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Spectral flow and bifurcation for a class of strongly
indefinite elliptic systems

Nils Waterstraat

Abstract

We consider bifurcation of solutions from a given trivial branch for a class of strongly indef-
inite elliptic systems via the spectral flow. Our main results establish bifurcation invariants
that can be obtained from the coefficients of the systems without using explicit solutions
of their linearisations at the given branch. Our constructions are based on a comparison
principle for the spectral flow and a generalisation of a bifurcation theorem due to Szulkin.

1 Introduction

Let © be a domain in RY for some N € N which we assume to have a smooth boundary.
Let a,b,c : I x Q@ — R and G : I x Q x R?2 — R be C2?functions, where I := [0,1] de-
notes — here and throughout the paper — the unit interval. We denote by G., and G’ the
partial derivatives of G with respect to the components in R2, respectively, we assume that
Gl (A x,0,0) = GI)(A\,2,0,0) = 0 for all (\,z) € I x Q and we consider the systems of elliptic

partial differential equations

—Au = by(x)u+ ex(z)v + G, (A, z,u,v)  in Q,
—Av = ax(z)u + br(z)v + Gy (N, z,u,v) in Q, (1)
u=v=0 on 0%

depending on the parameter A € I. Clearly, under the mentioned assumptions the constant
function (u,v) = 0 is a solution of (I]) for all values of A and the aim of this article is to
investigate bifurcation from this trivial branch of solutions I x {0}. Here, a bifurcation point of
(D is an instant \* € T for which there is a sequence { (A, tn, Vp) tnen such that (u,,v,) # 0is a
weak solution of (@) for A\,, A, — A\* and w,,, v, — 0 in the Sobolev space H} (2, R) for n — oo.
Our methods are based on a bifurcation theorem for critical points of families of functionals due
to Fitzpatrick, Pejsachowicz and Recht [FPR99)], which was recently improved by Pejsachowicz
and the author in [PeWT3]. In order to explain this theorem briefly, let f : I x H — R be a
family of C? functionals which are defined on a Hilbert space H and such that 0 € H is a critical
point of all fx := f(\,-) : H = R. A bifurcation point of critical points for f is an instant A* € T
such that every neighbourhood of (A\*,0) in I x H contains elements (A, z) such that z # 0 is a
critical point of fy. If we now represent the second derivatives DZfy of f at the critical point
0 against the scalar product of H, then we obtain a path L = {Ly}xes of selfadjoint operators.
It is readily seen from the Implicit Function Theorem that Ly~ is not invertible if \* € [ is a
bifurcation point of critical points of f.

The spectral flow is an integer valued homotopy invariant for paths of selfadjoint Fredholm
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operators, which has been used in Global Analysis for about 40 years. We will say more about it
in the next section, but here we just want to mention that a non-vanishing spectral flow implies
that the path contains non-invertible operators. Its relevance for bifurcation of critical points
for families of functionals was clarified in [FPR99]: if the selfadjoint operators Ly, which are
induced by the Hessians of f at 0, are Fredholm, then a non-vanishing spectral flow is a sufficient
condition for the existence of a bifurcation of critical points of f. Let us point out that if the
operators L) have finite Morse indices, then the spectral flow of L is just the difference of the
Morse indices of Lo and Ly, and so the bifurcation theorem [FPR99] is a classical assertion in
variational bifurcation theory in this case. In contrast, it is often hard to compute the spectral
flow of a given path of operators when the Morse indices are infinite (cf. e.g. [PoW15]).

The aim of this article is to show that for the indefinite elliptic systems (II), where the Morse
indices of the corresponding operators L are indeed infinite, the spectral low can be computed,
or at least estimated, so that [FPR99] can be used to derive bifurcation criteria. To our best
knowledge, such easily computable bifurcation invariants that are induced by the spectral flow
have not been obtained for partial differential equations before.

In the following section, we introduce a family of C2-functionals f : I x E — R which is
defined on the Sobolev space E := H}(Q,R?) and which is such that the critical points of
fr = f(A,-) : E — R are precisely the weak solutions of (). In particular, 0 € F is a critical
point of each fy and we can deduce the existence of a bifurcation from the zero-solution of ()
by considering bifurcation of critical points from 0 for the family of functionals f. We will state
below conditions on the map G which ensure that the Hessians D2 fy of fy at 0 € E exist, and
that elements in the kernel of the representations Ly of D2fy on E are the solutions of the
linearised equation

—Au =by(z)u+ cx(z)v in Q,
—Av = ay(z)u+by(x)v in €, (2)
u=v=0 on Jf).

Since the operators L) are readily seen to be Fredholm in this case, we can use the abstract
bifurcation theorem [FPR99], and consequently, we will be concerned with the spectral flow of
the corresponding path L = {Ly}xer. In Theorem F2] which we consider as our main result of
this paper, we estimate the spectral flow in terms of the coefficients of ) at A =0 and A =1,
which is enough to conclude that it does not vanish and so implies the existence of a bifurcation
of solutions for the nonlinear equations ().
Another objective of this paper is to consider the special case in which the maps a,b and ¢ do
not depend on x € 2, i.e.

