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Abstract  

 

Among neurotypical adults, errors made with high confidence (i.e., errors a person strongly believed 

they would not make) are corrected more reliably than errors made with low confidence.  This 

“hypercorrection effect” is thought to result from enhanced attention to information that reflects a 

“metacognitive mismatch” between one’s beliefs and reality.  In Experiment 1, we employed a 

standard measure of this effect.  Participants answered general knowledge questions and provided 

confidence judgements about how likely each answer was to be correct, after which feedback was 

given.  Finally, participants were retested on all questions answered incorrectly during the initial 

phase.   Mindreading ability and ASD-like traits were measured.  We found that a representative 

sample of (n = 83) neurotypical participants made accurate confidence judgements (reflecting good 

metacognition) and showed the hypercorrection effect.  Mindreading ability was associated with 

ASD-like traits and metacognition.  However, the hypercorrection effect was non-significantly 

associated with mindreading or ASD-like traits.  In Experiment 2, 11 children with ASD and 11 

matched comparison participants completed the hypercorrection task.  Although ASD children 

showed significantly diminished metacognitive ability, they showed an undiminished hypercorrection 

effect.  The evidence in favour of an undiminished hypercorrection effect (null result) was moderate, 

according to Bayesian analysis (Bayes factor = 0.21).  

  



3 
 

Metacognitive monitoring and the hypercorrection effect in autism and the general population: 

Relation to autism(-like) traits and mindreading 

 

Autism spectrum disorder (ASD) is a developmental disorder diagnosed on the basis of severe 

impairments in social-communication, as well as a restricted and repetitive repertoire of behaviour 

and interests (American Psychological Association, 2013).  At the cognitive level, ASD is 

characterised by a diminished ability to attribute mental states to others in order to explain and predict 

their behaviour (henceforth termed mindreading; also known as theory of mind).  Moreover, the 

extent of mindreading ability/impairment has been shown in some studies to predict the severity of 

ASD features in those diagnosed with the disorder (see Brunsdon & Happé,  2014) and the number of 

ASD-like traits in the general population (e.g., Baron-Cohen, Wheelwright, Skinner, Martin, & 

Clubley, 2001).  Despite extensive research on mindreading in ASD over the past three decades, very 

little research has investigated the extent to which individuals with this disorder are able to represent 

their own mental states accurately (so-called “metacognition” or metacognitive monitoring; see 

Williams, 2010).   This is surprising given many researchers suggest metacognitive monitoring is 

thought to rely on the same metarepresentational ability as mindreading (e.g., Carruthers, 2009, Frith 

& Happé, 1999), so might be expected to be as impaired as mindreading in ASD and equally 

predictive of ASD features.  Furthermore, metacognitive monitoring ability is known to be involved 

in self-regulated learning and to predict learning/educational outcomes independent of general 

intelligence in the neurotypical population (e.g., Hartwig & Dunlowsky, 2012; Veenman et al., 2005).  

Thus, a diminution of metacognitive monitoring ability in ASD might well contribute to well-

documented educational under-achievement that is seen even among intellectually-able individuals 

with ASD (e.g., Jones et al., 2008; Estes, Rivera, Bryan, Cali, & Dawson, 2011).   

What relatively little research has been conducted on metacognitive monitoring accuracy in 

ASD appears to indicate a deficit, although not conclusively so.  Children with ASD have well-

established difficulties with “self-versions” of classic mindreading tasks (see Williams, 2010), as well 

as in real-world learning situations (Brosnan et al., 2016), that require the attribution of mental states 

to self in order to explain one’s own behaviour.  Furthermore, adults with ASD report high levels of 

alexithymia, a difficulty identifying and labelling one’s own emotional states (e.g., Griffin, 

Lombardo, & Auyeung, 2015).  However, it is arguable whether or not these paradigms really 

measure the accuracy with which one can monitor online one’s own current mental states (see 

Carruthers, 2009; but see Williams, 2010).  Recently, studies of ASD have begun to employ classic 

paradigms from the field of metacognition that require participants to make explicit online judgements 

about the state of their own cognition.  In these paradigms, participants perform a cognitive task (e.g., 

answering general knowledge questions) and are asked to make judgements about the accuracy of 
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their responses/knowledge.  “Object-level” performance (i.e., cognitive ability) is indicated by the 

accuracy of task responses (e.g. the number of general knowledge questions answered correctly, 

reflecting semantic knowledge).  “Meta-level” performance (i.e., meta-cognitive monitoring ability) is 

indicated by the extent of correspondence between a participant’s judgement of performance and their 

actual performance (usually established by gamma correlations; Goodman & Kruskal, 1954).  One 

metacognitive judgement widely investigated in the neurotypical population is a judgement of 

confidence (JOC).  In a JOC task, participants often answer general knowledge questions and, 

immediately after answering a question, are asked to make a judgement about the likelihood that their 

answer is correct.  Higher confidence in correct answers than incorrect answers (a positive gamma) 

indicates that a person is accurately monitoring their own state of knowledge.  Five studies have 

explored the accuracy of JOC in children with ASD, three of which have observed diminished 

accuracy relative to comparison participants (Grainger et al., 2016; McMahon et al., 2016; Wilkinson 

et al. 2010; but see Sawyer et al., 2013, and Wojcik et al., 2011) 

