5.13,

by reporting the average rank and the average number of features selected by

ML-CFSk91, ML-CFSemb and ML-CFSflt. When using the ML-kNN classifier,

ML-CFSk91 obtains the best average rank (1.30); while ML-CFSemb takes the

second place with the average rank equal to 2.30 and ML-CFSflt obtains the worst

rank (2.40). When using the BPMLL classifier, ML-CFSk91 again obtains the

best average rank (1.15); while ML-CFSflt and ML-CFSemb obtain the average

rank 1.95 and 2.90, respectively.
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Table 5.14: Summary of average ranking (Avg.R) and the number of selected
features (S.F.) for for ML-CFSk91, ML-CFSemb and ML-CFSflt using ML-kNN
and BPMLL as classifiers

MLkNN

Dataset
ML-CFSk91 ML-CFSemb ML-CFSflt
S.F. Avg.R S.F. Avg.R S.F. Avg.R

M1 9.67 1.00 17.08 2.00 7.42 3.00
M2 5.67 1.60 16.42 2.60 3.83 1.80
Mean 7.67 1.30 16.75 2.30 5.63 2.40

BPMLL

Dataset
ML-CFSk91 ML-CFSemb ML-CFSflt
S.F. Avg.R S.F. Avg.R S.F. Avg.R

M1 9.67 1.00 17.08 3.00 7.42 2.00
M2 5.67 1.30 16.42 2.80 3.83 1.90
Mean 7.67 1.15 16.75 2.90 5.63 1.95

In terms of the aaverage number of selected features, as shown in Table5.14,ML-

CFSemb tends to select the largest number of features (on average 16.75 over the

two datasets), while the smallest number of selected features is obtained by ML-

CFSflt, which selected on average only 5.63 features (as shown in the column titled

“S.F.”).

5.5.5 Computational Results Comparing the Best Version

of ML-CFS (ML-CFSk91) and Two Other Multi-

Label Feature Selection Methods

In this Section we compare the best version of our ML-CFS using KEGG pathway

information according to the results reported in previous Section, namely ML-

CFSk91, with Relief for Multi-Label feature selection (RFML) and Correlation-

Based Feature Selection with the union operator (CFS-U). The details of RFML

and CFS-U were described in Section 4.5.1. Note that in this Section we report

results separately for the experiments using ML-kNN and BPMLL as the classifier.
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Table 5.15: Values of five multi-label predictive accuracy measures for ML-CFSk91
and other feature selection methods using ML-kNN as the classifier

Dataset Method
Predictive Accuracy

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

M1
CFS-U 1.000 1.5 0.125 1.5 0.313 2.0 0.208 1.5 0.000 1.5 1.6
RFML 0.921 3.0 0.250 3.0 0.604 3.0 0.333 3.0 0.125 3.0 3.0
ML-CFSk91 1.000 1.5 0.125 1.5 0.271 1.0 0.208 1.5 0.000 1.5 1.4

M2
CFS-U 0.917 2.0 0.750 2.0 0.569 3.0 0.500 2.0 0.125 2.0 2.2
RFML 0.917 2.0 0.750 2.0 0.403 2.0 0.500 2.0 0.125 2.0 2.0
ML-CFSk91 0.917 2.0 0.750 2.0 0.306 1.0 0.500 2.0 0.125 2.0 1.8

Mean
CFS-U 1.8 1.8 2.5 1.8 1.8 1.9
RFML 2.5 2.5 2.5 2.5 2.5 2.5
ML-CFSk91 1.8 1.8 1.0 1.8 1.8 1.6

Table 5.16: Values of five multi-label predictive accuracy measures for ML-CFSk91
and other feature selection methods using BPMLL as the classifier

Dataset Method.
Predictive Accuracy

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

M1
CFS-U 1.000 1.0 0.125 1.0 0.171 1.0 0.208 1.0 0.000 1.0 1.0
RFML 0.974 3.0 0.167 3.0 0.213 3.0 0.250 3.0 0.042 3.0 3.0
ML-CFSk91 0.984 2.0 0.150 2.0 0.188 2.0 0.233 2.0 0.025 2.0 2.0

M2
CFS-U 1.000 2.0 0.565 2.0 0.151 2.0 0.391 3.0 0.000 2.0 2.2
RFML 1.000 2.0 0.625 1.0 0.140 1.0 0.375 1.5 0.000 2.0 1.5
ML-CFSk91 1.000 2.0 0.625 3.0 0.197 3.0 0.375 1.5 0.000 2.0 2.3

Mean
CFS-U 1.5 1.0 1.5 2.0 1.5 1.5
RFML 2.5 2.8 2.0 2.3 2.5 2.4
ML-CFSk91 2.0 2.3 2.5 1.8 2.0 2.1

Clearly, in Tables 5.15, ML-CFSk91 obtained substantially better predictive

accuracy (substantially lower overall average rank) than RFML and CFS-U across

the two microarray datasets. ML-CFSk91 obtained 1.6 average rank while CFS-U

and RFML obtained 1.9 and 2.5, respectively. Interestingly, ML-CFSk91 obtains

the same predictive accuracy as CFS-U for four measures (Avg.Pre, Coverage,

OneError and R-Loss), but ML-CFSk91 obtained substantially better Hamming

Loss.

In Table 5.16, CFS-U obtained the best average rank (1.5), which was substan-

tially better than the average rank obtained by ML-CFSk91 (2.1) and RFML (2.4).

Table 5.17 shows the summary of the results reported in Tables 5.15 and 5.16,

reporting the average rank and the average number of features selected by ML-

CFSk91, RFML and CFS-U. Note that CFS-U tends to select by far the largest

148



Table 5.17: Summary of average ranking (Avg.R) and the number of selected
features (S.F.) for for ML-CFSk91, RFML and CFS-U using ML-kNN and BPMLL
as classifiers

MLkNN

Dataset
ML-CFSk91 CFS-U RFML
S.F. Avg.R S.F. Avg.R S.F. Avg.R

M1 9.67 1.40 1296.37 1.60 10.00 3.00
M2 5.67 1.80 332.79 2.20 6.00 2.00
Mean 7.67 1.60 814.58 1.90 8.00 2.50

BPMLL

Dataset
ML-CFSk91 CFS-U RFML
S.F. Avg.R S.F. Avg.R S.F. Avg.R

M1 9.67 2.00 1296.37 1.00 10.00 3.00
M2 5.67 2.20 332.79 2.00 6.00 1.50
Mean 7.67 2.10 814.58 1.50 8.00 2.25

number of features on M1 and M2 (1296.37 and 332.79, respectively); while the

average number of selected features was very small for ML-CFSk91 and RFML

(7.67 and 8.00, respectively). When using the ML-kNN classifier, ML-CFSk91 ob-

tained the best average rank across both datasets (1.6) with the smaller number

of features comparing with CFS-U. On the other hand, when using the BPMLL,

CFS-U obtained the best average rank (1.5) across both datasets.

5.6 Conclusion

This Chapter proposed three versions of the Multi-Label Correlation Based Fea-

ture Selection (ML-CFS) method exploiting cancer-related pathway information,

based on hill climbing search. These three extensions of ML-CFS, introduced in

[59], are as follows; (1) ML-CFS using a Weighted Formula to Combine the Merit

Function and KEGG Pathway Information (ML-CFSk),(2) ML-CFS Embedding

KEGG Pathway Information into the Merit Function (ML-CFSkemb); and (3)

ML-CFS using as input only genes occurring in the selected KEGG pathway (ML-

CFSfilt). Importantly, all those three versions of ML-CFS also use the absolute
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value of correlation coefficient, since ML-CFSabs obtained in general substantially

better results than the first version of ML-CFS in the experiments reported in

Chapter 4.

Regarding ML-CFS using a Weighted Formula to Combine the Merit Func-

tion and KEGG Pathway Information, we run experiments using five different

parameter settings. We have also run experiments to compare the best version of

ML-CFSk (using the best parameter setting found in our experiments) with other

two versions of ML-CFS method that exploit cancer-related pathway information.

Then the best version of ML-CFS exploiting cancer-related pathway information

was chosen to be compared with two other multi-label feature selection methods.

We then measure the predictive accuracy associated with their selected features,

when those features are used as input by two well-known multi-label classification

algorithms: ML-kNN and BPMLL.

From the experimental results reported in this Chapter, ML-CFSk91 clearly

outperformed ML-CFS, ML-CFSabs, ML-CFSemb, ML-CFS-flt and gmiML-CFS

in general. Moreover, when comparing ML-CFSk91 with other multi-label feature

selection methods, ML-CFSk91 obtained the best predictive accuracy out of three

feature selection methods when using the ML-kNN classifier; and the second best

accuracy when using the BPMLL classifier. In addition, ML-CFSk91 selects much

smaller feature subsets than CFS-U, the method that obtained the best predictive

accuracy with the BPMLL classifier.
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Chapter 6

Multi-Label Correlation-Based

Feature Selection Methods Based

on Evolutionary Algorithms

6.1 Introduction

In chapter 4, we developed a Multi-Label Correlation-Based Feature Selection

method (ML-CFS) and applied it to 14 multi-label datasets. In terms of the

search strategy used to explore the space of candidate feature subsets, ML-CFS

uses a simple greedy strategy. Recall that a greedy search algorithm uses a heuris-

tic for making locally optimal choices at each stage with the hope of finding a

global optimum. In the case of sequential forward greedy search (the search strat-

egy we used), the algorithm starts with the empty set of candidate solutions, and

creates new candidate feature subsets by adding one feature at a time into the

current candidate feature subset. At each step, the feature to be added to the

current candidate feature subset is the one with the best value of an evaluation

function. This iterative process of selecting one feature at a time is performed

until a termination criterion is satisfied (e.g. the quality of the current feature

subset cannot be improved by adding any other feature).
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This kind of greedy strategy, or hill-climbing search, performs only a local

search in the space of candidate feature subsets, selecting just one feature at a

time and so ignoring interactions between two or more features that could be

added to the current candidate solution. The interaction between features is very

important for the feature selection task. One feature may be useless by itself

but potentially useful when we consider it together with other features. Overall,

the hill-climbing search incrementally adds extra features to the current candidate

feature subset if each of the extra features has a quality high enough to increase

the value of the Merit function (Equation 6.1). In this scenario, the hill-climbing

search strategy would conservatively reject the extra features if the requirement

for improving merit value is not satisfied for a single extra feature being added,

even though that feature might be useful when combined with extra features to be

added later. This is a result of the hill-climbing search’s limitation of adding just

one feature at a time, which is not a very effective approach to cope with feature

interaction [34, 35, 37].

Unlike the local greedy search strategy, Genetic Algorithms (GAs) are stochas-

tic search methods inspired by the process of natural selection, based on Darwin’s

evolutionary theory [32]. A GA performs a more global search in the feature

space than a greedy search, because a GA works with a population of candidate

solutions spread across different regions of the search space. Moreover, genetic op-

erators help the GA to explore a wider area of the search space [34], by comparison

with local greedy search. As a result of their global search, GAs cope better with

feature interaction and are less likely to get trapped into a local optimum in the

search space, being more likely to find a global optimum.

The new Genetic Algorithm for Multi-Label Correlation-Based Feature Se-

lection (GA-ML-CFS) proposed in this chapter extends our previous version of

ML-CFS by replacing the simple greedy strategy by a more sophisticated GA as a
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search method. The GA uses the genetic operators of crossover and mutation and

a fitness-based selection method to explore the space of candidate feature subsets.

In the next two sections, we proposed two versions of a GA-based ML-CFS

feature selection method: one version using a single-objective fitness function, de-

scribed in Section 6.2, and another version based on lexicographic multi-objective

optimization, described in Section 6.3. Section 6.4 mentions the datasets used in

the experiments. Section 6.5 describes the experimental methodology used in this

Chapter. Section 6.6 reports results for parameter optimization for single-objective

GA and multi-objective-GA. Section 6.7 reports computational results comparing

single-objective GAs and multi-objective GAs. Then, Section 6.8 reports the com-

putational results comparing the best version of GA-ML-CFS (gmiGA-wrap) and

other multi-label feature selection methods. A general discussion of the results

will be presented in Section 6.9.

6.2 ML-CFS with a Single-Objective Genetic Al-

gorithm (GA-ML-CFS)

The basic idea of GA-ML-CFS is that a GA is used as a search method for multi-

label correlation-based feature selection. Hence, by comparison with the ML-CFS

based on Hill-climbing search described in Chapter 4, GA-ML-CFS uses different

search operators, but the same candidate solution representation and the same

evaluation function. Algorithm 6.1 shows the overall pseudocode of GA-ML-CFS,

where GenNum and MaxGen denote the current generation (iteration) number and

the maximum number of generations, respectively. MaxGen is a user-specified

parameter. First, all individuals are initialized and evaluated. Then, elitism is

applied for protecting the best solutions in the current population from genetic

operators, where ElitSize is a user-specified parameter. That is, the ElitSize best
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individuals will be copied to the next generation, without any modification. After

that, tournament selection is applied for finding good solutions that will undergo

crossover and mutation. Next, population replacement is applied and then these

process are repeated until the current generation number is equal to the maximum

number of generations. The details of each process are described in Subsection

6.2.1 through Subsection 6.2.5.

Algorithm 6.1: Overall Pseudocode of GA-ML-CFS()

CurrentPOP ← Initialize Population

Evaluate fitness of each individual in CurrentPOP

GenNum = 0

repeat

ElitPool← ElitSize best individuals in CurrentPOP

MatchPool ← Result of Tournament Selection applied to CurrentPOP

ChildPool← Result of Crossover applied to individuals in MatchPool

ChildPool← Result of Mutation applied to individuals in ChildPool

CurrentPOP ← ElitePool ∪ ChildPool

Evaluate Fitness of each individual in CurrentPOP

GenNum← GenNum+ 1

until GenNum > MaxGen

6.2.1 Individual (Candidate Solution) Representation and

Population Initialization

GA-ML-CFS uses a bit string individual representation. Each candidate solution

is encoded by a string of n bits, where n is the number of features in the dataset.

The i -th bit with value ‘1’ indicates that the i -th feature was selected, while the

i -th bit with value ‘0’ indicates that the i -th feature was not selected.
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Algorithm 6.2: Population Initialization step in GA-ML-CFS()

/ ∗ PopulationInitialization ∗ /

CurrentPOP = null

for individual i ← 1 to p

do



for each gene of individual i

do


Generate random number z in [0..1]

Set the gene value for individual i to

1, if z ≤ initProb

0, otherwise

Add individual i to CurrentPOP

Algorithm 6.2 shows the pseudocode of the Population Initialization step in

GA-ML-CFS. The value of each bit in each individual depends on a random num-

ber z and the initiation probability (initProb) - a user-defined parameter. In our

experiments we decided to create an initial population where the value of initProb

varies across individuals, because this leads to a greater diversity of the number

of genes selected by different individuals. If the value of z is smaller than or equal

to the value of initProb then the value of this bit will be set to 1. Otherwise the

value of this bit will be set to 0. After this step we will have p individuals in

the individual pool. The elitism strategy is applied after the population initializa-

tion step. As mentioned earlier, we preserved the top ElitSize individuals and put

them into the new individual pool. Those ElitSize individuals will be passed to

next generation directly (without performing crossover and mutation on them).

6.2.2 Parent Selection

The next step of the GA is the parent selection. In this step we apply the well-

known tournament selection method to select parent individuals before performing

155



crossover and mutation operators. Tournament selection [9, 32] is a method which

runs the tournament many times (also called the number of tournament rounds)

for selecting individuals from the current population (individual pool). Each tour-

nament round selects one individual. In Algorithm 6.3, in each tournament round

t individuals are randomly drawn from the individual pool and they compete with

each other. The individual who has the best fitness value will win the tourna-

ment. Ties are broken at random. As shown in Algorithm 6.3, we set the number

of tournament rounds (MaxRound) to be equal to the population size (PopSize)

minus the elitist set size (ElitSize) value (the number of individuals preserved for

the next generation), and add the tournament winner to the match pool.

Algorithm 6.3: Parent Selection in GA-ML-CFS()

MatchPool = null

MaxRound← the PopSize − ElitSize

for tourRound← 1 to MaxRound

do

Randomly drawn t individuals from CurrentPOP

Add tournament winner to MatchPool

6.2.3 Genetic Search Operators

GA-ML-CFS uses uniform crossover and bit-flip mutation [32]. Uniform crossover

generates a string of L random variables taking values in [0, 1], where L is the

number of genes - i.e. the number of features in the dataset. In each position of

the individual’s string of genes, if the value of the corresponding random variable

is lower than or equal to a pre-defined number geneCrossProb (the probability of

crossover per gene), the gene values in this position are swapped between the two

parents, to create two children. The procedure of uniform crossover is shown in

Algorithm 6.4. Recall that MaxRound is the number of tournament rounds (see
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Algorithm 6.3), and so the number of crossovers performed in Algorithm 6.4 is

half of MaxRound, since each crossover acts on two individuals selected by the

tournament selection procedure.

Algorithm 6.4: Uniform Crossover in GA-ML-CFS()

ChildPool = null

for CrossRound← 1 to MaxRound/2

do



Randomly match two individuals from MatchPool and remove them

from that pool

for each gene of the parent individuals

do


Generate random number z in [0..1]

if z ≤ geneCrossProb

then
{

switch gene values between the two parents

Add the two individuals to ChildPool

After the crossover step, all individuals have a chance of performing mutation.

To implement the mutation operator, a random number will be generated for each

gene in each individual, and then we compare each random number with a user-

defined gene mutation probability (geneMutProb). A mutation will be performed

– i.e. the bit will be flipped in a given gene of a given individual – if the random

number generated for that gene is smaller than or equal to the user-defined muta-

tion probability.
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Algorithm 6.5: Mutation in GA-ML-CFS()

for each individual in ChildPool

do



for each gene of the individual

do


Generate random number z in [0..1]

if z ≤ geneMutProb

then
{

invert the binary gene value

6.2.4 Population Replacement

The fourth step of the GA is the population replacement step. The best ElitSize

(elitist set size) individuals from the current generation are preserved and copied

into the next generation. In Algorithm 6.6, we prepare the individuals for the next

generation by setting CurrentPOP to the union of ElitPool and ChildPool, where

ElitPool is a set of individuals preserved from elitism process, and ChildPool is

the set of individuals after applying crossover and mutation to the current par-

ents. Finally, the new generation will go through the parent selection, crossover

and mutation steps again and so on. The GA will terminate when a user-specified

number of generations has been executed.

Algorithm 6.6: Population Replacement in GA-ML-CFS()

Set CurrentPOP= ElitPool ∪ ChildPool

for individual i← 1 to |CurrentPOP |

do Calculate the Fitness (Merit) of individual i
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6.2.5 Fitness (Evaluation) Function

Each individual (feature subset) in the population was evaluated using Equation

6.1. Recall that the terms in the merit formula were modified to use the absolute

(without sign) value of the correlation coefficient, as shown in Equations 6.2 and

6.3, which compute the average correlation between features and class labels and

the average correlation between all feature pairs, respectively.

Merit =
krFL√

k + k(k − 1)rFF
(6.1)

rFL =

∑|F |
f=1

∣∣rfL∣∣
|F |

(6.2)

rFF =

∑|F |
fi=1,fj=1,i 6=j

∣∣rfifj ∣∣
fp

(6.3)

rfL =

∑|L|
i=1 |rfLi

|
|L|

(6.4)

6.2.6 Parameters of the Genetic Algorithm

The GA has several user-defined parameters, namely: individual size (n), pop-

ulation size (PopSize), the number of generations (MaxGen), the elitist set size

(ElitSize), the tournament size (t), gene crossover probability (geneCrossProb)

and gene mutation probability (geneMutProb).

These parameters are optimized using a set of datasets different from the set

of datasets used to measure the predictive accuracy associated with the GA; as

explained later.
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6.2.7 Data Preprocessing for the Genetic Algorithm

For datasets with a very large number of features, a univariate filter approach was

applied to select features before running GA-ML-CFS, similarly to the use of the

univariate filter approach in the experiments with ML-CFS based on hill climbing

in Chapter 4. Recall that the main objective of this stage is to remove features

which have a low correlation with class labels before running the GA, in order

to reduce the GA’s search space. The average correlation between a feature and

all labels is measured using Equation 6.4. We calculate the average correlation

coefficient between each feature fi and all class labels (considering one feature at

a time). After calculating the average correlation over all labels for each feature,

we rank all features according to their average correlation value and select the top

n features in the sorted list to be the set of n features given as input to the GA.

Note that our proposed approach is different from other GAs for feature selection

mentioned in Chapter 2 because we used the filter-based approach in both stages:

before using the GA and during the GA’s execution – by using a filter-based fitness

function. In addition, we focus on multi-label classification problems, rather than

on single-label classification problems as usual in the literature.
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Algorithm 6.7: LexGA Tournament Selection in LexGA-ML-CFS()

INPUT: indPool, SEmerit, SEk

SET: sortedPool=null

repeat

merit1stind.← ind. with larger merit

merit2ndind.← ind. with smaller merit

if merit1st −merit2nd > SEmerit

then Select 1st ind. and put it into sorted Pool

else



k1stind.← ind. with smaller k

k2ndind.← ind. with larger k

if k2nd − k1st > SEk and merit1st −merit2nd > 0.5 ∗ SEmerit

then Select 1st ind. and put it into sorted Pool

else Select ind with larger merit

Remove selected ind. from indPool

until ind.Pool = EmptySet

6.3 ML-CFS with a Lexicographic Multi-Objective

Genetic Algorithm (LexGA-ML-CFS)

In this Section, we propose a more sophisticated multi-objective GA based on the

lexicographic approach as a new search method for our ML-CFS method. The lex-

icographic approach assigns different priorities to different objectives (evaluation

criteria), and then it focuses on optimizing the objectives in decreasing order of

priority. Each evaluation criterion is treated separately, and is used to measure a

different aspect of quality of a candidate solution. In essence, the lexicographic

multi-objective evaluation works as follows. When comparing two candidate solu-
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tions (individuals), first the solutions are compare with respect to the first, highest

priority objective. If one solution is significantly better than the other, the former

is chosen. Otherwise, the two solutions are compared with respect to the second

objective. If one solution is significantly better, then that solution is chosen. Oth-

erwise, there is no significant difference between the two solutions according to

both objectives, and in this case the solution with the best value of the first ob-

jective is chosen. Hence, this approach avoids the problems of combining different

evaluation criteria into a single weighted formula with different weights assigned to

different criteria, in particular the problem that the weights are usually specified

in an arbitrary, ad-hoc fashion by the user [36] - see also Chapter 2.

In GA-ML-CFS (described in Section 6.2) and LexGA-ML-CFS, the popula-

tion initialization, crossover and mutation operators are the same. There are only

two main different steps between these two types of GA, which are the approach

used to evaluate each individual and the approach used to select the winner in the

tournament selection step. In LexGA-ML-CFS, the fitness of an individual is eval-

uated based on two criteria: (1) the merit function, which is shown in Equation

6.1; and (2) the number of selected features (k). For multi-objective tournament

selection, we use the standard error of the merit (SEmerit) and the standard error

of the number of selected features (SEk), where the standard errors are calculated

across all individuals in the individual pool.

The pseudocode of LexGA tournament selection is shown in Algorithm 6.7.

When comparing two candidate individuals (feature subsets), if the difference be-

tween the merit values of the two individuals is greater than the standard error of

the merit (SEmerit) across all individuals in the current population, the individual

with the greater merit value is chosen as the tournament’s winner. Otherwise, if

the difference of the k value of the individual with larger k (more selected features)

minus the k value of the individual with smaller k (fewer features) is greater than

the standard error of k (SEk) across all individuals in the current population and
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the difference of the merit value of the individual with greater merit minus the

merit value of the individual with smaller merit is larger than half the SEmerit,

then the individual with smallest k (smallest feature subset) is chosen. Otherwise,

the individual with the largest merit is chosen.

Our preliminary experiments showed that a lexicographic optimization tour-

nament using only a condition on the difference in k values as the second criterion

was leading the GA to select individuals based on this second lexicographic crite-

rion (after a tie being observed in the first criterion) very often, leading the GA to

return solutions that had a relatively small number of features but relatively poor

predictive accuracy. To prevent the GA from selecting individuals based on the

second lexicographic criterion without a second thought about the merit value of

each individual, the second condition in the above otherwise, if statement (the con-

dition for the difference in merit to be greater than half the SEmerit) was added.

Hence, the addition of this second condition based on merit, when evaluating the

second lexicographic criterion, helps to de-emphasize the importance of the sec-

ond lexicographic objective (minimizing the number of selected features), which

therefore helps to emphasize the importance of the first lexicographic objective

(maximizing predictive accuracy).

6.4 Datasets Used in the Experiments

For the GA-ML-CFS and LexGA-ML-CFS experiments, we used 14 datasets (shown

in Table 6.1), which were obtained from the multi-label dataset repository website

http://mulan.sourceforge.net/datasets.html[30]. For all datasets mentioned

in Table 6.1, we used the predefined partition of each dataset into training and

test sets provided by the MULAN repository.

We separated all datasets into two groups: (1) datasets for parameter optimiza-
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Table 6.1: Datasets used in the experiments

Dataset
Symbol

Dataset
Name

Dataset Description
Instances Features Labels Cardinality Density Distinct

Parameter Optimization Datasets
N1 CAL500 502 68 174 26.044 0.150 502
N2 Scene 2407 294 6 1.074 0.179 15
N3 Emotions 593 72 6 1.869 0.311 27
N4 Yeast 2417 103 14 4.237 0.303 198

Evaluation Datasets
N5 Business 11314 21924 30 1.600 0.053 158
N6 Art 7484 23146 26 1.659 0.063 404
N7 Education 12030 27534 33 1.455 0.044 348
N8 Recreation 12828 30324 22 1.428 0.065 369
N9 Health 9205 30635 32 1.635 0.051 235
N10 Entertainment 12730 32001 21 1.405 0.067 246
N11 Computer 12444 34096 33 1.518 0.046 296
N12 Science 6428 37187 40 1.471 0.037 332
B1 Enron 1702 1001 53 3.378 0.064 753
B2 Medical 978 1449 45 1.245 0.028 94

tion and (2) datasets for evaluating our genetic algorithm-based multi-label cor-

relation based feature selection (GA-ML-CFS and LexGA-ML-CFS) algorithms.

The parameter optimization group includes 4 datasets; all datasets considered as

relatively small (where the number of features is less than 300), while all evalua-

tion datasets have a number of features greater than 1,000. Note that these two

groups of datasets were also used in Chapter 4.

