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Adaptive Robust Fault-Tolerant Control for

Linear MIMO Systems with Unmatched

Uncertainties

Kangkang Zhang1,2, Bin Jiang1,2,∗, Xing-Gang Yan3, Zehui Mao1,2

Abstract

In this paper, two novel fault-tolerant control design approaches are proposed for linear MIMO

systems with actuator additive faults, multiplicative faults and unmatched uncertainties. For time-varying

multiplicative and additive faults, new adaptive laws and additive compensation functions are proposed.

A set of conditions is developed such that the unmatched uncertainties are compensated by actuators in

control. On the other hand, for unmatched uncertainties with their projection in unmatched space being

not zero, based on a (vector) relative degree condition, additive functions are designed to compensate for

the uncertainties from output channels in presence of actuator faults. The developed fault-tolerant control

schemes are applied to two aircraft systems to demonstrate the efficiency of the proposed approaches.

Index Terms

Fault-tolerant control, adaptive and robust control, lossof effectiveness faults, stuck faults, un-

matched uncertainties.

I. INTRODUCTION

Modern control systems have become more complex in order to meet the increasing re-

quirements of system performances. Control engineers are faced with increasingly complex

systems, for which both reliability and safety are very important. However, system faults, such
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as actuator faults, sensor faults, structural damages and uncertainties may induce drastically

changes of system dynamics, and result in undesirable performance degradation, even instability.

To overcome such a weakness, robust fault-tolerant controls (FTCs) for uncertain systems have

been developed to tolerate component malfunctions while maintaining desirable stability and

system performances. This is particularly important for safety and actuate critical systems, such

as aircrafts, spacecrafts, nuclear power plants, chemicalplants processing hazardous materials

and high-speed railways.

It should be pointed out that some robust control methods canbe applied to FTC design.

However, FTC is different from robust control. Generally speaking, FTC can be separated

into two types: AFTC (active FTC) and PFTC (passive FTC) [1].In PFTC systems, controller

structures are fixed and designed to be against presumed faults, which need neither fault diagnosis

schemes nor reconfiguration controllers [1]. Therefore, PFTC can also be considered as a special

robust control. This paper focuses on FTC by design adaptiveactuator faults compensation

schemes, taking into account types and features of actuatorfaults, which belongs to PFTC.

Unmatched uncertainties are inevitable in practical control systems, and have being widely

studied in recent years. Typically, adaptive and robust controllers are powerful to stabilize

uncertain systems, and several design procedures for systems with matched and unmatched

uncertainties have been proposed in [2], [3], [4], [5], [6],[7], [8]. These uncertain systems

may experience faults which may further result in performance degradation. FTCs for systems

with uncertainties not only eliminate the effect of faulty actuators, but also reject the effect of

uncertainties on the systems, which are full of challenges.Therefore, it is significant to study

FTC for systems with uncertainties, especially, unmatcheduncertainties. Last decades, great

achievement has been made in this area, and most of them belong to the following categories:

adaptive control [9], [10], [11], [12], multiple-model control [13], integrated diagnosis and control

[14], [15], [16], [17], sliding mode variable structure control [18], [19], and robustH∞ control

[20], [21].

In much existing literature for uncertain systems with additive and multiplicative faults, the

FTCs are designed using compensation method through reconstructing actuators in control [15],

[16], [22], [23], [24]. The key technologies are to develop conditions under which the left

actuators in control can tolerate faults and compensate forunmatched uncertainties, moreover,

to construct corresponding control functions. An on-line multiplicative fault estimation module

is provided in [9], and a FTC structure is proposed such that the optimal robustness toL2

disturbances is still maintained in presence of faults. In reference [21], a reliable control system
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is designed based on new proposed adaptiveH∞ performance index. An actuator redundancy

condition is derived in [24], and a direct adaptive control law, aiming at compensating for actuator

faults, is proposed. Nevertheless, [9], [21] do not consider the worst case when stuck faults occur

on some actuators, [24] requires that stuck faults can be parameterized linearly, and all of the

above three papers do not consider time-varying multiplicative faults and system uncertainties.

The FTC design for systems with matched uncertainties is studied in [10], and for systems with

only specific unmatched uncertainties is considered in [12], both of which motivate FTC design

for systems with more general uncertainties.

In this paper, firstly, built on the work in [24], an adaptive and robust FTC is proposed for

faulty systems with uncertainties satisfying a set of conditions, such that the closed-loop systems

are asymptotically stable. Secondly, for MIMO faulty systems with uncertainties projection in

unmatched space being not zero, a (vector) relative degree condition is developed. Then a novel

adaptive robust FTC design approach is proposed, which guarantees that all the signals in the

closed-loop system are bounded, and that the outputs go to zero asymptotically. The main

contribution of this paper is summarized as follows. A new set of sufficient FTC conditions

for systems with unmatched uncertainties are developed. And novel adaptive robust FTC for

systems with time varying multiplicative faults, stuck faults and unmatched uncertainties are

designed.