—Au=byu+c v+ GL(\,z,u,v) in Q,
—Av = a)u+ byv + G, (N, z,u,v) in Q, (3)
u=v=0 on Jf).
For these equations, we compute the spectral flow of the corresponding path of operators L

exactly in terms of an integral index that can be constructed from the coefficients of the linearised
equations

—Au=byu+cyv in Q,
—Av=a)u+byv in Q, (4)
u=v=0 on 0f?



for A = 0 and A = 1. The idea of this index goes back to Li and Liu [LL89|, who used a
similar construction in their study of existence of periodic solutions of asymptotically quadratic
Hamiltonian systems. Their index was later applied in bifurcation theory for periodic solutions
of Hamiltonian systems, e.g., by Szulkin in [Sz94], and by Fitzpatrick, Pejsachowicz and Recht
in [FPRO0] who in particular used it to compute the spectral flow for autonomous Hamiltonian
systems. It has some interest in its own that we compute in our Theorem 32l the spectral flow for
the equations (@) by an index that is very much reminiscent of Li and Liu’s index from [LL8&9).
The adaption of Li and Liu’s index for Hamiltonian systems to the elliptic systems () follows
closely Szulkin’s work [Sz94, §5] (cf. also [KS97, §9]), who investigated the bifurcation problem
for @) in the special case that a,b, c and G depend linearly on A, i.e.

—Au = ANbu + cv + G, (z,u,v)) inQ,
—Av = MNau + bv + G, (x,u,v)) in Q, (5)
u=v=0 on 0,

by using infinite dimensional Morse theory for strongly indefinite functionals. We reobtain
Szulkin’s results in Corollary B4 as a consequence of our Theorem [B2] and we will also as-
sess our main Theorem 2] for the equations (Bl below.

The paper is organised as follows. In the next section we introduce the family of functionals
f I x E — R which have as critical points the solutions of the nonlinear equations (). More-
over, we recall the definition of the spectral flow, its main properties and its use in variational
bifurcation theory. This leads us directly to a first theorem on bifurcation for (). In the sub-
sequent Section 3, we consider the equations [B]). We construct an integral invariant for the
coefficients of the systems ([l and use our theorem from the previous section to show that the
non-vanishing of this number causes bifurcation of the equations @). In Section 4 we consider
again the general systems (Il) and we use a comparison principle for the spectral flow to find
criteria on the coefficients of (2] to obtain bifurcation points for (). This involves in particular
the index that we introduced for the systems () in the previous section. In the fifth section, we
consider the case N = 1, i.e. when the equations (IJ) are ordinary differential equations. Since in
this case we can estimate the dimension of the solution spaces of ([2)) from above, we can use a
result from [PeW13| to obtain not only the existence of bifurcation points but also an estimate
on their number. The paper ends with a short appendix in which we elaborate some folklore
results on families of compact operators and projections.

2 Spectral flow and bifurcation for ()

Let © ¢ RN be a bounded domain with smooth boundary 9. In what follows we assume that:

(A1) a,b,c: I xQ—Rand G: 1 xQxR2— R are C2-functions.
(A2) G, and G, are bounded and

GL (A @ u, )| + ]G (A, u,0)| = ouf + [v])
as |u| + [v| — 0 uniformly in (\,z) € I x Q.

(A3) D2G(\,,0,0) =0 for all (\,x) € I x Q, where D?G()\, x,u,v) denotes the Hessian matrix
of G\, x,+,+) : R? - R at (u,v) € R%

Moreover, if N > 1, we shall also assume that



(A4) there exists C' > 0 such that

[D2G(\ z,u,0)|| < C(1+|ul + [v)P™,  (\a2) eI xQ, u,v€R,

where1§p<%ifN>2and1§p<ooifN:2.

Note that the constant function (u,v) = 0 is a solution of () for all A € I by (A2), and the aim
of this article is to study bifurcation of (weak) solutions of () from this trivial branch.
Let now H&(Q, R) be the usual Sobolev space with scalar product

(w1, u2) g1 (o,m) :/ (Vuy, Vug) dv
Q

and we set E := H} (2, R) x H}(Q,R) which is a Hilbert space with respect to

((u1,v1), (u2,v2)) B = (U1, u2) g1 (o) + (V1,02) Hi (QR)-

We consider the map f: I x E — R given by

fialz) = / (Vu, Vv) de — % / ax(z)u? + 20 (z)uv + cx(z)v? doe — / G\ z,u,v)dz, (6)
Q Q Q

where 2z = (u,v) € E, and we note that f is C? under our assumptions (A1), (A2) and (A4)
(cf. [KS97]). The critical points of f) are precisely the weak solutions of equation (), and in
particular 0 € E is a critical point of all functionals fy. We say that \* € I is a bifurcation
point of weak solutions for the equations (I, if every neighbourhood of (A*,0) € I x E contains
some (A, z) # (A, 0), where z is a weak solution of (Il); or equivalently, a critical point of fy.
Consequently, in order to investigate bifurcation of (Il) from the trivial branch of solutions we
need to study bifurcation of critical points of (@) from the branch I x {0} C I x E. For this we
consider the Hessians of fy at 0 € E, which are given by

D3 fr(2,%) :/

(Vu, Vo) dx + / (Vu, Vo) dz
Q

? (7)
—/QaA(x)uﬂanA(z)(ﬂquui) +ex(z)vvde 2z = (u,v), Z=(u,v),

where we use Assumption (A3). Let us denote by Ly the Riesz representations of D f, i.e. the
bounded selfadjoint operators on F defined by

(Laz,2)E :Dgf(z,i), z,Z€ E. (8)

Then Ly =T + K, where T : E — E is the selfadjoint invertible operator given by

Tz="T(u,v) = (v,u), z=(u,v)€E. (9)

Moreover, the operator K, which is uniquely determined by



(Kxz,Z)p = — /Q ax(x)ut + by (z)(Wv + uv) + ex(z)vvde, =z = (u,v),z = (T,D), (10)

is compact since the right hand side in () extends to a bounded quadratic form on L?(Q, R?)
and F is compactly embedded in this space (cf. e.g. [Walbbl Lemma 3.1]). Consequently,
L = {Lx}xer is a path of selfadjoint Fredholm operators to which we can assign the spectral
flow.