6.5 Experimental Methodology

There are two main steps in our experimental methodology to use GA-ML-CFS:

(1) finding the best GA parameter setting specifically for each of the two multi-

label classification algorithms (i.e. ML-kNN or BPMLL) used in our experiments;

(2) running GA-ML-CFS using the parameter setting obtained from step (1) and

passing the selected features to the corresponding kind of multi-label classification

algorithm. The details of each step are described below:

Step 1: Finding the best parameter setting can be done in two different ways:
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Table 6.2: Range of possible settings for each of 6 parameter of the GA-ML-CFS

Parameters Tried Settings
population size (PopSize) 100, 150, 200, 250
number of generations (MaxGen) 50, 100, 150, 200
elitism size (Elite) 2, 4, 6, 8
tournament size (TourSize) 2, 4, 6, 8
crossover probability (GeneCrossProb) 0.2, 0.3, 0.4, 0.5
mutation probability (GeneMuteProb) 0.0025, 0.005, 0.001, 0.01

Table 6.3: GA-ML-CFS’ Parameter Setting for The Parameter Optimization Pro-
cess

Parameters

No.
Pop
Size

Max
Gen

Elite
Size

Tour
Size

Gene
CrossProb

Gene
MuteProb

PS01 200 100 2 2 0.5 0.01
PS02 100 100 2 2 0.5 0.01
PS03 150 100 2 2 0.5 0.01
PS04 250 100 2 2 0.5 0.01
PS05 200 50 2 2 0.5 0.01
PS06 200 150 2 2 0.5 0.01
PS07 200 200 2 2 0.5 0.01
PS08 200 100 4 2 0.5 0.01
PS09 200 100 6 2 0.5 0.01
PS10 200 100 8 2 0.5 0.01
PS11 200 100 2 4 0.5 0.01
PS12 200 100 2 6 0.5 0.01
PS13 200 100 2 8 0.5 0.01
PS14 200 100 2 2 0.4 0.01
PS15 200 100 2 2 0.3 0.01
PS16 200 100 2 2 0.2 0.01
PS17 200 100 2 2 0.5 0.005
PS18 200 100 2 2 0.5 0.0025
PS19 200 100 2 2 0.5 0.001
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(1) the wrapper-like approach; and (2) the filter approach. In the wrapper-like

approach, for each candidate GA parameter setting, the GA with that setting is

run in a way analogous to the wrapper approach using the accuracy of the classifi-

cation algorithm as the quality of the corresponding GA parameter setting. Then,

the solution (parameter setting) with the highest predictive accuracy on average,

over the four parameter optimization datasets, will be selected. We call this ap-

proach “wrapper-like”, rather than “wrapper”, because it evaluates the quality of

individuals by running the target classifier on datasets completely different from

the datasets where the GA will be evaluated. This is in contrast to a traditional

wrapper approach, which evaluates the quality of individuals by running the target

classifier on the same dataset where the GA will be evaluated.

Note that the parameter optimization datasets are in general much smaller

(particularly in terms of the number of features) than the evaluation datasets –

see Table 6.1. Hence, the wrapper-like approach avoids the wrapper approach’s

problem of being too computationally expensive for very large datasets. In addi-

tion, this “wrapper-like” approach produces recommended parameter settings that

are relatively robust (since they were obtained by averaging results from 4 differ-

ent datasets), so that they can be used as a kind of “default” parameter settings

in the experiment with the 10 evaluation datasets, avoiding the time-consuming

approach of optimizing parameters for each evaluation dataset separately.

In the filter approach for parameter optimization, for each candidate GA pa-

rameter setting, the merit value of that setting was calculated by Equation 6.1.

Then the best parameter setting, i.e, the one with highest merit will be selected. In

this approach, we find a parameter setting optimized for GA-ML-CFS regardless

of the type of classifier to be used later. The effectiveness of these two approaches

will be compared later, in Step 2.

We considered 6 GA parameters, each with the range of possible values shown
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in Table 6.2. In total, 19 parameter setting combinations were considered (shown

in Table 6.3). The default GA parameter setting is PS01, where the PopSize is

200. Then we try three different PopSize values, which are 100, 150 and 250. We

did the same approach for all GA parameters, adding about three different values

for each parameter in turn. We decided not to use all possible combinations of

all GA parameter values because there would be too many parameter settings to

be tried. In the parameter optimization step, the size of GA individuals is given

by the number of features in the dataset used in the experiment; for example, the

individual size is equal to 68 and 294 on CAL500 and Scene datasets respectively.

Step 2: running GA-ML-CFS on the evaluation datasets using the parameter

settings obtained in the parameter optimization experiments. In this step, we run

four types of experiments: (1) running GA-ML-CFS using parameters optimized

by the wrapper-like approach for the use of ML-kNN; (2) running GA-ML-CFS

using parameters optimized by the wrapper-like approach for the use of BPMLL,

(3) running GA-ML-CFS using parameters optimized by the merit-based filter ap-

proach (independent from the classifer); and (4) running other baseline multi-label

feature selection methods.

Since all evaluation datasets have a large number of features (varying from

1,001 to 37,187 – see Table 6.1), in this step we use a univariate filter approach

to select a subset of the most relevant features before running GA, as discussed in

Chapter 4. We did experiments where the number of features selected by the uni-

variate filter method (and therefore the GA’s individuals’ length) varied between

100, 200, 300 and 400.

Recall that, as discussed in Chapter 4, the motivation for applying this univari-

ate filter method in a pre-processing phase is to reduce the number of candidate

features or individual length for the GA when the number of features is very large

(as it is the case for the evaluation datasets), in order to reduce the processing
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time and improve the scalability of GA-ML-CFS. This approach is often used in

the literature on GA for feature selection [15, 108, 118]

Note that in Chapter 4 we have reported results clearly showing that gmiML-

CFS obtained in general much better predictive accuracy than the other versions

of ML-CFS, both when using ML-kNN and when using BPMLL as the multi-label

classifier. Hence, the same approach used to evaluate the correlation between

feature subset and class labels of gmiML-CFS was used in GA-ML-CFS. More

precisely, the computational results reported next were produced by using Equa-

tion 4.11 to calculate the correlation between a feature and all class labels and

then evaluating the quality of a candidate feature subset using Equations 6.2 and

6.1, respectively, to calculate rFL and the merit of a candidate feature subset F.

6.6 Results for Parameter Optimization of GA-

ML-CFS and LexGA-ML-CFS

We first report results obtained by the wrapper-like approach for parameter op-

timization. After running GA-ML-CFS using 19 parameter settings on the 4 pa-

rameter optimization datasets, the feature subset selected by GA for each param-

eter setting was evaluated by measuring the predictive accuracy of ML-kNN and

BPMLL when using that feature subset. As discussed earlier, due to the complex-

ity of multi-label classification, no single predictive accuracy measure is enough to

capture different aspects of multi-label classification [18, 112]. Hence, five different

popular measures of multi-label predictive accuracy were used in our experiment:

Average Precision (Avg.Pre), which is to be maximized, while Coverage (Cov.),

Hamming Loss (H.Loss), One-error (One-Err) and Ranking Loss (R.Loss) are to

be minimized. All those measures are discussed in [112]. Then we compute the

rank of each GA parameter setting for each dataset and each predictive accuracy
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Table 6.4: Summary of Ranking Results for Parameter Setting Optimization with
the wrapper-like approach using the ML-KNN classifier

Para.Set
Overall ranking (over 5 accuracy measures)

per dataset
Mean rank over
the 4 datasets

Emotion CAL501 Yeast Scene
PS1 13.13 6.00 12.50 9.00 10.16
PS2 14.88 10.50 4.00 10.25 9.91
PS3 13.00 13.38 11.25 11.00 12.16
PS4 9.75 9.00 4.00 15.50 9.56
PS5 10.50 15.00 3.00 10.00 9.63
PS6 11.25 6.00 12.75 7.50 9.38
PS7 10.25 9.00 16.50 14.75 12.63
PS8 10.00 12.25 10.00 6.50 9.69
PS9 6.00 13.75 9.00 13.25 10.50
PS10 13.50 9.63 9.38 2.25 8.69
PS11 12.00 6.75 15.75 7.00 10.38
PS12 9.75 11.00 5.25 6.25 8.06
PS13 11.75 14.63 12.13 7.25 11.44
PS14 2.50 9.13 3.75 3.00 4.59
PS15 6.88 8.00 9.00 16.75 10.16
PS16 9.00 7.75 13.00 17.50 11.81
PS17 11.88 8.25 12.25 9.00 10.34
PS18 8.25 11.75 12.25 17.00 12.31
PS19 5.75 8.25 14.25 6.25 8.63

measure. That is, the GA parameter setting with the best value of a given accu-

racy measure is assigned rank 1, and the worst parameter setting is assigned rank

19, for each combination of dataset and accuracy measure. Next, for each dataset,

we produced a ranking of the 19 parameter settings by computing the average

of their rank across the five accuracy measures. Finally, we produced the overall

ranking of the 19 parameter settings by averaging the previously computed rank

across all 4 datasets used for parameter optimization.

Tables 6.4 and 6.5 show the overall ranking of each GA-ML-CFS’ parameter

setting over all evaluation measures for each dataset and the overall rank across

the 4 datasets used for parameter optimization for the MLkNN and BPMLL clas-

sification algorithm, respectively, using the wrapper-like approach for parameter

optimization. The best parameter setting for GA-ML-CFS, which will be used in

the experiments to evaluate the predictive accuracy of GA-ML-CFS for ML-kNN,

is PS14 (with the best rank of 4.59 in Table 6.4); while the best parameter setting
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Table 6.5: Summary of Ranking Results for Parameter Setting Optimization with
the wrapper-like approach using the BPMLL classifier

Para.Set
Overall ranking (over 5 accuracy measures)

per dataset
Mean rank over
the 4 datasets

Emotion CAL501 Yeast Scene
PS1 6.00 10.75 5.25 12.25 8.56
PS2 7.00 9.13 6.50 15.75 9.59
PS3 2.50 3.38 10.50 3.00 4.84
PS4 7.88 10.25 10.75 13.75 10.66
PS5 18.50 10.38 11.50 5.25 11.41
PS6 8.50 10.00 9.25 9.00 9.19
PS7 1.25 15.75 15.75 8.75 10.38
PS8 8.88 13.88 8.50 11.25 10.63
PS9 4.00 3.63 15.00 15.50 9.53
PS10 12.00 8.00 7.25 2.25 7.38
PS11 9.25 7.75 5.00 9.00 7.75
PS12 10.50 8.00 12.50 11.00 10.50
PS13 16.75 8.00 10.25 12.50 11.88
PS14 12.38 7.00 13.25 3.50 9.03
PS15 12.25 11.63 2.25 5.25 7.84
PS16 17.00 15.75 10.25 2.75 11.44
PS17 13.13 13.50 7.25 12.25 11.53
PS18 12.00 9.88 13.50 18.00 13.34
PS19 10.25 13.38 15.50 19.00 14.53

Table 6.6: Summary of Ranking Results for Merit-Based Parameter Setting Opti-
mization with the filter approach for GA-ML-CFS

Para.
Set

Overall ranking (Merit values)
per dataset

Mean rank over
4 datasets

CAL500 Emotion Scene Yeast
PS01 11 9 5 10 8.75
PS02 18 16 18 18 17.5
PS03 3 17 15 13 12
PS04 3 10 4 12 7.25
PS05 19 19 19 19 19
PS06 3 8 3 8 5.5
PS07 1 5 1 7 3.5
PS08 8 14 7 14 10.75
PS09 9 13 11 11 11
PS10 14 15 2 15 11.5
PS11 16 2 12 5 8.75
PS12 13 2 13 2 7.5
PS13 5 2 14 1 5.5
PS14 7 11 9 9 9
PS15 15 12 10 16 13.25
PS16 10 18 6 17 12.75
PS17 6 7 8 6 6.75
PS18 17 4 16 4 10.25
PS19 12 6 17 3 9.5
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Table 6.7: Summary of Ranking Results for Parameter Setting Optimization for
LexGA-MLCFS with the wrapper-like approach using the ML-KNN classifier

Para.Set
Overall ranking (over 5 accuracy measures)

per dataset
Mean rank over
the 4 datasets

Emotion CAL501 Yeast Scene
PS01 9.00 8.13 9.00 11.00 9.28
PS02 9.00 4.38 10.75 4.75 7.22
PS03 7.63 10.38 14.00 10.00 10.50
PS04 9.00 10.63 9.00 2.25 7.72
PS05 10.00 14.50 13.25 5.00 10.69
PS06 9.00 9.63 13.75 3.00 8.84
PS07 9.00 10.38 10.75 7.38 9.38
PS08 9.00 10.63 12.00 7.50 9.78
PS09 9.00 12.13 3.75 14.25 9.78
PS10 9.00 10.38 7.00 6.63 8.25
PS11 9.00 9.50 9.25 14.00 10.44
PS12 9.00 6.38 11.25 18.75 11.34
PS13 9.00 11.88 7.75 16.75 11.34
PS14 13.75 10.63 10.50 12.00 11.72
PS15 14.88 10.63 10.50 1.25 9.31
PS16 9.00 9.63 7.75 8.25 8.66
PS17 7.38 9.50 8.25 12.75 9.47
PS18 13.25 10.38 10.00 16.25 12.47
PS19 15.13 10.38 11.50 18.25 13.81

for BPMLL is PS03 (with the best rank of 4.48 in Table 6.5).

Table 6.6 shows the overall ranking of each GA-ML-CFS’ parameter setting

over all evaluation measures for each dataset and the overall rank across the 4

datasets used for parameter optimization, when using the filter approach for pa-

rameter optimization, where parameter settings are optimized in a way indepen-

dent from the classification algorithm. According to this approach, the parameter

setting for GA-ML-CFS is PS07.

The best parameter setting for LexGA-ML-CFS, which will be used in the ex-

periments to evaluate the predictive accuracy of LexGA-ML-CFS for ML-kNN, is

PS02 (see Table 6.7); while the best parameter setting for BPMLL is PS15 (see

Table 6.8). Note that those two parameter settings were chosen based on the

wrapper-like approach for parameter optimization. Moreover the best parameter

setting for LexGA-ML-CFS based on the filter approach is PS10 (see Table 6.9).
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Table 6.8: Summary of Ranking Results for Parameter Setting Optimization for
LexGA-MLCFS with the wrapper-like approach using the BPMLL classifier

Para.Set
Overall ranking (over 5 accuracy measures)

per dataset
Mean rank over
the 4 datasets

Emotion CAL501 Yeast Scene
PS01 8.00 7.13 6.25 11.25 8.16
PS02 10.00 9.63 11.50 4.00 8.78
PS03 17.00 10.00 8.50 2.75 9.56
PS04 4.50 16.00 16.25 3.50 10.06
PS05 18.25 14.88 3.25 10.25 11.66
PS06 9.00 11.38 10.50 4.00 8.72
PS07 8.50 9.38 11.25 4.75 8.47
PS08 8.75 15.25 12.75 7.75 11.13
PS09 16.00 6.13 13.00 8.00 10.78
PS10 7.50 3.50 8.25 7.75 6.75
PS11 10.00 10.00 13.75 15.50 12.31
PS12 8.25 10.88 12.25 15.50 11.72
PS13 13.25 12.75 12.75 17.75 14.13
PS14 12.00 4.00 7.25 7.25 7.63
PS15 4.00 9.75 6.00 6.75 6.63
PS16 14.75 9.13 7.50 13.00 11.09
PS17 6.25 5.25 8.50 14.00 8.50
PS18 10.50 9.25 11.25 17.25 12.06
PS19 3.50 15.75 9.25 19.00 11.88

Table 6.9: Summary of Ranking Results for Merit-Based Parameter Setting Opti-
mization with the filter approach for LexGA-ML-CFS

Para.
Set

Overall ranking (Merit values)
per dataset

Mean rank over
4 datasets

Emotions Yeast CAL500 Scene
PS01 10 6 6 2 5.88
PS02 10 13 3 12 9.38
PS03 10 2 15 4 7.63
PS04 10 11 19 13 13.13
PS05 10 1 11 1 5.63
PS06 10 10 16 5 10.13
PS07 10 5 4 8 6.50
PS08 10 3 13 11 9.13
PS09 10 5 7 7 7.00
PS10 10 8 1 3 5.38
PS11 10 17 9 6 10.38
PS12 10 9 2 18 9.63
PS13 10 16 14 9 12.13
PS14 10 7 18 15 12.38
PS15 10 12 10 17 12.13
PS16 10 19 17 10 13.88
PS17 10 15 5 16 11.38
PS18 19 14 12 14 14.75
PS19 10 18 8 19 13.63
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The details of each parameter setting mentioned above are shown in Table 6.3.

6.7 Results for GA-ML-CFS and LexGA-ML-CFS

on Evaluation Datasets

Subsections 6.7.1 and 6.7.2 report results comparing four versions of GA-ML-CFS,

namely: (1) a single-objective GA-ML-CFS using parameter setting optimized by

the filter approach (gmiGA-filt), (2) a multi-objective GA-ML-CFS using parame-

ter setting optimized by the filter approach (gmiLexGA-filt), (3) a single-objective

GA-ML-CFS using parameter setting optimized by the wrapper-like approach

(gmiGA-wrap); and (4) a multi-objective GA-ML-CFS using parameter setting

optimized by the wrapper-like approach (gmiLexGA-wrap). The classifier used

was ML-kNN in Subsection 6.7.1 and BPMLL in Subsection 6.7.2. In both these

Subsections the GA-ML-CFS version used in the experiments was the one using

mutual information for class label weighting and absolute value of the correlation

coefficient, since this version clearly obtained better results than other versions of

ML-CFS in Chapter 4. More precisely, GA-ML-CFS versions used in this current

Chapter evaluate the quality of feature subset in the same way as the ML-CFS ver-

sion where class labels with greater MI (Mutual Information) are assigned greater

weights (gmi).
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6.7.1 ML-kNN’s Results for GA-ML-CFS and LexGA-ML-

CFS Using Mutual Information for Class Label Weight-

ing with two parameter optimization approaches: wrapper-

like approach versus filter approach

All GA results are an average over 5 runs with a different random seed used to

create the initial population in each run. In Tables 6.10 - 6.13, each column “R”

shows the rank (“1” is better than “2”) of each method (GA-wrap. and GA-filt.)

for each dataset according to the accuracy measure on the corresponding left col-

umn. The last column reports the average rank of each method across all five

accuracy measures, for each dataset. The last row reports the average rank for

each column (across all 10 datasets).

Recall that, in these Tables, gmiGA-wrap denotes gmiGA-ML-CFS with pa-

rameter setting optimized by the wrapper-like approach (PS14 in Table 6.3) and

gmiGA-filt denotes gmiGA-ML-CFS with parameter optimized by the filter ap-

proach (PS07 in Table 6.3). For the LexGA version, gmiLexGA-wrap denotes

gmiLexGA-ML-CFS with parameter setting optimized by the wrapper-like ap-

proach (PS02 in Table 6.3) and gmiLexGA-filt denotes gmiLexGA-ML-CFS with

parameter optimized by the filter approach (PS10 in Table 6.3).

To summarize the results, we will focus on the average ranks obtained in the

4 GA-ML-CFS versions across all datasets and all 5 accuracy measures. When

using ML-kNN as the classifier, gmiGA-wrap obtained better predictive accuracy

(lower average rank) than gmiLexGA-wrap, gmiGA-filt, and gmiLexGA-filt in the

experiments with individual length of 100, with average rank of 2.33 versus 2.40,

2.57 and 2.70, respectively (Table 6.10).

When the individual length is 200 (Table 6.11), gmiGA-wrap again outper-

174



formed other versions of GA-ML-CFS with the smallest average rank (2.08); while

gmiGA-filt, gmiLexGA-wrap, and gmiLexGA-filt obtained the larger average ranks

2.32, 2.69 and 2.91, respectively.

When the individual length is 300 (Table 6.12), gmiGA-filt obtained better

predictive accuracy (lower average rank) than gmiGA-wrap, gmiLexGA-wrap; and

gmiLexGA-filt in the experiments with individual length of 300, with average rank

of 1.86 versus 1.90, 2.96 and 3.28, respectively (Table 6.12).

Moreover, when the individual length is 400 (Table 6.13), gmiGA-filt again

outperformed other versions of GA-ML-CFS with the smallest average rank (2.00)

while gmiGA-wrap, gmiLexGA-wrap; and gmiLexGA-filt obtained the larger av-

erage ranks 2.12, 2.92 and 2.92, respectively.

Table 6.14 shows the number and percentage of selected features and average

rank over the 10 datasets for each GA individual length. Clearly, when the individ-

ual length equals to 100 and 200, gmiGA-wrap obtained the best overall average

rank in term of accuracy (2.33 and 2.08), and selected 26.90 % and 23.37 % of the

features in the GA’s feature space. When the individual length is larger (300 and

400) gmiGA-filt obtained the best predictive accuracy in these two cases (average

rank of 1.86 and 2.00, respectively) with 18.15 % and 18.35 % of the selected fea-

tures. Overall (last row of Table 6.14), gmiGA-wrap obtained the best average

rank (2.11) and the second smallest percentage of selected features (24.81%); and

so it was the best version of GA-ML-CFS in these experiments (with ML-kNN),

since maximizing accuracy is more important than minimizing the number of se-

lected features.

Figure 6.1 shows the overall average ranking (AR) for the four versions of

GA-ML-CFS investigated in this section plotted against average size of selected

features across four feature space sizes using ML-kNN as the classifier. Clearly,
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Table 6.10: Predictive accuracy for four versions of GA-ML-CFS using mutual
information for class label weighting with two parameter optimization approaches:
wrapper-like approach (gmiGA-wrap/gmiLexGA-wrap) versus filter-like approach
(gmiGA-filt/gmiLexGA-filt) with ML-kNN Classifier (individual length = 100)

Dataset Methods
Predictive Accuracy Measures and Ranking

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

Enron

gmiGA-filt 0.584 3.0 13.763 1.0 0.058 2.0 0.395 4.0 0.101 2.0 2.40
gmiLexGA-filt 0.584 1.0 13.784 3.0 0.058 3.0 0.392 2.0 0.100 3.0 2.40
gmiGA-wrap 0.584 2.0 13.763 2.0 0.057 1.0 0.394 3.0 0.100 4.0 2.40
gmiLexGA-wrap 0.581 4.0 13.858 4.0 0.058 4.0 0.390 1.0 0.101 1.0 2.80

Medical

gmiGA-filt 0.794 1.0 3.065 1.0 0.015 2.0 0.256 1.0 0.049 4.0 1.80
gmiLexGA-filt 0.780 4.0 3.125 4.0 0.016 4.0 0.275 4.0 0.050 1.0 3.40
gmiGA-wrap 0.793 2.0 3.111 2.0 0.015 1.0 0.256 2.0 0.050 2.0 1.80
gmiLexGA-wrap 0.788 3.0 3.119 3.0 0.015 3.0 0.267 3.0 0.050 3.0 3.00

Business

gmiGA-filt 0.874 4.0 2.386 2.0 0.028 4.0 0.124 4.0 0.043 2.5 3.30
gmiLexGA-filt 0.874 2.0 2.392 4.0 0.028 2.0 0.123 2.0 0.043 1.0 2.20
gmiGA-wrap 0.874 1.0 2.386 1.0 0.028 2.0 0.124 3.0 0.043 2.5 1.90
gmiLexGA-wrap 0.874 3.0 2.389 3.0 0.028 2.0 0.123 1.0 0.043 4.0 2.60

Art

gmiGA-filt 0.527 3.0 5.409 2.0 0.059 4.0 0.588 1.0 0.150 4.0 2.80
gmiLexGA-filt 0.525 4.0 5.426 4.0 0.059 3.0 0.591 4.0 0.151 1.0 3.20
gmiGA-wrap 0.527 2.0 5.409 1.0 0.059 1.0 0.589 2.0 0.150 3.0 1.80
gmiLexGA-wrap 0.527 1.0 5.410 3.0 0.059 2.0 0.590 3.0 0.150 2.0 2.20

Education

gmiGA-filt 0.543 4.0 3.919 1.0 0.042 2.0 0.605 4.0 0.092 2.0 2.60
gmiLexGA-filt 0.543 3.0 3.943 4.0 0.042 4.0 0.604 3.0 0.093 1.0 3.00
gmiGA-wrap 0.544 2.0 3.924 3.0 0.042 3.0 0.600 2.0 0.092 3.0 2.60
gmiLexGA-wrap 0.545 1.0 3.922 2.0 0.041 1.0 0.599 1.0 0.092 4.0 1.80

Recreation

gmiGA-filt 0.536 1.0 4.307 2.0 0.058 1.0 0.601 1.0 0.158 3.0 1.60
gmiLexGA-filt 0.535 3.0 4.330 4.0 0.059 4.0 0.603 3.0 0.158 1.0 3.00
gmiGA-wrap 0.536 2.0 4.286 1.0 0.059 2.0 0.603 2.0 0.157 4.0 2.20
gmiLexGA-wrap 0.534 4.0 4.318 3.0 0.059 3.0 0.605 4.0 0.158 2.0 3.20

Health

gmiGA-filt 0.631 4.0 3.791 4.0 0.049 4.0 0.479 4.0 0.075 1.0 3.40
gmiLexGA-filt 0.631 2.0 3.783 1.0 0.049 2.0 0.477 2.0 0.075 2.0 1.80
gmiGA-wrap 0.631 3.0 3.787 3.0 0.049 3.0 0.478 3.0 0.075 4.0 3.20
gmiLexGA-wrap 0.632 1.0 3.784 2.0 0.049 1.0 0.476 1.0 0.075 3.0 1.60

Ent.ment

gmiGA-filt 0.597 3.0 3.152 3.0 0.055 1.0 0.543 3.0 0.118 2.0 2.40
gmiLexGA-filt 0.595 4.0 3.159 4.0 0.056 4.0 0.544 4.0 0.119 1.0 3.40
gmiGA-wrap 0.600 1.0 3.151 2.0 0.055 2.0 0.539 1.0 0.118 4.0 2.00
gmiLexGA-wrap 0.598 2.0 3.146 1.0 0.055 3.0 0.542 2.0 0.118 3.0 2.20

Computer

gmiGA-filt 0.625 4.0 4.390 1.0 0.040 2.0 0.444 4.0 0.093 3.0 2.80
gmiLexGA-filt 0.625 3.0 4.413 4.0 0.040 3.0 0.442 3.0 0.094 1.0 2.80
gmiGA-wrap 0.625 2.0 4.393 3.0 0.040 1.0 0.442 2.0 0.093 2.0 2.00
gmiLexGA-wrap 0.626 1.0 4.390 2.0 0.040 4.0 0.441 1.0 0.093 4.0 2.40

Science

gmiGA-filt 0.459 2.0 6.931 1.0 0.035 3.0 0.670 3.0 0.136 4.0 2.60
gmiLexGA-filt 0.460 1.0 6.988 4.0 0.035 2.0 0.666 1.0 0.137 1.0 1.80
gmiGA-wrap 0.458 4.0 6.937 2.0 0.035 4.0 0.672 4.0 0.136 3.0 3.40
gmiLexGA-wrap 0.459 3.0 6.972 3.0 0.035 1.0 0.668 2.0 0.137 2.0 2.20

MEAN

gmiGA-filt 2.9 1.8 2.5 2.9 2.8 2.57
gmiLexGA-filt 2.7 3.6 3.1 2.8 1.3 2.70
gmiGA-wrap 2.1 2.0 2.0 2.4 3.2 2.33
gmiLexGA-wrap 2.3 2.6 2.4 1.9 2.8 2.40
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Table 6.11: Predictive accuracy for four versions of GA-ML-CFS using mutual
information for class label weighting with two parameter optimization approaches:
wrapper-like approach (gmiGA-wrap/gmiLexGA-wrap) versus filter-like approach
(gmiGA-filt/gmiLexGA-filt) with ML-kNN Classifier (individual length = 200)