One effect studied in relation to JOC accuracy (but which has never been explored in ASD) is 

the “hypercorrection effect”.  When young neurotypical adults (e.g., Butterfield & Mangels, 2006) 

and children (Metcalfe & Finn, 2012) report high confidence in answers that turn out to be incorrect, 

their memory for the correct answer is subsequently enhanced, suggesting that monitoring of one’s 

confidence mediates learning.   In the typical paradigm, participants answer general knowledge 

questions and, immediately after answering each question, are asked to make a judgement about the 

likelihood that their answer is correct (just as in a standard JOC task).  After each confidence 

judgement has been made, participants are presented with the correct answer to the question.  After all 

trials have been completed, participants are retested on all the questions that they answered incorrectly 

during the initial test phase.  During this retest phase, participants are significantly more likely to 

answer questions correctly if the answer they provided to that question in the initial test phase had 

been made with high confidence than if it had been made with low confidence.  This finding is 

remarkably robust and has been found reliably in young adults and children from the age of around 

six years of age (Butler, Fazio, & Marsh, 2011; Butterfield, & Metcalfe, 2001, 2006; Butterfield & 

Mangels, 2003; Eich, Stern, & Metcalfe, 2013; Fazio, & Marsh, 2009, 2010; Iwaki, Matsushima, & 

Kodaira, 2013; Metcalfe, & Finn, 2011, 2012; Metcalfe, & Miele, 2014; Metcalfe, Butterfield, 

Habeck, & Stern, 2012; Sitzman, Rhodes, & Tauber, 2014; Sitzman, Rhodes, Tauber, & Liceralde, 

2015). 

An influential explanation for the hypercorrection effect is that participants experience 

surprise at being wrong when they did not expect to be wrong, and subsequently allocate attentional 

resources preferentially to encode the correct answer more effectively than answers that they did not 

expect to be correct during the initial phase (Butterfield & Metcalfe, 2006; Butterfield and Mangels, 

2003; Fazio & Marsh, 2009; Metcalfe & Finn, 2011).   In other words, corrective feedback following 
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a high confidence error produces a “metacognitive mismatch” (e.g., Metcalfe, Butterfield, Habeck, & 

Stern, 2012) between one’s belief about reality and reality itself.  Becoming aware of this mismatch 

(i.e., of one’s own false beliefs) is a phenomenally salient experience that results in deeper processing 

of the stimuli about which one held a false belief, according to this explanation.  The possibility that 

the hypercorrection effect reflects metacognitive processes is supported indirectly by the finding (by 

Metcalfe et al., 2012) that corrective feedback to high-confidence, but not low-confidence, errors 

selectively elicits activation of the right temporo-parietal junction (as well as dorsolateral prefrontal 

cortex). Crucially, the temporo-parietal junction (TPJ) is a brain region widely implicated in mental 

state reasoning and metarepresentation of others’ thoughts (see Shurz et al., 2014).   

However, it may be that the hypercorrection effect reflects a cognitive, rather than (or in 

addition to) a metacognitive, process.  The fact that a metacognitive mismatch (between one’s belief 

about reality and reality itself) enhances learning does not show that the cause of the hypercorrection 

effect is itself metacognitive, and the above evidence for the involvement of metacognition in 

producing this effect is only indirect.  Instead, the hypercorrection effect may reflect, at least partly, 

the detection of a mismatch between the generated response and the subsequent feedback. At the time 

of receiving feedback, participants will of course be aware of what answer they just gave, and whether 

they reported high- or low-confidence in this answer. A high-confidence error may thus still elicit a 

salient mismatch that triggers attentional orienting and enhanced encoding of the correct answer, but 

the locus of the mismatch may be between the corrective feedback and a representation of the 

preceding response in short-term memory, rather than a mismatch between corrective feedback and a 

metacognitive representation of one’s previously held false-belief (for a discussion of this issue, see 

Williams & Happé, 2009).    

Whether or not the hypercorrection effect reflects metacognitive or cognitive processes, it is 

important to investigate it in relation to ASD, given the potential implications it has for educational 

practice.  To date, no study has investigated the hypercorrection effect in ASD.  If children with ASD 

show a normal hypercorrection effect, then it might prove a useful learning strategy for teachers to 

encourage children to make confidence judgements before they receive feedback.  However, while 

neurotypical children (from middle childhood onwards, at least) show a normal hypercorrection 

effect, it is not clear that children with ASD will.  The reaction of children with ASD to a 

metacognitive mismatch may be atypical and so attentional resources may not be rallied to encode the 

correct answers to high confidence errors more effectively than correct answers to low confidence 

errors.  If the hypercorrection effect does rely on metarepresentational resources, then we should 

expect the effect to be reduced in ASD (given well-known metarepresentational difficulties in this 

disorder).  However, if the hypercorrection effect merely represents the detection of mismatch at the 

cognitive level, then the effect may be undiminished in ASD.  In Experiment 2, we address the issue 

(among others) of whether children with ASD display a typical hypercorrection effect.  Before this, 
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however, Experiment 1 addresses the issues concerning the nature of the hypercorrection effect, and 

whether judgment of confidence accuracy (metacognitive monitoring ability) relates to this effect, or 

to mindreading or ASD-like traits.  The results of this first experiment inform predictions for 

Experiment 2.  

In Experiment 1, we investigated JOC accuracy and the hypercorrection effect using the 

standard task described above.  Eighty-three neurotypical adults completed this task, as well as 

widely-used measures of mindreading (the Reading the Mind in the Eyes task; RMIE; Baron-Cohen, 

Wheelwright, Hill, Raste & Plumb, 2001) and ASD-like traits (the Autism-spectrum Quotient; AQ; 

Baron-Cohen et al., 2001b).  Experiment 1 had several related aims.   