The remaining parts of this paper are organized as follows: In Section II, the system is

formulated, and assumptions are presented. In Section III,adaptive robust FTC is designed

for systems with “equivalent matched” uncertainties and “exactly unmatched” uncertainties,

respectively. Simulation results are shown to verify the effectiveness of the designed controllers

in Section IV. Finally, comments are presented to conclude this paper in Section V.

II. PROBLEMS FORMULATION AND ASSUMPTIONS

A. System Description

Consider a class of linear systems described by

ẋ = Ax+Bu, x (t0) = x0,

y = Cx
(1)

where x ∈ Rn is state vector,u ∈ Rm1 is control input vector,y ∈ Rp is output vector,

A ∈ Rn×n, B ∈ Rn×m1 andC ∈ Rp×n are known system matrices.
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B. Fault Model

Actuator faults considered in this paper include outage faults, loss of effectiveness faults and

stuck faults. A unified model of actuator faults is given by

u
f
i = ρi (t)ui + σiψi (t) ,

ρi(t)σi = 0, i = 1, · · · , m1

(2)

whereρi, i = 1, · · · , m1 are unknown time-varying efficiency factors satisfyingρ
i
≤ ρi (t) ≤ ρ̄i

with ρ
i

and ρ̄i being upper bound and lower bound ofρi (t), respectively.σi, i = 1, · · · , m1 are

unknown scalars.ψi (t) , i = 1, · · · , m1 represent un-parameterizable time-varying actuator stuck

fault values.

Note that, there is no fault on the actuatorui whenρ
i
= ρi = 1 andσi = 0. Whenρ̄i = ρ

i
= 0

andσi = 1, a stuck fault occurs on the actuatorui. The case of̄ρi = ρ
i
= 0 andσi = 0 means

that the actuatorui is outage. When0 < ρ
i
≤ ρi < 1, it corresponds to the case that a loss of

effectiveness fault occurs on the actuatorui. Table I is given to illustrate the fault modes.

TABLE I

FAULT MODEL

ρ
i

ρi σi fault mode

1 1 0 normal

0 0 1 stuck

> 0 < 1 0 loss of effectiveness

0 0 0 outage

Then (2) can be written in a compact form

uf =
[

u
f
1 , . . . , u

f
m1

]T

= Λ (t)u+ Σψ (t) with Λ (t) Σ = 0 (3)

whereψ(t) = col(ψ1(t), ψ2(t), · · · , ψm1(t)),

Λ (t) = diag{ρ1 (t) , ρ2 (t) , · · · , ρm1 (t)}, ρi(t) ∈
[

ρ̄i, ρi

]

, i = 1, · · · , m1,

σi =







0, if a stuck fault or outage fault occurs on the actuator ui,

1, otherwise, i = 1, · · · , m1,

and Σ = diag{σ1, σ2, · · · , σm1}.
Define the following sets

△Λ (t) =
{

Λ (t) |Λ (t) = diag {ρ1 (t) , ρ2 (t) , · · · , ρm1 (t)} , ρi (t) ∈
[

ρ̄i, ρi

]}

,

△Σ = {Σ|Σ = diag {σ1, σ2, · · · , σm1} , σi = 0 or 1} .
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Then a fault mode set is described by

△ =
{

(Λ (t) , Σ)|Λ (t)Σ = 0, Λ (t) ∈ △Λ(t), Σ ∈ △Σ

}

. (4)

Remark 1. There are different ways to deal with actuator loss of effectiveness faults and stuck

faults. The fault model compact form (3) includes normal, loss of effectiveness faults and stuck

faults (outage fault is a special stuck fault). In this paper, the inputs of the loss of effectiveness

actuators can be adjusted adaptively to keep the outputs of faulty actuators unchanged. However,

the output signals of the stuck actuators are considered as external disturbances, and compensated

by the partial operational actuators through designed additive functions. In addition, all the fault

modes considered in this paper belong to the set△ given in (4). ∇

C. Assumptions

To achieve FTC objective, some assumptions for system (1) and fault model (3) are needed.

Assumption 1. The pair(A,B) is stabilizable.

Assumption 2. For all considered fault modes(Λ (t) ,Σ) ∈ ∆ in (4), the following equation

holds

rank(BΛ (t)) = rank(B). (5)

Remark 2. Assumption 1 is a basic assumption for linear systems, andAssumption 2 is a

sufficient FTC condition about actuator redundancy [10], [23]. ∇

Based on Assumptions 1 and 2, the following results are readyto be presented.