Dataset Methods
Predictive Accuracy Measures and Ranking

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

Enron

gmiGA-filt 0.581 4.0 13.705 4.0 0.058 2.0 0.396 3.0 0.100 4.0 3.40
gmiLexGA-filt 0.585 3.0 13.511 2.0 0.058 3.0 0.392 2.0 0.099 3.0 2.60
gmiGA-wrap 0.585 2.0 13.570 3.0 0.058 4.0 0.397 4.0 0.098 2.0 3.00
gmiLexGA-wrap 0.587 1.0 13.469 1.0 0.058 1.0 0.390 1.0 0.098 1.0 1.00

Medical

gmiGA-filt 0.810 1.0 2.893 1.0 0.016 1.0 0.236 1.0 0.045 1.0 1.00
gmiLexGA-filt 0.808 2.0 2.896 2.0 0.016 3.0 0.239 2.0 0.046 2.0 2.20
gmiGA-wrap 0.797 3.0 3.017 3.0 0.016 4.0 0.254 3.0 0.048 3.0 3.20
gmiLexGA-wrap 0.795 4.0 3.042 4.0 0.016 2.0 0.254 4.0 0.049 4.0 3.60

Business

gmiGA-filt 0.873 2.0 2.333 4.0 0.028 2.0 0.126 4.0 0.042 3.0 3.00
gmiLexGA-filt 0.873 4.0 2.330 2.0 0.028 1.0 0.125 1.0 0.041 2.0 2.00
gmiGA-wrap 0.873 3.0 2.331 3.0 0.028 3.0 0.126 2.0 0.042 4.0 3.00
gmiLexGA-wrap 0.874 1.0 2.322 1.0 0.028 4.0 0.126 3.0 0.041 1.0 2.00

Art

gmiGA-filt 0.533 3.0 5.336 2.0 0.059 4.0 0.584 2.0 0.148 4.0 3.00
gmiLexGA-filt 0.531 4.0 5.343 4.0 0.059 3.0 0.586 4.0 0.148 3.0 3.60
gmiGA-wrap 0.536 1.0 5.324 1.0 0.059 1.0 0.578 1.0 0.147 1.0 1.00
gmiLexGA-wrap 0.533 2.0 5.337 3.0 0.059 2.0 0.584 3.0 0.147 2.0 2.40

Education

gmiGA-filt 0.555 1.0 3.861 1.0 0.041 1.0 0.584 1.0 0.091 1.0 1.00
gmiLexGA-filt 0.544 4.0 3.923 4.0 0.041 4.0 0.599 4.0 0.093 4.0 4.00
gmiGA-wrap 0.551 2.0 3.896 2.0 0.041 2.0 0.588 2.0 0.092 2.0 2.00
gmiLexGA-wrap 0.547 3.0 3.910 3.0 0.041 3.0 0.595 3.0 0.092 3.0 3.00

Recreation

gmiGA-filt 0.572 2.0 4.198 4.0 0.055 1.0 0.544 1.0 0.152 3.0 2.20
gmiLexGA-filt 0.571 4.0 4.191 3.0 0.055 2.0 0.549 4.0 0.152 4.0 3.40
gmiGA-wrap 0.572 1.0 4.171 1.0 0.055 3.0 0.545 2.0 0.151 1.0 1.60
gmiLexGA-wrap 0.571 3.0 4.174 2.0 0.055 4.0 0.546 3.0 0.151 2.0 2.80

Health

gmiGA-filt 0.686 2.0 3.426 4.0 0.042 3.0 0.388 2.0 0.064 4.0 3.00
gmiLexGA-filt 0.685 3.0 3.416 3.0 0.043 4.0 0.393 4.0 0.064 2.0 3.20
gmiGA-wrap 0.687 1.0 3.411 1.0 0.042 1.0 0.387 1.0 0.064 1.0 1.00
gmiLexGA-wrap 0.685 4.0 3.411 2.0 0.042 2.0 0.393 3.0 0.064 3.0 2.80

Ent.ment

gmiGA-filt 0.615 2.0 3.088 3.0 0.053 1.0 0.508 3.0 0.112 3.0 2.40
gmiLexGA-filt 0.613 3.0 3.074 2.0 0.054 4.0 0.504 2.0 0.112 2.0 2.60
gmiGA-wrap 0.618 1.0 3.056 1.0 0.054 2.5 0.498 1.0 0.111 1.0 1.30
gmiLexGA-wrap 0.610 4.0 3.095 4.0 0.054 2.5 0.510 4.0 0.113 4.0 3.70

Computer

gmiGA-filt 0.641 3.0 4.221 4.0 0.038 1.0 0.429 1.0 0.090 4.0 2.60
gmiLexGA-filt 0.641 2.0 4.206 3.0 0.039 4.0 0.431 4.0 0.090 3.0 3.20
gmiGA-wrap 0.643 1.0 4.178 1.0 0.038 3.0 0.430 2.0 0.089 1.0 1.60
gmiLexGA-wrap 0.641 4.0 4.200 2.0 0.038 2.0 0.430 3.0 0.089 2.0 2.60

Science

gmiGA-filt 0.485 1.0 6.749 2.0 0.034 2.0 0.636 1.0 0.132 2.0 1.60
gmiLexGA-filt 0.481 3.0 6.705 1.0 0.034 3.5 0.646 3.0 0.131 1.0 2.30
gmiGA-wrap 0.482 2.0 6.792 4.0 0.034 3.5 0.638 2.0 0.133 4.0 3.10
gmiLexGA-wrap 0.471 4.0 6.781 3.0 0.034 1.0 0.657 4.0 0.132 3.0 3.00

MEAN

gmiGA-filt 2.1 2.9 1.8 1.9 2.9 2.32
gmiLexGA-filt 3.2 2.6 3.2 3.0 2.6 2.91
gmiGA-wrap 1.7 2.0 2.7 2.0 2.0 2.08
gmiLexGA-wrap 3.0 2.5 2.4 3.1 2.5 2.69
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Table 6.12: Predictive accuracy for four versions of GA-ML-CFS using mutual
information for class label weighting with two parameter optimization approaches:
wrapper-like approach (gmiGA-wrap/gmiLexGA-wrap) versus filter-like approach
(gmiGA-filt/gmiLexGA-filt) with ML-kNN Classifier (individual length = 300)

Dataset Methods
Predictive Accuracy Measures and Ranking

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

Enron

gmiGA-filt 0.585 3.0 13.414 3.0 0.05776 3.0 0.396 4.0 0.097 2.0 3.00
gmiLexGA-filt 0.586 2.0 13.415 4.0 0.058 4.0 0.394 3.0 0.097 3.0 3.20
gmiGA-wrap 0.590 1.0 13.391 2.0 0.05702 1.0 0.382 1.0 0.098 4.0 1.80
gmiLexGA-wrap 0.585 4.0 13.345 1.0 0.057 2.0 0.391 2.0 0.097 1.0 2.00

Medical

gmiGA-filt 0.809 1.0 2.857 1.0 0.01594 1.0 0.247 3.0 0.045 1.0 1.40
gmiLexGA-filt 0.783 4.0 3.118 4.0 0.017 4.0 0.279 4.0 0.051 4.0 4.00
gmiGA-wrap 0.805 2.0 2.899 2.0 0.01622 2.0 0.245 1.0 0.046 2.0 1.80
gmiLexGA-wrap 0.797 3.0 2.991 3.0 0.017 3.0 0.246 2.0 0.048 3.0 2.80

Business

gmiGA-filt 0.875 1.0 2.285 1.0 0.02818 3.0 0.127 3.0 0.040 1.0 1.80
gmiLexGA-filt 0.875 3.0 2.309 3.0 0.028 2.0 0.126 2.0 0.041 3.0 2.60
gmiGA-wrap 0.875 2.0 2.294 2.0 0.0283 4.0 0.126 1.0 0.041 2.0 2.20
gmiLexGA-wrap 0.874 4.0 2.330 4.0 0.028 1.0 0.127 4.0 0.041 4.0 3.40

Art

gmiGA-filt 0.540 1.0 5.311 3.0 0.0584 1.0 0.576 2.0 0.146 3.0 2.00
gmiLexGA-filt 0.534 3.0 5.285 2.0 0.058 2.0 0.586 4.0 0.145 2.0 2.60
gmiGA-wrap 0.533 4.0 5.325 4.0 0.0585 3.0 0.584 3.0 0.146 4.0 3.60
gmiLexGA-wrap 0.540 2.0 5.220 1.0 0.059 4.0 0.574 1.0 0.143 1.0 1.80

Education

gmiGA-filt 0.560 1.0 3.819 2.0 0.04048 1.0 0.577 1.0 0.089 1.0 1.20
gmiLexGA-filt 0.551 3.0 3.875 3.0 0.041 3.0 0.591 3.0 0.091 3.0 3.00
gmiGA-wrap 0.558 2.0 3.817 1.0 0.04056 2.0 0.582 2.0 0.089 2.0 1.80
gmiLexGA-wrap 0.546 4.0 3.908 4.0 0.041 4.0 0.597 4.0 0.092 4.0 4.00

Recreation

gmiGA-filt 0.586 2.0 4.092 2.0 0.0543 1.0 0.526 1.0 0.147 2.0 1.60
gmiLexGA-filt 0.580 4.0 4.144 4.0 0.055 3.0 0.535 4.0 0.150 4.0 3.80
gmiGA-wrap 0.586 1.0 4.072 1.0 0.0546 2.0 0.527 2.0 0.147 1.0 1.40
gmiLexGA-wrap 0.581 3.0 4.119 3.0 0.055 4.0 0.533 3.0 0.149 3.0 3.20

Health

gmiGA-filt 0.690 1.0 3.378 4.0 0.04252 1.0 0.390 1.0 0.063 2.0 1.80
gmiLexGA-filt 0.683 4.0 3.378 3.0 0.043 4.0 0.405 4.0 0.063 4.0 3.80
gmiGA-wrap 0.687 2.0 3.360 1.0 0.04256 2.0 0.397 2.0 0.063 1.0 1.60
gmiLexGA-wrap 0.684 3.0 3.377 2.0 0.043 3.0 0.400 3.0 0.063 3.0 2.80

Ent.ment

gmiGA-filt 0.625 2.0 3.033 4.0 0.0529 1.0 0.488 1.0 0.110 4.0 2.40
gmiLexGA-filt 0.624 3.0 2.994 2.0 0.054 4.0 0.498 3.0 0.109 2.0 2.80
gmiGA-wrap 0.628 1.0 2.971 1.0 0.05378 2.0 0.490 2.0 0.108 1.0 1.40
gmiLexGA-wrap 0.619 4.0 3.014 3.0 0.054 3.0 0.500 4.0 0.109 3.0 3.40

Computer

gmiGA-filt 0.648 1.0 4.129 1.0 0.0376 2.0 0.426 2.0 0.087 1.0 1.40
gmiLexGA-filt 0.646 4.0 4.194 4.0 0.038 4.0 0.428 3.0 0.089 4.0 3.80
gmiGA-wrap 0.647 2.0 4.164 3.0 0.0375 1.0 0.426 1.0 0.088 3.0 2.00
gmiLexGA-wrap 0.647 3.0 4.154 2.0 0.038 3.0 0.428 4.0 0.088 2.0 2.80

Science

gmiGA-filt 0.480 2.0 6.704 3.0 0.03378 1.0 0.647 2.0 0.131 2.0 2.00
gmiLexGA-filt 0.475 3.0 6.744 4.0 0.034 2.0 0.648 3.0 0.132 4.0 3.20
gmiGA-wrap 0.481 1.0 6.628 1.0 0.03388 3.0 0.645 1.0 0.129 1.0 1.40
gmiLexGA-wrap 0.473 4.0 6.701 2.0 0.034 4.0 0.653 4.0 0.131 3.0 3.40

MEAN

gmiGA-filt 1.5 2.4 1.5 2.0 1.9 1.86
gmiLexGA-filt 3.3 3.3 3.2 3.3 3.3 3.28
gmiGA-wrap 1.8 1.8 2.2 1.6 2.1 1.90
gmiLexGA-wrap 3.4 2.5 3.1 3.1 2.7 2.96
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Table 6.13: Predictive accuracy for four versions of GA-ML-CFS using mutual
information for class label weighting with two parameter optimization approaches:
wrapper-like approach (gmiGA-wrap/gmiLexGA-wrap) versus filter-like approach
(gmiGA-filt/gmiLexGA-filt) with ML-kNN Classifier (individual length = 400)

Dataset Methods
Predictive Accuracy Measures and Ranking

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

Enron

gmiGA-filt 0.581 3.0 13.551 4.0 0.05794 4.0 0.402 3.0 0.099 4.0 3.60
gmiLexGA-filt 0.582 2.0 13.450 2.0 0.057 2.0 0.390 2.0 0.098 2.0 2.00
gmiGA-wrap 0.580 4.0 13.358 1.0 0.05762 3.0 0.406 4.0 0.098 1.0 2.60
gmiLexGA-wrap 0.584 1.0 13.532 3.0 0.056 1.0 0.382 1.0 0.098 3.0 1.80

Medical

gmiGA-filt 0.801 1.0 2.920 1.0 0.016 1.0 0.252 1.0 0.047 1.0 1.00
gmiLexGA-filt 0.774 3.0 3.269 3.0 0.018 4.0 0.284 3.0 0.054 3.0 3.20
gmiGA-wrap 0.796 2.0 3.030 2.0 0.01694 2.0 0.258 2.0 0.049 2.0 2.00
gmiLexGA-wrap 0.768 4.0 3.337 4.0 0.017 3.0 0.291 4.0 0.055 4.0 3.80

Business

gmiGA-filt 0.876 4.0 2.308 4.0 0.02802 2.0 0.124 2.0 0.041 4.0 3.20
gmiLexGA-filt 0.877 2.0 2.248 1.0 0.028 1.0 0.125 3.0 0.040 1.0 1.60
gmiGA-wrap 0.876 3.0 2.288 3.0 0.02826 4.0 0.125 4.0 0.041 3.0 3.40
gmiLexGA-wrap 0.877 1.0 2.276 2.0 0.028 3.0 0.124 1.0 0.040 2.0 1.80

Art

gmiGA-filt 0.532 1.0 5.355 4.0 0.05822 3.0 0.585 1.0 0.148 3.0 2.40
gmiLexGA-filt 0.532 2.0 5.247 1.0 0.058 1.0 0.591 4.0 0.144 1.0 1.80
gmiGA-wrap 0.532 3.0 5.296 2.0 0.058 2.0 0.587 2.0 0.145 2.0 2.20
gmiLexGA-wrap 0.529 4.0 5.354 3.0 0.058 4.0 0.589 3.0 0.148 4.0 3.60

Education

gmiGA-filt 0.561 1.0 3.826 2.0 0.0404 1.0 0.575 1.0 0.089 1.0 1.20
gmiLexGA-filt 0.546 4.0 3.893 4.0 0.041 4.0 0.598 4.0 0.092 4.0 4.00
gmiGA-wrap 0.555 2.0 3.818 1.0 0.04068 2.0 0.585 2.0 0.089 2.0 1.80
gmiLexGA-wrap 0.548 3.0 3.880 3.0 0.041 3.0 0.594 3.0 0.091 3.0 3.00

Recreation

gmiGA-filt 0.378 4.0 5.703 4.0 0.065 4.0 0.805 4.0 0.220 4.0 4.00
gmiLexGA-filt 0.575 3.0 4.134 3.0 0.055 2.0 0.543 3.0 0.150 3.0 2.80
gmiGA-wrap 0.583 1.0 4.067 1.0 0.0546 1.0 0.533 1.0 0.147 1.0 1.00
gmiLexGA-wrap 0.577 2.0 4.108 2.0 0.055 3.0 0.541 2.0 0.149 2.0 2.20

Health

gmiGA-filt 0.719 1.0 3.186 1.0 0.0397 1.0 0.352 1.0 0.058 1.0 1.00
gmiLexGA-filt 0.701 4.0 3.268 4.0 0.042 4.0 0.377 4.0 0.060 4.0 4.00
gmiGA-wrap 0.714 2.0 3.204 2.0 0.04056 2.0 0.356 2.0 0.058 2.0 2.00
gmiLexGA-wrap 0.704 3.0 3.250 3.0 0.042 3.0 0.372 3.0 0.060 3.0 3.00

Ent.ment

gmiGA-filt 0.634 2.0 2.915 1.0 0.05334 1.0 0.483 1.0 0.105 1.0 1.20
gmiLexGA-filt 0.623 3.0 3.011 3.0 0.055 3.0 0.497 3.0 0.109 3.0 3.00
gmiGA-wrap 0.636 1.0 2.915 2.0 0.0539 2.0 0.484 2.0 0.105 2.0 1.80
gmiLexGA-wrap 0.619 4.0 3.013 4.0 0.055 4.0 0.508 4.0 0.110 4.0 4.00

Computer

gmiGA-filt 0.649 1.0 4.124 2.0 0.03726 1.0 0.425 1.0 0.087 1.0 1.20
gmiLexGA-filt 0.647 4.0 4.139 3.0 0.037 2.0 0.429 3.0 0.087 4.0 3.20
gmiGA-wrap 0.647 3.0 4.108 1.0 0.03738 3.0 0.431 4.0 0.087 2.0 2.60
gmiLexGA-wrap 0.648 2.0 4.143 4.0 0.038 4.0 0.427 2.0 0.087 3.0 3.00

Science

gmiGA-filt 0.486 1.0 6.707 1.0 0.0338 1.0 0.628 1.0 0.131 2.0 1.20
gmiLexGA-filt 0.472 4.0 6.780 4.0 0.034 3.0 0.653 3.0 0.133 4.0 3.60
gmiGA-wrap 0.484 2.0 6.716 2.0 0.03402 2.0 0.635 2.0 0.130 1.0 1.80
gmiLexGA-wrap 0.472 3.0 6.758 3.0 0.034 4.0 0.654 4.0 0.132 3.0 3.40

MEAN

gmiGA-filt 1.9 2.4 1.9 1.6 2.2 2.00
gmiLexGA-filt 3.1 2.8 2.6 3.2 2.9 2.92
gmiGA-wrap 2.3 1.7 2.3 2.5 1.8 2.12
gmiLexGA-wrap 2.7 3.1 3.2 2.7 3.1 2.96
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Table 6.14: Summary of average ranking (AR) and the number of selected
features (Sel.F) for four versions of GA-ML-CFS using mutual information for
class label weighting with two parameter optimization approaches: wrapper-
like approach (gmiGA-wrap/gmiLexGA-wrap) versus filter-like approach (gmiGA-
filt/gmiLexGA-filt) when using ML-kNN as the classifier

ind.length
gmiGA-filt gmiLexGA-filt gmiGA-wrap gmiLexGA-wrap

Sel.F % AR Sel.F % AR Sel.F % AR Sel.F % AR
100 26.60 26.60 2.57 25.34 25.34 2.70 26.90 26.90 2.33 25.60 25.60 2.40
200 39.44 19.72 2.32 50.68 25.34 2.91 46.74 23.37 2.08 52.26 26.13 2.69
300 54.44 18.15 1.86 82.64 27.55 3.28 70.74 23.58 1.90 83.60 27.87 2.96
400 73.38 18.35 2.00 116.78 29.20 2.92 101.48 25.37 2.12 118.86 29.72 2.96
Overall 48.47 20.70 2.19 68.86 26.86 2.95 61.47 24.81 2.11 70.08 27.33 2.75

Table 6.15: Summary of overall average ranking (AR) across four individ-
ual lengths for four versions of GA-ML-CFS using mutual information for
class label weighting with two parameter optimization approaches: wrapper-
like approach (gmiGA-wrap/gmiLexGA-wrap) versus filter-like approach (gmiGA-
filt/gmiLexGA-filt) when using ML-kNN as the classifier

Dataset
Overall Average Rank (AR) across 4 individual lengths

gmiGA-filt gmiLexGA-filt gmiGA-wrap gmiLexGA-wrap
Enron 3.15(4) 2.50(3) 2.30(2) 2.05(1)
Medical 1.15(1) 3.35(4) 2.25(2) 3.25(3)
Business 2.83(4) 2.25(1) 2.63(3) 2.30(2)
Art 2.40(2) 2.95(4) 2.10(1) 2.55(3)
Education 1.55(1) 3.65(4) 2.00(2) 2.80(3)
Recreation 2.30(2) 3.40(4) 1.40(1) 2.90(3)
Health 2.45(2) 3.25(4) 1.8(1) 2.50(3)
Ent.ment 2.15(2) 3.10(3) 1.48(1) 3.28(4)
Computer 1.95(1) 3.40(4) 2.10(2) 2.55(3)
Science 1.70(1) 2.88(3) 2.38(2) 3.05(4)
Average 2.16(2) 3.07(3.4) 2.04(1.7) 2.72(2.9)

although gmiGA-wrap outperforms the other methods in terms of minimizing av-

erage ranking, gmiGA-filt obtained a better trade-off between minimizing average

ranking and minimizing the number of selected features. That is, gmiGA-filt is

just slightly worse than gmiGA-wrap in term of average ranking, but gmiGA-filt

is substantially better than gmiGA-wrap in terms of number of selected features.

The overall average rank of each version of GA-ML-CFS for each dataset (av-

eraged across the 4 GA individual lengths) is shown in Table 6.15. The first value

in each cell is the actuall average rank, whilst the value between brackets is the
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Figure 6.1: Overall average ranking (AR) for four versions of GA-ML-CFS plotted
against the average number of selected features across all datasets and feature
space sizes, when using ML-kNN as the classifier

“rank of the average rank”. This later value was used in the Friedman and Holm’s

test. The Friedman test is suitable for comparing multiple algorithms on multiple

domains (datasets). The null hypothesis is that there is no statistically significant

difference between the classifiers’ performance. If this null hypothesis is rejected,

the Holm’s posthoc test is used to identify which classifier has a predictive perfor-

mance significantly different from the others [52].

For results in Table 6.15, there is a significant difference among the four GA-

ML-CFS algorithms across the 10 evaluation datasets at the 0.05 level of signifi-

cance for a two tailed test (p value = 0.00514). After we run the Holm’s posthoc

test on those results using gmiGA-wrap (the best method) as the control method,

there is a significant difference between gmiGA-wrap and gmiLexGA-filt at the

0.05 level of significance (p value = 0.01941) but there is no significant difference

between gmiGA-wrap and the other two algorithms.

181



6.7.2 BPMLL’s Results for GA-ML-CFS and LexGA-Ml-

CFS Using Mutual Information for Class Label Weight-

ing with two parameter optimization approaches: wrapper-

like approach versus filter approach

The results are shown in Tables 6.16 through 6.19. Recall that in these ta-

bles gmiGA-wrap denotes gmiGA-ML-CFS with parameter setting optimized by

the wrapper-like approach (PS14 in Table 6.3) and gmiGA-filt denotes gmiGA-

ML-CFS with parameters optimized by the filter approach (PS07 in Table 6.3).

For LexGA versions, gmiLexGA-wrap denotes gmiLexGA-ML-CFS with param-

eter setting soptimized by the wrapper-like approach (PS02 in Table 6.3) and

gmiLexGA-filt denotes gmiLexGA-ML-CFS with parameters optimized by the fil-

ter approach (PS10 in Table 6.3).

All GA results are an average over 5 runs with a different random seed used

to create the initial population in each run. In Tables 6.16 - 6.19, the meaning of

the columns are as explained in the beginning of Subsection 6.7.1.

When the individual length is 100 (Table 6.16), gmiGA-wrap obtained better

predictive accuracy (lower average rank) than gmiGA-filt, gmiLexGA-wrap; and

gmiLexGA-filt with 2.11 average rank versus 2.92, 2.78 and 2.19, respectively.

When the individual length is 200 (Table 6.17), gmiGA-wrap outperformed

other versions of GA-ML-CFS with the smallest average rank (1.99); while gmiGA-

filt, gmiLexGA-wrap and gmiLexGA-filt obtain a larger average rank of 2.60, 2.86

and 2.55, respectively.

When the individual length is 300 (Table 6.18), gmiLexGA-wrap obtained bet-

ter predictive accuracy (lower average rank) than gmiLexGA-filt, gmiGA-wrap;
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and gmiGA-filt, with average rank of 2.09 versus 2.39, 2.76 and 2.76, respectively.

Moreover, when the individual length is 400 (Table 6.19), gmiGA-filt outper-

formed other versions of GA-ML-CFS with the smallest average rank (1.82); while

gmiGA-wrap, gmiLexGA-wrap; and gmiLexGA-filt obtain a larger average rank

of 2.50, 2.68 and 3.00, respectively.

Table 6.20 shows the number and percentage of selected features (out of all in-

put features) and average rank over 10 datasets for each individual length. Clearly,

when the size of individual length equals to 100 and 200, gmiGA-wrap obtained

the best overall average rank (2.11 and 1.99) with 26.94 % and 24.29 % of selected

features. When the individual length is 300 gmiLexGA-wrap obtained the best

predictive accuracy with 2.09 overall average rank, with 26.79% of selected fea-

tures. When the individual length is 400, gmiGA-filt obtained the smallest overall

average rank (1.82) and the smallest percentage (18.35%) of selected features.

Overall (last row of Table 6.20), gmiGA-wrap obtained the best average rank

(2.34) and the second smallest percentage of selected features (25.73%); similarity

to the results with ML-kNN in the previous subsection. Hence, gmiGA-wrap was

the best version of GA-ML-CFS in both these experiments (with ML-kNN and

with BPMLL), since maximizing accuracy is more important than minimizing the

number of selected features.