First, we aimed to assess the extent to which objectively-measured metacognitive monitoring 

ability (JOC accuracy) is associated with mindreading ability.  This is the subject of a theoretical 

dispute between those who argue that metacognitive monitoring depends on the same 

metarepresentational resources as mindreading (e.g., Carruthers, 2012), and those who claim that 

metacognitive monitoring and mindreading rely on entirely different processes (e.g., Nichols & Stich, 

2003).  Mindreading clearly relies on metarepresentation, so if either JOC accuracy or the 

hypercorrection effect are metarepresentational, then they should be associated with performance on a 

measure of mindreading ability (in this case the RMIE task).    

Second, we aimed to establish the extent to which metacognitive monitoring ability is 

associated with the number of self-reported ASD-like traits.  It is well-established that mindreading 

ability is (negatively) associated with ASD-like traits in the general population (e.g., Baron-Cohen et 

al. 2001b), but no study to our knowledge has assessed the possible relation between metacognitive 

monitoring and ASD-like traits, despite suggestions that diminished metacognitive monitoring might 

contribute to some of the core features of ASD itself (Williams, 2010).   

 

Experiment 1: Method 

Participants 

Eighty-three undergraduate students (72 female) from the University of Kent, UK took part in the 

experiment.  The average age of participants was 20.49 (SD = 4.96; range = 18 to 44) years.  No 

participant had a history of psychiatric disorder, including ASD, according to self-report. All 

participants gave informed consent and received course credit in partial fulfilment of their degree, for 

taking part in the study. The study (comprising experiments 1 and 2) was ethically approved by Kent 

School Psychology Research Ethics Committee. 

Materials and procedures 
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Hypercorrection Task. Stimuli for the hypercorrection task were 150 general knowledge 

questions (e.g., “What is the largest planet in the solar system?”), taken from Nelson and Narens’ set 

of published questions (Nelson & Narens, 1980), and general knowledge trivia websites.  Correct 

answers to these questions were always a single word (e.g., “Jupiter”). Questions were presented in a 

fixed random order for each participant. 

The procedure for the hypercorrection task consisted of an initial test phase, and an 

unexpected retest phase.  The procedure used was based closely on the typical method used to assess 

the hypercorrection effect in the literature (see e.g., Butterfield & Metcalfe, 2006; Metcalfe, 

Butterfield, Habeck & Stern, 2012). During the initial test, participants were individually presented 

with each of the general knowledge questions on a laptop screen, and were given an unlimited amount 

of time to provide an answer. Participants were told that if they did not know the answer to the 

questions they should take a guess. For each question, after participants had provided an answer, a 

confidence scale appeared below the question and their given answer. This consisted of a sliding 

scale, ranging from ‘Not Confident’ (0) to ‘Confident’ (100).  Participants were instructed to drag the 

marker left or right with a mouse to make a confidence rating.   

Immediately after providing a confidence rating, participants were provided with feedback 

and were shown the correct answer to the question on the screen for three seconds.  It was explained 

to participants that if the correct answer matched the answer participants had given, feedback would 

appear in green in the centre of the screen. In contrast, if the correct answer did not match the 

participant’s response, the correct answer appeared in red in the centre of the screen. A letter –

matching algorithm was used to score participants responses as either correct or incorrect 

automatically. This algorithm calculated the Jaro-Winkler distance between participant’s response and 

the correct answer, and did not take into account differences in capital letter use (e.g., “Jupiter” was 

consider the same as “jupiter” or “JUPITER”). Answers that had a Jaro-Winkler distance ≥.80 were 

considered correct, whilst answers with a Jaro-Winkler distance ≤ .79 were considered incorrect. Pilot 

work indicated that this algorithm classified response correctly on almost all occasions. On the very 

rare occasion that the letter-matching algorithm misclassified a response as incorrect/correct the 

experimenter verbally corrected the feedback. Before completing the initial test phase, participants 

complete 5 practice trials.  

After participants had completed the initial test phase of the task, they were given a surprise 

retest. It was explained to participants that they would now be retested on the questions that they had 

answered incorrectly during the initial test stage. During the retest phase, participants were presented 

with each of the questions they had answered incorrectly again and were asked to provide an answer. 

Participants did not have to rate their confidence during the retest phase and were not given feedback 

on whether their answers were correct.  



8 
 

Reading the Mind in the Eyes Task.   The RMIE task is a widely used measure of 

mindreading in clinical and non-clinical populations. Participants were presented with a series of 36 

photographs of the eye-region of the face.  On each trial, participants were asked to pick one word 

from a selection of four to indicate what the person in the picture was thinking or feeling.  Participants 

were instructed to read all four words carefully before they made a response. If participants felt more 

than one of the words was applicable, they were instructed to select the word that they thought was 

most suitable. Before beginning the task, participants completed a practise trial. Stimuli were 

presented on screen to participants in a random order, and no time limit was imposed. 

Autism-Spectrum Quotient. All participants completed the AQ, a self-report questionnaire 

that assesses ASD/ASD-like features, and is considered a reliable measure of ASD traits in both 

clinical and subclinical populations. The AQ presents participants individual statements (e.g., “I find 

it difficult to imagine what it would be like to be someone else”) and participants were asked to 

decide the extent to which the agreed with each statement, responding on a 4-point Likert scale, 

ranging from “definitely agree” to “definitely disagree”.   

Scoring 

Hypercorrection Task.  

Object-level performance (basic general knowledge) ability was calculated as the proportion of 

questions participants answered correctly in the initial test phase of the task.  