Let now H be an arbitrary separable real Hilbert space. The spectral flow is an integer-valued
index for paths L = {Lx}aes of selfadjoint Fredholm operators Ly on H which we denote by
sf(L,I). Tt was introduced by Atiyah, Patodi and Singer in the Seventies in [APST6] and since
then it has reappeared in many different areas of geometry and analysis (we refer to [PeW13|
for a detailed list of references). Here we introduce it along the lines of [FPR99], and discuss
an application to bifurcation of critical points of families of functionals from the same reference
and [PeW13]. In what follows, we call a path of selfadjoint Fredholm operators admissible if its
endpoints are invertible. Moreover, we denote by ®g(H) the space of all bounded selfadjoint
Fredholm operators equipped with the norm topology. In order to shorten the presentation, we
use an axiomatic description from [CEP00]. Accordingly, the spectral flow is the unique map
which assigns to each admissible path L = {L)}xes in ®g(H) an integer such that:

e (Normalisation) If Ly is invertible for all A € I, then

sf(L,I) = 0.
e (Additivity) If H = Hy & Hs and Ly(H;) C H; for all A € I and ¢ = 1,2, then

st(L,I) =st(L gy, I) + st(L |y, I).

e (Homotopy) If {h(x s }ns)erxr is a family in ®5(H) such that h(0,s) and h(1,s) are
invertible for all s € I, then

Sf(h(a 0)71) = Sf(h’(v 1)5 I)
e (Dimension) If dim H < oo then
Sf(La I) = MMorse(LO) - ,U/]\/Iorse(Ll)a

where piprorse denotes the Morse index, i.e. the number of negative eigenvalues counted
with multiplicities.

Clearly, by reparameterising, the spectral flow can also be defined for paths which are parametrised
by a general compact interval [Ao, \1]. If L = {Lx}xe[r,,x,) s an admissible path of selfadjoint
Fredholm operators, then we denote its spectral flow by sf(L, [Ao, A1]), and we note the following
property for later reference:

e (Concatenation) If A\g < A1 < A2 and Ly, is invertible, then

Sf(L, [Ao, AQ]) = Sf(L, [)\0, Al]) + Sf(L, [Al, AQ])



Let us now consider continuous maps f : I x H — R of C? functionals fy := f(),-) : H — R such
that the derivatives D fy and D?fy depend continuously on ), and let us assume that Dgfy = 0,
i.e. 0 € H is a critical point of fy for all A € I. Recall that a bifurcation point of critical points
of f is an instant A\* € I such that every neighbourhood of (A\*,0) in I x H contains elements
(A, u) where u # 0 is a critical point of fx. The main theorems in [FPR99| and [PeW13] state
that if the Riesz representations Ly of D3 fy are Fredholm for all A\ and Lo, L; are invertible,
then there is a bifurcation of critical points of f if sf(L, I) # 0.

Let us now come back to the differential equations () and the functionals (Gl on the Hilbert space
E for which the corresponding operators Ly are the Riesz representations of (). By standard
regularity theory, it follows that the kernels of Ly consist of solutions of the linearised equations
@). Since L) is Fredholm and selfadjoint, its Fredholm index vanishes, and so we conclude that
L) is non-invertible if and only if (2)) has a non-trivial solution. Let us mention in passing that it
is readily seen from the implicit function theorem that Ly~ is not invertible if A* is a bifurcation
point, which provides information about the location of possible bifurcation points. Finally, we
can summarise the previous discussion as follows.

Theorem 2.1. Let Q C RY be a bounded domain having a smooth boundary and let the functions
a,b,c and G in @) satisfy (A1)-(A4). If the linear systems (@) have no non-trivial solution for
A=0,1 and st(L,I) # 0, then there is a bifurcation point \* € (0,1) for the family of equations

@.

Of course, the difficult point when applying Theorem 2.1] to the equations () is to compute
sf(L,T), or at least to find conditions that ensure its non-triviality. In the remainder of this arti-
cle we will be concerned with this problem. At first, we want to review a method for computing
spectral flows that has been applied several times in the past in other settings (e.g. for Hamil-

tonian systems in [FPR00] and for partial differential equations in [PoW13|, [PoW14], [Wal5a]
and [PoW15]).