Figure 6.2 shows the overall average ranking (AR) for four versions of GA-ML-

CFS investigated in this section plotted against the average number of selected

features across all datasets and feature space sizes, when using BPMLL as the

classifier. Again, gmiGA-wrap outperforms the others in terms of predictive accu-

racy. However, gmiGA-filt outperforms the other methods in terms of the number

of selected features.
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Table 6.16: Predictive accuracy for four versions of GA-ML-CFS using mutual
information for class label weighting with two parameter optimization approaches:
wrapper-like approach (gmiGA-wrap/gmiLexGA-wrap) versus filter-like approach
(gmiGA-filt/gmiLexGA-filt) with BPMLL Classifier (individual length = 100)

Dataset
Methods Predictive Accuracy Measures and Ranking

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

Enron

gmiGA-filt 0.568 3.0 13.222 2.0 0.089 3.0 0.399 3.0 0.097 3.0 2.80
gmiLexGA-filt 0.571 1.0 13.222 3.0 0.088 2.0 0.394 1.0 0.097 2.0 1.80
gmiGA-wrap 0.568 4.0 13.259 4.0 0.088 1.0 0.405 4.0 0.097 4.0 3.40
gmiLexGA-wrap 0.570 2.0 13.192 1.0 0.090 4.0 0.398 2.0 0.097 1.0 2.00

Medical

gmiGA-filt 0.694 3.0 2.693 2.0 0.030 2.0 0.453 4.0 0.044 2.0 2.60
gmiLexGA-filt 0.696 2.0 2.727 4.0 0.030 3.0 0.443 2.0 0.046 4.0 3.00
gmiGA-wrap 0.715 1.0 2.579 1.0 0.028 1.0 0.420 1.0 0.042 1.0 1.00
gmiLexGA-wrap 0.693 4.0 2.724 3.0 0.031 4.0 0.448 3.0 0.045 3.0 3.40

Business

gmiGA-filt 0.852 2.0 2.766 1.0 0.042 1.0 0.139 2.0 0.049 1.0 1.40
gmiLexGA-filt 0.851 4.0 2.788 4.0 0.043 3.0 0.139 1.0 0.049 4.0 3.20
gmiGA-wrap 0.852 1.0 2.768 2.0 0.043 4.0 0.139 4.0 0.049 2.0 2.60
gmiLexGA-wrap 0.852 3.0 2.778 3.0 0.042 2.0 0.139 3.0 0.049 3.0 2.80

Art

gmiGA-filt 0.436 3.5 6.006 3.5 0.186 4.0 0.752 3.0 0.175 3.5 3.50
gmiLexGA-filt 0.437 1.0 5.978 1.0 0.181 1.0 0.752 1.0 0.174 1.0 1.00
gmiGA-wrap 0.436 2.0 6.000 2.0 0.184 2.0 0.752 3.0 0.175 2.0 2.20
gmiLexGA-wrap 0.436 3.5 6.006 3.5 0.185 3.0 0.752 3.0 0.175 3.5 3.30

Education

gmiGA-filt 0.478 4.0 4.608 4.0 0.126 4.0 0.681 4.0 0.109 4.0 4.00
gmiLexGA-filt 0.479 2.0 4.587 3.0 0.120 2.0 0.680 2.0 0.109 3.0 2.40
gmiGA-wrap 0.479 1.0 4.560 1.0 0.120 1.0 0.680 1.0 0.108 1.0 1.00
gmiLexGA-wrap 0.478 3.0 4.585 2.0 0.123 3.0 0.681 3.0 0.109 2.0 2.60

Recreation

gmiGA-filt 0.383 2.0 5.403 2.0 0.197 4.0 0.798 2.0 0.216 2.0 2.40
gmiLexGA-filt 0.378 3.0 5.423 3.0 0.193 2.0 0.806 4.0 0.217 3.0 3.00
gmiGA-wrap 0.387 1.0 5.357 1.0 0.193 3.0 0.794 1.0 0.213 1.0 1.40
gmiLexGA-wrap 0.377 4.0 5.442 4.0 0.188 1.0 0.804 3.0 0.218 4.0 3.20

Health

gmiGA-filt 0.621 4.0 3.933 1.0 0.110 2.0 0.486 4.0 0.077 1.0 2.40
gmiLexGA-filt 0.621 1.0 3.938 4.0 0.113 4.0 0.485 1.0 0.077 4.0 2.80
gmiGA-wrap 0.621 3.0 3.935 2.0 0.111 3.0 0.485 3.0 0.077 2.0 2.60
gmiLexGA-wrap 0.621 2.0 3.936 3.0 0.109 1.0 0.485 2.0 0.077 3.0 2.20

Ent.ment

gmiGA-filt 0.528 4.0 3.470 4.0 0.153 2.0 0.649 3.0 0.132 4.0 3.40
gmiLexGA-filt 0.529 1.0 3.460 1.0 0.152 1.0 0.649 2.0 0.132 1.0 1.20
gmiGA-wrap 0.528 3.0 3.467 3.0 0.154 3.0 0.649 1.0 0.132 3.0 2.60
gmiLexGA-wrap 0.529 2.0 3.461 2.0 0.156 4.0 0.649 4.0 0.132 2.0 2.80

Computer

gmiGA-filt 0.598 4.0 4.906 4.0 0.078 1.0 0.475 3.0 0.103 4.0 3.20
gmiLexGA-filt 0.598 2.0 4.891 2.0 0.079 2.0 0.475 3.0 0.103 3.0 2.40
gmiGA-wrap 0.599 1.0 4.866 1.0 0.082 4.0 0.475 3.0 0.102 1.0 2.00
gmiLexGA-wrap 0.598 3.0 4.900 3.0 0.079 3.0 0.475 1.0 0.102 2.0 2.40

Science

gmiGA-filt 0.395 4.0 7.872 4.0 0.132 4.0 0.758 1.5 0.158 4.0 3.50
gmiLexGA-filt 0.396 1.0 7.797 1.0 0.128 1.0 0.758 1.5 0.156 1.0 1.10
gmiGA-wrap 0.396 2.0 7.842 2.0 0.129 2.0 0.758 3.5 0.157 2.0 2.30
gmiLexGA-wrap 0.395 3.0 7.863 3.0 0.132 3.0 0.758 3.5 0.157 3.0 3.10

MEAN

gmiGA-filt 3.4 2.8 2.7 3.0 2.9 2.92
gmiLexGA-filt 1.8 2.6 2.1 1.9 2.6 2.19
gmiGA-wrap 1.9 1.9 2.4 2.5 1.9 2.11
gmiLexGA-wrap 3.0 2.8 2.8 2.8 2.7 2.78
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Table 6.17: Predictive accuracy for four versions of GA-ML-CFS using mutual
information for class label weighting with two parameter optimization approaches:
wrapper-like approach (gmiGA-wrap/gmiLexGA-wrap) versus filter-like approach
(gmiGA-filt/gmiLexGA-filt) with BPMLL Classifier (individual length = 200)

Dataset Methods
Predictive Accuracy Measures and Ranking
Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

Enron

gmiGA-filt 0.564 2.0 13.300 1.0 0.088 1.0 0.390 1.0 0.098 2.0 1.40
gmiLexGA-filt 0.559 3.0 13.420 3.0 0.089 4.0 0.422 4.0 0.099 3.0 3.40
gmiGA-wrap 0.565 1.0 13.333 2.0 0.088 2.0 0.401 2.0 0.098 1.0 1.60
gmiLexGA-wrap 0.558 4.0 13.721 4.0 0.089 3.0 0.411 3.0 0.101 4.0 3.60

Medical

gmiGA-filt 0.774 4.0 2.498 4.0 0.023 4.0 0.315 4.0 0.039 4.0 4.00
gmiLexGA-filt 0.792 3.0 2.430 3.0 0.021 3.0 0.286 3.0 0.038 3.0 3.00
gmiGA-wrap 0.815 1.0 2.282 1.0 0.018 1.0 0.256 1.0 0.035 1.0 1.00
gmiLexGA-wrap 0.794 2.0 2.410 2.0 0.020 2.0 0.282 2.0 0.037 2.0 2.00

Business

gmiGA-filt 0.853 3.0 2.725 3.0 0.043 3.0 0.139 2.5 0.048 3.0 2.90
gmiLexGA-filt 0.853 4.0 2.745 4.0 0.042 2.0 0.139 2.5 0.048 4.0 3.30
gmiGA-wrap 0.854 1.0 2.715 1.0 0.043 4.0 0.139 2.5 0.048 1.0 1.90
gmiLexGA-wrap 0.854 2.0 2.721 2.0 0.042 1.0 0.139 2.5 0.048 2.0 1.90

Art

gmiGA-filt 0.436 2.0 5.999 4.0 0.191 2.0 0.752 2.5 0.175 3.0 2.70
gmiLexGA-filt 0.436 3.0 5.991 1.0 0.191 1.0 0.752 2.5 0.175 2.0 1.90
gmiGA-wrap 0.437 1.0 5.994 2.0 0.192 3.0 0.752 2.5 0.175 1.0 1.90
gmiLexGA-wrap 0.436 4.0 5.995 3.0 0.197 4.0 0.752 2.5 0.175 4.0 3.50

Education

gmiGA-filt 0.481 2.0 4.504 1.0 0.130 4.0 0.679 1.0 0.107 1.0 1.80
gmiLexGA-filt 0.479 4.0 4.598 4.0 0.119 1.0 0.681 4.0 0.109 4.0 3.40
gmiGA-wrap 0.481 1.0 4.505 2.0 0.124 3.0 0.681 2.0 0.107 2.0 2.00
gmiLexGA-wrap 0.481 3.0 4.542 3.0 0.120 2.0 0.681 3.0 0.108 3.0 2.80

Recreation

gmiGA-filt 0.378 3.0 5.563 4.0 0.215 1.0 0.804 1.0 0.220 3.0 2.40
gmiLexGA-filt 0.377 4.0 5.561 3.0 0.234 3.0 0.805 4.0 0.220 4.0 3.60
gmiGA-wrap 0.379 1.0 5.517 1.0 0.225 2.0 0.804 2.0 0.219 1.0 1.40
gmiLexGA-wrap 0.379 2.0 5.531 2.0 0.237 4.0 0.804 3.0 0.219 2.0 2.60

Health

gmiGA-filt 0.614 4.0 3.999 4.0 0.103 1.0 0.489 3.0 0.079 4.0 3.20
gmiLexGA-filt 0.616 2.0 3.893 1.0 0.116 4.0 0.489 2.0 0.075 1.0 2.00
gmiGA-wrap 0.616 3.0 3.934 3.0 0.111 2.0 0.488 1.0 0.077 3.0 2.40
gmiLexGA-wrap 0.616 1.0 3.895 2.0 0.115 3.0 0.489 4.0 0.076 2.0 2.40

Ent.ment

gmiGA-filt 0.520 3.0 3.513 3.0 0.162 1.0 0.662 3.0 0.135 3.0 2.60
gmiLexGA-filt 0.522 1.0 3.498 1.0 0.167 2.0 0.660 1.0 0.134 1.0 1.20
gmiGA-wrap 0.520 2.0 3.521 4.0 0.170 3.0 0.662 2.0 0.135 4.0 3.00
gmiLexGA-wrap 0.519 4.0 3.502 2.0 0.174 4.0 0.667 4.0 0.134 2.0 3.20

Computer

gmiGA-filt 0.597 4.0 4.883 3.0 0.084 1.0 0.475 2.5 0.103 3.0 2.70
gmiLexGA-filt 0.599 1.0 4.831 1.0 0.086 3.0 0.475 1.0 0.102 1.0 1.40
gmiGA-wrap 0.599 2.0 4.864 2.0 0.086 4.0 0.475 4.0 0.102 2.0 2.80
gmiLexGA-wrap 0.598 3.0 4.884 4.0 0.086 2.0 0.475 2.5 0.103 4.0 3.10

Science

gmiGA-filt 0.397 3.0 7.789 3.0 0.130 1.0 0.758 2.5 0.156 2.0 2.30
gmiLexGA-filt 0.397 2.0 7.771 2.0 0.134 2.0 0.758 2.5 0.156 3.0 2.30
gmiGA-wrap 0.397 1.0 7.741 1.0 0.136 4.0 0.758 2.5 0.156 1.0 1.90
gmiLexGA-wrap 0.396 4.0 7.792 4.0 0.135 3.0 0.758 2.5 0.157 4.0 3.50

MEAN

gmiGA-filt 3.0 3.0 1.9 2.3 2.8 2.60
gmiLexGA-filt 2.7 2.3 2.5 2.7 2.6 2.55
gmiGA-wrap 1.4 1.9 2.8 2.2 1.7 1.99
gmiLexGA-wrap 2.9 2.8 2.8 2.9 2.9 2.86
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Table 6.18: Predictive accuracy for four versions of GA-ML-CFS using mutual
information for class label weighting with two parameter optimization approaches:
wrapper-like approach (gmiGA-wrap/gmiLexGA-wrap) versus filter-like approach
(gmiGA-filt/gmiLexGA-filt) with BPMLL Classifier (individual length = 300)

Dataset Methods
BPMLL Classifier

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

Enron

gmiGA-filt 0.568 1.0 13.253 1.0 0.088 1.0 0.395 1.0 0.097 1.0 1.00
gmiLexGA-filt 0.568 2.0 14.012 4.0 0.092 4.0 0.421 4.0 0.102 4.0 3.60
gmiGA-wrap 0.563 3.0 13.640 2.0 0.091 3.0 0.415 2.0 0.100 2.0 2.40
gmiLexGA-wrap 0.562 4.0 13.750 3.0 0.091 2.0 0.419 3.0 0.100 3.0 3.00

Medical

gmiGA-filt 0.796 4.0 2.344 3.0 0.021 4.0 0.282 4.0 0.036 4.0 3.80
gmiLexGA-filt 0.830 1.0 2.354 4.0 0.016 1.0 0.221 1.0 0.036 3.0 2.00
gmiGA-wrap 0.825 2.0 2.272 2.0 0.017 3.0 0.235 2.0 0.034 2.0 2.20
gmiLexGA-wrap 0.821 3.0 2.209 1.0 0.017 2.0 0.244 3.0 0.033 1.0 2.00

Business

gmiGA-filt 0.842 4.0 2.841 4.0 0.052 4.0 0.139 2.5 0.052 4.0 3.70
gmiLexGA-filt 0.856 1.0 2.685 1.0 0.042 3.0 0.139 2.5 0.047 1.0 1.70
gmiGA-wrap 0.853 3.0 2.762 3.0 0.034 1.0 0.139 2.5 0.049 3.0 2.50
gmiLexGA-wrap 0.854 2.0 2.719 2.0 0.042 2.0 0.139 2.5 0.048 2.0 2.10

Art

gmiGA-filt 0.521 1.0 5.256 1.0 0.060 1.0 0.607 1.0 0.144 1.0 1.00
gmiLexGA-filt 0.436 3.0 5.994 3.0 0.205 2.0 0.752 2.5 0.175 3.0 2.70
gmiGA-wrap 0.167 4.0 10.195 4.0 0.626 4.0 0.973 4.0 0.347 4.0 4.00
gmiLexGA-wrap 0.437 2.0 5.992 2.0 0.207 3.0 0.752 2.5 0.175 2.0 2.30

Education

gmiGA-filt 0.472 4.0 4.983 4.0 0.169 4.0 0.681 3.5 0.117 4.0 3.90
gmiLexGA-filt 0.480 3.0 4.582 3.0 0.141 3.0 0.681 2.0 0.108 3.0 2.80
gmiGA-wrap 0.541 1.0 3.914 1.0 0.041 1.0 0.604 1.0 0.092 1.0 1.00
gmiLexGA-wrap 0.481 2.0 4.555 2.0 0.139 2.0 0.681 3.5 0.108 2.0 2.30

Recreation

gmiGA-filt 0.375 3.0 5.682 2.0 0.236 1.0 0.805 3.5 0.224 2.0 2.30
gmiLexGA-filt 0.376 2.0 5.687 3.0 0.321 3.0 0.804 1.0 0.225 3.0 2.40
gmiGA-wrap 0.370 4.0 6.133 4.0 0.481 4.0 0.805 3.5 0.242 4.0 3.90
gmiLexGA-wrap 0.378 1.0 5.632 1.0 0.293 2.0 0.804 2.0 0.223 1.0 1.40

Health

gmiGA-filt 0.491 4.0 3.696 1.0 0.235 4.0 0.699 4.0 0.145 4.0 3.40
gmiLexGA-filt 0.612 2.0 3.880 2.0 0.120 1.0 0.489 1.0 0.075 1.0 1.40
gmiGA-wrap 0.607 3.0 4.094 4.0 0.132 3.0 0.489 3.0 0.081 3.0 3.20
gmiLexGA-wrap 0.612 1.0 3.883 3.0 0.123 2.0 0.489 2.0 0.075 2.0 2.00

Ent.ment

gmiGA-filt 0.598 1.0 4.911 3.0 0.087 1.0 0.475 1.5 0.104 1.0 1.50
gmiLexGA-filt 0.474 4.0 3.848 2.0 0.263 4.0 0.717 4.0 0.151 4.0 3.60
gmiGA-wrap 0.598 2.0 4.914 4.0 0.091 2.0 0.475 1.5 0.104 2.0 2.30
gmiLexGA-wrap 0.484 3.0 3.773 1.0 0.241 3.0 0.705 3.0 0.148 3.0 2.60

Computer

gmiGA-filt 0.396 4.0 7.815 4.0 0.129 3.0 0.758 3.5 0.157 4.0 3.70
gmiLexGA-filt 0.595 2.0 4.935 2.0 0.093 1.0 0.475 1.5 0.104 2.0 1.70
gmiGA-wrap 0.396 3.0 7.790 3.0 0.133 4.0 0.758 3.5 0.157 3.0 3.30
gmiLexGA-wrap 0.596 1.0 4.926 1.0 0.094 2.0 0.475 1.5 0.104 1.0 1.30

Science

gmiGA-filt 0.395 3.0 7.984 3.0 0.184 4.0 0.758 2.5 0.161 4.0 3.30
gmiLexGA-filt 0.395 1.5 7.893 2.0 0.162 2.0 0.758 2.5 0.159 2.0 2.00
gmiGA-wrap 0.395 1.5 7.987 4.0 0.182 3.0 0.758 2.5 0.161 3.0 2.80
gmiLexGA-wrap 0.395 4.0 7.864 1.0 0.159 1.0 0.758 2.5 0.159 1.0 1.90

MEAN

gmiGA-filt 2.9 2.6 2.7 2.7 2.9 2.76
gmiLexGA-filt 2.2 2.6 2.4 2.2 2.6 2.39
gmiGA-wrap 2.7 3.1 2.8 2.6 2.7 2.76
gmiLexGA-wrap 2.3 1.7 2.1 2.6 1.8 2.09
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Table 6.19: Predictive accuracy for four versions of GA-ML-CFS using mutual
information for class label weighting with two parameter optimization approaches:
wrapper-like approach (gmiGA-wrap/gmiLexGA-wrap) versus filter-like approach
(gmiGA-filt/gmiLexGA-filt) with BPMLL Classifier (individual length = 400)

Dataset Methods
BPMLL Classifier
Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

Enron

gmiGA-filt 0.567 1.0 13.380 1.0 0.088 1.0 0.405 1.0 0.098 1.0 1.00
gmiLexGA-filt 0.563 3.0 14.320 3.0 0.093 3.0 0.427 3.0 0.105 3.0 3.00
gmiGA-wrap 0.566 2.0 13.995 2.0 0.092 2.0 0.428 4.0 0.102 2.0 2.40
gmiLexGA-wrap 0.562 4.0 14.606 4.0 0.095 4.0 0.421 2.0 0.107 4.0 3.60

Medical

gmiGA-filt 0.808 4.0 2.387 4.0 0.018 4.0 0.263 3.0 0.037 4.0 3.80
gmiLexGA-filt 0.819 2.0 2.334 3.0 0.017 3.0 0.242 2.0 0.036 3.0 2.60
gmiGA-wrap 0.809 3.0 2.321 2.0 0.017 2.0 0.267 4.0 0.035 2.0 2.60
gmiLexGA-wrap 0.835 1.0 2.201 1.0 0.016 1.0 0.215 1.0 0.033 1.0 1.00

Business

gmiGA-filt 0.856 4.0 2.677 4.0 0.038 1.0 0.139 1.0 0.047 4.0 2.80
gmiLexGA-filt 0.856 3.0 2.657 3.0 0.042 2.0 0.139 3.0 0.047 3.0 2.80
gmiGA-wrap 0.858 1.0 2.630 1.0 0.042 4.0 0.139 3.0 0.046 1.0 2.00
gmiLexGA-wrap 0.857 2.0 2.641 2.0 0.042 3.0 0.139 3.0 0.046 2.0 2.40

Art

gmiGA-filt 0.436 1.0 5.999 1.0 0.207 1.0 0.752 2.0 0.175 1.0 1.20
gmiLexGA-filt 0.434 3.0 6.139 3.0 0.284 3.0 0.752 4.0 0.180 3.0 3.20
gmiGA-wrap 0.432 4.0 6.209 4.0 0.319 4.0 0.752 2.0 0.183 4.0 3.60
gmiLexGA-wrap 0.436 2.0 6.045 2.0 0.260 2.0 0.752 2.0 0.177 2.0 2.00

Education

gmiGA-filt 0.480 1.0 4.560 1.0 0.122 1.0 0.681 2.5 0.108 1.0 1.30
gmiLexGA-filt 0.476 4.0 4.683 4.0 0.148 4.0 0.681 2.5 0.111 4.0 3.70
gmiGA-wrap 0.479 2.0 4.616 2.0 0.140 2.0 0.681 2.5 0.109 2.0 2.10
gmiLexGA-wrap 0.478 3.0 4.657 3.0 0.146 3.0 0.681 2.5 0.110 3.0 2.90

Recreation

gmiGA-filt 0.372 4.0 5.885 2.0 0.376 2.0 0.805 2.5 0.233 2.0 2.50
gmiLexGA-filt 0.373 3.0 5.906 3.0 0.388 3.0 0.805 2.5 0.235 4.0 3.10
gmiGA-wrap 0.374 1.0 5.831 1.0 0.368 1.0 0.805 2.5 0.232 1.0 1.30
gmiLexGA-wrap 0.373 2.0 5.920 4.0 0.402 4.0 0.805 2.5 0.235 3.0 3.10

Health

gmiGA-filt 0.619 1.0 3.818 2.0 0.114 1.0 0.489 4.0 0.073 2.0 2.00
gmiLexGA-filt 0.613 3.0 3.914 3.0 0.141 3.0 0.489 1.0 0.076 3.0 2.60
gmiGA-wrap 0.618 2.0 3.814 1.0 0.118 2.0 0.489 2.0 0.073 1.0 1.60
gmiLexGA-wrap 0.609 4.0 3.965 4.0 0.142 4.0 0.489 3.0 0.077 4.0 3.80

Ent.ment

gmiGA-filt 0.476 1.0 3.857 1.0 0.262 1.0 0.712 1.0 0.152 1.0 1.00
gmiLexGA-filt 0.467 4.0 3.986 3.0 0.283 3.0 0.722 4.0 0.157 3.0 3.40
gmiGA-wrap 0.469 2.0 4.021 4.0 0.301 4.0 0.715 2.0 0.157 4.0 3.20
gmiLexGA-wrap 0.467 3.0 3.953 2.0 0.276 2.0 0.722 3.0 0.155 2.0 2.40

Computer

gmiGA-filt 0.595 1.0 4.954 1.0 0.091 1.0 0.475 2.5 0.104 1.0 1.30
gmiLexGA-filt 0.580 3.0 5.097 2.0 0.128 4.0 0.475 2.5 0.109 2.0 2.70
gmiGA-wrap 0.583 2.0 5.131 4.0 0.126 3.0 0.475 2.5 0.110 3.0 2.90
gmiLexGA-wrap 0.580 4.0 5.119 3.0 0.123 2.0 0.475 2.5 0.110 4.0 3.10

Science

gmiGA-filt 0.395 1.0 7.886 1.0 0.154 1.0 0.758 2.5 0.159 1.0 1.30
gmiLexGA-filt 0.393 3.0 8.109 2.0 0.246 4.0 0.758 2.5 0.165 3.0 2.90
gmiGA-wrap 0.393 4.0 8.133 4.0 0.235 2.0 0.758 2.5 0.165 4.0 3.30
gmiLexGA-wrap 0.393 2.0 8.117 3.0 0.246 3.0 0.758 2.5 0.164 2.0 2.50

MEAN

gmiGA-filt 1.9 1.8 1.4 2.2 1.8 1.82
gmiLexGA-filt 3.1 2.9 3.2 2.7 3.1 3.00
gmiGA-wrap 2.3 2.5 2.6 2.7 2.4 2.50
gmiLexGA-wrap 2.7 2.8 2.8 2.4 2.7 2.68
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Table 6.20: Summary of average ranking (AR) and the number and percentage of
selected features (Sel.F) for four versions of GA-ML-CFS using mutual information
for class label weighting with two parameter optimization approaches: wrapper-
like approach (gmiGA-wrap/gmiLexGA-wrap) versus filter-like approach (gmiGA-
filt/gmiLexGA-filt) when using BPMLL as the classifier

ind.length
gmiGA-filt gmiLexGA-filt gmiGA-wrap gmiLexGA-wrap

Sel.F % AR Sel.F % AR Sel.F % AR Sel.F % AR
100 26.60 26.60 2.92 25.34 25.34 2.19 26.94 26.94 2.11 25.76 25.76 2.78
200 39.44 19.72 2.60 50.68 25.34 2.55 48.58 24.29 1.99 50.74 25.37 2.86
300 54.44 18.15 2.76 82.64 27.55 2.39 73.96 24.65 2.76 80.90 26.97 2.09
400 73.38 18.35 1.82 116.78 29.20 3.00 108.12 27.03 2.50 116.50 29.13 2.68
Overall 48.47 20.70 2.53 68.86 26.86 2.53 64.40 25.73 2.34 68.48 26.81 2.60

Table 6.21: Summary of overall average ranking (AR) across four individ-
ual lengths for four versions of GA-ML-CFS using mutual information for
class label weighting with two parameter optimization approaches: wrapper-
like approach (gmiGA-wrap/gmiLexGA-wrap) versus filter-like approach (gmiGA-
filt/gmiLexGA-filt) when using BPMLL as the classifier

Dataset Overall Average Rank (AR) across 4 individual lengths
gmiGA-filt gmiLexGA-filt gmiGA-wrap gmiLexGA-wrap

Enron 1.55(1) 2.95(3) 2.45(2) 3.05(4)
Medical 3.55(4) 2.65(3) 1.70(1) 2.10(2)
Business 2.70(3) 2.75(4) 2.25(1) 2.30(2)
Art 2.10(1) 2.20(2) 2.93(4) 2.78(3)
Education 2.75(3) 3.08(4) 1.53(1) 2.65(2)
Recreation 2.40(2) 3.03(4) 2.00(1) 2.58(3)
Health 2.75(4) 2.20(1) 2.45(2) 2.60(3)
Ent.ment 2.13(1) 2.35(2) 2.78(4) 2.75(3)
Computer 2.73(3) 2.05(1) 2.75(4) 2.48(2)
Science 2.60(3) 2.08(1) 2.58(2) 2.75(4)
Average 2.53(2.5) 2.53(2.5) 2.34(2.2) 2.6(2.8)
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Figure 6.2: Overall average ranking (AR) for four versions of GA-ML-CFS plotted
against the average number of selected features across all datasets and feature
space sizes, when using BPMLL as the classifier

The overall average rank of each version of GA-ML-CFS for each dataset (av-

eraged across the 4 GA individual lengths) is shown in Table 6.21. The first value

in each cell is the actual average rank, whilst the value between brackets is the

“rank of the average rank”. This later value was used in the Friedman and Holm’s

test (as discussed at the end of Subsection 6.7.1). There are no significant differ-

ences among the four GA-ML-CFS algorithms across the 10 evaluation datasets,

according to the Friedman test at the 0.05 significance level.
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6.8 Results Comparing the Best Version of GA-

ML-CFS (gmiGA-wrap) and Other Multi-

Label Feature Selection Methods

6.8.1 Methods Being Compared and Experimental Method-

ology

In this Section we compare the best version of our GA-ML-CFS method accord-

ing to the results reported in previous Section, namely gmiGA-wrap, with several

other multi-label feature selection methods, namely ML-CFS using mutual in-

formation for class label weighting (gmiML-CFS), Relief for Multi-Label feature

selection (RFML) and three different baseline approaches: Binary Relevance (BR),

Correlation-Based Feature Selection with the union operator (CFS-U) and No fea-

ture selection (NoFS). Since the datasets have very large number of features (from

1,001 to 37,187), for all approaches, the univariate filter approach was used for all

datasets, as described in Section 6.2.7, in order to reduce the feature space size

and reduce computational time.

Recall that gmiGA-wrap is the GA-ML-CFS version using mutual information

for class label weighting and absolute value of correlation coefficient, and with

parameter setting optimized by the wrapper-like approach.

gmiML-CFS is the hill-climbing based ML-CFS proposed in Chapter 4. Recall

that gmiML-CFS takes label dependences into account. We used mutual informa-

tion (MI) to measure the degree of dependence between each pair of labels. The

details of this approach are described in Section 4.2.2.