Lemma 1. [23] The rank relation (5) is a necessary and sufficient condition for the existence

of a functionK2(t) such thatBΛ (t)K2(t) = −BΣψ(t).

Proposition 1. The matrix rank relation (5) holds if and only if there exists a matrixK∗(t) ∈
Rm1×m1 satisfying

BΛ (t)K∗(t) = B. (6)

Proof: (Necessary)From basic matrix theory,rank(BΛ (t)) ≤ rank(B). If rank(BΛ (t)) <

rank(B), there exists at least one column ofB which cannot be expressed as a linear combination

of the columns ofBΛ (t). This implies that there exists no such aK∗(t) satisfying (6). Therefore,

the equation (5) is necessary for (6).
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(Sufficiency)Note that

rank(BΛ (t)) ≤ rank([BΛ (t) , BI]), (7)

rank([BΛ (t) , BI]) = rank(B[Λ (t) , I]) (8)

always hold. From the fact thatrank(B[Λ (t) , I]) ≤ min{rank(B), rank([Λ (t) , I])} and e-

quation (5), it follows thatrank(B) = rank(BΛ (t)) ≤ min{rank(B), rank(Λ (t))}. Then,

rank([Λ (t) , I]) ≥ rank(Λ (t)) ≥ rank(B). It can be concluded that

rank(BΛ (t)) ≤ rank([BΛ (t) , B]) ≤ rank(B). (9)

Since rank(BΛ (t)) = rank(B), rank(BΛ (t)) = rank([BΛ (t) , B]). Hence there existsK∗(t)

satisfying equation (6).

Thus, the result follows.

Remark 3. Proposition 1 can be satisfied for the case when actuator stuck faults occur. A simple

example is shown as follows. Let

B =











1 0 1

0 1 1

0 0 0











,Λ (t) =











1 0 0

0 1 0

0 0 0











.

This implies that the first and second actuators are healthy,and an actuator stuck fault occurs

on the third actuator. It is clear to see that the matrixΛ(t) is not regular, and rank condition (5)

is satisfied. Further, there exists a matrixK∗, given by

K∗ =











1 0 1

0 1 1

0 0 0











satisfying (6). This example shows that the matrixΛ(t) is not required to be regular in this

paper. ∇

Under Assumption 1, for any given symmetric positive definite (SPD) matrixQ ∈ Rn×n, there

exist a solutionK ∈ Rm1×n and SPD matrixP ∈ Rn×n such that

P (A+BK) + (A+BK)TP = −Q. (10)
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From Proposition 1, for anyΛ (t) satisfies Assumption 2, there exist a solutionKΛ (t) =

K∗(t)K ∈ Rm1×n anda commonSPD matrixP ∈ Rn×n given in (10) such that

P (A+BΛ (t)KΛ (t)) + (A+BΛ (t)KΛ (t))
TP = −Q. (11)

Assumption 3. The un-parameterized time-varying stuck fault vectorψ(t) is assumed to be

bounded by an unknown constantψ̄, i.e., ‖ψ(t)‖ ≤ ψ̄.

Remark 4. In [24], the time-varying stuck fault is parameterized and can be compensated by

additive input control signals directly. For un-parameterized time-varying stuck faults considered

in this paper, same control objective as in [24] can be achieved by using the bounds of stuck

fault values. ∇

Suppose that actuator stuck fault happens at time instanttk, with tk < tk+1 for k = 1, 2, . . . , N .

As in [22], the fault mode (Λ(t),Σ) is fixed in (tk, tk+1), k = 1, 2, . . . , N , i.e., the elements of

Λ(t) in (tk, tk+1) are always zero or not zero, andΣ is fixed.

Assumption 4. In the interval(tk, tk+1), the efficiency factorsρi(t), i = 1, · · · , m1 are unknown

continuous time-varying functions and their time derivatives satisfy

|ρ̇i(t)| ≤ ϑ0(t)ρi(t), i = 1, · · · , m1 (12)

whereϑ0(t) satisfies that

0 < lim
t→∞

∫ t

t0
ϑ0 (τ) dτ ≤ ϑ0 ≤ ∞.

