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One-dimensional magnetic order in the metal–organic framework Tb(HCOO)3
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Variable-temperature neutron scattering measurements, reverse Monte Carlo analysis and direct Monte Carlo
simulation are used to characterise magnetic order in the metal–organic framework (MOF) Tb(HCOO)3 over
the temperature range 100 K to 1.6 K = TN. The magnetic transition at TN is shown to involve one-dimensional
ferromagnetic ordering to a partially-ordered state related to the triangular Ising antiferromagnet and distinct
from the canonical “partially-disordered antiferromagnet” model. In this phase, the direction of magnetisation
of ferromagnetic chains tends to alternate between neighbouring chains but this alternation is frustrated and is
not itself ordered. We suggest the existence of low-dimensional magnetic order in Tb(HCOO)3 is stabilised by
the contrasting strength of inter- and intra-chain magnetic coupling, itself a consequence of the underlying MOF
architecture. Our results demonstrate how MOFs may provide an attractive if as yet under-explored platform for
the realisation and investigation of low-dimensional physics.

Low-dimensional magnets have long provided an impor-
tant playground for the discovery and exploitation of uncon-
ventional physics1—from the earliest studies of soliton exci-
tations in CsNiF3 (Refs. 2–4) to contemporary research into
quantum information transport in spin-chain compounds.5

The sensitivity of these systems to small perturbations re-
sults in a rich diversity of phase transitions and com-
plex ordering phenomena. For example, the Ising spin-
chain compound Ca3Co2O6 exhibits a variety of equilib-
rium and non-equilibrium states,6–8 characterised by e.g. long-
wavelength incommensurate spin density modulations and
field-induced magnetisation plateaux reminiscent of Hofs-
tadter fractalisation.9,10 Arguably the strongest scientific in-
terest from both experimental and theoretical perspectives has
always been in the limit of strict 1D order.11–16 Yet even in
canonical systems such as Ca3Co2O6 the divergence of corre-
lation lengths along 1D spin chains is always accompanied by
full 3D magnetic order.8,17 So the realisation and experimental
characterisation of genuine partially-ordered low-dimensional
magnetic phases remain an important challenge in the field.18

It was in this context that we chose to study magnetic or-
der in terbium(III) formate, Tb(HCOO)3. In metal–organic
frameworks (MOFs) such as Tb(HCOO)3, magnetically-
active transition-metal or rare-earth ions are connected via
organic ligands to form extended 3D framework structures.
Because organic ligands can support superexchange interac-
tions that span a broad energy range, and because framework
design allows controlled incorporation of low-dimensional
structural motifs (e.g. chains, ladders, layers), MOFs are natu-
ral candidate hosts for low-dimensional magnetism.19 Indeed
the magnetic response of a number of key MOF families—
including formates,20 oxalates,21 and succinates22,23—can be
interpreted in terms of low-dimensional behaviour. However,
nearly all of our collective understanding of magnetic order
in MOFs is based on indirect experimental techniques, such
as magnetic susceptibility, heat capacity, and dielectric con-
stant measurements.20–24 Tb(HCOO)3 is a notable exception:
it is one of the few MOFs for which neutron scattering mea-
surements have been used to characterise magnetic structure
within both antiferromagnetic (T < TN ' 1.6 K) and param-

agnetic (T = 3 K) regimes.25,26

That Tb(HCOO)3 might harbour an unconventional
partially-ordered magnetic state at low T is a possibility sug-
gested by the results of these earlier neutron scattering stud-
ies. Within the paramagnetic regime, spin correlations are
strongly 1D in nature: chains of Tb3+ ions couple ferromag-
netically, but neighbouring chains interact only weakly.26 On
cooling below TN, the magnetic Bragg peaks that emerge in
the neutron scattering pattern, indicative of a magnetic phase
transition, are subtly broader than the non-magnetic Bragg re-
flections (see SI) and are accompanied by a substantial dif-
fuse scattering component that is highly structured in recipro-
cal space and so indicative of strongly correlated disorder.27