Let us assume for the remainder of this section that the path {Ly}xes is Ct in L(E). We call an
instant Ag € I a crossing if Ly, is non-invertible, which is, as we have already observed, the case
if and only if (2) has a non-trivial solution. Given a crossing Ao, we obtain a quadratic form on
ker Ly, by

d

F(L,)\()) : ker L,\0 — R, F(L, /\0)[11,] = <a |,\:,\0 L,\’LL,’U,>H,

and we say that a crossing is regular if T'(L, \g) is non-degenerate. Let now Ay be a regular
crossing of L. One can show that regular crossings are isolated and hence there is € > 0 such
that Ly is invertible for all A in the punctured neighbourhood [Ag — €, Ao + €] \ {Xo}. We obtain
from the previously mentioned bifurcation theorem [FPR99| that there is a bifurcation point for
fin[Ao—e, Ao+e]if sf(L, [Ao—e, Ao+e€]) # 0. As Ly is not invertible at bifurcation points by the
implicit function theorem, it follows in this case that the obtained bifurcation point is Ag. By a
theorem due to Robbin and Salamon [RS95] (cf. also [FPR99] and [Wal5d]), sf(L, [Ao—¢, Ao +e])
is given by the signature of the quadratic form I'(L, \g) on ker Ly,. From (7)) and (8) we obtain
that

(L, \o)[z] = —/ ax, (2)u? + 20y, (x)uv + éx, (z)v? dz, 2z = (u,v) € ker Ly,,
Q

where ~ denotes the derivative with respect to the parameter A\. If we use that a quadratic form

is non-degenerate and of non-vanishing signature if it is positive or negative definite, we obtain

from Sylvester’s criterion the following result.



Theorem 2.2. Let Q C RY be a bounded domain having a smooth boundary and let the functions
a,b,c and G in ) satisfy (A1)-(A4). If the linear systems @) have a non-trivial solution for
A=X €(0,1), ax,(z) #0 for all x € Q and

axg (T)én, (x) — bio () >0, ze€qQ, (11)
then Ao is a bifurcation point for ().

Equation () is a convenient criterion for the existence of bifurcation points, however, we want
to point out a drawback of this approach: the non-triviality of ker Ly, and so the existence of
non-trivial solutions of (2) needs to be known. The aim of the following sections is to present
approaches to the bifurcation problem of (l) which only uses information about the coefficients
of (@) and not about possible solutions for parameter values A € (0, 1).

3 Index and bifurcation for (3)

In this section we consider the equations (3), where we again assume throughout (A1)-(A4). Our
first aim is to construct an invariant for the equations (@), which we will use below to compute
the spectral flow of the associated path L = {L)} e introduced in () in order to obtain the
existence of bifurcation from Theorem [ZJl The following construction is based on Li and Liu’s
work |[LL89] for Hamiltonian systems, which was adapted to the equations (&) by Szulkin in

15294).
Let {ex}ken be an orthonormal basis of H} (€, R) such that —Aey, = Ageg, and let us recall that
the eigenvalues \; are all positive and A\ — oo for & — co. Now {%(ek, —ek), \/Lg(ek, er) teen

is an orthonormal basis of F and we get an orthonormal decomposition

keN

where E}; is the two dimensional space generated by (ey, —ex) and (e, ex). Since T'(u,v) = (v, u)
for all (u,v) € E (cf. [@)), we see that T(Ey) C Ej. By the following lemma, also the operators
K in (I0) leave the spaces Fj invariant.

Lemma 3.1. Let P, and P; denote the orthogonal projections in E onto Ej, and Ej, respectively.
If k # 1, then

P.K\P, =0, Mel.

Proof. If z,Z € E, then P,z and P,z are linear combinations of (e, ex), (—ek, er) and (e, 1), (—ey, e;),
respectively. Since the coefficients a, b, ¢ do not depend on x € , it follows from (I0) that

<PkK,\PlZ,z>E = <K)\BZ,P]€E>E = m/ eperdr
Q
for some number m € R. However,
/ do = —= /(A Jerdz = —(ep, e1) 0
exe dr = —— ex)erdr = — (e, e =
o k€l o k)€l e ks €1) HE(,R)

by Green’s formula and so P, K\P, = 0 for k # [. [l



We now define
LY .= P.L\P, = Po(T + K\)Py |g,=T + K |g,: Ex — Ex, k€N,

where Py : E — FE denotes the orthogonal projection onto Fj. If we set

2= (0) = (e —en) + %@k,ek), a,feR

then

Dng(z, z) = (52 — a2) — i((@\ —2by + C)\)Oé2 +2(ax — ex)af + (ax + 2by + C)\)ﬂ2),

where we use that fQ e% dx = A%-’ k € N. We obtain

-1 0 1 ax — 2by + ¢y a) — C)
Lk = - Nel 12
A (0 1> 2k < ay — cx ax+2byx+cx )’ e 42

with respect to the orthonormal basis {%(ek, —eg), %(ek, er)} of Ej. In particular, since A\, —
oo as k — 00, there exists kg € N such that L’§ is an isomorphism and
sgn(LY) = pnsorse(—L%) = pinrorse(L5) = 0, for all k > ko and all X € 1.

Hence we can define for all A € I an index of the coefficient matrix

fax Dby
Ay = (bA CA)

of @) by
. 1 — k
(A =5 > sen(LY).
k=1

Note that if L, is invertible, then L% is invertible for all k¥ € N and so sgn(L%) is either —2, 0 or
2. Hence i(A)) is an integer if Ly is invertible, whereas it is only a half-integer in general. The
main Theorem of this section reads as follows:

Theorem 3.2. Let Q C RN be a bounded domain having a smooth boundary and let us assume
that (A1)-(A4) hold. If @) has only the trivial solution for A = 0,1 and

i(Ao) # (A1),
then there exists a bifurcation point for @) in (0,1).