The RFML method is a well-known multi-label feature selection method pro-

posed in [105], as discussed in Section 3.4. We used the RFML implementation

190



kindly provided by the authors; with default parameter setting. After running

RFML and obtaining its feature ranking, we selected the top k features in the

ranking, where k is the same number of features selected by gmiGA-wrap.

Binary Relevance (BR) is provided in the multi-label classification repository.

This approach was discussed in Section 3.1 and it essentially consists of the base

classifier (in our case kNN and multilayer perceptron which are provided on the

Weka website) without any feature selection in a pre-processing step. Each base

classifier was used with its default parameter setting.

The CFS-U approach consists of running a conventional single-label CFS method

for selecting a feature subset for each class label separately and then returning the

union of those selected feature subsets as the set of features to be given to the

multi-label classification algorithm. The CFS implementation used in our experi-

ments was the single-label CFSSubsetEval method in the well-known Weka data

mining tool [44]. This method was used with its default parameters, and it evalu-

ates candidate feature subsets according to Equation (4.1).

In the NoFS approach, we give all input features to the classifier. Recall that

the NoFS and BR approaches still involve some initial feature selection based on

the univariate approach, based on Equation (4.3), since that univariate approach

was applied to all datasets in a pre-processing step, regardless of whether or not a

feature selection method is applied.

Similarly to the previous Sections of results in this Chapter, in the next two Sec-

tions we report results separately for the experiments using ML-kNN and BPMLL

as the classifier.
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6.8.2 Results for the Best Version of GA-ML-CFS (gmiGA-

wrap) and Other Multi-Label Feature Selection Meth-

ods using the ML-kNN Classifier

The results are shown in Tables 6.22 - 6.25 for feature space size varying from 100

to 400, respectively. The meanings of the table columns are as explained in the

beginning of Section 6.7.1. In Table 6.22, when the feature space size equals to 100,

CFS-U obtained the best overall average rank (2.25); while gmiGA-wrap obtained

the second best overall average rank (2.66) and outperformed NoFS, gmiML-CFS,

RFML and BR, which obtained overall average rank 2.79, 3.12, 4.64 and 5.54,

respectively.

In Table 6.23, the best method was again CFS-U, with an overall average rank

of 1.86. The second best method was again gmiGA-wrap with overall average rank

= 2.52, which outperformed NoFS, RFML, gmiML-CFS, and BR which obtained

2.71, 3.93, 4.55 and 5.43 overall average rank, respectively.

In Table 6.24 the best method was gmiGA-wrap, with an overall average rank

of 2.20. This method outperformed gmiML-CFS, CFS-U, NoFS, RFML and BR,

which obtained overall average rank 2.35, 2.45, 3.60, 4.52 and 5.88, respectively.

In table 6.25 the best method was CFS-U with an overall average rank of 2.25;

while the second best method was gmiGA-wrap (2.31), which outperformed NoFS,

BR and RFML which obtained average ranks 2.86, 3.36, 4.22 and 6.00, respectively.

Table 6.26 reports the summary of results in terms of the overall average rank-

ing and the number of selected features of gmiGA-wrap and multi-label feature

selection approaches when using MLkNN as the classifier. In each table row, the

Average Rank (AR) values are the same as reported in the last row of the Table for

192



Table 6.22: Values of five multi-label predictive accuracy measures for ML-kNN
classifier with six different multi-label feature selection methods - feature space
size = 100

Dataset Methods
Predictive Accuracy Measures and Ranking

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

Enron

gmiGA-wrap 0.584 3.0 13.763 4.0 0.057 3.0 0.394 4.0 0.100 4.0 3.60
gmi-ML-CFS 0.583 4.0 13.679 3.0 0.057 1.0 0.389 2.0 0.100 3.0 2.60
NoFS 0.584 2.0 13.380 1.0 0.058 4.0 0.396 5.0 0.097 1.0 2.60
BR(kNN) 0.547 6.0 14.109 6.0 0.098 6.0 0.413 6.0 0.106 6.0 6.00
CFS-U 0.587 1.0 13.501 2.0 0.057 2.0 0.390 3.0 0.098 2.0 2.00
RFML 0.581 5.0 13.883 5.0 0.059 5.0 0.385 1.0 0.103 5.0 4.20

Medical

gmiGA-wrap 0.793 2.0 3.111 2.0 0.015 1.0 0.256 1.0 0.050 2.0 1.60
gmi-ML-CFS 0.760 4.0 3.372 4.0 0.017 3.0 0.301 4.5 0.055 4.0 3.90
NoFS 0.717 6.0 3.614 6.0 0.019 6.0 0.374 6.0 0.062 6.0 6.00
BR(kNN) 0.796 1.0 2.299 1.0 0.017 4.0 0.281 2.0 0.037 1.0 1.80
CFS-U 0.758 5.0 3.505 5.0 0.018 5.0 0.301 4.5 0.059 5.0 4.90
RFML 0.767 3.0 3.304 3.0 0.017 2.0 0.293 3.0 0.054 3.0 2.80

Business

gmiGA-wrap 0.874 2.0 2.386 4.0 0.028 2.0 0.124 3.0 0.043 4.0 3.00
gmi-ML-CFS 0.874 3.0 2.371 2.0 0.028 4.0 0.123 2.0 0.043 2.5 2.70
NoFS 0.874 4.0 2.369 1.0 0.028 3.0 0.124 4.0 0.043 1.0 2.60
BR(kNN) 0.854 6.0 2.725 6.0 0.042 6.0 0.139 6.0 0.048 6.0 6.00
CFS-U 0.875 1.0 2.379 3.0 0.028 1.0 0.122 1.0 0.043 2.5 1.70
RFML 0.870 5.0 2.439 5.0 0.029 5.0 0.129 5.0 0.044 5.0 5.00

Art

gmiGA-wrap 0.527 4.0 5.409 4.0 0.059 2.0 0.589 3.0 0.150 4.0 3.40
gmi-ML-CFS 0.528 3.0 5.398 3.0 0.059 1.0 0.588 2.0 0.150 3.0 2.40
NoFS 0.529 2.0 5.306 2.0 0.059 4.0 0.592 4.0 0.146 2.0 2.80
BR(kNN) 0.432 6.0 5.971 5.0 0.229 6.0 0.752 6.0 0.176 5.0 5.60
CFS-U 0.533 1.0 5.272 1.0 0.059 3.0 0.586 1.0 0.145 1.0 1.40
RFML 0.436 5.0 6.127 6.0 0.064 5.0 0.748 5.0 0.178 6.0 5.40

Education

gmiGA-wrap 0.544 2.0 3.924 2.0 0.042 3.0 0.600 2.0 0.092 1.0 2.00
gmi-ML-CFS 0.480 5.0 4.532 5.0 0.134 5.0 0.679 5.0 0.107 5.0 5.00
NoFS 0.543 3.0 3.938 3.0 0.041 1.5 0.602 3.0 0.093 3.0 2.70
BR(kNN) 0.476 6.0 4.645 6.0 0.145 6.0 0.681 6.0 0.110 6.0 6.00
CFS-U 0.545 1.0 3.921 1.0 0.041 1.5 0.597 1.0 0.092 2.0 1.30
RFML 0.486 4.0 4.420 4.0 0.045 4.0 0.679 4.0 0.106 4.0 4.00

Recreation

gmiGA-wrap 0.536 2.0 4.286 1.0 0.059 2.0 0.603 4.0 0.157 1.0 2.00
gmi-ML-CFS 0.535 3.0 4.349 4.0 0.059 3.0 0.601 3.0 0.159 4.0 3.40
NoFS 0.536 1.0 4.333 3.0 0.058 1.0 0.595 1.0 0.157 3.0 1.80
BR(kNN) 0.376 6.0 5.603 6.0 0.346 6.0 0.805 6.0 0.222 6.0 6.00
CFS-U 0.535 4.0 4.302 2.0 0.059 4.0 0.598 2.0 0.157 2.0 2.80
RFML 0.396 5.0 5.301 5.0 0.065 5.0 0.783 5.0 0.205 5.0 5.00

Health

gmiGA-wrap 0.631 4.0 3.787 4.0 0.049 4.0 0.478 4.0 0.075 2.0 3.60
gmi-ML-CFS 0.634 1.0 3.747 1.0 0.049 3.0 0.476 2.0 0.075 4.0 2.20
NoFS 0.631 3.0 3.784 3.0 0.049 1.5 0.476 1.0 0.075 3.0 2.30
BR(kNN) 0.616 6.0 4.062 6.0 0.129 6.0 0.489 6.0 0.078 6.0 6.00
CFS-U 0.632 2.0 3.767 2.0 0.049 1.5 0.477 3.0 0.075 1.0 1.90
RFML 0.625 5.0 3.905 5.0 0.050 5.0 0.482 5.0 0.078 5.0 5.00

Ent.ment

gmiGA-wrap 0.600 1.0 3.151 2.0 0.055 2.0 0.539 2.0 0.118 3.0 2.00
gmi-ML-CFS 0.593 3.0 3.158 3.0 0.056 3.0 0.548 3.0 0.119 4.0 3.20
NoFS 0.597 2.0 3.135 1.0 0.056 4.0 0.537 1.0 0.116 1.0 1.80
BR(kNN) 0.465 6.0 3.984 6.0 0.281 6.0 0.715 6.0 0.159 6.0 6.00
CFS-U 0.583 4.0 3.194 4.0 0.055 1.0 0.548 4.0 0.118 2.0 3.00
RFML 0.486 5.0 3.925 5.0 0.065 5.0 0.690 5.0 0.155 5.0 5.00

Computer

gmiGA-wrap 0.625 3.0 4.393 3.0 0.040 1.0 0.442 1.0 0.093 3.0 2.20
gmi-ML-CFS 0.623 4.0 4.416 4.0 0.040 2.0 0.450 4.0 0.094 4.0 3.60
NoFS 0.630 2.0 4.289 1.0 0.040 3.5 0.443 3.0 0.091 2.0 2.30
BR(kNN) 0.599 6.0 4.840 6.0 0.112 6.0 0.475 6.0 0.101 6.0 6.00
CFS-U 0.631 1.0 4.291 2.0 0.040 3.5 0.442 2.0 0.091 1.0 1.90
RFML 0.606 5.0 4.591 5.0 0.043 5.0 0.474 5.0 0.099 5.0 5.00

Science

gmiGA-wrap 0.458 3.0 6.937 3.0 0.035 4.0 0.672 3.0 0.136 3.0 3.20
gmi-ML-CFS 0.463 1.0 6.965 4.0 0.034 1.0 0.662 1.0 0.137 4.0 2.20
NoFS 0.456 4.0 6.852 2.0 0.035 3.0 0.676 4.0 0.134 2.0 3.00
BR(kNN) 0.391 6.0 8.112 6.0 0.236 6.0 0.758 6.0 0.165 6.0 6.00
CFS-U 0.462 2.0 6.812 1.0 0.035 2.0 0.668 2.0 0.133 1.0 1.60
RFML 0.415 5.0 7.258 5.0 0.036 5.0 0.729 5.0 0.144 5.0 5.00

MEAN

gmiGA-wrap 2.6 2.9 2.4 2.7 2.7 2.66
gmi-ML-CFS 3.1 3.3 2.6 2.9 3.8 3.12
NoFS 2.9 2.3 3.2 3.2 2.4 2.79
BR(kNN) 5.5 5.4 5.8 5.6 5.4 5.54
CFS-U 2.2 2.3 2.5 2.4 2.0 2.25
RFML 4.7 4.8 4.6 4.3 4.8 4.64
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Table 6.23: Values of five multi-label predictive accuracy measures for ML-kNN
classifier with six different multi-label feature selection methods - feature space
size = 200

Dataset Methods
Predictive Accuracy Measures and Ranking

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

Enron

gmiGA-wrap 0.585 3.0 13.570 5.0 0.058 2.0 0.397 4.0 0.098 4.0 3.60
gmi-ML-CFS 0.559 6.0 13.293 1.0 0.087 5.0 0.405 5.0 0.098 3.0 4.00
NoFS 0.596 1.0 13.404 3.5 0.057 1.0 0.373 1.0 0.097 2.0 1.70
BR(kNN) 0.566 5.0 14.288 6.0 0.094 6.0 0.413 6.0 0.103 6.0 5.80
CFS-U 0.589 2.0 13.325 2.0 0.058 3.0 0.383 2.0 0.096 1.0 2.00
RFML 0.582 4.0 13.404 3.5 0.059 4.0 0.394 3.0 0.101 5.0 3.90

Medical

gmiGA-wrap 0.797 4.0 3.017 4.0 0.016 3.0 0.254 4.0 0.048 4.0 3.80
gmi-ML-CFS 0.820 2.0 2.772 2.0 0.015 1.0 0.225 1.0 0.045 2.0 1.60
NoFS 0.745 6.0 3.557 6.0 0.019 6.0 0.321 6.0 0.060 6.0 6.00
BR(kNN) 0.825 1.0 2.228 1.0 0.016 2.0 0.231 2.0 0.033 1.0 1.40
CFS-U 0.769 5.0 3.242 5.0 0.018 5.0 0.292 5.0 0.053 5.0 5.00
RFML 0.802 3.0 2.890 3.0 0.017 4.0 0.251 3.0 0.045 3.0 3.20

Business

gmiGA-wrap 0.873 3.0 2.331 3.0 0.028 4.0 0.126 4.0 0.042 4.0 3.60
gmi-ML-CFS 0.853 5.0 2.751 6.0 0.041 5.0 0.139 5.0 0.049 6.0 5.40
NoFS 0.876 2.0 2.299 2.0 0.028 1.5 0.124 2.0 0.041 2.0 1.90
BR(kNN) 0.853 6.0 2.726 5.0 0.042 6.0 0.139 6.0 0.049 5.0 5.60
CFS-U 0.877 1.0 2.262 1.0 0.028 1.5 0.124 1.0 0.040 1.0 1.10
RFML 0.873 4.0 2.352 4.0 0.028 3.0 0.126 3.0 0.042 3.0 3.40

Art

gmiGA-wrap 0.536 2.0 5.324 3.0 0.059 2.0 0.578 2.0 0.147 3.0 2.40
gmi-ML-CFS 0.437 5.0 5.985 4.0 0.185 5.0 0.752 5.5 0.175 4.0 4.70
NoFS 0.519 3.0 5.319 2.0 0.059 3.0 0.605 3.0 0.147 2.0 2.60
BR(kNN) 0.414 6.0 7.523 6.0 0.557 6.0 0.752 5.5 0.226 6.0 5.90
CFS-U 0.541 1.0 5.190 1.0 0.058 1.0 0.572 1.0 0.141 1.0 1.00
RFML 0.442 4.0 6.081 5.0 0.064 4.0 0.735 4.0 0.176 5.0 4.40

Education

gmiGA-wrap 0.551 1.0 3.896 3.0 0.041 2.0 0.588 1.0 0.092 3.0 2.00
gmi-ML-CFS 0.480 5.0 4.477 5.0 0.142 5.0 0.681 5.5 0.107 5.0 5.10
NoFS 0.544 3.0 3.895 2.0 0.041 3.0 0.602 3.0 0.092 2.0 2.60
BR(kNN) 0.467 6.0 5.435 6.0 0.271 6.0 0.681 5.5 0.125 6.0 5.90
CFS-U 0.549 2.0 3.876 1.0 0.041 1.0 0.592 2.0 0.091 1.0 1.40
RFML 0.489 4.0 4.352 4.0 0.044 4.0 0.673 4.0 0.105 4.0 4.00

Recreation

gmiGA-wrap 0.572 1.0 4.171 2.0 0.055 1.0 0.545 2.0 0.151 1.0 1.40
gmi-ML-CFS 0.379 5.0 5.530 5.0 0.206 5.0 0.803 5.0 0.219 5.0 5.00
NoFS 0.553 3.0 4.321 3.0 0.056 3.0 0.570 3.0 0.158 3.0 3.00
BR(kNN) 0.314 6.0 7.562 6.0 0.559 6.0 0.803 6.0 0.311 6.0 6.00
CFS-U 0.571 2.0 4.166 1.0 0.055 2.0 0.540 1.0 0.152 2.0 1.60
RFML 0.426 4.0 4.931 4.0 0.064 4.0 0.745 4.0 0.189 4.0 4.00

Health

gmiGA-wrap 0.687 1.0 3.411 2.0 0.042 1.0 0.387 1.0 0.064 2.0 1.40
gmi-ML-CFS 0.617 5.0 3.976 5.0 0.113 5.0 0.489 5.5 0.077 5.0 5.10
NoFS 0.673 3.0 3.453 3.0 0.044 3.0 0.412 4.0 0.065 3.0 3.20
BR(kNN) 0.607 6.0 4.037 6.0 0.158 6.0 0.489 5.5 0.081 6.0 5.90
CFS-U 0.684 2.0 3.380 1.0 0.043 2.0 0.402 2.0 0.063 1.0 1.60
RFML 0.669 4.0 3.573 4.0 0.045 4.0 0.412 3.0 0.067 4.0 3.80

Ent.ment

gmiGA-wrap 0.618 2.0 3.056 3.0 0.054 1.0 0.498 1.0 0.111 2.0 1.80
gmi-ML-CFS 0.506 4.0 3.533 4.0 0.172 5.0 0.688 5.0 0.135 4.0 4.40
NoFS 0.624 1.0 2.982 1.0 0.056 3.0 0.500 2.0 0.108 1.0 1.60
BR(kNN) 0.451 6.0 4.843 6.0 0.460 6.0 0.715 6.0 0.192 6.0 6.00
CFS-U 0.613 3.0 3.049 2.0 0.054 2.0 0.513 3.0 0.111 3.0 2.60
RFML 0.489 5.0 3.887 5.0 0.065 4.0 0.688 4.0 0.152 5.0 4.60

Computer

gmiGA-wrap 0.643 3.0 4.178 3.0 0.038 3.0 0.430 3.0 0.089 3.0 3.00
gmi-ML-CFS 0.601 5.0 4.810 5.0 0.084 5.0 0.475 5.5 0.101 5.0 5.10
NoFS 0.647 2.0 4.125 2.0 0.038 2.0 0.424 2.0 0.087 1.5 1.90
BR(kNN) 0.589 6.0 5.099 6.0 0.160 6.0 0.475 5.5 0.110 6.0 5.90
CFS-U 0.648 1.0 4.115 1.0 0.038 1.0 0.423 1.0 0.087 1.5 1.10
RFML 0.609 4.0 4.456 4.0 0.042 4.0 0.474 4.0 0.095 4.0 4.00

Science

gmiGA-wrap 0.482 2.0 6.792 3.0 0.034 2.0 0.638 1.0 0.133 3.0 2.20
gmi-ML-CFS 0.396 5.0 7.811 5.0 0.129 5.0 0.758 5.5 0.157 5.0 5.10
NoFS 0.476 3.0 6.617 2.0 0.034 3.0 0.654 3.0 0.129 2.0 2.60
BR(kNN) 0.386 6.0 8.877 6.0 0.490 6.0 0.758 5.5 0.182 6.0 5.90
CFS-U 0.487 1.0 6.563 1.0 0.034 1.0 0.640 2.0 0.127 1.0 1.20
RFML 0.441 4.0 7.070 4.0 0.036 4.0 0.690 4.0 0.140 4.0 4.00

MEAN

gmiGA-wrap 2.2 3.1 2.1 2.3 2.9 2.52
gmi-ML-CFS 4.7 4.2 4.6 4.9 4.4 4.55
NoFS 2.7 2.7 2.9 2.9 2.5 2.71
BR(kNN) 5.4 5.4 5.6 5.4 5.4 5.43
CFS-U 2.0 1.6 2.0 2.0 1.8 1.86
RFML 4.0 4.1 3.9 3.6 4.1 3.93
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Table 6.24: Values of five multi-label predictive accuracy measures for ML-kNN
classifier with six different multi-label feature selection methods - feature space
size = 300

Dataset Methods
Predictive Accuracy Measures and Ranking

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

Enron

gmiGA-wrap 0.590 1.0 13.391 1.0 0.05702 1.0 0.382 1.0 0.098 1.0 1.00
gmi-ML-CFS 0.581 2.0 13.432 2.0 0.058 2.0 0.406 5.0 0.098 2.0 2.60
NoFS 0.567 4.0 13.629 5.0 0.059 5.0 0.404 4.0 0.100 5.0 4.60
BR(kNN) 0.554 6.0 14.808 6.0 0.147 6.0 0.508 6.0 0.113 6.0 6.00
CFS-U 0.567 5.0 13.584 4.0 0.058 3.0 0.396 2.0 0.100 3.0 3.40
RFML 0.577 3.0 13.560 3.0 0.059 4.0 0.397 3.0 0.100 4.0 3.40

Medical

gmiGA-wrap 0.805 3.0 2.899 4.0 0.01622 1.0 0.245 3.0 0.046 3.0 2.80
gmi-ML-CFS 0.819 1.0 2.831 3.0 0.016 2.0 0.225 1.0 0.044 2.0 1.80
NoFS 0.738 5.0 3.578 6.0 0.019 5.0 0.336 5.0 0.060 6.0 5.40
BR(kNN) 0.694 6.0 2.816 2.0 0.028 6.0 0.411 6.0 0.047 4.0 4.80
CFS-U 0.776 4.0 3.222 5.0 0.018 4.0 0.292 4.0 0.052 5.0 4.40
RFML 0.815 2.0 2.766 1.0 0.017 3.0 0.233 2.0 0.043 1.0 1.80

Business

gmiGA-wrap 0.875 4.0 2.294 4.0 0.0283 4.0 0.126 3.0 0.041 3.0 3.60
gmi-ML-CFS 0.876 3.0 2.292 3.0 0.028 3.0 0.127 4.0 0.040 1.5 2.90
NoFS 0.876 2.0 2.288 2.0 0.028 1.0 0.124 2.0 0.041 4.0 2.20
BR(kNN) 0.854 6.0 2.736 6.0 0.044 6.0 0.139 6.0 0.049 6.0 6.00
CFS-U 0.877 1.0 2.280 1.0 0.028 2.0 0.123 1.0 0.040 1.5 1.30
RFML 0.871 5.0 2.339 5.0 0.029 5.0 0.131 5.0 0.043 5.0 5.00

Art

gmiGA-wrap 0.533 3.0 5.325 4.0 0.0585 2.0 0.584 3.0 0.146 4.0 3.20
gmi-ML-CFS 0.540 2.0 5.278 3.0 0.058 1.0 0.575 2.0 0.145 3.0 2.20
NoFS 0.521 4.0 5.256 2.0 0.060 4.0 0.607 4.0 0.144 2.0 3.20
BR(kNN) 0.234 6.0 8.567 6.0 0.627 6.0 0.978 6.0 0.269 6.0 6.00
CFS-U 0.543 1.0 5.108 1.0 0.059 3.0 0.572 1.0 0.139 1.0 1.40
RFML 0.440 5.0 6.068 5.0 0.064 5.0 0.738 5.0 0.175 5.0 5.00

Education

gmiGA-wrap 0.558 1.0 3.817 1.0 0.04056 1.0 0.582 1.0 0.089 1.0 1.00
gmi-ML-CFS 0.552 2.0 3.895 3.0 0.041 2.0 0.588 2.0 0.091 3.0 2.40
NoFS 0.541 4.0 3.914 4.0 0.041 4.0 0.604 4.0 0.092 4.0 4.00
BR(kNN) 0.151 6.0 10.153 6.0 0.470 6.0 0.987 6.0 0.284 6.0 6.00
CFS-U 0.548 3.0 3.877 2.0 0.041 3.0 0.596 3.0 0.091 2.0 2.60
RFML 0.488 5.0 4.359 5.0 0.044 5.0 0.672 5.0 0.105 5.0 5.00

Recreation

gmiGA-wrap 0.586 1.0 4.072 1.0 0.0546 2.0 0.527 1.0 0.147 2.0 1.40
gmi-ML-CFS 0.581 2.0 4.147 3.0 0.054 1.0 0.530 2.0 0.150 3.0 2.20
NoFS 0.552 4.0 4.296 4.0 0.056 4.0 0.573 4.0 0.157 4.0 4.00
BR(kNN) 0.154 6.0 9.750 6.0 0.674 6.0 0.995 6.0 0.414 6.0 6.00
CFS-U 0.576 3.0 4.074 2.0 0.055 3.0 0.542 3.0 0.147 1.0 2.40
RFML 0.446 5.0 4.708 5.0 0.063 5.0 0.722 5.0 0.179 5.0 5.00

Health

gmiGA-wrap 0.687 2.0 3.360 2.0 0.04256 2.0 0.397 2.0 0.063 2.0 2.00
gmi-ML-CFS 0.699 1.0 3.303 1.0 0.042 1.0 0.380 1.0 0.061 1.0 1.00
NoFS 0.674 4.0 3.441 4.0 0.045 4.0 0.418 4.0 0.065 4.0 4.00
BR(kNN) 0.602 6.0 4.386 6.0 0.220 6.0 0.489 6.0 0.089 6.0 6.00
CFS-U 0.682 3.0 3.373 3.0 0.044 3.0 0.407 3.0 0.063 3.0 3.00
RFML 0.662 5.0 3.581 5.0 0.045 5.0 0.429 5.0 0.068 5.0 5.00

Ent.ment

gmiGA-wrap 0.628 1.0 2.971 1.0 0.05378 1.0 0.490 1.0 0.108 1.0 1.00
gmi-ML-CFS 0.609 3.0 3.023 3.0 0.054 2.0 0.529 4.0 0.111 4.0 3.20
NoFS 0.608 4.0 3.034 4.0 0.057 4.0 0.523 3.0 0.111 3.0 3.60
BR(kNN) 0.211 6.0 7.262 6.0 0.513 6.0 0.923 6.0 0.324 6.0 6.00
CFS-U 0.612 2.0 2.975 2.0 0.055 3.0 0.517 2.0 0.108 2.0 2.20
RFML 0.493 5.0 3.807 5.0 0.064 5.0 0.685 5.0 0.148 5.0 5.00

Computer

gmiGA-wrap 0.647 3.0 4.164 4.0 0.0375 4.0 0.426 3.0 0.088 4.0 3.60
gmi-ML-CFS 0.646 4.0 4.161 3.0 0.038 3.0 0.427 4.0 0.088 3.0 3.40
NoFS 0.651 1.0 4.086 2.0 0.037 2.0 0.423 1.0 0.086 2.0 1.60
BR(kNN) 0.251 6.0 8.628 6.0 0.507 6.0 0.939 6.0 0.205 6.0 6.00
CFS-U 0.651 2.0 4.067 1.0 0.037 1.0 0.424 2.0 0.086 1.0 1.40
RFML 0.619 5.0 4.439 5.0 0.041 5.0 0.456 5.0 0.094 5.0 5.00

Science

gmiGA-wrap 0.481 2.0 6.628 4.0 0.03388 1.0 0.645 2.0 0.129 3.0 2.40
gmi-ML-CFS 0.489 1.0 6.622 3.0 0.034 2.0 0.629 1.0 0.129 2.0 1.80
NoFS 0.475 4.0 6.611 2.0 0.034 3.0 0.660 4.0 0.130 4.0 3.40
BR(kNN) 0.119 6.0 14.552 6.0 0.559 6.0 0.967 6.0 0.332 6.0 6.00
CFS-U 0.477 3.0 6.535 1.0 0.035 4.0 0.657 3.0 0.128 1.0 2.40
RFML 0.430 5.0 7.047 5.0 0.036 5.0 0.711 5.0 0.140 5.0 5.00