Moreover, the magnetic structures that were proposed on
the basis of conventional crystallographic analysis in both
Refs. 25 and 26 require a modulation in Tb3+ moment that has
no obvious physical origin. In the study of disordered (non-
magnetic) materials it is recognised that low-dimensional or-
der often gives Bragg-like scattering features, interpretation of
which by conventional crystallographic means leads to spuri-
ous structural models.28,29

In this study, we report a combination of variable-
temperature neutron scattering measurement, reverse Monte
Carlo (RMC) analysis, and direct Monte Carlo (DMC) sim-
ulation of the evolution of magnetic order in Tb(HCOO)3 on
cooling from 100 K to 1.6 K. Our key result is that the spin
transition at TN involves 1D ferromagnetic (FM) order along
Tb3+ spin-chains to give a partially-ordered state equivalent
to the triangular Ising antiferromagnet (TIA). In this low-T
phase, the direction of chain magnetisation tends to alternate
between neighbouring chains but this alternation is frustrated
and is not itself ordered. This state—which emerges also in
DMC simulations—is distinct from the 3D “partially disor-
dered antiferromagnet” (PDA) model.11 Its magnetic scatter-
ing pattern contains both Bragg-like and structured diffuse
features, with the Bragg intensities indistinguishable from
those calculated either from the multiple-moment models sug-
gested in previous Rietveld studies or from the PDA model.
The existence of a well-defined 1D state in Tb(HCOO)3 dis-
tinguishes this system from other spin-chain triangular antifer-
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romagnets such as Ca3Co2O6,8,17 CsNiF3,30,31 and CoV2O6
16

and suggests its low-temperature physics may be of particular
interest in the study of 1D magnetism.

Under ambient conditions, Tb(HCOO)3 crystallises in the
rhombohedral space group R3m.26,32,33 All Tb3+ cations are
crystallographically equivalent, and are connected by the O
atoms of bridging formate ions to form 1D chains that lie
coincident with the crystallographic threefold rotation axes
[Fig. 1(a)]. The Tb. . .Tb separation along a given chain is
3.97 Å with the corresponding Tb–O–Tb angle 105.5◦—a ge-
ometry that favours ferromagnetic coupling and provides a
uniaxial crystal field at the Tb3+ site (point symmetry 3m).26

The chains pack on a perfect triangular lattice with inter-
chain separation a/

√
3 = 6.02 Å. Extended Tb–OCO–Tb

bridges connect neighbouring chains; one end of the formate
bridge has a bifurcated coordination, giving two inequivalent
Tb. . .Tb superexchange pathways (distances 6.16 and 6.57 Å)
for each pair of chain neighbours [Fig. 1(b)]. There is no ex-
perimental evidence for any change in space group symmetry
between room temperature and 1.4 K.26,34,35

Tb(HCOO)3 orders magnetically on cooling to 1.4–
1.6 K.26,34 Conventional symmetry analysis of the magnetic
Bragg scattering observed in this ordered phase identifies
P3m′1 as the unique magnetic space group; the correspond-
ing magnetic cell has the same size as the nuclear cell, but
the rhombohedral centering is lost. Two distinct spin ordering
patterns (and their linear combinations) are consistent with the
observed magnetic Bragg reflection conditions and intensities.
Both cases demand single-ion anisotropy with local moments
aligned parallel to the c-axis, both require FM correlations
along the Tb chains, and both correspond to antiferromagnetic
(AFM) ordering patterns with zero net magnetisation. In one
model, one third of the chains has twice the ordered moment
of the other two thirds; the magnetisation direction of these
two components oppose [Fig. 1(c)]. In the second model, one
third of the chains has no ordered moment, and the other two

FIG. 1: Crystal structure, key magnetic interaction pathways, and
candidate magnetic structures of Tb(HCOO)3. (a) Tb3+ coordina-
tion environments (tricapped trigonal prims; polyhedra) form face-
sharing columns parallel to c. Columns are arranged on a triangular
lattice and are connected by formate ions, shown here in stick repre-
sentation. (b) Intra-chain exchange pathways are ferromagnetic (J1),
and the two inequivalent inter-chain exchange pathways (J2, J3) are
collectively antiferromagnetic. Panels (c) and (d) represent the can-
didate magnetic structures proposed in Refs. 26,34. Circles repre-
sent Tb chains projected onto the (a, b) plane, symbols ‘+’ and ‘−’
denote ferromagnetic chains with magnetisations along c and −c,
respectively, and ‘0’ denotes the absence of any ordered moment.