Metacognitive monitoring performance (judgement of confidence accuracy) was established 

using gamma correlations, which are a non-parametric measure of the strength of association 

(Goodman & Kruskal, 1954).  Gamma is used in the majority of studies of metacognitive monitoring 

(and all studies of JOC accuracy within studies of the hypercorrection effect) (see Nelson, 1984).  A 

gamma score was obtained for each participant, allowing the association between correctness of each 

answer during the initial test phase and confidence level in the answer given.  A gamma score of +1 

indicates a perfect correspondence between confidence in the accuracy of answers and actual accuracy 

of those answers (i.e., a person knows perfectly when they know and do not know).  A gamma of zero 

indicates no association between confidence and answer accuracy (i.e., random judgements).     

The hypercorrection effect was measured by calculating a gamma correlation for each 

participant between confidence assigned to incorrect answers during the initial test and correctness of 

answer during the retest phase (i.e., whether or not the initial error was corrected at retest). In this 

case, a gamma of +1 would indicate that initial confidence perfectly predicted retest performance (the 

higher the confidence in the original error, the more likely it was to be corrected at retest).   A gamma 

of zero indicates no association between initial confidence and likelihood of error correction (i.e., 

random corrections). This approach to scoring is employed in the majority of studies of the 
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hypercorrection effect [Butler et al (2011), Butterfield and Metcalfe (2001, 2006), Eich et al. (2013), 

Fazio and Marsh (2009, 2010); Iwaki et al. (2013); Metcalfe and Finn (2011, 2012), Metcalfe and 

Miele (2014); Metcalfe et al. (2012), Sitzman et al. (2014), and Sitzman et al. (2015)]. 

Reading the Mind in the Eyes (RMIE) Task. Scores on the RMIE task range from a 

possible 0-36, with higher scores indicating better performance on the task. 

Autism-spectrum Quotient (AQ). Scores on the AQ range from 0-50, with higher scores 

indicating more self-reported ASD-like traits. A score of ≥26 is considered as potentially clinically 

significant and expected for a person with a diagnosis of ASD (see Woodbury-Smith, Robinson, & 

Baron-Cohen, 2005).   

  

Statistical analysis 

An alpha level of .05 was used to determine statistical significance, unless experimental effects were 

specifically predicted.  If effects were predicted, then significance values are reported for one-tailed 

tests.  Where ANOVAs were used, we report partial eta squared (𝜂𝑝
2) values as measures of effect size 

(≥ .01 = small effect, ≥ .06 = moderate effect, ≥. 14 = large effect; Cohen, 1969).  Where t-tests were 

used, we report Cohen’s d values as measures of effect size (≥.0.20 = small effect, ≥ 0.50 = moderate 

effect; ≥ 0.80 = large effect; Cohen, 1969).   

 

Experiment 1: Results 

The average AQ total score across participants was 16.08 (SD = 6.20; range = 4 to 29), which is non-

significantly different from the general population average of 16.40 (SD = 6.30) reported by Baron-

Cohen et al. (2001b), t(82) = 0.46, p = .64, d = 0.05.   The average score on the Reading the Mind in 

the Eyes task was 25.56 (SD = 3.93; range = 4 to 29), which is non-significantly different from the 

general population average of 26.20 (SD = 3.60) reported by Baron-Cohen et al. (2001a), t(82) = 1.45, 

p = .14, d = 0.19.  These analyses suggest that the current sample is highly representative of the 

general population with respect to self-reported ASD-like traits and objectively-measured 

mindreading ability.   

Descriptive statistics for variables associated with performance on the experimental 

metacognition/hypercorrection task are shown in Table 1.  Participants were highly accurate in their 

judgements of confidence, producing an average JOC gamma that was significantly above zero, t(82) 

= 137.04, p < .001.   Likewise, participants showed the expected hypercorrection effect, producing an 

average hypercorrection gamma that was significantly above zero, t(82) = 8.34, p < .001.1  Moreover, 

the size of the hypercorrection gamma in the current study (.25) was non-significantly different to the 
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average hypercorrection gamma found across all previous studies of this effect among young 

neurotypical adults [mean gamma across 24 experiments/independent samples = .27; Butler et al 

(2011), Butterfield and Metcalfe (2001, 2006), Eich et al. (2013), Fazio and Marsh (2009, 2010); 

Iwaki et al. (2013); Metcalfe and Finn (2011, 2012), Metcalfe and Miele (2014); Metcalfe et al. 

(2012), Sitzman et al. (2014), and Sitzman et al. (2015)], t(82) = 0.59, p = .55, d = 0.09. 

Association analyses 

A series of correlation analyses was conducted exploring the relations among performance on 

the experimental metacognition/hypercorrection task, the RMIE task, and the AQ.   As predicted, JOC 

gamma was also positively and significantly associated with RMIE, reflecting an association between 

metacognitive monitoring accuracy and mindreading abilities, r =.25, p = .01 (one-tailed).  The 

correlation between JOC gamma and the hypercorrection effect gamma was also positive and 

significant, r = .32, p = .003.  However, the hypercorrection effect gamma was negatively and non-

significantly associated with the RMIE, r = -.16, p = .88.  A Fisher’s Z test revealed that the JOC 

gamma × RMIE correlation was significantly larger than the hypercorrection effect gamma × RMIE 

correlation, Z = 2.64, p = .008.   

These results appear to suggest that the variance shared between JOC gamma and 

hypercorrection effect gamma does not overlap with the variance shared between JOC gamma and 

RMIE score.  To investigate these results further, a series of partial correlations was conducted.  The 

JOC gamma × RMIE score, controlling for hypercorrection effect gamma, remained significant and 

increased slightly in magnitude relative to the bivariate correlation, r =.27, p < .01 (one-tailed).  

Similarly, the JOC gamma × hypercorrection effect gamma, controlling for RMIE score, remained 

significant and increased slightly in magnitude relative to the bivariate correlation, r =.34, p < .002.  