Proof. Let us recall that L) is of the form Ly = T + K, where the operators on the right hand
side were introduced in (@) and ([I0), respectively. Moreover, Ly and Ly are invertible since (@)
has no non-trivial solutions for these parameter values by assumption.
We denote by @, := > ,_, Px the orthogonal projection onto @;_, Ex and by Q;+ the corre-
sponding complementary projection, i.e. Qi+ = Ig — Q,. We note that



Ly =T+ QuEK\Qn + QrK\Qy + QuEK\Qi + QL K\Q;

13
=T+ QuErQn + QLENQE, neN, (13)

where the second equality is a simple consequence of Lemma B.Il We now claim that there are
no € N and a constant C' > 0 such that for all n > ng

[Tu+ Q@uE\Quul 2 2C |Jull, weE, A=0,1, (14)

and

1@ KxQy || < C, Aeo,1]. (15)

The reader can find in Appendix [A] a proof of the fact that if {S,},en is a sequence in L(E)
which converges strongly to some S € L(H), and Ky , A € [0,1], is a continuous family of
compact operators, then S, K converges in norm to SK, as n — oo, and the convergence is
even uniform in A. Consequently, since Q;- converges strongly to 0 as n — co and ||Q;-|| = 1, we
infer that

Q7 EXQy || < Qi Kall = 0, n— oo, (16)

Since Ly is invertible for A = 0,1, there is C' > 0 such that ||Lyul| > 3C ||u| for v € E and
A =0, 1. We obtain from (I3)) and (@) that there is ng such that |Tu+Q, K Qnu| > 2C ||ul| for
all n > ng, u € E and A = 0, 1, which is (Id]). After possibly increasing ng, we can assume that
(@) holds for the same constant C' > 0, where we use that the convergence in (I8]) is uniform in
A

We now assume that ng in (I4) and (IF) is sufficiently large such that sgn(L5) =0 for all A € I
and all k& > ng, and we consider for some n > ng the homotopy h : [0,1] X [0,1] = ®g(FE) defined
by

h(t,A) = T + QuExQn +1Qu EKxQy
By (I4) and (I3]), we conclude that

IRt Null = Clull, we B, A=0,1,

and hence h(t,0) and h(t, 1) are invertible for all ¢ € [0, 1] since they are Fredholm of index 0.
The Homotopy Invariance Property of the spectral flow yields

sf(L, 1) = st({T + QuE\Qn}rer, I). (17)

By Lemma [B.1] we have

QuErQun =Y  PK\P = PK\P,
k=1 k=1



and since T is also reduced by the projections P it follows likewise that

1

k=1
We obtain

T+ QnErQn = QuTQn + QuExQn + QuTQr =Y (Pu(T + Kx)Py) + QyTQyr -
k=1

Now the Additivity and the Normalisation Property of the spectral flow yield

SE{T + QuErQuirer, 1) = st({D_ (Pe(T + Kx)Py) + QuT Qi baer, T)
k=1

n n

=Y St({Pu(T + Kx)Pitaer, I) = Y _sf(L*, 1),
k=1 k=1

where we use that Q+T'Q;- is an invertible operator on the image of Qfl. By the Dimension
Property of the spectral flow, we obtain

n

ZSf(L Z HMorse Lo waorse(Llf))' (18)

k=1 k=

=

As Lo and L; are invertible by assumption, we see that LE and L¥ are invertible for all k € N.
Since the signature and the Morse index of an invertible symmetric 2 x 2-matrix B are related
by 3sgnB =1— psorse(B), we can rewrite the right hand side in (I8) by

k _ _ k
;;71 HMorse LO — iMorse(L7)) = ;;7 i(sgn(L ) —sgn LO ) E n(Ly) — 3 E sgn LO
=i(A1) — i(Ao),

where we have used in the last step that sgn(L5) = 0 for all A € I and all k > ng by our choice
of ng. Consequently, we have shown that

Sf(Lv I) = Z("41) - Z(AO)a (19)
and now the assertion follows from Theorem [2.1] O

Remark 3.3. Let us point out that we have derived in the proof of Theorem[32 in (I9) a spectral
flow formula for the path {Ly}xer, which is of independent interest. The spectral flow can also be

defined for paths of unbounded selfadjoint Fredholm operators (cf. e.g. [BLPOS] or [Walhd]). Let
us consider on L*(Q, R?) the differential operators Ay on the domain W = H?(Q, R?)NH{ (2, R?)

defined by
U —Av ax b U
()= (5 G 2) 6
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Note that elements in the kernel of Ay are the solutions of the equations [@). It can be shown that
the spectral flow of the path A = {Ax}aer coincides with the spectral flow of the corresponding

path L = {Lx}xer in @) (¢f. [Walsb, Thm. 2.6]), and so [I9) yields also a spectral flow formula
for the differential operators Ay.

As announced in the previous section, Theorem B2l uses only the coefficients of the equation (2]
and no information about solutions of the linearisations ) for A € (0, 1).

Let us now consider the equations () where Ay = A A depends linearly on the parameter .
Here we want to change the setting slightly and instead of restricting A to the unit interval I,
we want to consider the case that A € R. As before, we have for each A € R the integral number
i(Ay). We obtain from Theorem the following result that was proved by Szulkin in [Sz94]

§5].
Corollary 3.4. Let Q C RN be a bounded domain having a smooth boundary and let us assume

that (A1)-(A4) hold, where ax(x) = Xa, bx(x) = Ab and cx(x) = Ac for some real numbers a, b, ¢
and X € R. If i(A A) jumps at some \* € R, then \* is a bifurcation point.