Remark 5. The efficiency factorsρi(t), i = 1, · · · , m1 satisfying (12) can be used to model

many time-varying multiplicative faults, for example, forthe fault considered in [25],

ρ (t) =







1, if t < tk,

e−α(t−tk), if tk ≤ t < tk+1

where the constant scalarα > 0 denotes the fault evolution rate ofρ. Similar to [25], the

efficiency factorsρi, i = 1, · · · , m1 can be described by

ρi (t) =







1, if t < tk,

e(βi/αie
−αi(t−tk)−ai) − 1, if tk ≤ t < tk+1

whereαi andβi determine the evolution rate of the efficiency factorsρi, andai is used to adjust

the value ofρi such thatρi(tk) = 1. Then

ρ̇i (t) =







0, if t < tk,

−βie−αi(t−tk)eβi/αie
−αi(t−tk)−ai , if tk ≤ t < tk+1, i = 1, · · · , m1.
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Therefore, theϑ0(t) satisfying (12) can be chosen as

ϑ0 (t) =
¯̄ρ+ 1

ρ
βe−αt

where ¯̄ρ = max
i=1,··· ,m1

{ρi}, ρ = min
i=1,··· ,m1,ρi 6=0

{ρi} andα = min
i=1,··· ,m1

{αi}. ∇

III. A DAPTIVE ROBUST FTC DESIGN FORMIMO SYSTEMS

A. With “Equivalent Matched” Uncertainties

Consider the following uncertain faulty system

ẋ = Ax+ f (x, ω(t), t) +BΛ (t) u+BΣψ (t) , x(t0) = x0 (13)

whereω(t) ∈ R represents disturbance, and the unknown nonlinear vectorf(·) : Rn×R×R+ →
Rn represents system lump uncertainty.

Remark 6. In system (13), the unknown nonlinear vectorf (x, ω(t), t) represents the lumped

uncertainty, which is a generalized concept, possibly including disturbances, un-modelled dy-

namics, parameter variations, and complex nonlinear dynamics. ∇

The following assumption forf (x, ω(t), t) is given.

Assumption 5. The uncertainty vectorf (x, ω(t), t) satisfies that

‖xTPf (x, ω(t), t) ‖ ≤ α(x, t)‖xTPB‖ (14)

whereα(x, t) is a known continuous and locally bounded function for allx ∈ Rn and t ∈ R+,

and the SPD matrixP satisfies equation (11).

Remark 7. For matrixB in system (13), there exist matrices̄B andW such that[B, B̄]col(W1,W2) =

In×n. Then it follows that
∥

∥xTPf (·)
∥

∥ =
∥

∥xTPBW1f (·) + xTPB̄W2f(·)
∥

∥ ≤
∥

∥xTPB
∥

∥ ‖W1f (·)‖+
∥

∥xTPB̄W2f (·)
∥

∥. Assumption 5 implies that
‖xTPB̄W2f(·)‖

‖xTPB‖
is bounded when

∥

∥xTPB
∥

∥ 6= 0, and

that lim
‖xTPB‖→0

‖xTPB̄W2f(·)‖
‖xTPB‖

is bounded. For matched uncertainties,xTPB̄W2f (·) = 0, which

implies that Assumption 5 holds automatically. In fact, uncertainties satisfying Assumption 5 are

called “equivalent matched” uncertainties, which includethe matched uncertainties considered

in [3] and [10], and partial of unmatched uncertainties in [4] as special cases. ∇

Remark 8. The functionα(x, t) is kind of bound on the uncertainty vectorf(x, ω(t), t). It is

not a design parameter ,and thus it is not chosen by us. For a specific real system,α(x, t)
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may be obtained from the characteristics of the real system and historical statistical information.

In addition, from reference [15], if the nonlinear vectorf (x, ω(t), t) is Lipschitz (including

∆Ax), then there exists a known nonlinear functionα(x, t) such that
∥

∥xTPf (x, ω(t), t)
∥

∥ ≤
α (x, t)

∥

∥xTPB
∥

∥. ∇

The objective is to design a class of adaptive robust state feedback FTC for system (13) to

guarantee that all the signals in the closed-loop system arebounded, and the states go to zero

asymptotically. Then the following controller is constructed

u = uf + uu (15)

whereuu is an auxiliary control function to compensate for uncertainties, anduf is the fault

compensation function, described by

uf = K̂Λx+K2(t) (16)

whereK̂Λ ∈ Rm1×n is the estimation ofKΛ (t) ∈ Rm1×n defined in (11) andK2(t) is also an

auxiliary control function to compensate for actuator stuck faults.

Remark 9. It should be noted the FTC structureu in (15) is fixed. However, the parameter̂KΛ

and other parameters inuf andK2(t) are to be estimated by adaptive technique later. ∇

The adaptive law ofK̂Λ is given by

˙̂
KΛ = −Γ((xxTPB)T + ǫϑ0(t)K̂Λ) (17)

whereΓ = ΓT > 0 is a constant matrix, andǫ ≥ 6 is a constant scalar.

Before constructing auxiliary control functionsK2(t) anduu, the following lemmas are needed.

Lemma 2. [11] If the fault mode considered(Λ (t) , Σ) ∈ △ in (4) satisfies Assumption 2,

there exists a positive constantµ > 0 such that

xTPBΛ (t)BTPx(t) ≥ µ
∥

∥xTPB
∥

∥

2
(18)

where the SPD matrixP is defined in (10).