Finally, the hypercorrection effect gamma × RMIE score, controlling for JOC gamma, remained 

negative and non-significant, r = -.11, p = .35.  These analyses confirm that the association between 

JOC gamma and hypercorrection effect gamma has a different underlying basis to the association 

between JOC gamma and RMIE score.  Finally, a partial JOC gamma × RMIE correlation, controlling 

for the proportion of questions answered correctly during the initial test phase (i.e., general semantic 

knowledge) and the hypercorrection effect gamma, remained significant, r =.23, p < .02 (one-tailed).  

This final analysis highlights that the variance shared uniquely between JOC gamma and RMIE score 

reflected metacogitive/metarepresentational, rather than cognitive/representational, processes.  

Next, the relations with AQ were explored.    As expected on the basis of previous research, 

performance on the RMIE task was found to be significantly associated with AQ, r = -.35, p < .001.  

However, the hypercorrection effect gamma was non-significantly associated with AQ, r =.08, p = 

.45.  Moreover, the JOC gamma × AQ score correlation was non-significant also, r = -.10, p = .36, 

suggesting that (unlike mindreading ability) objectively-measured metacognitive monitoring ability is 
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not reliably associated with ASD-like traits.  To establish the extent to which variance shared between 

JOC gamma and RMIE is predictive of AQ score, two partial correlations were conducted to establish 

the extent to which the variance shared between the two is predictive of AQ score.  The JOC gamma 

× AQ score correlation, controlling for RMIE score, remained non-significant and reduced in 

magnitude relative to the bivariate correlation, r = -.02, p = .88.  In contrast, the RMIE × AQ score 

correlation, controlling for JOC gamma, remained highly significant, r = -.33, p = .002.  Thus, what 

little association there was between JOC accuracy and AQ score was explained almost entirely by a 

common factor shared with mindreading ability.  Furthermore, a Fisher’s Z test confirmed that the 

partial RMIE × AQ correlation was significantly larger than the JOC gamma × AQ correlation, Z = 

2.02, p = .04. 

Experiment 1: Discussion 

The current sample was representative of the population in terms of overall level of performance on 

widely-used measures of mindreading and ASD-like traits.  Moreover, the size of the hypercorrection 

gamma was also representative among the current sample.  This is important, because it increases 

confidence that the observed associations between key dependent variables are also reliable.  

 The first notable set of findings was that JOC gamma was associated significantly both with 

the hypercorrection effect and with mindreading ability (the RMIE task score).  However, the 

hypercorrection gamma was not, itself, associated with RMIE score.  These results suggest that 

metacognitive monitoring (as indexed by JOC gamma) relies to some extent on metarepresentation 

(hence the association with a putative metarepresentational task, the RMIE task).  However, the 

variance shared between the hypercorrection effect and JOC accuracy does not reflect a shared 

reliance on metarepresentation.  Rather, it seems that the overlap between JOC accuracy and the 

hypercorrection effect is due to a non-metarepresentational aspect/component of metacognitive 

monitoring (see Figure 1 for an illustration).  This was confirmed by the partial correlation analyses, 

in which the relation between JOC gamma and RMIE was even stronger after controlling for the 

hypercorrection effect gamma, and (correspondingly) the relation between JOC gamma and 

hypercorrection effect gamma was even stronger after controlling for RMIE score.   

The second notable set of findings was that, while RMIE task performance was significantly 

associated with AQ score (poorer mindreading = more ASD-like traits), neither JOC accuracy nor the 

hypercorrection effect were predictive of AQ score.  The small amount of variance in AQ score 

explained by JOC accuracy was purely the result of shared variance with mindreading ability.  This 

suggests that, although metacognitive monitoring and mindreading are themselves related, ASD-like 

traits are related to difficulties in representing others’ mental states, rather than one’s own.    

However, it is not always possible/accurate to extrapolate data from studies of ASD-like traits in the 

general population and apply it to individuals with a full diagnosis of ASD.  Although, there is 
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arguably continuity between ASD-like behavioural traits in the population and ASD features in 

diagnosed cases (e.g., Frazier et al., 2014), there may also be qualitative differences in the cognitive 

mechanisms that underpin those traits in each population (e.g., Peterson et al., 2005).  Thus, in our 

Experiment 2 we addressed these issues in a sample of children with ASD and neurotypical 

comparison children.  Participants completed an age-appropriate version of the experimental 

hypercorrection task used in Experiment 1, which required them to answer general knowledge 

questions, provide confidence judgements about each answer, receive feedback on the accuracy of 

their answer, and then be retested on every initially incorrect answer.   

Given that JOC accuracy is associated significantly with mindreading ability (the latter being 

known to be impaired in ASD), it was predicted that participants with ASD would show a significant 

diminution in JOC accuracy (in line with some previous findings;  Grainger et al., 2016; McMahon et 

al., 2016; Wilkinson et al. 2010), as a result of diminished metarepresentational ability.  Making 

predictions about between-group differences in the hypercorrection effect is less straightforward.  The 

significant association between the JOC gamma and the hypercorrection gamma might lead to the 

prediction that both will be impaired in ASD, given that the two share variance.  However, this shared 

variance is not underpinned by metarepresentational ability, it seems.  Rather, the hypercorrection 

effect does not seem to rely on metarepresentation, unlike judgements of confidence.  As such, the 

prediction that both JOC accuracy and the hypercorrection effect will be diminished in ASD relies on 

the assumption that the non-metarepresentational component of both is impaired in ASD.  This may 

be the case.  However, our central prediction (based on background theory; Carruthers, 2009) in the 

current study was that only metarepresentational aspects of the experimental task would be 

diminished in ASD.  For this reason, we predicted that the hypercorrection effect would be 

undiminished in ASD.  Nonetheless, given the uncertainties in making predictions, all p values 

regarding the hypecorrection effect were reported two-tailed to reflect a non-directional hypothesis. 