thirds alternate their magnetisation directions [Fig. 1(d)]; in
the collinear limit, this describes the average structure of the
PDA model.11 We will come to show that these models are an
artefact of applying conventional crystallographic approaches
to a state that is not 3D ordered, and that neither model de-
scribes the true magnetic structure below TN.

We study the emergence of magnetic order in Tb(DCOO)3,
using variable-temperature (300–1.6 K) neutron powder total
scattering data measured by the high-resolution WISH diffrac-
tometer at ISIS.36 Our sample was that reported in Ref. 26;
experimental details are given as SI. The final total usable Q-
range spanned 0.1–3.7 Å−1, although within this range a total
of five regions contaminated with nuclear scattering contribu-
tions were excised and omitted from our subsequent analysis.
Our corrected data are shown in Fig. 2(a). We found no ev-
idence of magnetic order for T > 1.6 K, consistent with the
earlier studies of Refs. 26,34.

We fitted these data using the SPINVERT implementation
of magnetic RMC,37,38 applying the analytical approximation
to the Tb3+ form factor given in Ref. 39 and a linear-in-Q
background function.38 For our initial refinements, we used
RMC spin configurations representing a ∼(50 Å)3 supercell
of the nuclearR3m cell (1170 spins, see SI); larger configura-
tions gave equivalent results at greater computational expense.
Our SPINVERT fits are shown in Fig. 2(a). The data are well
modelled within the paramagnetic regime, with a marginal im-
provement if we use spins with Heisenberg rather than Ising
degrees of freedom (see SI). A SPINVERT fit to the 1.6 K
data set—i.e. within the ordered regime—accounts satisfacto-
rily for the diffuse component but cannot reproduce the Bragg
scattering [see inset to Fig. 2(a)]. This is to be expected38 as
the reciprocal-space resolution ∆Q ∼ 0.01 Å−1 required to
describe Bragg features is many times smaller than the resolu-
tion afforded by our RMC cells (∆Q ' 2π/rmax = 0.2 Å−1).
We will return to this point later in our study.

The temperature dependence of spin orientations and pair-
wise spin correlations is illustrated in Fig. 2(b) for three rep-
resentative temperatures (1.7, 2.2, and 8 K). The Ising-like
anisotropy noted in Ref. 26 is evident at both 1.7 and 2.2 K,
but is not obvious at 8 K. RMC gives a lower bound to the true
extent of single-ion anisotropy;38,40 indeed we cannot rule out
that Ising-like behaviour persists to much higher temperatures
since RMC fits using Ising spins also provide acceptable fits to
the neutron scattering data (see SI). Irrespective of the degree
of anisotropy what certainly evolves at low temperatures is the
extent of FM correlations along Tb chains. At the very lowest
temperatures, AFM inter-chain correlations also become sig-
nificant, as evidenced by the negative values of 〈S(0) · S(r)〉
for r = 6.16 and 6.57 Å. These interactions are necessarily
frustrated, and lead to net FM correlations for next-nearest
chain neighbours (e.g., r = a = 10.42 Å), which are most no-
ticeable at 1.7 K. Spin correlations corresponding to spin pairs
taken from chains that are neither nearest neighbours nor next-
nearest neighbours are very weak: these account for the series
of data points around 〈S(0) · S(r)〉 = 0 for r > 12 Å.