Lemma 3. [26] For any square matricesX andY with appropriate dimensions, the following

inequality

XTY + Y TX ≤ αXTX + α−1Y TY (19)

holds, whereα is a positive scalar.
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Lemma 4. DenoteK̂ = K̃ +K with K̂, K̃, K having appropriate dimensions. Then

tr(K̃TΓK̃)− tr(KTΓK) ≤ 2tr(K̂TΓK̃) (20)

holds, whereΓ = ΓT > 0 is a constant matrix.

Proof: For anyα > 0,

tr(K̃TΓK̃)− tr(KTΓK)

= (1 + α)tr(K̃TΓK̃)− (1− α−1)tr(KTΓK)− αtr(K̃TΓK̃)− α−1tr(KTΓK),

≤ (1 + α)tr(K̃TΓK̃)− (1− α−1)tr(KTΓK) + 2tr(KTΓK̃). (21)

Let α = 1. Then it follows from (21) thattr(K̃TΓK̃)− tr(KTΓK) ≤ 2tr(K̂TΓK̃).

Based on Assumption 3, there exists a positive constantk3 such that‖Σψ(t)‖ ≤ ‖Σ‖ψ̄ ≤ µk3,

where µ is positive unknown scalar defined in (18). Based on Assumption 5, there exists a

positive constantk4 such that
∥

∥xTPf (x, ω (t) , t)
∥

∥ ≤ µk4α (x, t)
∥

∥xTPB
∥

∥ wherek4 = 1
µ
. Here,

it is worth pointing out that since the fault parametersΛ(t), Σ andψ̄ are unknown, the associated

constant parametersµ, k3 andk4 are unknown. Adaptive laws are to be designed to identify the

parametersk3 andk4.

The auxiliary control functionsK2(t) anduu are defined by

K2 (t) = − BTPxk̂23

‖xTPB‖ k̂3 + ϑ(t)
, (22)

uu = − BTPxα2 (x, t) k̂24

‖xTPB‖α (x, t) k̂4 + ϑ (t)
(23)

where the SPD matrixP ∈ Rn×n is given in (10), andϑ(t) is any positive uniformly continuous

and bounded function, satisfying that

0 < lim
t→∞

∫ t

t0

ϑ (τ) dτ ≤ ϑ <∞. (24)

The estimationŝk3 and k̂4 are updated by

˙̂
k3 = γ1

∥

∥xTPB
∥

∥− γ1ϑ(t)k̂3, (25)

˙̂
k4 = γ2

∥

∥xTPB
∥

∥α (x, t)− γ2ϑ (t) k̂4 (26)

whereγ1 andγ2 are positive scalars.
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Let K̃Λ = K̂Λ − KΛ (t), k̃3 = k̂3 − k3 and k̃4 = k̂4 − k4. Then the error dynamics of (17),

(25) and (26) are described by

˙̃
KΛ = −Γ

(

(xxT (t)PB)T + ǫϑ0(t)K̃Λ + ǫϑ0(t)KΛ (t)
)

,

˙̃
k3 = γ1

∥

∥xTPB
∥

∥− γ1ϑ(t)k̃3 − γ1ϑ(t)k3,

˙̃
k4 = γ2

∥

∥xTPB
∥

∥α (x, t)− γ2ϑ (t) k̃4 − γ2ϑ (t) k4.

(27)

Therefore, the closed-loop system by applying control (15)to system (13) is obtained and

described by

ẋ(t) =
(

A+BΛ(t)K̂Λ

)

x+BΛ (t) uu +BΛ (t)K2(t) + BΣψ(t) + f(x, ω(t), t) (28)

where the unknown nonlinear vectorf(·) : Rn ×R×R+ → Rn is system lump uncertainty.

Remark 10. Both the error dynamics (27) and the closed-loop system (28) are continuous in

any time intervals(tk, tk+1). The existence of the solution to differential equation (27) and

(28) in the usual sense can be guaranteed. Therefore, the controller (15) with the continuous

auxiliary control functions (22), (23) and the continuous adaptive laws (17), (25), (26) can be

easily implemented in practical problems. ∇

Remark 11. The proposedσ−modification adaptive laws (17), (25) and (26), like in [8] and

[27], are capable of avoiding high gain effectively. Moreover, from auxiliary control functions

(22) and (23), it is straight forward to see that‖K2 (t)‖ ≤ k̂3 and‖uu (t)‖ ≤ α (x, t) k̂4. ∇

Denote
(

x, k̃Λ, k̃3, k̃4

)

as the solution of the closed-loop system (28) and the error dynamics

(27). Then the following theorem is ready to present.