MEAN

gmiGA-wrap 2.1 2.6 1.9 2.0 2.4 2.20
gmi-ML-CFS 2.1 2.7 1.9 2.6 2.5 2.35
NoFS 3.6 3.5 3.6 3.5 3.8 3.60
BR(kNN) 6.0 5.6 6.0 6.0 5.8 5.88
CFS-U 2.7 2.2 2.9 2.4 2.1 2.45
RFML 4.5 4.4 4.7 4.5 4.5 4.52

195



Table 6.25: Values of five multi-label predictive accuracy measures for ML-kNN
classifier with six different multi-label feature selection methods - feature space
size = 400

Dataset Methods
Predictive Accuracy Measures and Ranking

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

Enron

gmiGA-wrap 0.580 5.0 13.358 1.0 0.05762 5.0 0.406 5.0 0.098 3.0 3.80
gmi-ML-CFS 0.587 2.0 13.359 2.0 0.057 4.0 0.404 4.0 0.097 2.0 2.80
NoFS 0.583 3.0 13.40 4.0 0.056 1.0 0.382 2.0 0.098 4.0 2.80
BR(kNN) 0.471 6.0 14.22 6.0 0.165 6.0 0.760 6.0 0.113 6.0 6.00
CFS-U 0.580 4.0 13.47 5.0 0.057 2.0 0.385 3.0 0.099 5.0 3.80
RFML 0.608 1.0 13.383 3.0 0.057 3.0 0.378 1.0 0.096 1.0 1.80

Medical

gmiGA-wrap 0.796 2.0 3.030 1.0 0.01694 3.0 0.258 2.0 0.049 1.0 1.80
gmi-ML-CFS 0.785 3.0 3.186 3.0 0.017 2.0 0.271 3.0 0.052 3.0 2.80
NoFS 0.728 5.0 3.72 5.0 0.020 5.0 0.349 5.0 0.063 5.0 5.00
BR(kNN) 0.110 6.0 13.81 6.0 0.420 6.0 0.980 6.0 0.291 6.0 6.00
CFS-U 0.768 4.0 3.34 4.0 0.019 4.0 0.295 4.0 0.055 4.0 4.00
RFML 0.801 1.0 3.181 2.0 0.016 1.0 0.247 1.0 0.051 2.0 1.40

Business

gmiGA-wrap 0.876 4.0 2.288 4.0 0.02826 4.0 0.125 4.0 0.041 4.0 4.00
gmi-ML-CFS 0.876 3.0 2.286 3.0 0.028 3.0 0.125 3.0 0.040 3.0 3.00
NoFS 0.881 1.0 2.26 2.0 0.028 1.0 0.119 1.0 0.039 1.0 1.20
BR(kNN) 0.767 6.0 4.01 6.0 0.294 6.0 0.139 6.0 0.075 6.0 6.00
CFS-U 0.879 2.0 2.24 1.0 0.028 2.0 0.123 2.0 0.039 2.0 1.80
RFML 0.871 5.0 2.332 5.0 0.028 5.0 0.132 5.0 0.042 5.0 5.00

Art

gmiGA-wrap 0.532 3.0 5.296 3.0 0.058 2.0 0.587 3.0 0.145 3.0 2.80
gmi-ML-CFS 0.535 2.0 5.251 2.0 0.058 3.0 0.585 2.0 0.144 2.0 2.20
NoFS 0.509 4.0 5.34 4.0 0.060 4.0 0.631 4.0 0.147 4.0 4.00
BR(kNN) 0.150 6.0 12.52 6.0 0.468 6.0 0.980 6.0 0.424 6.0 6.00
CFS-U 0.546 1.0 5.08 1.0 0.058 1.0 0.569 1.0 0.137 1.0 1.00
RFML 0.451 5.0 5.981 5.0 0.064 5.0 0.715 5.0 0.171 5.0 5.00

Education

gmiGA-wrap 0.555 2.0 3.818 2.0 0.04068 1.0 0.585 2.0 0.089 2.0 1.80
gmi-ML-CFS 0.555 1.0 3.826 3.0 0.041 2.5 0.583 1.0 0.090 3.0 2.10
NoFS 0.535 4.0 3.95 4.0 0.042 4.0 0.611 4.0 0.093 4.0 4.00
BR(kNN) 0.143 6.0 9.95 6.0 0.508 6.0 0.999 6.0 0.272 6.0 6.00
CFS-U 0.555 3.0 3.78 1.0 0.041 2.5 0.589 3.0 0.089 1.0 2.10
RFML 0.494 5.0 4.305 5.0 0.044 5.0 0.665 5.0 0.103 5.0 5.00

Recreation

gmiGA-wrap 0.583 1.0 4.067 2.0 0.0546 1.0 0.533 1.0 0.147 2.0 1.40
gmi-ML-CFS 0.378 5.0 5.703 5.0 0.065 5.0 0.805 5.0 0.220 5.0 5.00
NoFS 0.552 3.0 4.24 3.0 0.057 3.0 0.576 3.0 0.155 3.0 3.00
BR(kNN) 0.176 6.0 10.93 6.0 0.684 6.0 0.949 6.0 0.452 6.0 6.00
CFS-U 0.578 2.0 4.06 1.0 0.055 2.0 0.539 2.0 0.147 1.0 1.60
RFML 0.453 4.0 4.598 4.0 0.063 4.0 0.712 4.0 0.174 4.0 4.00

Health

gmiGA-wrap 0.714 1.0 3.204 1.0 0.04056 1.0 0.356 1.0 0.058 1.0 1.00
gmi-ML-CFS 0.708 2.0 3.229 2.0 0.041 2.0 0.366 2.0 0.059 2.0 2.00
NoFS 0.692 4.0 3.30 4.0 0.043 4.0 0.395 4.0 0.061 4.0 4.00
BR(kNN) 0.378 6.0 5.17 6.0 0.303 6.0 0.957 6.0 0.114 6.0 6.00
CFS-U 0.701 3.0 3.25 3.0 0.043 3.0 0.378 3.0 0.060 3.0 3.00
RFML 0.676 5.0 3.472 5.0 0.045 5.0 0.414 5.0 0.065 5.0 5.00

Ent.ment

gmiGA-wrap 0.636 1.0 2.915 2.0 0.0539 1.0 0.484 1.0 0.105 2.0 1.40
gmi-ML-CFS 0.631 2.0 2.936 3.0 0.054 2.0 0.491 2.0 0.106 3.0 2.40
NoFS 0.617 4.0 3.00 4.0 0.057 4.0 0.510 4.0 0.110 4.0 4.00
BR(kNN) 0.221 6.0 6.82 6.0 0.567 6.0 0.961 6.0 0.297 6.0 6.00
CFS-U 0.630 3.0 2.89 1.0 0.054 3.0 0.495 3.0 0.105 1.0 2.20
RFML 0.511 5.0 3.645 5.0 0.064 5.0 0.657 5.0 0.139 5.0 5.00

Computer

gmiGA-wrap 0.647 4.0 4.108 3.0 0.03738 3.0 0.431 4.0 0.087 3.0 3.40
gmi-ML-CFS 0.648 3.0 4.137 4.0 0.037 4.0 0.426 3.0 0.087 4.0 3.60
NoFS 0.655 2.0 4.03 2.0 0.037 2.0 0.418 2.0 0.084 2.0 2.00
BR(kNN) 0.213 6.0 8.45 6.0 0.584 6.0 0.967 6.0 0.213 6.0 6.00
CFS-U 0.655 1.0 4.01 1.0 0.037 1.0 0.417 1.0 0.084 1.0 1.00
RFML 0.628 5.0 4.307 5.0 0.040 5.0 0.448 5.0 0.091 5.0 5.00

Science

gmiGA-wrap 0.484 1.0 6.716 3.0 0.03402 1.5 0.635 1.0 0.130 2.0 1.70
gmi-ML-CFS 0.479 3.0 6.717 4.0 0.034 1.5 0.641 2.0 0.131 3.0 2.70
NoFS 0.462 4.0 6.68 2.0 0.035 4.0 0.671 4.0 0.132 4.0 3.60
BR(kNN) 0.145 6.0 13.28 6.0 0.593 6.0 0.980 6.0 0.293 6.0 6.00
CFS-U 0.482 2.0 6.53 1.0 0.034 3.0 0.648 3.0 0.128 1.0 2.00
RFML 0.438 5.0 7.006 5.0 0.036 5.0 0.697 5.0 0.139 5.0 5.00

MEAN

gmiGA-wrap 2.4 2.2 2.3 2.4 2.3 2.31
gmi-ML-CFS 2.6 3.1 2.9 2.7 3.0 2.86
NoFS 3.4 3.4 3.2 3.3 3.5 3.36
BR(kNN) 6.0 6.0 6.0 6.0 6.0 6.00
CFS-U 2.5 1.9 2.4 2.5 2.0 2.25
RFML 4.1 4.4 4.3 4.1 4.2 4.22

196



Table 6.26: Summary of results in terms of average ranking (AR) and the number
of selected features (Sel.F) of gmiGA-wrap and other multi-label feature selection
methods (using ML-kNN as the classifier)

FS.size
NoFS BR(kNN) CFS-U RFML gmi-ML-CFS gmiGA-wrap

AR Sel.F AR Sel.F AR Sel.F AR Sel.F AR Sel.F AR Sel.F
100 2.79 100.00 5.54 100.00 2.25 73.90 4.64 25.60 3.12 22.40 2.66 25.60
200 2.71 200.00 5.43 200.00 1.86 128.40 3.93 52.26 4.55 34.30 2.52 52.26
300 3.60 300.00 5.88 300.00 2.45 174.80 4.52 83.60 2.35 44.10 2.20 83.60
400 3.36 400.00 6.00 400.00 2.25 214.40 4.22 118.86 2.86 57.00 2.31 118.86
Avg 3.12 250.00 5.71 250.00 2.20 147.88 4.33 70.08 3.22 39.45 2.42 70.08

the corresponding feature space size – i.e, Table 6.22 for feature space size 100, etc.

Regarding predictive accuracy, CFS-U obtains the best average rank (2.20)

across all feature space sizes (last row of Table 6.26); and it is the winner in 3

out of 4 feature space sizes. The only exception is feature space size 300, where

gmiGA-wrap was the winner.

The difference between the average ranks of CFS-U and gmiML-CFS was small

in most cases (between 0.06 – 0.41) except when feature space sizes equals to 200:

in this case the difference is 0.66 (2.52 – 1.86) as shown in Table 6.26.

However, CFS-U has the disadvantage of selecting a much larger number of

features than the other three feature selection method (RFML, gmiML-CFS and

gmiGA-wrap). For example; when the individual length is equal to 400, CFS-U

obtain the largest selected feature subset (214.4 features), which is almost twice

the number of features selected by gmiGA-wrap (118.86 features).

Figure 6.3 shows the overall average ranking (AR) for gmiGA-wrap and the

other multi-label feature selection methods plotted against the average number of

selected features across all datasets and feature space sizes, when using ML-kNN

as the classifier. Clearly, gmiGA-wrap obtained a very good trade-off between

minimizing average ranking and minimizing the number of selected features. In
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Figure 6.3: Overall average ranking (AR) for gmiGA-wrap and the other multi-
label feature selection methods plotted against the average number of selected
features across all datasets and feature space sizes, when using ML-kNN as the
classifier

particular, gmiGA-wrap was only slightly worse than CFS-U in term of average

ranking, but gmiGA-wrap was substantially better than CFS-U in terms of the

number of selected features.

Moreover, RFML, which has the same size of selected feature subset as gmiGA-

wrap, obtains much worse average rank than gmiGA-wrap; while NoFS and BR,

which use the full set of input features, still obtain a larger average rank than

gmiGA-wrap.

In general, gmiGA-wrap obtained the second best average rank among the

six multi-label feature selection approaches compared in Table 6.26. gmiGA-wrap

was outperformed only by CFS-U, which obtained an average rank of 2.20, slightly
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Table 6.27: Summary of overall average ranking (AR) across four individual
lengths for gmiGA-wrap and other Multi-Label feature Selection methods using
ML-kNN as classifier

Dataset
Overall Average Rank (AR) across 4 individual lengths

gmiGA-wrap gmi-ML-CFS NoFS BR(kNN) CFS-U RFML
Enron 3.00(3.5) 3.00(3.5) 2.93(2) 5.95(6) 2.80(1) 3.33(5)
Medical 2.50(2) 2.53(3) 5.60(6) 3.50(4) 4.58(5) 2.30(1)
Business 3.55(4) 3.50(3) 1.98(2) 5.90(6) 1.48(1) 4.60(5)
Art 2.95(3) 2.88(2) 3.15(4) 5.88(6) 1.20(1) 4.95(5)
Education 1.70(1) 3.65(4) 3.33(3) 5.98(6) 1.85(2) 4.50(5)
Recreation 1.55(1) 3.90(4) 2.95(3) 6.00(6) 2.10(2) 4.50(5)
Health 2.00(1) 2.58(3) 3.38(4) 5.98(6) 2.38(2) 4.70(5)
Ent.ment 1.55(1) 3.30(4) 2.75(3) 6.00(6) 2.50(2) 4.90(5)
Computer 3.05(3) 3.93(4) 1.95(2) 5.98(6) 1.35(1) 4.75(5)
Science 2.38(2) 2.95(3) 3.15(4) 5.98(6) 1.80(1) 4.75(5)
Average 2.42(2.15) 3.22(3.35) 3.12(3.3) 5.71(5.8) 2.2(1.8) 4.33(4.6)

smaller than gmiGA-wrap’s average rank (2.42). That is, gmiGA-wrap obtained

substantially better predictive accuracy (substantially lower overall average rank

across all datasets and all accuracy measures) than gmiML-CFS, NoFS, RFML

and BR.

Table 6.27 presents a summary of the results from another perspective, report-

ing the average ranks (in terms of predictive accuracy) for each dataset, averaged

across the 4 GA individual lengths (feature space sizes). In each cell of the table,

the first value is the average rank computed by averaging the corresponding ranks

in Tables 6.22 - 6.25; whilst the value between brackets is the “rank of the average

ranks”. This latter value was use for the statistical tests of significance.

Using the results shows in Table 6.27, we run the Friedman test and confidently

conclude that there is a significant difference among the 6 methods on the 10 eval-

uation datasets at the 0.05 level of significance for a two tailed test (p value is

0.00001). Running the Holm’s posthoc test on these results using gmiGA-wrap as

the control method, there are no significant differences when comparing gmiGA-

wrap versus CFS-U, NoFS, and gmiML-CFS at the 0.05 significance level, but

there is a significant difference between gmiGA-wrap and BR, as well as between
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gmiGA-wrap and and RFML at the same level of significance (p value = 0.00018

and 0.03749, respectively).

Table 6.28 shows GA-ML-CFS’ running time on three multi-label evaluation

datasets: Enron, Entertainment and Health. These datasets were selected based

on their number of labels. The Enron dataset has the largest number of labels

(53 labels) among the 10 evaluation datasets, the Entertainment dataset has the

smallest number of labels (21 labels) and the Health dataset has an intermediate

number of labels (32 labels). For each of those datasets, the table reports the

running time for 4 versions of the datasets, varying the number of input features

from 100 to 400.

In this Table, the second column shows the running time of GA-ML-CFS, the

third column shows the time for running ML-kNN using only the features selected

by GA-ML-CFS, the fourth column shows the summation of the previous two run-

ning times, the fifth column shows the running time of CFS-U, the sixth column

shows the time for running ML-kNN using the features selected by CFS-U and

the last column shows the summation of the previous two running times (CFS-U

and ML-kNN). The running time format (d:h:m:s) shown in Table 6.28 refers to

days, hours, minutes and seconds. Note that all experiments which measure the

computational time were run on a system with Intel Core i7 CPU at 3.40 GHz

and 16.0 GB of memory.

Clearly, the longest time for running GA-ML-CFS was obtained in the Enter-

tainment dataset. The number of instances of the Entertainment dataset is rela-

tively large (12,730 instances). In general, the ML-kNN-running time is very small

when using the features selected by GA-ML-CFS. The longest ML-kNN-running

time is 58 seconds on the biggest dataset (Entertainment 400). In our experi-

ments the running time of the CFS-U approach is shorter than the GA-running

time. However, if we compare the running time of ML-kNN using different sets of
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Table 6.28: Comparing the computational time of GA-ML-CFS and CFS-U with
ML-kNN on three different datasets

Dataset
Running Time (d:h:m:s)

GA-ML-CFS

ML-kNN with
features selected

by
GA-ML-CFS

ML-kNN and
GA-ML-CFS

CFS-U
ML-kNN with

features selected
by CFS-U

CFS-U and
ML-kNN

Enron 100 0:01:15:12 0:00:00:01 0:01:15:13 0:01:01:10 0:00:00:02 0:01:01:12
Enron 200 0:03:21:41 0:00:00:01 0:03:21:42 0:01:02:36 0:00:00:03 0:01:02:39
Enron 300 0:06:23:48 0:00:00:02 0:06:23:50 0:01:09:23 0:00:00:03 0:01:09:26
Enron 400 0:12:23:50 0:00:00:03 0:12:23:53 0:01:23:01 0:00:00:03 0:01:23:04
Entertainment 100 0:08:48:58 0:00:00:27 0:08:49:25 0:01:01:07 0:00:00:33 0:01:01:40
Entertainment 200 1:08:11:34 0:00:00:39 1:08:12:13 0:01:03:33 0:00:00:47 0:01:04:20
Entertainment 300 2:17:43:00 0:00:00:46 2:17:43:46 0:01:08:44 0:00:01:04 0:01:08:48
Entertainment 400 5:06:19:08 0:00:00:58 5:06:20:06 0:01:18:38 0:00:01:15 0:01:18:53
Health 100 0:02:44:12 0:00:00:15 0:02:44:27 0:01:01:34 0:00:00:39 0:01:02:13
Health 200 0:08:24:00 0:00:00:15 0:08:24:15 0:01:03:34 0:00:00:55 0:01:04:29
Health 300 0:20:30:13 0:00:00:12 0:20:30:25 0:01:09:11 0:00:01:04 0:01:09:15
Health 400 1:10:59:35 0:00:00:20 1:10:59:55 0:01:20:33 0:00:01:23 0:01:20:55

selected features, ML-kNN using the features selected by CFS-U took more time

than ML-kNN using features selected by GA-ML-CFS. This because CFS-U se-

lects many more features than GA-ML-CFS. On the other hand, the total time

to run both CFS-U and ML-kNN is in general shorter than the total time to run

both GA-ML-CFS and ML-kNN, since GA-ML-CFS is substantially more time

consuming than CFS-U.

6.8.3 Results for the Best Version of GA-ML-CFS (gmiGA-

wrap) and Other Multi-Label Feature Selection Meth-

ods using the BPMLL Classifier

The results are shown in Table 6.29 - 6.32, where the meaning of the columns are

as explained in the beginning of Subsection 6.7.1. In Table 6.29, reporting results

for the large datasets with feature space size equal to 100, BR obtained the best

place with overall average rank 1.36; while gmiML-CFS obtained the second place

with overall average rank 3.18. gmiGA-wrap obtained the third place with 3.27

average overall rank and outperformed CFS-U, RFML and NoFS with average

rank 4.62, 4.70 and 3.87, respectively.
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In Table 6.30, where the feature space size is equal to 200, again BR obtained

the best result, with overall average rank 1.42. In addition, gmiGA-wrap was

the second best method, with overall average rank = 2.86, and it outperformed

gmiML-CFS, NoFS, CFS-U and RFML.

In Table 6.31, when the features space size is equal to 300, RFML was the best

method with overall average rank = 3.22. In addition, gmiGA-wrap outperformed

gmiML-CFS, CFS-U on all ten datasets, with overall average rank = 3.49.

In Table 6.32 again BR was the best method, with overall average rank =1.44

while gmiGA-wrap outperformed NoFS, CFS-U and RFML on all ten datasets,

with overall average rank = 3.24 (RFML, CFS-U and NoFS obtained 3.12, 4.56

and 5.88 overall average rank respectively).

Table 6.33 reports, for each feature space size, the summary of results in terms

of the overall average ranking and the number of selected features by the six ap-

proaches when using BPMLL as the classifier. BR(BPNN) obtains the best average

rank (1.93), which is substantially better than the ranks of all other approaches.

However, BR (like NoFS) uses all input features to train a computationally ex-

pensive BP neural net algorithm for each class label so, BR is a computationally

expensive approach.

The second best method in Table 6.33 was gmiGA-wrap, with average rank

3.22. However, gmiGA-wrap selects on average 68.48 features, about 27.39% of

the average of 250 features used by BR. So, the trainning of the BP neural net

classifier with the features selected by gmiGA-wrap is substantially faster than the

training of BPNN in the BR approach.

Figure 6.4 shows the overall average ranking (AR) for gmiGA-wrap and the
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Table 6.29: Values of five multi-label predictive accuracy measures for BPMLL
classifier with six different multi-label feature selection methods - feature space
size = 100

Dataset Methods
Predictive Accuracy Measures and Ranking

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

Enron

gmiGA-wrap 0.568 5.0 13.259 2.0 0.088 2.0 0.405 5.0 0.097 3.0 3.40
gmi-ML-CFS 0.567 6.0 13.207 1.0 0.089 3.0 0.403 4.0 0.097 1.0 3.00
NoFS 0.576 2.0 13.913 6.0 0.091 6.0 0.409 6.0 0.100 6.0 5.20
BR(BPNN) 0.584 1.0 13.380 3.0 0.058 1.0 0.396 1.0 0.097 2.0 1.60
CFS-U 0.573 3.0 13.811 5.0 0.090 5.0 0.397 2.0 0.100 5.0 4.00
RFML 0.569 4.0 13.436 4.0 0.089 4.0 0.401 3.0 0.099 4.0 3.80

Medical

gmiGA-wrap 0.715 4.0 2.579 2.0 0.028 4.0 0.420 4.0 0.042 2.0 3.20
gmi-ML-CFS 0.557 6.0 3.604 5.0 0.050 6.0 0.655 6.0 0.066 6.0 5.80
NoFS 0.796 2.0 2.606 3.0 0.018 1.0 0.271 2.0 0.042 3.0 2.20
BR(BPNN) 0.717 3.0 3.614 6.0 0.019 3.0 0.374 3.0 0.062 5.0 4.00
CFS-U 0.805 1.0 2.296 1.0 0.018 2.0 0.265 1.0 0.035 1.0 1.20
RFML 0.674 5.0 3.019 4.0 0.031 5.0 0.473 5.0 0.052 4.0 4.60

Business

gmiGA-wrap 0.852 4.0 2.768 4.0 0.043 3.0 0.139 4.5 0.049 4.0 3.90
gmi-ML-CFS 0.853 3.0 2.751 3.0 0.042 2.0 0.139 2.0 0.048 2.0 2.40
NoFS 0.853 2.0 2.730 2.0 0.043 4.0 0.139 4.5 0.049 3.0 3.10
BR(BPNN) 0.874 1.0 2.369 1.0 0.028 1.0 0.124 1.0 0.043 1.0 1.00
CFS-U 0.850 5.0 2.818 5.0 0.043 5.0 0.139 4.5 0.050 5.0 4.90
RFML 0.849 6.0 2.857 6.0 0.044 6.0 0.139 4.5 0.050 6.0 5.70

Art

gmiGA-wrap 0.436 3.0 6.000 3.0 0.184 3.0 0.752 4.0 0.175 4.0 3.40
gmi-ML-CFS 0.436 5.0 6.006 5.0 0.184 2.0 0.752 4.0 0.175 5.0 4.20
NoFS 0.431 6.0 6.054 6.0 0.238 6.0 0.752 4.0 0.179 6.0 5.60
BR(BPNN) 0.529 1.0 5.306 1.0 0.059 1.0 0.592 1.0 0.146 1.0 1.00
CFS-U 0.438 2.0 5.909 2.0 0.218 5.0 0.752 4.0 0.172 2.0 3.00
RFML 0.436 4.0 6.000 4.0 0.187 4.0 0.752 4.0 0.175 3.0 3.80

Education

gmiGA-wrap 0.479 3.0 4.560 3.0 0.120 2.0 0.680 3.0 0.108 3.0 2.80
gmi-ML-CFS 0.480 2.0 4.532 2.0 0.134 5.0 0.679 2.0 0.107 2.0 2.60
NoFS 0.476 5.0 4.697 5.0 0.146 6.0 0.681 5.0 0.111 5.0 5.20
BR(BPNN) 0.543 1.0 3.938 1.0 0.041 1.0 0.602 1.0 0.093 1.0 1.00
CFS-U 0.476 4.0 4.683 4.0 0.133 4.0 0.681 5.0 0.111 4.0 4.20
RFML 0.475 6.0 4.710 6.0 0.128 3.0 0.681 5.0 0.112 6.0 5.20

Recreation

gmiGA-wrap 0.387 2.0 5.357 2.0 0.193 3.0 0.794 2.0 0.213 2.0 2.20
gmi-ML-CFS 0.380 4.0 5.402 3.0 0.190 2.0 0.802 3.0 0.215 4.0 3.20
NoFS 0.376 6.0 5.648 6.0 0.350 6.0 0.804 4.5 0.224 6.0 5.70
BR(BPNN) 0.536 1.0 4.333 1.0 0.058 1.0 0.595 1.0 0.157 1.0 1.00
CFS-U 0.381 3.0 5.447 4.0 0.224 5.0 0.804 4.5 0.215 3.0 3.90
RFML 0.376 5.0 5.571 5.0 0.194 4.0 0.805 6.0 0.222 5.0 5.00

Health

gmiGA-wrap 0.621 3.0 3.935 3.0 0.111 3.0 0.485 3.0 0.077 3.0 3.00
gmi-ML-CFS 0.623 2.0 3.927 2.0 0.108 2.0 0.481 2.0 0.076 2.0 2.00
NoFS 0.612 5.0 4.040 6.0 0.130 4.0 0.489 4.0 0.079 6.0 5.00
BR(BPNN) 0.631 1.0 3.784 1.0 0.049 1.0 0.476 1.0 0.075 1.0 1.00
CFS-U 0.611 6.0 4.024 5.0 0.130 5.0 0.489 5.5 0.078 5.0 5.30
RFML 0.617 4.0 3.999 4.0 0.130 6.0 0.489 5.5 0.078 4.0 4.70

Ent.ment

gmiGA-wrap 0.528 3.0 3.467 4.0 0.154 3.0 0.649 3.0 0.132 4.0 3.40
gmi-ML-CFS 0.529 2.0 3.460 2.0 0.149 2.0 0.649 2.0 0.132 2.0 2.00
NoFS 0.495 5.0 3.547 5.0 0.233 6.0 0.715 6.0 0.137 5.0 5.40
BR(BPNN) 0.597 1.0 3.135 1.0 0.056 1.0 0.537 1.0 0.116 1.0 1.00
CFS-U 0.523 4.0 3.460 3.0 0.162 4.0 0.662 4.0 0.132 3.0 3.60
RFML 0.473 6.0 3.951 6.0 0.203 5.0 0.715 5.0 0.153 6.0 5.60