On the basis of these correlation functions, we anticipated
that the basic spin physics of our system might be captured by
a combination of Ising-like single-ion anisotropy, FM intra-
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FIG. 2: Temperature-dependent magnetic scattering in Tb(DCOO)3
and its SPINVERT analysis. (a) Scattering data are shown as filled
circles, with SPINVERT fits shown as red solid lines. Regions of
the scattering pattern contaminated with nuclear scattering have been
excluded. The inset shows scattering data collected at 1.6 K within
the partially ordered regime together with a small-box SPINVERT
fit. (b) Single-ion anisotropy and pairwise correlation functions at
three representative temperatures spanning the paramagnetic regime
studied here. The single-ion spin orientation functions are shown in
stereographic projection, with colours indicating relative distribution
probability p(θ, φ) = ρ(θ, φ)/d(cos θ)dφ; here ρ(θ, φ) is the frac-
tion of total spins within the angular region d(cos θ), dφ. Spin corre-
lation functions have been separated into intra-chain (top panels) and
inter-chain (bottom panels) terms. RMC and DMC results are shown
using filled red and open blue circles, respectively; uncertainties are
smaller than the symbols.

chain interactions and AFM inter-chain interactions. The sim-
plest Hamiltonian containing these ingredients is

H = J‖
∑
〈i,j〉

Si · Sj + J⊥
∑
〈〈i,j〉〉

Si · Sj −D
∑
i

S2
iz, (1)

where 〈· · · 〉 and 〈〈· · · 〉〉 denote sums over neighbouring spins
within and between chains, respectively, J‖ = J1 < 0 and
J⊥ = J2 ≡ J3 > 0 are as shown in Fig. 1(b), and D > 0
is the single-ion term. To the best of our knowledge, there is
no general theory for this interaction model on the rhombohe-
dral lattice that would allow us to extract the Ji, D parame-
ters directly from the experimental spin correlation functions,

even if specific realisations are well understood.41,42 Conse-
quently, our approach is to use Eq. (1) to drive DMC simula-
tions with different parameter sets to attempt to reproduce the
basic temperature dependence of the experimental spin cor-
relation functions, and so identify a set of Ji, D values that
capture the key behaviour of paramagnetic Tb(HCOO)3.

Using a grid search approach we tested a variety of can-
didate Ji, D values, carrying out DMC simulations using the
code developed in Ref. 40 and ranking parameter sets accord-
ing to the fidelity of reproduction of the pairwise spin cor-
relation functions at all measured temperatures. Our DMC
spin configurations were the same size and geometry as in the
original SPINVERT refinements. Simulations were initialised
with random spin orientations, with T systematically lowered
from 100 K to 1.7 K following equilibration at each step. Sim-
ulations were repeated 100 times and the correlation functions
averaged over these independent runs. We found the closest
match to experiment for J‖ = −1.5(5) K, J⊥ = 0.03(1) K,
D = 70(20) K [Fig. 2(b)] (note that we have subsumed the
S2 term within these Ji, D values). While the match to AFM
inter-chain interactions is improved by distinguishing J2 and
J3 (see SI) this effect appears to be marginal. Importantly
we do not require this additional complexity for conclusions
we draw here as they do not significantly affect the features
observed. We do note, however, that the J‖ and D parame-
ters showed strong covariance, such that reasonable fits could
be obtained with larger |J‖| and smaller D. Because the
RMC spin orientation distributions underestimate anisotropy,
we cannot use these distributions to help quantify D (other
than to act as a flag were the value too low, which is not the
case here). Nevertheless the value ofD we obtain is consistent
with that obtained elsewhere for Tb3+ in axial crystal fields,43

and the qualitative behaviour of the DMC simulations them-
selves is the same for all acceptable J‖, D combinations we
identified (see SI).