Theorem 1. For the error dynamics (27) and the closed-loop system (28),supposing that

Assumptions 1-5 are satisfied, then the solution
(

x, k̃Λ, k̃3, k̃4

)

to the error dynamics (27)

and the closed-loop system (28) is bounded. Furthermore,

lim
t→∞

x (t; t0, x0) = 0. (29)

Proof: For the error dynamics (27) and the closed-loop system (28),a Lyapunov function

candidate is chosen as

V (x,
√
Λk̃Λ, k̃3, k̃4) = xTPx+ tr(Λ (t) k̃TΛΓ

−1k̃Λ) + µγ−1
1 k̃23 + µγ−1

2 k̃24. (30)
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Then the time derivativeV (·) in each time interval (tk, tk+1) along the trajectories of (27) and

(28) is given by

dVk(x,
√
ΛK̃Λ, k̃3, k̃4)

dt

= −xT
(

(A+BΛ (t)KΛ(t))P + P (A+BΛ (t)KΛ(t))
T
)

x

+ 2xTPBΛ (t) K̃Λx+ 2tr(Λ (t) K̃T
ΛΓ

−1 ˙̂
KΛ)− 2tr(Λ (t) K̃T

ΛΓ
−1K̇Λ(t))

+ tr(Λ̇ (t) K̃T
ΛΓ

−1K̃Λ)− 3ϑ0(t)tr(Λ (t)KT
Λ (t)Γ

−1KΛ(t)) + 3ϑ0(t)tr(Λ (t)KT
Λ (t)Γ

−1KΛ(t))

+ 2xTPBΛ (t)K2 (t) + 2xTPBΣψ (t) + 2µγ−1
1 k̃3

˙̃
k3

+ 2xTPBΛ (t)uu + 2xTPf (x, ω(t), t) + 2µγ−1
2 k̃4

˙̃
k4 (31)

where

2xTPBΛ(t)K̃Λx+ 2tr(Λ(t)K̃T
ΛΓ

−1 ˙̂
KΛ)

− 2tr(Λ(t)K̃T
ΛΓ

−1K̇Λ(t))− 2tr(Λ̇(t)K̃T
ΛΓ

−1K̃Λ)

+ 3tr(Λ̇(t)K̃T
ΛΓ

−1K̃Λ)− 3ϑ0(t)tr(Λ(t)K
T
Λ (t)Γ

−1KΛ(t))

+ 3ϑ0(t)tr(Λ(t)K
T
Λ (t)Γ

−1KΛ(t))

=2xTPBΛ(t)K̃Λx+ 2tr(Λ(t)K̃T
ΛΓ

−1 ˙̂
KΛ)

+ 2tr(Λ̇(t)K̃T
ΛΓ

−1KΛ(t))− 2tr(Λ̇(t)K̃T
ΛΓ

−1K̃Λ)

+ 3tr(Λ̇(t)K̃T
ΛΓ

−1K̃Λ)− 3ϑ0(t)tr(Λ(t)K
T
Λ (t)Γ

−1KΛ(t))

+ 3ϑ0(t)tr(Λ(t)K
T
Λ (t)Γ

−1KΛ(t)). (32)

From Lemma 4, the two terms in Eq. (32) can be enlarge into that

3tr(Λ̇(t)K̃T
ΛΓ

−1K̃Λ)− 3ϑ0(t)tr(Λ(t)K
T
Λ (t)Γ

−1KΛ(t))

≤ 3ϑ0(t)tr(Λ(t)K̃
T
ΛΓ

−1K̃Λ)− 3ϑ0(t)tr(Λ(t)K
T
Λ (t)Γ

−1KΛ(t))

≤ 6ϑ0(t)tr(Λ(t)K̃
T
ΛΓ

−1K̂Λ). (33)

Suppose thaṫρi(t) ≥ 0, i = 1, · · · , m1. Then

tr
(

Λ̇ (t) K̃T
ΛΓ

−1K̃Λ

)

=

m1
∑

i=1

n
∑

j=1

K̃2
Λij ρ̇iΓ

−1
i ≥

∥

∥

∥
K̃ ′

Λ

∥

∥

∥

2

min
(

Γ−1
i ρ̇

)

(34)

whereK̃ ′
Λ = [K̃Λi], ρ̇i 6= 0, i = 1, · · ·m1, and ρ̇ is the minimum value oḟρi. From Assumption

3, there exists a positive scalarρ such thatρ̇ ≥ ρϑ0(t). Then it follows from (34) that

tr
(

Λ̇ (t) K̃T
ΛΓ

−1K̃Λ

)

≥
∥

∥

∥
K̃ ′

Λ

∥

∥

∥

2

min
(

Γ−1
i

)

ρϑ0(t). (35)
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Differentiating (11) on both sides, it follows thatB(Λ̇(t)KΛ (t)+Λ (t) K̇Λ (t)) = 0, Λ̇(t)KΛ (t) =