Computer

gmiGA-wrap 0.599 2.0 4.866 2.0 0.082 2.0 0.475 4.0 0.102 4.0 2.80
gmi-ML-CFS 0.599 3.0 4.867 3.0 0.084 3.0 0.475 4.0 0.101 2.0 3.00
NoFS 0.598 4.0 4.876 4.0 0.093 5.0 0.475 2.0 0.103 5.0 4.00
BR(BPNN) 0.630 1.0 4.289 1.0 0.040 1.0 0.443 1.0 0.091 1.0 1.00
CFS-U 0.594 6.0 4.876 5.0 0.089 4.0 0.475 4.0 0.104 6.0 5.00
RFML 0.598 5.0 4.904 6.0 0.100 6.0 0.475 6.0 0.102 3.0 5.20

Science

gmiGA-wrap 0.396 5.0 7.842 5.0 0.129 4.0 0.758 4.0 0.157 5.0 4.60
gmi-ML-CFS 0.397 4.0 7.747 4.0 0.124 2.0 0.758 4.0 0.156 4.0 3.60
NoFS 0.393 6.0 7.873 6.0 0.212 6.0 0.758 4.0 0.158 6.0 5.60
BR(BPNN) 0.456 1.0 6.852 1.0 0.035 1.0 0.676 1.0 0.134 1.0 1.00
CFS-U 0.397 3.0 7.682 3.0 0.160 5.0 0.758 4.0 0.155 3.0 3.60
RFML 0.400 2.0 7.582 2.0 0.125 3.0 0.758 4.0 0.153 2.0 2.60

MEAN

gmiGA-wrap 3.4 3.0 2.9 3.7 3.4 3.27
gmi-ML-CFS 3.7 3.0 2.9 3.3 3.0 3.18
NoFS 4.3 4.9 5.0 4.2 5.1 4.70
BR(BPNN) 1.2 1.7 1.2 1.2 1.5 1.36
CFS-U 3.7 3.7 4.4 3.9 3.7 3.87
RFML 4.7 4.7 4.6 4.8 4.3 4.62
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Table 6.30: Values of five multi-label predictive accuracy measures for BPMLL
classifier with six different multi-label feature selection methods - feature space
size = 200

Dataset Methods
Predictive Accuracy Measures and Ranking

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

Enron

gmiGA-wrap 0.565 4.0 13.333 2.0 0.088 3.0 0.401 3.0 0.098 2.0 2.80
gmi-ML-CFS 0.559 6.0 13.293 1.0 0.087 2.0 0.405 4.0 0.098 3.0 3.20
NoFS 0.562 5.0 14.326 6.0 0.098 6.0 0.418 6.0 0.105 6.0 5.80
BR(BPNN) 0.596 1.0 13.404 3.0 0.057 1.0 0.373 1.0 0.097 1.0 1.40
CFS-U 0.572 2.0 13.969 5.0 0.092 5.0 0.409 5.0 0.102 5.0 4.40
RFML 0.568 3.0 13.457 4.0 0.092 4.0 0.400 2.0 0.100 4.0 3.40

Medical

gmiGA-wrap 0.815 2.0 2.282 2.0 0.018 2.0 0.256 2.0 0.035 2.0 2.00
gmi-ML-CFS 0.758 5.0 2.475 3.0 0.026 6.0 0.341 5.0 0.040 3.0 4.40
NoFS 0.759 4.0 2.588 5.0 0.019 4.0 0.353 6.0 0.041 5.0 4.80
BR(BPNN) 0.745 6.0 3.557 6.0 0.019 3.0 0.321 3.0 0.060 6.0 4.80
CFS-U 0.836 1.0 2.200 1.0 0.014 1.0 0.219 1.0 0.033 1.0 1.00
RFML 0.773 3.0 2.562 4.0 0.021 5.0 0.321 4.0 0.041 4.0 4.00

Business

gmiGA-wrap 0.854 3.0 2.715 3.0 0.043 6.0 0.139 5.0 0.048 2.0 3.80
gmi-ML-CFS 0.853 6.0 2.751 6.0 0.041 4.0 0.139 2.0 0.049 4.0 4.40
NoFS 0.853 5.0 2.728 5.0 0.041 2.0 0.139 5.0 0.049 5.0 4.40
BR(BPNN) 0.876 1.0 2.299 1.0 0.028 1.0 0.124 1.0 0.041 1.0 1.00
CFS-U 0.855 2.0 2.705 2.0 0.041 3.0 0.139 5.0 0.048 3.0 3.00
RFML 0.854 4.0 2.723 4.0 0.042 5.0 0.139 3.0 0.049 6.0 4.40

Art

gmiGA-wrap 0.437 3.0 5.994 3.0 0.192 4.0 0.752 4.0 0.175 3.0 3.40
gmi-ML-CFS 0.437 2.0 5.985 2.0 0.185 2.0 0.752 4.0 0.175 2.0 2.40
NoFS 0.404 6.0 7.565 6.0 0.548 6.0 0.752 4.0 0.230 6.0 5.60
BR(BPNN) 0.519 1.0 5.319 1.0 0.059 1.0 0.605 1.0 0.147 1.0 1.00
CFS-U 0.428 5.0 6.184 5.0 0.287 5.0 0.752 4.0 0.183 5.0 4.80
RFML 0.436 4.0 6.006 4.0 0.188 3.0 0.752 4.0 0.175 4.0 3.80

Education

gmiGA-wrap 0.481 2.0 4.505 3.0 0.124 2.0 0.681 2.0 0.107 2.0 2.20
gmi-ML-CFS 0.480 3.0 4.477 2.0 0.142 4.0 0.681 4.5 0.107 3.0 3.30
NoFS 0.469 6.0 5.298 6.0 0.261 6.0 0.681 4.5 0.122 6.0 5.70
BR(BPNN) 0.544 1.0 3.895 1.0 0.041 1.0 0.602 1.0 0.092 1.0 1.00
CFS-U 0.476 4.0 4.687 4.0 0.154 5.0 0.681 4.5 0.111 4.0 4.30
RFML 0.474 5.0 4.757 5.0 0.134 3.0 0.681 4.5 0.112 5.0 4.50

Recreation

gmiGA-wrap 0.379 3.0 5.517 2.0 0.225 4.0 0.804 4.0 0.219 2.0 3.00
gmi-ML-CFS 0.379 2.0 5.530 3.0 0.206 2.0 0.803 3.0 0.219 3.0 2.60
NoFS 0.346 6.0 6.917 6.0 0.548 6.0 0.802 2.0 0.278 6.0 5.20
BR(BPNN) 0.553 1.0 4.321 1.0 0.056 1.0 0.570 1.0 0.158 1.0 1.00
CFS-U 0.370 5.0 5.939 5.0 0.386 5.0 0.805 5.5 0.237 5.0 5.10
RFML 0.376 4.0 5.634 4.0 0.225 3.0 0.805 5.5 0.223 4.0 4.10

Health

gmiGA-wrap 0.616 3.0 3.934 2.0 0.111 2.0 0.488 2.0 0.077 3.0 2.40
gmi-ML-CFS 0.617 2.0 3.976 3.0 0.113 3.0 0.489 5.0 0.077 2.0 3.00
NoFS 0.606 6.0 4.148 6.0 0.158 6.0 0.489 5.0 0.082 6.0 5.80
BR(BPNN) 0.673 1.0 3.453 1.0 0.044 1.0 0.412 1.0 0.065 1.0 1.00
CFS-U 0.609 5.0 4.098 4.0 0.152 5.0 0.489 5.0 0.080 5.0 4.80
RFML 0.614 4.0 4.121 5.0 0.131 4.0 0.489 3.0 0.079 4.0 4.00

Ent.ment

gmiGA-wrap 0.520 2.0 3.521 2.0 0.170 2.0 0.662 2.0 0.135 2.0 2.00
gmi-ML-CFS 0.506 3.0 3.533 3.0 0.172 3.0 0.688 3.0 0.135 3.0 3.00
NoFS 0.417 6.0 5.087 6.0 0.476 6.0 0.788 6.0 0.199 6.0 6.00
BR(BPNN) 0.624 1.0 2.982 1.0 0.056 1.0 0.500 1.0 0.108 1.0 1.00
CFS-U 0.480 4.0 3.799 4.0 0.266 5.0 0.715 5.0 0.149 4.0 4.40
RFML 0.473 5.0 3.934 5.0 0.193 4.0 0.715 4.0 0.153 5.0 4.60

Computer

gmiGA-wrap 0.599 3.0 4.864 3.0 0.086 4.0 0.475 4.0 0.102 4.0 3.60
gmi-ML-CFS 0.601 2.0 4.810 2.0 0.084 3.0 0.475 4.0 0.101 2.0 2.60
NoFS 0.582 5.0 5.111 6.0 0.169 6.0 0.475 4.0 0.111 6.0 5.40
BR(BPNN) 0.647 1.0 4.125 1.0 0.038 1.0 0.424 1.0 0.087 1.0 1.00
CFS-U 0.570 6.0 5.087 5.0 0.114 5.0 0.475 4.0 0.110 5.0 5.00
RFML 0.598 4.0 4.883 4.0 0.072 2.0 0.475 4.0 0.102 3.0 3.40

Science

gmiGA-wrap 0.397 3.0 7.741 3.0 0.136 4.0 0.758 4.0 0.156 3.0 3.40
gmi-ML-CFS 0.396 4.0 7.811 4.0 0.129 2.0 0.758 4.0 0.157 4.0 3.60
NoFS 0.382 6.0 9.138 6.0 0.478 6.0 0.758 4.0 0.188 6.0 5.60
BR(BPNN) 0.476 1.0 6.617 1.0 0.034 1.0 0.654 1.0 0.129 1.0 1.00
CFS-U 0.393 5.0 8.007 5.0 0.250 5.0 0.758 4.0 0.161 5.0 4.80
RFML 0.399 2.0 7.645 2.0 0.134 3.0 0.758 4.0 0.154 2.0 2.60

MEAN

gmiGA-wrap 2.8 2.5 3.3 3.2 2.5 2.86
gmi-ML-CFS 3.5 2.9 3.1 3.9 2.9 3.25
NoFS 5.5 5.8 5.4 4.7 5.8 5.43
BR(BPNN) 1.5 1.7 1.2 1.2 1.5 1.42
CFS-U 3.9 4.0 4.4 4.3 4.2 4.16
RFML 3.8 4.1 3.6 3.8 4.1 3.88
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Table 6.31: Values of five multi-label predictive accuracy measures for BPMLL
classifier with six different multi-label feature selection methods - feature space
size = 300

Dataset Methods
Predictive Accuracy Measures and Ranking

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

Enron

gmiGA-wrap 0.563 4.0 13.640 2.0 0.091 5.0 0.415 3.0 0.100 1.0 3.00
gmi-ML-CFS 0.583 1.0 14.041 5.0 0.106 6.0 0.425 4.0 0.101 3.0 3.80
NoFS 0.567 3.0 13.629 1.0 0.059 1.0 0.404 2.0 0.100 2.0 1.80
BR(BPNN) 0.569 2.0 14.361 6.0 0.090 3.0 0.427 5.0 0.104 6.0 4.40
CFS-U 0.561 5.0 13.708 3.0 0.091 4.0 0.400 1.0 0.101 4.0 3.40
RFML 0.560 6.0 13.928 4.0 0.089 2.0 0.428 6.0 0.103 5.0 4.60

Medical

gmiGA-wrap 0.825 3.0 2.272 2.0 0.017 3.0 0.235 3.0 0.034 2.0 2.60
gmi-ML-CFS 0.738 6.0 3.578 6.0 0.019 5.0 0.336 6.0 0.060 6.0 5.80
NoFS 0.847 2.0 2.078 1.0 0.014 1.0 0.205 2.0 0.031 1.0 1.40
BR(BPNN) 0.807 5.0 2.482 4.0 0.018 4.0 0.260 4.5 0.039 4.0 4.30
CFS-U 0.854 1.0 2.735 5.0 0.038 6.0 0.139 1.0 0.048 5.0 3.60
RFML 0.809 4.0 2.464 3.0 0.017 2.0 0.260 4.5 0.039 3.0 3.30

Business

gmiGA-wrap 0.853 4.0 2.762 4.0 0.034 1.0 0.139 2.5 0.049 3.0 2.90
gmi-ML-CFS 0.853 3.0 2.757 3.0 0.038 3.0 0.139 2.5 0.049 4.0 3.10
NoFS 0.854 1.0 2.720 2.0 0.042 4.0 0.139 2.5 0.048 1.0 2.10
BR(BPNN) 0.436 6.0 6.000 6.0 0.204 6.0 0.752 5.5 0.175 6.0 5.90
CFS-U 0.437 5.0 5.990 5.0 0.196 5.0 0.752 5.5 0.175 5.0 5.10
RFML 0.853 2.0 2.715 1.0 0.037 2.0 0.139 2.5 0.048 2.0 1.90

Art

gmiGA-wrap 0.167 6.0 10.195 6.0 0.626 6.0 0.973 6.0 0.347 6.0 6.00
gmi-ML-CFS 0.436 4.0 6.000 4.0 0.200 5.0 0.752 4.5 0.175 4.0 4.30
NoFS 0.482 2.0 4.513 2.0 0.124 3.0 0.681 3.0 0.107 2.0 2.40
BR(BPNN) 0.480 3.0 4.548 3.0 0.121 1.0 0.681 2.0 0.108 3.0 2.40
CFS-U 0.482 1.0 4.474 1.0 0.122 2.0 0.678 1.0 0.106 1.0 1.20
RFML 0.436 5.0 6.009 5.0 0.191 4.0 0.752 4.5 0.176 5.0 4.70

Education

gmiGA-wrap 0.541 1.0 3.914 1.0 0.041 1.0 0.604 1.0 0.092 1.0 1.00
gmi-ML-CFS 0.376 4.0 5.702 5.0 0.327 5.0 0.804 4.0 0.226 5.0 4.60
NoFS 0.376 5.0 5.661 4.0 0.254 4.0 0.805 5.0 0.224 4.0 4.40
BR(BPNN) 0.379 3.0 5.561 3.0 0.222 3.0 0.802 3.0 0.220 3.0 3.00
CFS-U 0.184 6.0 8.551 6.0 0.702 6.0 0.972 6.0 0.356 6.0 6.00
RFML 0.474 2.0 4.757 2.0 0.144 2.0 0.681 2.0 0.112 2.0 2.00

Recreation

gmiGA-wrap 0.370 6.0 6.133 6.0 0.481 6.0 0.805 5.5 0.242 6.0 5.90
gmi-ML-CFS 0.613 2.0 3.930 3.0 0.117 2.0 0.488 2.0 0.076 3.0 2.40
NoFS 0.612 3.0 3.906 2.0 0.122 3.0 0.490 4.0 0.076 2.0 2.80
BR(BPNN) 0.595 4.0 4.348 4.0 0.189 4.0 0.489 3.0 0.088 4.0 3.80
CFS-U 0.674 1.0 3.441 1.0 0.045 1.0 0.418 1.0 0.065 1.0 1.00
RFML 0.373 5.0 5.810 5.0 0.338 5.0 0.805 5.5 0.229 5.0 5.10

Health

gmiGA-wrap 0.607 2.0 4.094 4.0 0.132 2.0 0.489 1.5 0.081 2.0 2.30
gmi-ML-CFS 0.529 4.0 3.455 2.0 0.154 4.0 0.649 4.0 0.132 4.0 3.60
NoFS 0.217 6.0 7.002 6.0 0.532 6.0 0.951 6.0 0.304 6.0 6.00
BR(BPNN) 0.608 1.0 3.034 1.0 0.057 1.0 0.523 3.0 0.111 3.0 1.80
CFS-U 0.471 5.0 4.054 3.0 0.314 5.0 0.715 5.0 0.157 5.0 4.60
RFML 0.606 3.0 4.104 5.0 0.132 3.0 0.489 1.5 0.081 1.0 2.70

Ent.ment

gmiGA-wrap 0.598 2.0 4.914 3.0 0.091 3.0 0.475 3.5 0.104 2.0 2.70
gmi-ML-CFS 0.235 6.0 8.556 6.0 0.475 6.0 0.971 6.0 0.211 6.0 6.00
NoFS 0.651 1.0 4.086 2.0 0.037 1.0 0.423 1.0 0.086 1.0 1.20
BR(BPNN) 0.588 4.0 5.205 5.0 0.207 5.0 0.475 2.0 0.111 4.0 4.00
CFS-U 0.597 3.0 4.965 4.0 0.082 2.0 0.475 3.5 0.105 3.0 3.10
RFML 0.473 5.0 3.925 1.0 0.188 4.0 0.715 5.0 0.153 5.0 4.00

Computer

gmiGA-wrap 0.396 5.0 7.790 5.0 0.133 3.0 0.758 5.0 0.157 5.0 4.60
gmi-ML-CFS 0.475 3.0 6.611 3.0 0.034 1.0 0.660 3.0 0.130 3.0 2.60
NoFS 0.388 6.0 8.727 6.0 0.453 6.0 0.758 5.0 0.177 6.0 5.80
BR(BPNN) 0.398 4.0 7.656 4.0 0.137 4.0 0.758 5.0 0.155 4.0 4.20
CFS-U 0.588 2.0 5.205 2.0 0.207 5.0 0.475 1.0 0.111 2.0 2.40
RFML 0.598 1.0 4.908 1.0 0.080 2.0 0.475 2.0 0.104 1.0 1.40

Science

gmiGA-wrap 0.395 4.0 7.987 4.0 0.182 4.0 0.758 3.5 0.161 4.0 3.90
gmi-ML-CFS 0.396 3.0 7.815 3.0 0.129 2.0 0.758 3.5 0.157 3.0 2.90
NoFS 0.153 6.0 12.225 6.0 0.546 6.0 0.981 6.0 0.268 6.0 6.00
BR(BPNN) 0.475 1.0 6.611 1.0 0.034 1.0 0.660 1.0 0.130 1.0 1.00
CFS-U 0.388 5.0 8.727 5.0 0.453 5.0 0.758 3.5 0.177 5.0 4.70
RFML 0.398 2.0 7.698 2.0 0.142 3.0 0.758 3.5 0.156 2.0 2.50

MEAN

gmiGA-wrap 3.7 3.7 3.4 3.5 3.2 3.49
gmi-ML-CFS 3.6 4.0 3.9 4.0 4.1 3.91
NoFS 3.5 3.2 3.5 3.7 3.1 3.39
BR(BPNN) 3.3 3.7 3.2 3.4 3.8 3.48
CFS-U 3.4 3.5 4.1 2.9 3.7 3.51
RFML 3.5 2.9 2.9 3.7 3.1 3.22
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Table 6.32: Values of five multi-label predictive accuracy measures for BPMLL
classifier with six different multi-label feature selection methods - feature space
size = 400

Dataset Methods
Predictive Accuracy Measures and Ranking

Avg-Pre R Coverage R H-Loss R OneError R R-Loss R AR

Enron

gmiGA-wrap 0.566 2.0 13.995 3.0 0.092 3.0 0.428 3.0 0.102 3.0 2.80
gmi-ML-CFS 0.559 3.0 13.188 1.0 0.089 2.0 0.396 2.0 0.097 1.0 1.80
NoFS 0.553 5.0 14.663 5.0 0.124 6.0 0.431 4.0 0.111 5.0 5.00
BR(BPNN) 0.583 1.0 13.397 2.0 0.056 1.0 0.382 1.0 0.098 2.0 1.40
CFS-U 0.552 6.0 14.828 6.0 0.096 5.0 0.435 6.0 0.112 6.0 5.80
RFML 0.557 4.0 14.282 4.0 0.094 4.0 0.434 5.0 0.105 4.0 4.20

Medical

gmiGA-wrap 0.809 2.0 2.321 3.0 0.017 2.0 0.267 2.0 0.035 3.0 2.40
gmi-ML-CFS 0.795 3.0 2.504 4.0 0.019 4.0 0.276 3.0 0.040 4.0 3.60
NoFS 0.154 6.0 14.135 6.0 0.325 6.0 0.940 6.0 0.292 6.0 6.00
BR(BPNN) 0.728 5.0 3.716 5.0 0.020 5.0 0.349 5.0 0.063 5.0 5.00
CFS-U 0.788 4.0 2.196 1.0 0.017 3.0 0.318 4.0 0.033 1.0 2.60
RFML 0.835 1.0 2.206 2.0 0.015 1.0 0.217 1.0 0.033 2.0 1.40

Business

gmiGA-wrap 0.858 2.0 2.630 2.0 0.042 5.0 0.139 3.5 0.046 2.0 2.90
gmi-ML-CFS 0.849 5.0 2.804 5.0 0.039 3.0 0.139 3.5 0.050 5.0 4.30
NoFS 0.579 6.0 4.664 6.0 0.349 6.0 0.475 6.0 0.100 6.0 6.00
BR(BPNN) 0.881 1.0 2.258 1.0 0.028 1.0 0.119 1.0 0.039 1.0 1.00
CFS-U 0.856 3.0 2.646 3.0 0.041 4.0 0.139 3.5 0.047 3.0 3.30
RFML 0.853 4.0 2.734 4.0 0.035 2.0 0.139 3.5 0.049 4.0 3.50

Art

gmiGA-wrap 0.432 4.0 6.209 4.0 0.319 4.0 0.752 3.0 0.183 4.0 3.80
gmi-ML-CFS 0.436 2.0 6.000 2.0 0.197 3.0 0.752 3.0 0.175 2.0 2.40
NoFS 0.151 6.0 11.617 6.0 0.460 5.0 0.984 6.0 0.397 6.0 5.80
BR(BPNN) 0.509 1.0 5.342 1.0 0.060 1.0 0.631 1.0 0.147 1.0 1.00
CFS-U 0.337 5.0 8.150 5.0 0.544 6.0 0.843 5.0 0.257 5.0 5.20
RFML 0.436 3.0 6.016 3.0 0.195 2.0 0.752 3.0 0.176 3.0 2.80

Education

gmiGA-wrap 0.479 2.0 4.616 2.0 0.140 3.0 0.681 3.5 0.109 2.0 2.50
gmi-ML-CFS 0.476 3.0 4.689 3.0 0.131 2.0 0.681 3.5 0.111 3.0 2.90
NoFS 0.121 6.0 11.883 6.0 0.497 6.0 0.987 6.0 0.342 6.0 6.00
BR(BPNN) 0.535 1.0 3.950 1.0 0.042 1.0 0.611 1.0 0.093 1.0 1.00
CFS-U 0.470 4.0 5.194 5.0 0.233 5.0 0.681 3.5 0.120 4.0 4.30
RFML 0.470 5.0 5.085 4.0 0.172 4.0 0.681 3.5 0.120 5.0 4.30

Recreation

gmiGA-wrap 0.374 3.0 5.831 4.0 0.368 4.0 0.805 3.0 0.232 4.0 3.60
gmi-ML-CFS 0.373 4.0 5.818 3.0 0.330 2.0 0.805 3.0 0.229 2.0 2.80
NoFS 0.159 6.0 10.782 6.0 0.567 6.0 0.975 6.0 0.447 6.0 6.00
BR(BPNN) 0.552 1.0 4.238 1.0 0.057 1.0 0.576 1.0 0.155 1.0 1.00
CFS-U 0.334 5.0 6.674 5.0 0.547 5.0 0.840 5.0 0.270 5.0 5.00
RFML 0.375 2.0 5.812 2.0 0.352 3.0 0.805 3.0 0.230 3.0 2.60

Health

gmiGA-wrap 0.618 2.0 3.814 2.0 0.118 3.0 0.489 4.0 0.073 2.0 2.60
gmi-ML-CFS 0.617 3.0 3.848 3.0 0.116 2.0 0.489 2.0 0.074 3.0 2.60
NoFS 0.308 6.0 7.135 6.0 0.404 6.0 0.883 6.0 0.173 6.0 6.00
BR(BPNN) 0.692 1.0 3.303 1.0 0.043 1.0 0.395 1.0 0.061 1.0 1.00
CFS-U 0.587 5.0 4.688 5.0 0.217 5.0 0.489 4.0 0.096 5.0 4.80
RFML 0.605 4.0 4.126 4.0 0.135 4.0 0.489 4.0 0.081 4.0 4.00

Ent.ment

gmiGA-wrap 0.469 4.0 4.021 4.0 0.301 4.0 0.715 5.0 0.157 4.0 4.20
gmi-ML-CFS 0.498 2.0 3.589 2.0 0.189 2.0 0.705 2.0 0.139 2.0 2.00
NoFS 0.202 6.0 7.131 6.0 0.576 6.0 0.974 6.0 0.310 6.0 6.00
BR(BPNN) 0.617 1.0 2.997 1.0 0.057 1.0 0.510 1.0 0.110 1.0 1.00
CFS-U 0.461 5.0 4.371 5.0 0.367 5.0 0.715 3.0 0.169 5.0 4.60
RFML 0.473 3.0 3.929 3.0 0.211 3.0 0.715 4.0 0.153 3.0 3.20

Computer

gmiGA-wrap 0.583 4.0 5.131 4.0 0.126 4.0 0.475 3.0 0.110 4.0 3.80
gmi-ML-CFS 0.596 3.0 4.980 3.0 0.086 3.0 0.475 3.0 0.106 3.0 3.00
NoFS 0.135 6.0 11.156 6.0 0.574 6.0 0.983 6.0 0.301 6.0 6.00
BR(BPNN) 0.655 1.0 4.030 1.0 0.037 1.0 0.418 1.0 0.084 1.0 1.00
CFS-U 0.363 5.0 7.035 5.0 0.451 5.0 0.848 5.0 0.158 5.0 5.00
RFML 0.597 2.0 4.947 2.0 0.084 2.0 0.475 3.0 0.105 2.0 2.20

Science

gmiGA-wrap 0.393 4.0 8.133 4.0 0.235 4.0 0.758 3.0 0.165 4.0 3.80
gmi-ML-CFS 0.396 2.0 7.787 2.0 0.129 2.0 0.758 3.0 0.157 2.0 2.20
NoFS 0.128 6.0 14.598 6.0 0.592 6.0 0.980 6.0 0.329 6.0 6.00
BR(BPNN) 0.462 1.0 6.680 1.0 0.035 1.0 0.671 1.0 0.132 1.0 1.00
CFS-U 0.269 5.0 10.384 5.0 0.489 5.0 0.893 5.0 0.219 5.0 5.00
RFML 0.395 3.0 7.942 3.0 0.190 3.0 0.758 3.0 0.162 3.0 3.00

MEAN

gmiGA-wrap 2.9 3.2 3.6 3.3 3.2 3.24
gmi-ML-CFS 3.0 2.8 2.5 2.8 2.7 2.76
NoFS 5.9 5.9 5.9 5.8 5.9 5.88
BR(BPNN) 1.4 1.5 1.4 1.4 1.5 1.44
CFS-U 4.7 4.5 4.8 4.4 4.4 4.56
RFML 3.1 3.1 2.8 3.3 3.3 3.12
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Table 6.33: Summary of results in terms of average ranking (AR) and the number
of selected features (Sel.F) of gmiGA-wrap and other multi-label feature selection
methods using BPMLL as classifier

FS. size
NoFS BR(BPNN) CFS-U RFML gmi-ML-CFS gmiGA-wrap

AR Sel.F AR Sel.F AR Sel.F AR Sel.F AR Sel.F AR Sel.F
100 4.70 100.00 1.36 100.00 3.87 73.90 4.62 25.76 3.18 22.40 3.27 25.76
200 5.43 200.00 1.42 200.00 4.16 128.40 3.88 50.74 3.25 34.30 2.86 50.74
300 3.39 300.00 3.48 300.00 3.51 174.80 3.22 80.90 3.91 44.10 3.49 80.90
400 5.88 400.00 1.44 400.00 4.56 214.40 3.12 116.50 2.76 57.00 3.24 116.50
Avg 4.85 250.00 1.93 250.00 4.03 147.88 3.71 68.48 3.28 39.45 3.22 68.48

Table 6.34: Summary of overall average ranking (AR) across four individual
lengths for four versions of gmiGA-wrap and other multi-label feature selection
methods using BPMLL as the classifier

Dataset
Overall Average Rank (AR) across 4 individual lengths

gmiGA-wrap gmi-ML-CFS NoFS BR(BPNN) CFS-U RFML
Enron 3.00(3) 2.95(2) 4.45(6) 2.20(1) 4.40(5) 4.00(4)
Medical 2.55(2) 4.90(6) 3.60(4) 4.53(5) 2.10(1) 3.33(3)
Business 3.38(2) 3.55(3) 3.90(5) 2.23(1) 4.08(6) 3.88(4)
Art 4.15(5) 3.33(2) 4.85(6) 1.35(1) 3.55(3) 3.78(4)
Education 2.13(2) 3.35(3) 5.33(6) 1.50(1) 4.70(5) 4.00(4)
Recreation 3.68(3) 2.75(2) 4.93(6) 1.70(1) 3.75(4) 4.20(5)
Health 2.58(2) 2.80(3) 5.70(6) 1.20(1) 4.88(5) 3.85(4)
Ent.ment 3.08(2) 3.25(3) 4.65(6) 1.75(1) 3.93(4) 4.35(5)
Computer 3.70(4) 2.80(2) 5.30(6) 1.80(1) 4.35(5) 3.05(3)
Science 3.93(4) 3.08(3) 5.80(6) 1.00(1) 4.53(5) 2.68(2)
Average 3.22(2.9) 3.28(2.9) 4.85(5.7) 1.93(1.4) 4.03(4.3) 3.71(3.8)

other multi-label feature selection methods plotted against the average number of

selected features across all datasets and feature space sizes, when using BPMLL

as the classifier. Again, clearly, gmiGA-wrap outperforms all other methods in

terms of selecting a smaller number of features. In addition, gmiML-CFS achieves

a reasonable average ranking, although clearly worse than BR(BPNN). However,

BR(BPNN) did not achieve a good trade-off between average ranking and number

of selected features, as shown in Figure 6.4

Table 6.34 shows the overall average rank of six multi-label feature selection

methods for each dataset (averaged across the 4 GA individual lengths). The first

value in each cell is the actual average rank, whilst the value between brackets

is the “rank of the average rank”. This later value was used in the Friedman
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Figure 6.4: Overall average ranking (AR) for gmiGA-wrap and the other multi-
label feature selection methods plotted against the average number of selected
features across all datasets and feature space sizes, when using BPMLL as the
classifier

and Holm’s test (as discussed at the end of Subsection 6.8.2). We confidently con-

clude that there is a significant difference among the 6 algorithms on 10 evaluation

datasets at the 0.05 significance level for a two tailed test.