 

Experiment 2: Method 

Participants 

Baseline characteristics for ASD and comparison participants are displayed in Table 2.  All 

participants with ASD had verified diagnoses made according to DSM-IV-TR criteria.  Verbal IQ and 

Performance IQ were estimated using the Wechsler Abbreviated Scale for Intelligence-II (Wechsler, 

1999).  The parents of ASD and comparison participants completed the Social Responsiveness Scale, 

a valid and reliable measure of ASD features (Constantino & Gruber, 2001).  There were no 

significant between-group differences in age, verbal IQ, or performance IQ (all ps >.17, all ds < 0.47).  

The between-group difference in SRS score was highly significant, p < .001, d = 1.75. 
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Materials, procedures, and scoring 

The experimental hypercorrection task had exactly the same structure, procedure, and scoring method 

as that used in Experiment 1, but used different (age-appropriate) stimuli.  Three sets of general 

knowledge questions were used. Each set consisted of 50 questions, taken from Nelson and Narens’ 

published set (Nelson & Narens, 1980) and from general knowledge trivia websites. Each set of 

questions varied in difficulty, and were designed to test the general knowledge of children aged 7-8 

years (Set 1), 9-11 years (Set 2) and 12-14 years (Set 3). Given the age range of children that 

participated in the study, this ensured that the questions in the task would always range in difficulty. 

This design maximised variation in the confidence ratings assigned to answers (including incorrect 

answers), and avoided floor or ceiling effects in object-level performance.  The decision surrounding 

which set of questions to give to each child was based on chronological age. However, on the very 

few occasions when a child’s verbal abilities were well above or below average, the question set was 

determined by mental age to minimise the risk of floor or ceiling effects.  Answers to questions in all 

sets were a single word. Questions were presented in a fixed random order for each participant.  

Experiment 2: Results 

Descriptive statistics for variables associated with performance on the experimental 

metacognition/hypercorrection task are shown in Table 3.   

Object-level performance 

Object-level performance was assessed using a mixed 2 (Group: ASD/comparison) x 2 (Test period: 

initial test/retest) ANOVA on the proportion of questions answered correctly.  This revealed a 

significant main effect of Test period, reflecting significantly superior performance at retest than at 

initial test, F(1, 20) = 10.91, p = .004, 𝜂𝑝
2= .35.  The main effect of Group was also significant, 

reflecting superior semantic knowledge among comparison participants than ASD participants overall, 

F(1, 20) = 5.04, p = .04, 𝜂𝑝
2= .20.  However, there was no Group × Test period interaction, showing 

that participants with and without ASD showed the same pattern of performance across test periods, 

F(1, 20) =  0.21, p = .65, 𝜂𝑝
2= .01. 

Judgements of Confidence and the Hypercorrection Effect 

The between-group difference in average confidence ratings given to answers during the initial test 

phase was non-significant, t(14.10) = 0.52, p = .61, d = 0.22.  JOC accuracy (gamma) was 

significantly above zero in each group, ts ≥ 14.33, ps ≤ .001 (one-tailed).  However, as predicted, JOC 

gamma was significantly lower among participants with ASD than comparison participants, t(20) = 

2.00, p = .03 (one-tailed), d = 0.86.  This between-group difference is very similar in magnitude to the 

average between-group difference in JOC accuracy across the five previous studies among children 
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with ASD [Mean Cohen’s d = 0.81; Grainger et al., (2016); McMahon et al., (2015); Sawyer et al., 

(2013, Exps 1 & 2); Wilkinson et al. (2010; Exp. 1); Wojcik et al. (2011)]2.  Finally, the 

hypercorrection effect gamma was significantly above zero in each group, ts ≥ 2.28, ps ≤ .023.  

Despite showing a substantial diminution of JOC accuracy, participants with ASD nonetheless 

showed a slightly (but non-significantly) larger hypercorrection effect than did comparison 

participants, t(20) = 0.57, p = .58, d = 0.25.   

To put these key results in context, participants with ASD performed 1.02 SDs below the 

comparison group mean for JOC accuracy, but 0.24 SDs above the comparison group mean for the 

hypercorrection effect, on average.  This difference is highly significant, indicating that, relative to the 

performance of comparison participants, the performance of participants with ASD was significantly 

poorer with respect to JOC accuracy than with respect to the hypercorrection effect, t(10) = 3.01, p = 

.01. 

Given the potential for making type II errors when sample sizes are small, we conducted a 

further analysis of the between-group difference in the hypercorrection gamma.  An increasingly-used 

approach to interpreting null results is to calculate a Bayes factor associated with the critical contrast 

of interest.  Bayes factors overcome the limitations of interpreting p values when power is relatively 

low by providing an estimation of the relative strength of a finding for one theory over another theory, 

which allows a more graded interpretation of the data (e.g., Rouder et al., 2009).  Thus, they provide 

an estimate of the degree to which findings are supportive of the null hypothesis over the alternative 

hypotheses (Dienes, 2014).  According to Jeffreys’ (1961) criteria for interpreting Bayes factors, 

values of > 3 provide evidence for the alternative hypothesis, whereas values < 1 (or ≤ 0.33, according 

to Diennes, 2014) provide evidence for the null hypothesis.  Bayes factors between 1 and 3 provide 

inconsistent evidence for either hypothesis.  We calculated a Bayes factor (using Dienes, 2008) for the 

critical between-group difference in the hypercorrection gamma (mean difference between groups = -

.12; SE of the difference = .20), assuming the difference would be associated with an effect size of 

0.604.  This calculation produced a Bayes factor of 0.21, which indicates moderate evidence for the 

null hypothesis5.   