−Λ (t) K̇Λ (t). Then,−2tr
(

Λ (t) K̃T
ΛΓ

−1K̇Λ (t)
)

= 2tr
(

Λ̇ (t) K̃T
ΛΓ

−1KΛ (t)
)

. Using Schwarz

inequality, it has that
∣

∣

∣
tr
(

Λ̇ (t) K̃T
ΛΓ

−1KΛ (t)
)
∣

∣

∣
≤
∥

∥

∥
Λ̇ (t) K̃T

ΛKΛ (t)
∥

∥

∥
max

(

Γ−1
i

)

≤
∥

∥

∥
K̃ ′

Λ

∥

∥

∥
‖KΛ (t)‖max

(

Γ−1
i

)

| ¯̇ρ| (36)

where¯̇ρ is the maximum value oḟρi. Since there exists a positive scalarρ̄ such that| ¯̇ρ| ≤ ϑ0 (t) ρ̄,

it can be obtained from (35) and (36) that

tr
(

Λ̇ (t) K̃T
ΛΓ

−1KΛ (t)
)

− tr
(

Λ̇ (t) K̃T
ΛΓ

−1K̃Λ

)

≤ −ϑ0 (t)
∥

∥

∥
K̃ ′

Λ

∥

∥

∥

2

min
(

Γ−1
i

)

ρ+ ϑ0 (t)
∥

∥

∥
K̃ ′

Λ

∥

∥

∥
‖KΛ (t)‖max

(

Γ−1
i

)

ρ̄

≤ ϑ0 (t)
‖KΛ(t)‖

2 max(Γ−1
i )ρ̄

4min(Γ−1
i )ρ

= ϑ0 (t) δ0

(37)

whereδ0 =
‖KΛ(t)‖

2 max(Γ−1
i )ρ̄

4min(Γ−1
i )ρ

.

Then substituting (33), (37) and adaptive law in (17) into (32), it follows that whenǫ ≥ 6,

2xTPBΛ(t)K̃Λx+ 2tr(Λ(t)K̃T
ΛΓ

−1 ˙̂
KΛ)− 2tr(Λ(t)K̃T

ΛΓ
−1K̇Λ(t))

−2tr(Λ̇(t)K̃T
ΛΓ

−1K̃Λ) + 3tr(Λ̇(t)K̃T
ΛΓ

−1K̃Λ)

−3ϑ0(t)tr(Λ(t)K
T
Λ (t)Γ

−1KΛ(t)) + 3ϑ0(t)tr(Λ(t)K
T
Λ (t)Γ

−1KΛ(t))

≤ ϑ0(t)(2δ0 + 3δ1)

(38)

whereδ1 = tr(Λ(t)KT
Λ (t)Γ

−1KΛ(t)).

For other cases thatρi(t) ≤ 0, i = 1, · · · , m1 andρi(t) ≥ 0, ρj(t) ≤ 0, i 6= j, i, j = 1, · · · , m1,

the results are similar to (38) and omitted here.

Substituting auxiliary functionK2(t) in (22) and the adaptive laŵk3 in (25) into (31),

2xTPBΛ(t)K2 (t) + 2µ
∥

∥xTPB
∥

∥ k3 + 2µγ−1
1 k̃3

˙̃
k3

≤ − 2µ
∥

∥xTPB
∥

∥

2
k̂23

‖xTPB‖ k̂3 + ϑ (t)
+ 2µ

∥

∥xTPB
∥

∥ k3 + 2µγ−1
1 k̃3

˙̃
k3

=
2µ

∥

∥xTPB
∥

∥ k̂3ϑ (t)

‖xTPB‖ k̂3 + ϑ (t)
− µϑ (t) k̃3

(

k̃3 + k3

)

. (39)
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Substituting auxiliary functionuu in (23) and the adaptive laŵk4 in (26) into (31),

2xTPBΛ (t) uu + 2xTPf (x, ω(t), t) + 2µγ−1
2 k̃4

˙̃
k4

≤ − 2µ
∥

∥xTPB
∥

∥

2
α2 (x, t) k̂24

‖xTPB‖α (x, t) k̂4 + ϑ (t)
+ 2

∥

∥xTPB
∥

∥α (x, t)µk4 + 2µγ−1
2 k̃4

˙̃
k4

=
2µ

∥

∥xTPB
∥

∥α (x, t) k̂4ϑ (t)

‖xTPB‖α (x, t) k̂4 + ϑ (t)
− µϑ (t) k̃4

(

k̃4 + k4

)

. (40)

Notice the fact that for any positive constantc > 0, 0 ≤ ab
a+b

≤ a, ∀a, b > 0 and that

−k̃3
(

k̃3 + k3

)

≤ 1
4
k23, −k̃4

(

k̃4 + k4

)