Proof. We first note that the operators L) are of the form 7'+ MK, where T is invertible and K
is compact and does not depend on A. Hence, by the spectral theory of compact operators, the
set of all A € R for which L) is not invertible is discrete. Secondly, if L’§ is non-invertible for
some k € N, then L) is non-invertible as well.

Let us now assume that i(\ A) jumps at some A*. Then there is & € N such that L%. is
not invertible. Hence Ly« is not invertible and there is ¢ > 0 such that L) is invertible if
A€ (N —2e, X +2¢)\ {\o}. Consequently, Ly«_. and Ly~ are invertible and since i(Ax«_.) #
1(Axr4e) the assertion follows from Theorem O

4 Bifurcation by Comparison

For the considerations of this section, we want to introduce at first a theorem about the spectral
flow that was proved in [PeW13|. Before, we need to extend the definition of the spectral flow,
which we recalled in the second section, to paths L = {Ly}res in ®g(H) that do not have
invertible endpoints, i.e. that are not admissible. Since 0 is an isolated eigenvalue of finite
multiplicity (cf. e.g. [Walbal Lemma 2.2|), there exists § > 0 such that Lo+ uly and Ly + uly
are invertible for all 0 < p < §, where Iy denotes the identity operator on H. We set
st(L, 1) :=sf(L+ Iy, I).
Of course, if L is admissible, then this definition coincides with the previous one by the Homotopy
Invariance Property. In what follows, we write T' < S for T, S € ®g(H) if
(Tz,z2)g <(Sz,z)g, =z€ H.
A proof of the following proposition can be found in [PeW13] §7|.
Proposition 4.1. Let L = {Lx}rer and M = {Mx}aer be paths in ®g(H) such that Ly — M)
is compact for all A € 1. If
Lo < My and My < Ly,
then

st(M, I) <sf(L,I).

11



Let us now consider again the systems (). Note that the operators K in (I0]) can be written as

(K,\z,E>E:/Q(A,\(x)z,E>dx,
where
— _ (o) balz)
Ar@) = - (b:\\(x) ci(w))

is a symmetric matrix. Each Ay(z) has two real eigenvalues pi (), 3 (x), which depend contin-
uously on (A, x) € I x Q. We set for A € T

ay = inf {p3(2), p3(z)} = inf inf (Ay(2)w,w)ge,
e

zeQ [Jwll=1

B := sup{p) (), u3 (x)} = sup sup (Ax(z)w,w)p>,
zeQ zeQ [lw]|=1

and note that these numbers can be easily obtained since p}(z),u3(x) are just the zeros of

quadratic polynomials. For example, for the systems (B we have

1
ay = _MEo \/—(a,\—c,\)Q—i—bi

2 4 (20)
+ 1
B = -2 5 24 \/Z(a,\ — )%+ b3

Let us recall that we denote by {Ax}ren the sequence of Dirichlet eigenvalues of the domain
and that 0 < A\ < Xy <.... Our main theorem of this section reads as follows.

Theorem 4.2. Let Q be a bounded domain having a smooth boundary and let us assume that
(A1)-(A4) hold and that the linear equations @) have only the trivial solution for A =0, 1.

(i) If Bo < aq and there exists k € N such that

Bo <A\ <y or o< —M <ay, (21)
then there is a bifurcation point for ().

(i) If f1 < ag and there exists k € N such that

Br <A <ap or Bi1<—M <ao, (22)
then there is a bifurcation point for ().

Let us point out again that no knowledge about solutions of the systems () for A € (0,1) is used
in Theorem

12



Proof. By definition of ag, a1, g, 1, we have the inequalities

aply <Ag(x) < Pola, a1l <Ai(x)<pi1l, z€, (23)

where I denotes the 2 x 2 identity matrix. Let us now consider the paths of matrices {Bx}xer
and {C)}aer given by

By = (60 + )\(041 — 60))[2 and C) = (040 + )\(61 — 040))12.
We obtain associated paths M = {My}aer and N = {Ny}aes in Pg(E) by setting

(s = (02305 +

(Brz,Z)dx, (Nxz,Z)p:={(Tz,Z2)p —|—/ (Crz,Z) dx
Q

Q

and we note that by (@) Ly — My and Ly — N, are compact for all A € I. Since

<(L,\*M,\>Z,E>E :/Q <(A,\(£L')*B)\)Z,z> de, z,z€eFE

and

(Lx — Ny)2, %) = /Q (Ax(z) — C\)2,3) dz, 2% € B,

we obtain from (23] and Proposition ] that

sf(M, I) <sf(L,I) <sf(N,I). (24)

Because Lo and L; are invertible by the assumption that (2)) has no non-trivial solutions for
A =0 and A = 1, the assertion follows from Theorem [ZT]if we can prove that sf(M,I) > 0 under
the assumptions of (i), and sf(N,I) < 0 under the assumptions of (ii), respectively.