Finally, a series of exploratory correlation analyses was conducted to explore the extent to 

which performance on the experimental metacognition/hypercorrection task was associated with ASD 

features (SRS total score).  Among ASD participants, the JOC gamma × SRS correlation was 

moderate-to-large, but non-significant, r = -.43, p = .18.  The hypercorrection effect gamma × SRS 

correlation was also moderate, but non-significant, r = -.31, p = .35.  Among comparison participants, 

correlations were small and non-significant (JOC gamma × SRS: r = -.10, p = .80; hypercorrection 

effect gamma × SRS: r = .13, p = .74). 
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Experiment 2: Discussion 

As expected, JOC accuracy was found to be diminished among this sample of children with ASD.  

The between-group difference in the size of JOC gamma was significant and large (d = 0.86).  In 

contrast, the hypercorrection effect was slightly (but non-significantly) larger among ASD than 

comparison participants.  Results indicated that the between-group difference in JOC accuracy was 

significantly larger than the between-group difference in the hypercorrection effect.  Finally, a 

Bayesian analysis of the between-group difference in the hypercorrection effect suggested the data 

provided moderate evidence in favour of the null hypothesis. 

 

General discussion 

The aims of the current study were to investigate metacognitive monitoring ability, and its relation to 

ASD features/ASD-like traits and mindreading ability.  We also aimed to investigate the 

hypercorrection effect.  In Experiment 1, we found that JOC accuracy–an established indicator of 

metacognitive monitoring ability–was associated significantly with performance on the Reading the 

Mind in the Eyes task, which is a widely-employed measure of mindreading ability.   To our 

knowledge, this is the first study of the relation between metacognitive judgement accuracy and 

mindreading among neurotypical individuals, and the results are important from a theoretical 

perspective.  Although previous studies have attempted to address the potential link between 

metacognition and mindreading among individuals with a formal diagnosis of ASD, those studies 

have lacked the statistical power required to detect the predicted effect (see Grainger et al., 2014).  

This is common in ASD research, in which samples tend to be relatively small, given the difficulties 

recruiting and testing participants with this disorder.  By exploring this issue in relation to ASD-like 

traits and mindreading ability measured as continuous variables among a large sample of neurotypical 

adults, we were able to overcome this problem.    The significant association between JOC accuracy 

and performance on the Reading the Mind in the Eyes task in Experiment 1 was not substantial (r = 

.25; r = .27 after controlling for hypercorrection effect gamma), but this was expected.  Theoretical 

claims that metacognitive monitoring depends on the same neuro-cognitive mechanism as 

mindreading (e.g., Carruthers, 2012; Frith & Happe, 1999; Williams, 2010) do not imply that the two 

abilities are synonymous or that they are entirely overlapping.  Rather, the suggestion is merely that 

metacognitive monitoring relies to some extent on the same inferential capacity/metarepresentational 

resources as does mindreading, rather than being an entirely non-inferential, non-metarepresentational 

process.  There are other non-shared resources required for successful mindreading and metacognitive 

monitoring, respectively; executive functioning, for example, is probably implicated to a greater 

degree in mindreading performance than metacognitive monitoring performance (Roebers, Cimeli, 
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Roethlisberger, & Neuenschwander, 2012).   As such, the finding that the mindreading and 

metacognitive abilities are related, but not perfectly/substantially so, is in keeping with predictions.   

As expected, we also found that mindreading ability was associated significantly with ASD-

like traits; the lower an individual’s mindreading ability, the higher their ASD-like traits tended to be.  

However, JOC accuracy was not significantly associated with ASD-like traits in Experiment 1.  This 

suggests that it is primarily the use of metarepresentational resources to represent others’ mental 

states, rather than one’s own mental states, which contributes to ASD-like traits in the general 

population.  

Overall, the results from Experiment 1 were complemented by those from Experiment 2.  In 

Experiment 2, we found diminished JOC accuracy, but an undiminished hypercorrection effect, 

among children with a formal diagnosis of ASD.   The finding of diminished JOC accuracy in ASD 

adds to recent findings that children with ASD have difficulty making this kind of metacognitive 

judgement (Grainger et al., 2016; McMahon et al., 2016; Wilkinson et al. 2010; but see Sawyer et al., 

2013) and supports the idea that children with ASD have diminished metacognitive monitoring ability 

alongside diminished mindreading ability.    

In the current study, despite showing diminished JOC accuracy, children with ASD 

nonetheless showed an undiminished hypercorrection effect (e.g. Butterfield & Metcalfe, 2006). 

Likewise, in Experiment 1, whereas JOC accuracy correlated with mindreading ability, the 

hypercorrection effect did not. Although a prominent theoretical framework suggests that the 

hypercorrection effect is caused by metacognitive mismatch detection (e.g. Butterfield, et al. 2012), 

our findings suggest that this effect may not be strongly dependent on metarepresentational ability, 

but rather may be mediated by more basic cognitive processes. Of course, it is important to stress that 

the results concerning the hypercorrection effect in Experiment 2 need to be considered with some 

caution, given the small sample involved, and await replication before strong conclusions can be 

drawn.  However, the data itself provided moderate evidence that this effect is undiminished in ASD.   

This is the first study of the hypercorrection effect in ASD and suggests that children with this 

disorder would benefit from making explicit confidence judgements about the state of their own 

knowledge when learning new information.  Corrective feedback to high confidence errors selectively 

enhances learning and so could help children with ASD to learn information more effectively, even if 

the judgements of confidence are not themselves as accurate as those made by neurotypical children.   