As in the real system itself, this particular Hamiltonian ex-
hibits an ordering transition on cooling below ∼1.6 K for all
Ji, D values consistent with our neutron scattering measure-
ments of the paramagnetic phase (see SI). Direct interrogation
of the relevant DMC configurations reveals the low-T state to
contain only partial order [Fig. 3(a)]. Individual chains ex-
hibit FM order with their magnetisation aligned either parallel
or antiparallel to c; the chain magnetisation tends to alternate
between neighbouring chains but this alternation is frustrated
by the underlying triangular lattice and so there is no 3D mag-
netic order. In other words, the state is a realisation of the
TIA where individual Ising variables correspond to collective
chain magnetisations. We find no evidence of sublattice order-
ing as implied by the PDA model [Fig. 3(b)]. Extending our
TIA model to substantially larger configurations (ca (20 nm)3,
or ∼105 spins) allows calculation of a corresponding neutron
scattering pattern of sufficient reciprocal-space resolution to
account at once for both Bragg and diffuse scattering. We
refined such a model against the experimental data using the
SPINVERT code (see SI).37,38 This process introduced small
spin reorientations but preserved the basic TIA spin structure.
Crucially, we find that this intermediate order TIA state can
account for the entire experimental scattering pattern, includ-
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FIG. 3: 1D magnetic order in Tb(HCOO)3. (a) A fragment of the DMC spin configurations at a simulation temperature of 1.5 K is represented
in red: spins within a given chain share a common magnetisation direction parallel to the chain axis, with fluctuations away from this vector
reflecting the population of spin waves. Projection of these magnetisation directions onto the underlying triangular lattice on which chains are
arranged gives a realisation of the TIA (green and blue arrows). (b) Comparison of the TIA and PDA states with Ising variables represented
by green and blue spheres. In both cases every triplet of neighbouring Ising states ε = ±1 obeys the sum rule |

∑
i εi| = 1, but the PDA

model contains a honeycomb sublattice (part of which is shown in white outline) with strict antiferromagnetic order. Sites not included in this
sublattice adopt random Ising states; for example, of the seven contained within the highlighted region, five correspond to ε = −1 (blue) and
two to ε = +1 (green). (c) Comparison of experimental neutron scattering data (black symbols) with neutron scattering patterns calculated
for Tb(DCOO)3 configurations corresponding to TIA (red line) and PDA (green line) states; the ‘ripples’ are a finite-size effect47 and are
more noticeable for the PDA model because it contains 3D order. Bragg-like features appear at the regions of reciprocal space associated with
maxima in the TIA diffuse scattering pattern (inset). (d) The pairwise spin correlation functions for the TIA model separated into intra-chain
(top) and inter-chain (bottom) terms. 1D order has two clear signatures in these correlation functions: the correlation length diverges for
intra-chain spin pairs, and the inter-chain correlations vanish as inter-chain separation increases.

ing the appearance of Bragg-like peaks with the correct re-
flection conditions and relative intensities [Fig. 3(c)]. By con-
struction, this model requires no unphysical modulation of the
Tb3+ moment. Rather the magnitude of chain magnetisation
is homogeneous throughout the configuration; our model con-
tains an average spin projection |〈Sz〉| = 0.662(4) along the
chain axes with standard deviation = 0.136. A PDA model
with the same spin projection values gives a diffraction pat-
tern with the same Bragg reflection conditions and relative
Bragg intensities but cannot account for the structured diffuse
scattering observed experimentally [Fig. 3(c)]. Hence the TIA
model reproduces both the Bragg and diffuse components of
the magnetic intensities, but the PDA model accounts only for
the Bragg component.

Finally, the spin correlation functions extracted from our
TIA configuration reflect the curious coexistence of 1D order
and 2D disorder [Fig. 3(d)]. The correlation length diverges
(over the ∼10 nm scale of our configurations) for intra-chain
spin pairs, reflecting long-range 1D ferromagnetic order. Be-
cause neighbouring (ordered) chains tend to anti-align, the
inter-chain spin correlations are antiferromagnetic for spin
pairs taken from neighbouring chains, and positive for next-
nearest chain neighbours. This alternating behaviour contin-
ues for spins from successively distant chains, but the mag-
nitude of the spin correlation becomes vanishingly small be-
cause there is no long-range magnetic order in the inter-chain
directions. The divergence of the 1D ferromagnetic spin cor-
relation length between 1.6 and 1.7 K [cf Figs. 2(b) and 3(d)]
is consistent with the second-order phase transition postulated
on the basis of the analysis of magnetic Bragg scattering us-
ing conventional crystallographic approaches.26 Data collec-

tion at (even) finer temperature intervals around TN would al-
low more detailed characterisation of the critical behaviour of
this unusual transition.