Let us first consider the path M. Since My and M; are not necessarily invertible, we have by
definition sf(M,I) = sf(M?°,I), where M? := {My + 6 Ig}res for an arbitrarily small § > 0.
From the results in Section Bl we know that there is a decomposition of E into two-dimensional
subspaces Ei, k € N, such that the operator T is reduced by this decomposition. Clearly, the
E). reduce M? too, and moreover it is readily seen that

—-14+6 O )+ﬁo+)\(a1—50)12, \el

4 —
MA|E'€_( 0 1496 Ak

By (M) we know that

1 1
sf(M, ) = §ngn(Mf |E) — §ngn(M3 |Ey)- (25)
k=1 k=1

Let us now consider at first

e
4 _ A
My |Ek‘( 0o 1+5+§—;)‘
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If g >0, then 1+ 6+ - > 0 for all k£ € N and consequently sgn(M? |g,) is either 0 or 2. The

latter case happens if and only if —1 4+ ¢ + i‘—; > 0 and, since & > 0 is arbitrarily small, this is
equivalent to —1 + i‘—; > 0 and so a; > Ag. If, on the other hand, oy < 0, then —1 4+ 0 + i‘—; <0
for all k € N and so sgn(M7? |g, ) is either 0 or —2. Here the latter case happens if 14§+ S <0

which means that oy < —\;. In summary, we obtain
1 & keN:a; >\ if ap >
D> san(uf |p,) = {FUE SN e = A a2
2 — —#{keN: a; < =)}, ifag <O,
and by the very same argument we also get that
2 1 7#{]6 eN: [y < */\k}; if By < 0.

Consequently, it follows from (23] that

#{keN:a; > N} —#{keN: fy >N}, if ay, 8o > 0,
— : — — : > i >

SE(M, T) = #{keN: a1 < -} —#{k e N: Bo > A}, %f a; < 0,80 >0, (26)
#{kGNialek}+#{k€N:ﬂo<*>\k}, if a; > 0,80 <0,

—#{keN: a; < =N} +#{keN: By < =N}, ifay,Bo<0,

which is positive if Sy < A\ < ay or By < —Ar < «ay for some k € N. This finishes the proof of
the first part of Theorem [£21

For the second part we need to show that sf(N, ) = sf(N°,I) < 0, where N° = {Ny +6 Irp}rer
for an arbitrarily small 6 > 0. We leave it to the reader to check that a similar argument as
above shows that

#{keN: g1 > N} —#{keN: ap > A}, if ag, B1 > 0,
- : - - : > if >

SE(N, T) = #HkeN: 1 <=M}t —#{keN: ayg > \}, ?61<0,a0_0, 27
#{keN: p1 > N} +#{k€N: ag < =M}, if 1 >0, <0,

—#{keN: p1 <N} +#{keN: ay < =N}, if f1,00 <0,
which is negative if 81 < A\ < ag or 1 < —Ax < aq for some k € N. O

As an example of Theorem 2] let us consider once again the systems (], where the matrix A
does not depend on z € Q and is linear in A. Then we obtain from (20)

ao = fo =

a+c 1
ap=-——0— - —(a—c)?+b? (28)
fr=-"T G2

and see that there is a bifurcation point for (@) in (0,1) if

a+c 1 a—+c 1
- f\/Z(afc)2+b2>)\1 or ———+ Z(afc)2+b2<f)\1.
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5 The case N =1

In this section we consider the special case that N = 1, i.e. € is a bounded interval in R. For
the sake of simplicity, we restrict to the case Q = (0, 7) and so the systems (Il are of the form

—u" =by(x)u+ ex(z)v + G, (A, z,u,v)  in (0,7),

—v" = ax(z)u + bx(x)v + G, (N, x,u,v) in (0, ), (29)
u(0) = v(0) = u(w) = v(w) =0.

We want to show that our previous results can be used to obtain an estimate on the number of

bifurcation points for (29). Let us note for later reference the corresponding linearised equations,
which are

—v" = ax(x)u + br(z)v in (0,7), (30)

Before we can state our main result of this section, we need to make another digression about a
property of the spectral flow. Let us assume that L = {L)}x¢cs is a path of selfadjoint Fredholm
operators such that L) is non-invertible only at the finite number of instants 0 < \; < ... <
Am < 1. Then, by the Concatenation Property of the spectral flow, there is € > 0 such that

Sf(L,I) = zm:sf(L, [)\Z —e, N+ E])

From the construction of the spectral flow in [FPR99], it is intuitively clear (however, not trivial
to prove rigorously (cf. [PeWI3| Lemma 4.5])) that

[sf(L,[Ni —e,A\i +¢])| < dimker Ly, . (31)

Let now f : I x H — R be a family of functionals as in Section [2] such that Ly is the Riesz
representation of D3 fy for A € I as in ([§). By the implicit function theorem, if A* is a bifurcation
point for f, then A* = \; for some 1 < i < m. Moreover, )\; is a bifurcation point if sf(L, [\; —
g,\i +¢]) # 0 by Theorem 2l From these facts, the following result is readily seen (cf. [PeW13|
Thm 2.1 (ii)]).

Lemma 5.1. Let f: I x H — R and L = {Ly}xer be as in Section[d We assume that L is
admissible and Ly is non-invertible for only a finite number of A € (0,1). Then the number of
bifurcation points for f is bounded below by

|sf(L, )|
max e (o,1) dimker Ly~

We now introduce a natural number I'(«, ) for any pair of real numbers o > ( by

#{keN: a >k > f}, ifa, 3> 0,
I(a,B) = #{keN: a>k?}+#{keN: B< —k?} ifa>0,p<0,
#{keN: < —k?<al, ifa, B <0,

which we need to state our main result of this section.
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Theorem 5.2. Let Q = (0,7) C R and let us assume that (A1),(A2) and (A3) hold. We suppose
that there are only finitely many X € (0,1) for which the linear equation BQ) has a non-trivial
solution and, moreover, we assume that there is only the trivial solution for A =0, 1.