Interestingly, the pattern of performance observed in children with ASD in Experiment 2 is 

the opposite to that observed among older neurotypical adults.  Eich et al. (2013) found that, relative 

to young adults, older adults showed a significantly diminished hypercorrection effect despite 

undiminished JOC accuracy.  Although the findings from Experiment 2 with regard to the 

hypercorrection effect are preliminary, they suggest a different pattern of strengths and difficulties in 
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this domain among people with ASD compared to older neurotypical adults.   This is particularly 

interesting, given recent comparisons between cognitive/memory impairments in ASD and cognitive 

decline in older age (e.g., Bowler, 2007; Ring, Gaigg, & Bowler, 2016), and suggest that this 

comparison may not be appropriate in all respects.   

In sum, the current study provides further evidence of metacognitive monitoring deficits in 

ASD, but also of typical hypercorrection of high confidence errors in children with this disorder.  

Future research might usefully take a developmental/longitudinal approach to these issues to establish 

whether metacognitive monitoring deficits resolve over time in ASD.  Moreover, it would be 

beneficial to know whether individuals with ASD base their same sources of information (or 

“mnemonic cues”) as neurotypical individuals do.  The investigation of metacognition in ASD is at a 

relatively early stage, so many questions remain unanswered.  The current research helps narrow 

down the questions that need to be asked by confirming that metacognitive monitoring deficits are 

present in children, as well as by clarifying the relation between monitoring ability and ASD traits, 

and the nature of the hypercorrection effect.  
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Footnotes 

1. No differences between males and females were apparent in terms of either JOC gamma, t(81) = 

0.76, p = .45, d = 0.25 or the hypercorrection effect gamma, t(81) = 0.32, p = .75, d = 0.11.

 Moreover, there were no between-sex differences in any of the bivariate correlations reported 

in Experiment 1 (all Zs ≤ 0.93, all ps ≥ .35).  

 

2. Wilkinson et al., (2010) did not use gamma to establish JOC accuracy.  The effect size is based on 

between-group differences in the proportion of items correctly recognised (old/new recognition) that 

participants were certain they had got correct (see table 2 of Wilkinson et al., p.1375).  Wojcik et al., 

(2011) did not use gamma to establish JOC accuracy.  The effect size is based on the average 

difference in JOC accuracy (as established using “non-directional discrepancy method”) across the 

three conditions of Wojcik et al.’s experimental task. 

 

3. In the only other study of the hypercorrection effect in children, Metcalfe and Finn (2012) reported 

an average hypercorrection gamma of .21 across three experiments involving children aged 

approximately 8 to 12 years.  The hypercorrection effect gammas in the current study were larger than 

this, but non-significantly so, among participants with ASD, t(10) = 1.80, p = .10, and comparison 

participants, t(10) = 0.90, p = .39. 

 

4. This effect size estimate was based on the difference in the size of the hypercorrection effect 

between younger and older adults in the study by Eich et al. (2013).  Given that the memory/cognitive 

profile of older adults has been compared to that characteristically observed in ASD (see Discussion 

section; e.g., Bowler, 2007), we considered that any between-group difference in the size of the 

hypercorrection effect in the current study might be of a similar magnitude to that observed by Eich et 

al.   

 

5. An alternative to basing an effect size estimate on existing literature is to specify the “minimally 

interesting value” that would support a particular hypothesis (e.g., Dienes, 2014).  That is, one can ask 

what size a between-group difference in task performance would have to be for it to be 

meaningful/clinically-relevant.  In our view, any between-group difference in task performance 

should be associated with an effect size that is at least moderate (i.e., 0.50). Any difference that is 

only small in magnitude is not clearly clinically relevant, in our view. Therefore, we recalculated the 

Bayes factor for the predicted between-group difference in the size of the hypercorrection effect, but 
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assumed that the difference would be associated with an effect size of 0.50, rather than 0.60. Under 

this conservative assumption, the Bayes factor was 0.25, which still represents moderate evidence in 

favour of the null hypothesis. 
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Table 1: Descriptive statistics for performance on the experimental metacognition/hypercorrection 

task in Experiment 1 

Variable Mean (SD) 

Initial test phase  

Proportion of correct answers  .52 (.15) 

Mean confidence rating for all answers 49.22 (15.40) 

Judgement of confidence accuracy (gamma) .86 (.06) 

Retest phase  

Proportion of correct answers on re-test test .74 (.15) 

Hypercorrection effect (gamma) .25 (.28) 
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Table 2: Baseline characteristics of ASD and comparison participants in Experiment 2 

 ASD (n = 11; 10 male) Comparison (n = 11; 8 male) 

Age 9.86 (1.69) 9.86 (1.00) 

VIQ 98.91 (15.34) 104.82 (9.94) 

PIQ 104.55 (14.51) 109.91 (14.34) 

SRS 78.73 (9.40) 53.44 (18.11) 
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Table 3: Descriptive statistics for performance on the experimental metacognition/hypercorrection 

task among ASD and comparison participants in Experiment 2 

Variable ASD  Comparison 

Initial test phase   

Proportion of correct answers  .54 (.14) .65 (.11) 

Mean confidence rating for all answers 66.94 (22.71) 70.84 (10.51) 

Accuracy of confidence judgements (gamma) .74 (.17)  .86 (.12) 

Retest phase   

Proportion of correct answers on re-test test .62 (.21) .76 (.10) 

Hypercorrection effect (gamma) .47 (.47) .35 (.50) 
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Figure 1: Illustration of the relations among JOC accuracy, RMIE, and the hypercorrection effect in 

Experiment 1. 
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