We now summarise for clarity the various models we have
used to arrive at our conclusions regarding the nature of mag-
netic order in Tb(DCOO)3 at 1.6 K. The key experimental ob-
servation we have sought to explain is the bizarre magnetic
scattering pattern shown in the inset to Fig. 2(a), which con-
tains a superposition of Bragg-like features and structured dif-
fuse scattering. RMC analysis of these data is computation-
ally intractable because the size of configuration needed to ac-
count for the Bragg-like features (∼ 105 spins) means refine-
ment from a randomly-oriented spin configuration is simply
too expensive. DMC simulations allow us to explore phase
behaviour at much less expense, and so we have used DMC
to generate spin configurations for T = 1.5 K < TN, driven
by the Hamiltonian in Eq. (1) parameterised so as to match
the experimental (RMC) spin correlation functions measured
within the paramagnetic regime (T ≥ 1.7 K). At the sim-
ulation temperature of 1.5 K, the DMC configuration shows
1D FM order along spin chains but TIA-like disorder be-
tween chains; this is the “TIA model” shown in Fig. 3(a,b).
We then generated a large spin configuration corresponding
to an idealised TIA model, and allowed small spin reorien-
tations during an RMC refinement against the experimental
data. The resulting spin configuration accounts entirely for
the experimental scattering pattern [Fig. 3(c)]. The spin cor-
relation functions shown in Fig. 3(d) are derived from this
RMC-refined TIA model and so represent the experimental
spin correlations at 1.6 K. Finally, we verified explicitly that
a PDA model (partial 3D order) with intra-chain spin correla-



5

tions identical to those in our RMC model cannot account for
the experimentally-observed diffuse scattering.

So our analysis suggests that the magnetically ordered state
of Tb(HCOO)3 accessed below 1.6 K is 1D in nature, such
that the remnant spin degrees of freedom map this system onto
the 2D TIA. The sharp reflections observed in the neutron
scattering patterns are not true Bragg reflections, but corre-
spond to maxima in the continuous scattering function [in-
set to Fig. 3(c)] with precisely the form expected for TIA
phases.44 It was shown in Ref. 45 that interpretation of these
“reflections” using conventional crystallographic approaches
leads to a three-sublattice average structure model (viz. PDA)
as portrayed in Fig. 1(c,d). Consequently, the modulation in
magnitude of ordered moment from chain to chain given by
that model is an artefact of applying conventional crystallo-
graphic tools to a state with no true 3D order.

Our identification of 1D magnetic order in Tb(HCOO)3
has a number of implications. We anticipate by anal-
ogy to CsNiF3 the signature of emergent phenomena in
its excitation spectrum;2–4 indeed the contrast in single-ion
anisotropy between these two systems (easy-axis vs easy-
plane) provides a means of testing key aspects of the theory of
anisotropic 1D ferromagnets.1,41 Although Ca3Co2O6 is con-
ceptually similar to Tb(HCOO)3, a distinction between the
two is the order-of-magnitude difference in J‖/J⊥ that sta-
bilises the intermediate-order state in the latter.17 Neverthe-
less, Tb(HCOO)3 is likely also to show anomalous response

to applied magnetic field; indeed magnetisation plateaux
may explain its favourable performance as a magnetocaloric
material.16,26 We also anticipate the onset of 3D order at
T � J⊥ ∼ 30 mK, provided that the transformation kinetics
are not prohibitive at such low temperatures. From a materials
design perspective, the 1D behaviour of Tb(HCOO)3 is a di-
rect consequence of the underlying MOF architecture. Chem-
ical substitution of formate for longer bridging ligands may
allow even more extreme J‖/J⊥ values to be realised, pre-
sumably stabilising 1D behaviour over a larger temperature
range. Substitution at the Tb3+ site may also be of interest:32

Gd(HCOO)3 exhibits AFM intra-chain coupling, and so the
series Gd1−xTbx(HCOO)3 (Ref. 26) may allow realisation of
random-chain 1D magnets.46
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