Then, the Holm’s posthoc test was applied on these data using gmiGA-wrap

as the control method. There is a significant difference between gmiGA-wrap and

NoFS at the 0.05 significant level (p value = 0.01063) but there are no significance

differences between gmiGA-wrap and the other 5 methods at the same level of

significance.

In addition, we also compared the time taken to run the BR approach (using

all input features), which obtained the best average rank with the BPMLL classi-

208



fier, versus the computational time taken to first run GA-ML-CFS and then run

BPMLL using only the features selected by GA-ML-CFS.

Table 6.35 shows GA-ML-CFS’ running time on three multi-label evaluation

datasets. These datasets were selected based on their number of labels. The En-

ron dataset has the largest number of labels (53 labels) among the 10 evaluation

datasets, the Entertainment dataset has the smallest number of labels (21 labels)

and the Health dataset has an intermediate number of labels (32 labels). For each

of those datasets, the table reports the running time for 4 versions of the datasets,

varying the number of input features from 100 to 400.

In this Table, the second column shows the running time of GA-ML-CFS, the

third column shows the time for running BPMLL using only the features selected

by GA-ML-CFS, the fourth column shows the summation of the previous two run-

ning times, and the last column shows the running time of the BR approach, using

all input features. Note that all experiments which measure the computational

time were run on a system with Intel Core i7 CPU at 3.40 GHz and 16.0 GB of

memory. Also, the running time format (d:h:m:s) shown in Table 6.35 refers to

days, hours, minutes and seconds.

The Entertainment dataset has the longest time for running GA-ML-CFS

(more than 5 days with 400 input features) because the size of this dataset is

relatively large in terms of the number of instances (12,730 instances) while the

Enron dataset took a relatively short time to process because this dataset has a

relatively small number of instances (1,702 instances). Clearly, BPMLL’s running

time is very small when using only the features selected by GA-ML-CFS. The

longest BPMLL’s running time is 1 minute and 18 seconds on the biggest dataset,

Entertainment 400. Moreover, the running time of the BR approach, which used

the full set of input features, obviously takes much more time than the GA-ML-

CFS’ running time plus BPMLL’s running time in most cases. The exceptions are
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Table 6.35: Comparing the computational time of GA-ML-CFS and BPMLL ver-
sus the BR approach on three different datasets

Dataset
Running time (d:h:m:s)

GA-ML-CFS
BPMLL with

feature selected by
GA-ML-CFS

BPMLL and
GA-ML-CFS

BR with BP using
full set of features

Enron 100 0:01:15:12 0:00:00:08 0:01:15:20 0:04:21:51
Enron 200 0:03:21:41 0:00:00:08 0:03:21:49 0:11:20:00
Enron 300 0:06:23:48 0:00:00:13 0:06:24:01 1:04:03:55
Enron 400 0:12:23:50 0:00:00:15 0:12:24:05 2:08:53:10
Entertainment 100 0:08:48:58 0:00:00:25 0:08:49:22 0:06:56:50
Entertainment 200 1:08:11:34 0:00:00:40 1:08:12:14 1:10:14:10
Entertainment 300 2:17:43:00 0:00:00:56 2:17:43:56 2:08:20:15
Entertainment 400 5:06:19:08 0:00:01:18 5:06:19:28 4:19:12:05
Health 100 0:02:44:12 0:00:00:20 0:02:44:32 0:13:30:00
Health 200 0:08:24:00 0:00:00:20 0:08:24:20 1:10:14:10
Health 300 0:20:30:13 0:00:00:26 0:20:30:39 2:17:30:56
Health 400 1:10:59:35 0:00:00:37 1:11:00:12 5:10:12:28

the Entertainment datasets, where the difference of computational time between

the two approaches is not large, and where in 3 of 4 cases (with 100, 300 and 400

input features) the BR approach took somewhat less time than the time to run

both GA-ML-CFS and BPMLL with the selected features.

6.9 Conclusion

This Chapter proposed two versions of the new Genetic Algorithm for Multi-

Label Correlation-Based Feature Selection (GA-ML-CFS) method; one version

using a single-objective fitness function, described in Section 6.2, and another ver-

sion based on lexicographic multi-objective optimization, described in Section 6.3.

The first version of GA-ML-CFS proposed in this Chapter extends our previ-

ous version of ML-CFS (proposed in Chapter 4) by replacing the simple greedy

strategy by a more sophisticated GA as a search method. The GA uses the ge-

netic operators of crossover and mutation and a fitness-based selection method to

explore the space of candidate feature subsets.
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The second version of GA-ML-CFS, based on the lexicographic multi-objective

approach, assigns different priorities to different objectives (evaluation criteria),

and then focuses on optimizing the objectives in decreasing order of priority. In

our case, the highest priority objective was to maximize the value of the Merit of

a feature subset, whilst the lowest priority was to minimize the number of selected

features.

For each of the two versions of GA-ML-CFS, we tried two approaches for op-

timizing its parameter settings: a “wrapper-like” approach and a filter approach.

We compared the predictive accuracy associated with four methods: two GA-ML-

CFS versions times two parameter optimization approaches, in experiments using

two well-known multi-label classification algorithms: ML-kNN and BPMLL as the

multi-label classifier.

In general, the single-objective version of GA-ML-CFS with parameter op-

timized by the wrapper-like approach (gmiGA-wrap) obtained the best results.

Hence, next we ran experiments with gmiGA-wrap and other multi-label feature

selection methods to compare the predictive accuracy associated with their se-

lected features again using ML-kNN and BPMLL. From the experimental results

reported in this Chapter, in general when using MLkNN as classifier gmiGA-wrap

obtained the second best predictive accuracy, and it clearly outperformed gmiML-

CFS, NoFS, BR and RFML. In addition, gmiML-CFS selected the smallest feature

subset but obtained the fourth best accuracy (out of 6 methods). The best pre-

dictive accuracy was obtained by CFS-U, but there was no statistically significant

difference between the results of gmiGA-wrap and CFS-U. In addition, CFS-U

selects on average about twice as many features as gmiGA-wrap.

When using BPMLL as the classifier, gmiGA-wrap obtained the second best

predictive accuracy, although this time there is a very small difference between the
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average ranks of gmiGA-wrap and gmiML-CFS (the third best method regarding

accuracy), as shown in the last rows of Table 6.33 and 6.34. gmiML-CFS again

selected on average the smallest feature subset. The best predictive accuracy

was obtained by BR (Binary Relevance), but there was no statistically significant

difference between the results of BR and gmiGA-wrap. In addition, BR does not

reduce the number of features, since it uses all input features.
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Chapter 7

Conclusions and Future Work

In this thesis we have focused on multi-label feature selection methods for multi-

label classification problems. At the beginning, we proposed the first version of

our multi-label correlation-based feature selection method (ML-CFS), which ex-

tended the well known single-label correlation-based feature selection (CFS) to

the multi-label scenario. After that, we continued to improve ML-CFS in different

dimensions, as described in Section 7.1.

In addition, we also proposed a new approach for using the single-label CFS

method in a multi-label classification scenario. This approach first applies the

single-label CFS method to variations of the original dataset containing all fea-

tures and each class label separately; and then returns, as the selected feature

subset, the union of the feature subsets selected by the separate applications of

the single-label CFS method. This approach was called CFS-U, where U stands for

the union of feature subsets for all class labels. In the remainder of this chapter,

however, we focus on the proposed multi-label versions of the CFS method, which

directly cope with multi-label classification datasets in a single run of the method.

We used multi-label datasets obtained from the MULAN repository for the

experiments reported in Chapters 4 and 6. In Chapter 5, where we proposed and
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evaluated ML-CFS versions exploiting biological knowledge, we have used two

multi-label microarray gene expression datasets, which are not publically avail-

able. These datasets were prepared for data mining by the author of this thesis,

using data provided by Prof. Michaelis, School of Bioscience, University of Kent.

In Chapters 4 - 6, two well-known multi-label classification algorithms, namely

the Multi-Label k-Nearest Neighbour (ML-kNN) classification algorithm [124] and

the Back-Propagation Multi-Label Learning (BPMLL) classification algorithm [123]

were used to evaluate the quality of the feature subsets selected by all ML-CFS

versions. That is, the features selected by ML-CFS were used as input by ML-

kNN and BPMLL, and then the predictive accuracy of each classification model

was measured, for each ML-CFS version, on the test set, containing data instances

which were not included in the training set, therefore measuring the generalization

ability of the classification model. Note that we measured the predictive accuracy

using five different accuracy measures, namely: Hamming-loss, Ranking-loss, One-

error, Coverage and Average Precision [113], as reviewed in Chapter 2. We also

computed the average rank of each ML-CFS version across all accuracy measures

and all datasets used in each experiment, and the overall results mentioned later

in this Chapter refer to such average ranks.

We constructed the structure of our experiments and our thesis into three main

parts: (1) the proposed ML-CFS methods based on hill climbing search, discussed

in Chapter 4; (2) the proposed ML-CFS methods exploiting biological knowledge,

discussed in Chapter 5; and (3) the proposed ML-CFS methods based on evolu-

tionary algorithms, discussed in Chapter 6. The summary of contributions of this

thesis is presented in Section 7.1, and the discussion of future research directions

is presented in Section 7.2.
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7.1 Summary of Contributions

As mentioned earlier, this thesis has proposed three types of ML-CFS meth-

ods, each having different versions, as shown in Figure 7.1. The meaning of the

acronyms and method names in this Figure can be found in the corresponding

Section where they were presented, which is indicated between brackets in the

corresponding node in the Figure. Next, we summarize the main contributions in

terms of new ML-CFS methods, with one Section for each of the three types of

ML-CFS methods shown in Figure 7.1.
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S
 

Hill Climbing-based 

ML-CFS 

ML-CFS  

(Section 4.1) 

ML-CFSabs 
(Section 4.2.1) 

MI-based ML-CFS 
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(Section 4.2.2) 
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(Section 4.2.2) 
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hill climbing-based  
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(Section 6.2) 
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(Section 6.2) 
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(Section 6.3) 
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(Section 6.3) 

Figure 7.1: Summary of Original Contributions: ML-CFS methods
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7.1.1 Multi-Label Correlation-Based Feature Selection (ML-

CFS) Methods Based on Hill Climbing Search

Three extensions of ML-CFS were proposed: (1) The First Version of ML-CFS, (2)

ML-CFS with the Absolute Value of Correlation Coefficient, and (3) ML-CFS using

Mutual Information for Class Label Weighting. More precisely the third exten-

sion has two versions named gmiML-CFS and smiML-CFS. Note that gmiML-CFS

stands for the ML-CFS version where class labels with greater MI (Mutual Infor-

mation) are assigned greater weights, while smiML-CFS stands for the ML-CFS

version where class labels with smaller MI are assigned greater weights.

7.1.1.1 The First Version of the ML-CFS Method

The first version of the ML-CFS method was proposed in [57]. This method ex-

tended the single-label CFS method [44] to multi-label classification problems. In

general, ML-CFS uses a heuristic merit function to evaluate the merit of candidate

feature subsets (like in single-label CFS). The difference between these methods

is that the merit function of ML-CFS computes the average correlation coefficient

between each feature in a candidate feature subset and each of the multiple class la-

bels. By contrast, in the conventional single-label CFS method the merit function

is simpler, because there is no need to measure average correlations over multiple

class labels. The preliminary results of ML-CFS were discussed in [57], while the

computational results of ML-CFS on other datasets were shown in Chapter 4.

7.1.1.2 ML-CFS with the Absolute Value of Correlation Coefficient

This approach improves the performance of the original ML-CFS using the prop-

erty of the absolute value. In the first version of the multi-label ML-CFS method

[57], Pearson’s correlation coefficient (r) was used to estimate the correlation be-

tween features and labels, and the correlation between pair of features in a candi-
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date feature subset. Note that both positive correlation and negative correlation

can represent redundancy between a pair of features, or represent the relevance of

a feature to predict a set of labels. However, in the original single-label and multi-

label CFS methods, the value of the merit function depends on both the value

and the sign of r. As discussed earlier, negative and positive values of correlation

could cancel each other and produce a misleading merit value. Hence, the absolute

(without sign) value of the correlation coefficient was used in all occurrences of

the correlation coefficient in the merit function of this new ML-CFS version. The

computational results in Section 4.4.2 and 4.4.3 show that ML-CFS with the abso-

lute value of the correlation coefficient substantially improved the performance of

ML-CFS on all evaluation datasets when using ML-kNN and BPMLL classifiers.

Hence, the absolute value of the correlation coefficient was also used in all subse-

quent versions of ML-CFS presented in this thesis.

7.1.1.3 ML-CFS using Mutual Information for Class Label Weighting

The idea of this approach is that, when there are strong dependences among labels

in the data, simply ignoring label correlations may not be sufficient to cope well

with the label-dependence problem. To take label dependences into account, we

used mutual information (MI) to measure the dependency between each pair of

labels. We use MI, rather than Pearson’s correlation coefficient, because labels

are nominal, rather than numerical, and MI is often used to measure dependencies

between nominal variables in feature selection. We proposed two MI-based ML-

CFS versions. From the experimental results reported in Sections 4.4.4 and 4.4.5,

one ML-CFS version using MI for class label weighting clearly outperforms the

previous two versions of ML-CFS in general. Moreover, when comparing ML-CFS

using MI for class label weighting with other multi-label feature selection methods,

this method still shows a good predictive performance (it obtained the second best

predictive accuracy out of five feature selection approaches) when using ML-kNN

and BPMLL classifiers. In addition, gmiML-CFS selects substantially smaller fea-
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ture subsets than the method that obtained the best predictive accuracy for each

classifier.

7.1.2 Multi-Label Correlation-Based Feature Selection (ML-

CFS) Methods that Exploit Biological Knowledge

Three extensions of ML-CFS that exploit biological knowledge were proposed: (1)

ML-CFS using a Weighted Formula to Combine the Merit Function and KEGG

Pathway Information, (2) ML-CFS Embedding KEGG Pathway Information into

the Merit Function, and (3) ML-CFS Embedding KEGG Pathway Information

into the Merit Function.

7.1.2.1 ML-CFS using a Weighted Formula to Combine the Merit

Function and KEGG Pathway Information

In this approach we extended the ML-CFS method’s evaluation function to use

some biological knowledge about cancer-related pathways, to try to improve the

predictive performance of ML-CFS and select genes (features) whose role in cancer-

related drug resistance/sensitivity is more likely to be meaningful to biologists. We

assumed that if some genes are related with cancer-related drug resistance/sensitivity

to anti-cancer drugs, they are likely to occur in some cancer-related pathway(s).

A set of these pathways were identified by Prof. Martin Michaelis, School of Bio-

sciences. In order to quantify the strength of the relationship between the genes

(features) in a candidate feature subset and the aforementioned cancer-related

pathways, we proposed to compute “the average relative frequency of pathways

per gene” as discussed earlier. This measure was then used as one of the terms in

a new formula to measure a feature subset quality, where the other term was the

merit function. Each term was assigned a numerical weight.
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We ran experiments comparing 5 different weight settings of ML-CFS using

a weighted formula to combine the merit function and frequency of pathway in-

formation. Clearly, the ML-CFS version with a weight of 0.9 for merit function

and weight 0.1 for “the average relative frequency of pathways per gene”, called

ML-CFSk91, outperformed other versions of ML-CFS using a weighted formula

on two gene expression datasets prepared as part of this research, as mentioned

earlier. The details of these computational results are shown in Subsection 5.5.2.

In addition, ML-CFSk91 also outperformed two previous versions of ML-CFS that

do not exploit biological knowledge, as discussed in Subsection 5.5.3.

7.1.2.2 ML-CFS Embedding KEGG Pathway Information into the Merit

Function

In this approach, we embedded the value of the “average relative frequency of

pathways per gene” into the merit function in order to avoid the need to spec-

ify user-defined weights in our evaluation function (as in the previous ML-CFS

version). In this approach, the formula to calculate the average value of the corre-

lation between all features in a feature subset and all the labels in the class label

set was extended to reward the feature-label correlation values in proportion to

the strength of the association between the genes (features) in a candidate feature

subset and pre-identified relevant cancer-related pathways.

We ran an experiment for comparing this new ML-CFS version with the previ-

ous ML-CFS version using a weighted formula to combine the merit function and

cancer-related pathway information, on two microarray datasets. Clearly, ML-

CFSk91 outperformed ML-CFS embedding KEGG Pathway information into the

merit function on the two microarray datasets. The details of these computational

results are shown in Section 5.5.4.
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7.1.2.3 ML-CFS on datasets with pre-selected cancer-related features

The idea behind this approach was to investigate what would happen if we forced

our feature selection method (ML-CFS) to select a feature subset from a feature

space containing only the genes (features) that occur in some cancer-related path-

way. Hence, in this approach we removed all genes which do not occur in any

cancer-related pathway from the feature space. After that we gave all the remain-

ing genes (i.e. all the genes occurring in some cancer-related pathway) as input to

the ML-CFS method.

We ran an experiment for comparing this ML-CFS version against the previous

two ML-CFS versions exploiting biological knowledge. Clearly, again ML-CFSk91

outperformed the other two ML-CFS versions on the two microarray datasets. The

details of these computational results are shown in Section 5.5.4.

7.1.3 Multi-Label Correlation-Based Feature Selection (ML-

CFS) Methods Based on Evolutionary Algorithms

Two new Genetic Algorithms for Multi-Label Correlation-Based Feature Selec-

tion (GA-ML-CFS) were proposed: (1) A Genetic Algorithm for ML-CFS us-

ing a single-objective fitness function, and (2) another version based on lexico-

graphic multi-objective optimization named Lexicographic Genetic Algorithm for

ML-CFS.

7.1.3.1 A Genetic Algorithm for ML-CFS

The new Genetic Algorithm for Multi-Label Correlation-Based Feature Selection

(GA-ML-CFS) extends our previous versions of ML-CFS (described in [57, 58, 59])

by replacing the simple greedy strategy by a more sophisticated genetic algorithm
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as a search method. The GA’s fitness function was initially designed as the same

merit function used by the greedy ML-CFS. Recall that a GA performs a more

global search in the feature space than a greedy search because a GA works with

a population of candidate solutions spread across different regions of the search

space. As a result of their global search, GAs cope better with feature interac-

tion and are less likely to get trapped into a local optimum in the search space,

being more likely to find a global optimum. This new GA-ML-CFS method was

presented in [56].

Moreover, we improved GA-ML-CFS’ fitness function. According to the com-

putational results reported in Section 4.4, clearly, ML-CFS using mutual informa-

tion for class label weighting outperformed other ML-CFS versions and other multi-

label feature selection methods. Hence, we decided to extend the fitness function

originally based on the merit formula only, to consider also the mutual information

for class label weighting. We also run experiments to find the recommended pa-

rameter setting for GA-ML-CFS using two different approaches: a “wrapper-like”

approach and a filter approach. As shown in Section 6.7, clearly, GA-ML-CFS

with parameter settings optimized by the wrapper-like approach (gmiGA-wrap)

obtained the best results.

7.1.3.2 A Lexicographic Genetic Algorithm for ML-CFS

Lexicographic multi-objective optimization is a type of optimization technique

which assigns different priorities to different objectives and optimizes each of the

objectives in order of their priority. If one solution is significantly better than an-

other with respect to the first criterion, this solution will be chosen. Otherwise, the

performance of the two solutions is compared using the second criterion. LexGA-

ML-CFS was proposed in [55]. In LexGA-ML-CFS, the fitness of an individual

is evaluated based on two criteria (objectives): (1) the merit function (highest

priority); and (2) the number of selected features (k) (lowest priority). Also, a
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lexicographic optimization tournament selection was used in the parent selection

step of the GA.

Similarly to the single-objective GA-ML-CFS, we improved the performance of

LexGA-ML-CFS using the mutual information for class label weighting and we also

ran experiments to find the recommended parameter settings for LexGA-ML-CFS

using both a “wrapper-like” approach and a filter approach. The computational re-

sults comparing LexGA-ML-CFS with the single-objective GA-ML-CFS are shown

in Section 6.7, where the single-objective GA-ML-CFS with parameter optimized

by the wrapper-like approach (gmiGA-wrap) obtained the best results.

Finally, as reported in Sections 6.8.2 and 6.8.3, the best version of the proposed

ML-CFS methods, namely GA-ML-CFS (with a single objective), obtain the sec-

ond best predictive accuracy among 6 feature selection approaches being compared

using both ML-kNN and BPMLL as classifiers. However, there was no statistically

significant difference between the results obtained by GA-ML-CFS and the most

accurate approach, and GA-ML-CFS has the advantage of selecting substantially

smaller feature subsets than the methods that obtained the most accurate result

for each classifier.

7.2 Future Research Directions

Future research directions to extend our current work can be broadly divided into

two groups: direct extensions of the ML-CFS methods proposed in this thesis (and

the corresponding experiments), and new types of ML-CFS methods.
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7.2.1 Direct Extensions of ML-CFS and GA-based ML-

CFS

There are several direction extensions (or modifications) of ML-CFS that could

potentially improve its performance. First, in all ML-CFS versions mentioned in

this thesis, we used the arithmetic mean to measure an average value of correlation

between a feature and all labels. The arithmetic mean is easy to implement and a

widely used measure of a central tendency value, but it has the significant draw-

back of being very sensitive to outliers (extremely high or extremely low values)

in the data set. In future work the median could be used instead of arithmetic

mean, since the median is less sensitive to outliers.

Second, the ML-CFS methods that exploit biological knowledge were applied

only on two microarray datasets. More experiments on other microarray datasets

could be done in the future (if more multi-label microarray datasets become avail-

able). Moreover, other cancer-related databases could be used as a source of

biological knowledge (different from the KEGG database used in Chapter 5), to

try to improve the performance of ML-CFS.

Third, an extended versions of LexGA-ML-CFS with three objectives to be op-

timized could be implemented. This would be an extended version of the LexGA-

MLCFS proposed in Chapter 6, by adding one more objective. Recall that in

LexGA-ML-CFS, the first objective is the merit value and the second objective is

the number of selected features. In the new three-objective approach, the merit

value formula would be decomposed into three components corresponding to three

objectives to be optimized in the following decreasing order of priority: the corre-

lation between features and labels, the correlation between feature pairs, and the

number of selected features.

Fourth, since the results reported in this thesis are limited by the use of two
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specific multi-label classification algorithms (ML-kNN and BPMLL), in order to

get broader computational results about the effectiveness of multi-label feature

selection methods, other multi-label classification algorithms could be run in the

future.

7.2.2 New Methods for ML-CFS

As mentioned in Section 6.1, hill-climbing search performs only a local search in

the space of candidate feature subsets, selecting just one feature at a time and

considering only one candidate solution at a time. On the other hand, Genetic Al-

gorithms (GAs) are stochastic search methods which perform a more global search

in the feature space than a greedy search. As a result of their global search, GAs

cope better with feature interaction and are less likely to get trapped into a local

optimum in the search space, being more likely to find a global optimum. How-

ever, GAs are not the only type of global search method, and other global search

methods could be used to perform multi-label feature selection.

In particular, Ant Colony Optimization (ACO) is another type of global search

and optimization method, which is inspired by the behaviour of a real ant colony

in nature [28, 29, 30, 38, 81]. ACO algorithms also work with a population

of candidate solutions (artificial ants) exploiting different regions of the search

space. ACO has been extensively used for developing classification algorithms

[48, 87, 88, 89, 98, 99]. In addition, there has been some work on ACO algo-

rithms for conventional (single-label) feature selection [1, 3, 53, 60] and discovering

multi-label classification rules [11, 12], but not yet for multi-label feature selection.

Hence, it would be interesting to develop a new ACO algorithm for multi-label fea-

ture selection.

Moreover, another interesting research direction would be to develop new ML-

CFS methods for hierarchical multi-label classification problems [102]. This type
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of problem is more complex than conventional (“flat”) multi-label classification

problems, since in hierarchical multi-label classification the class labels are orga-

nized into a hierarchical structure – typically a tree or a directed acyclic graph

of class labels. Hence, a new ML-CFS method for hierarchical multi-label clas-

sification would need to be able to cope with the hierarchical structure of class

labels.
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