(i) If an > By, then there are at least %F(al,ﬂo) bifurcation points for ([29).
(ii) If cy > 1, then there are at least %F(ao, B1) bifurcation points for [29)).

Proof. In the proof of Theorem 2] we constructed paths M and N such that sf(M, I) < sf(L,I)
and sf(L, I) < sf(N,I), respectively. Note that the Dirichlet eigenvalues of the domain Q = (0, )
are A\, = k%, k € N. If now a1 > (9, we obtain from (26) that sf(L,I) > sf(M, 1) = T'(a1, Bo).
If, however, oy > (31, we get from [27)) that sf(L, ) < sf(N,I) = —T'(«p, $1) and so |T'(ao, £1)| <

|sf(L, I)|.
Finally, the result follows from Lemma [B.1] if we note that dimker Ly < 2 as the kernel of Ly
consists of solutions of the 2-dimensional system of linear ordinary equations (30). [l

Finally, let us consider the equations (@) on ©Q = (0, 7). It follows from the spectral theory of
compact operators that the corresponding linearised equations ([B0) can only have a non-trivial
solution for a finite number of values of the parameter A. Hence if we assume that there is only
the trivial solution for A = 1, then we obtain that there at least

1 a+c 1 9 19 9
= D= — 1/ —la— >
Qmax{kEN 5 1/4(& €)? +b% > k°}
1 1
imax{k:EN:—a—2’—0+1/1(a—c)2+b22—k2}

distinct bifurcation points for the nonlinear equations (&), where only one of these numbers can
be non-zero. In particular, we can easily construct systems having an arbitrarily high number of
bifurcation points in (0, 1).

or

A Families of Compact Operators and Strong Convergence

In this appendix we prove a well known assertion, which however we could not find in the
literature. In what follows, we let X,Y be Banach spaces and we denote by £(X,Y’) the Banach
space of all bounded linear operators with respect to the operator norm.

Lemma A.1. Let A be a compact metric space and K = {K)}xen a continuous family in
L(X,Y) such that Ky := K(\,-) : X =Y is compact for all X € A. Then K (A x B) is relatively
compact for every bounded subset B C X.

Proof. Let {(An,zn)}nen be a sequence in A x B and ¢ > 0 such that ||z,] < ¢, n € N. Since
A is sequentially compact, we can find a subsequence {\,, }ren C {\, tnen converging to some
A* € A. Moreover, by the compactness of Ky~ we can thin out {(An,,Zn, )} ren to obtain a
subsequence {(An,,Zn,) }ien C {(An; @n) }nen such that A\,, — A\* and K(\*,z,,) converges to
some y € Y. Then

HK()\nl;Z'm) - yH < ||K()\n“$nl) - K()\*,:L'm)H + ”K()‘*azm) - y”
<KX, — K- [l | + KA 2n,) =yl

<cel[Kx, = K[+ KO ) =yl = 0,
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where the first term converges to zero because of the continuity of the family K with respect to
the norm topology. [l

Let us recall that a sequence {Si}ren of operators in £(X,Y) is called strongly convergent to
S e L(X,Y) if [|Sgu — Su|]| — 0 as k — oo for every u € X. Clearly, every sequence that is
convergent in £(X,Y) (i.e. with respect to the norm topology) is also strongly convergent.

Corollary A.2. Let K = {K)}xea be a family of compact operators as in Lemma A1l and let
{Sk}tren be a sequence in L(Y') such that Sy converges to S € L(Y') strongly. Then

Sup”SkK)\*SK,\HHO, k%oo,
AEA

i.e., SgKy converges to SKy in L(X,Y) uniformly in X\ € A.

Proof. We note at first that by the Uniform Boundedness Principle there is a constant C' > 0
such that ||Sk]| < C for all k € N, and we assume in addition that C' is greater than ||S||. Let
B, (u) denote the ball of radius 7 > 0 around u. By Lemma[AT] the set K (A x B1(0)) is relatively

compact in Y and hence for every € > 0 there exist y1,...,yny € Y such that
N
K(Ax Bi(0)) € | B ().
i=1

Let now z € B1(0) and A € A be arbitrary. We choose y; € Y such that Kyz € B (y;) and
obtain
2¢e
15:F e — SKall < ISkl = will + [1Skyi — Syill + 151lllyi — Kozl < 5+ [1Skyi — Svsll-
Hence if we choose kg so large that max;—1,. n{||Sky: — Svi||} < $ for all k > ko, then we obtain
sup sup [|SpKyx — SKy x| <e, fork > ko.

XeA [a]=1

O

Finally, let us consider a separable Hilbert space H with scalar product (-,-) and let us assume
that {eg}ren is an orthonormal basis of H. We obtain a sequence of orthogonal projections by
setting

n
Pu = Z (u,ep)er, mneN,
k=1

which converges strongly to the identity operator Iy. As a consequence, if K = {K)}\ca is a
family of compact operators in L(H) parametrised by the compact metric space A, then

sup |P, Ky — Ky\|| = 0, n— oo.
AEA
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