≤ 1
4
k24, it follows from (39) and (40) that

2xTPBΛ(t)K2 (t) + 2xTPBΣψ(t) + 2µγ−1
1 k̃3

˙̃
k3 ≤ µϑ (t) (1 +

1

4
k23), (41)

2xTPBΛ(t)uu (t) + 2xTPf(x, ω(t), t) + 2µγ−1
2 k̃4

˙̃
k4 ≤ µϑ (t) (1 +

1

4
k24). (42)

Thus, from (38), (41) and (42), it can be concluded that for any t ∈ (tk, tk+1),

dVk(x,
√
ΛK̃Λ, k̃3, k̃4)

dt
= −λmin(Q)‖x‖2 + (2δ0 + 3δ1)ϑ0(t) + δ2ϑ(t) (43)

whereλmin(Q) represents the minimum eigenvalue ofQ, δ2 = µ(2 + 1
4
k23 +

1
4
k24).

Let x̃ =
(

x,
√
ΛK̃Λ, k̃3, k̃4

)

. Then there exists a classK∞ function γ1(·) such that

0 < γ1(‖x̃‖) ≤ V (x̃(t)). (44)

Thus for anyt ∈ (tk, tk+1),

0 ≤ γ1(‖x̃‖) ≤ V (x̃(t)) ≤V (x̃(tk)) +

∫ tk+1

tk

(−λmin (Q) ‖x(τ)‖2)dτ

+

∫ tk+1

tk

(2δ0+3δ1)ϑ0 (τ) dτ +

∫ tk+1

tk

δ2ϑ (τ) dτ. (45)

Note that for anyt > t0, it has that

sup
t∈[t0,∞)

(
∫ t

t0

(δ0+3δ1)ϑ0 (τ) dτ +

∫ t

t0

δ2ϑ (τ) dτ

)

≤ (2δ0+3δ1)ϑ0 + δ2ϑ. (46)

Consequently,

0 ≤ γ1(‖x̃ (t)‖) ≤ V (x̃(tk)) + (2δ0+3δ1)ϑ0 + δ2ϑ, (47)

which implies that if the initial valueV (t+k ) is finite, x̃ ∈ L∞, then x ∈ L∞,
∥

∥

∥

√
ΛK̂Λ

∥

∥

∥
∈

L∞, k̂3 ∈ L∞, k̂4 ∈ L∞ in each time interval (tk, tk+1). Note that the Lyapunov functionV (·)
is not continuous and has a jump with a finite value, at each time instanttk. If V (t0) is finite,
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thenV (·) ∈ L∞, ∀t ≥ 0 with several jumps of finite values. Consequently,x̃ ∈ L∞, x ∈ L∞,
∥

∥

∥

√
ΛK̂Λ

∥

∥

∥
∈ L∞, k̂3 ∈ L∞, k̂4 ∈ L∞ for all t ≥ 0.

Consider the Lyapunov candidate function

VI−Λ =
1

2
(I − Λ)K̂T

ΛΓ
−1K̂Λ.

It can be proved that there is a constantκ > 0 such thatV̇I−Λ < 0 for
∥

∥

∥

√
I − ΛK̂Λ

∥

∥

∥
> κ, which

implies
∥

∥

∥

√
I − ΛK̂Λ

∥

∥

∥
∈ L∞. Since it has proved that

∥

∥

∥

√
ΛK̂Λ

∥

∥

∥
∈ L∞, ‖KΛ (t)‖ ∈ L∞.

Therefore, it can be concluded that̂KΛ (t) x ∈ L∞, K2(t) ∈ L∞, uu ∈ L∞, u ∈ L∞,

ẋ(t) ∈ L∞ andx is uniformly continuous. Whent approaches infinity on both sides of (45), it

follows that

lim
t→∞

∫ t

t0

λmin (Q) ‖x(τ)‖2dτ

≤ V (x̃(t0)) + lim
t→∞

(
∫ t

t0

(2δ0+3δ1)ϑ0 (τ) dτ +

∫ t

t0

δ2ϑ (τ) dτ

)

≤ V (x̃(t0)) + (2δ0+3δ1)ϑ0 + δ2ϑ. (48)

Applying Barbălat lemma [8] to (48) yieldslim
t→∞

λmin (Q) ‖x(t)‖2 = 0, which implies that (29)

is satisfied.

Hence, the result follows.

This section is studied under Assumption 5, which includes matched and part of unmatched

uncertainties. In the next section, the rest part of unmatched uncertainties, and a new control

objective will be considered.

B. With “Exactly Unmatched” Uncertainties

Consider the following uncertain faulty system

ẋ = Ax+Df (x, ω(t), t) +Buf , x (t0) = x0,

y = Cx
(49)

where matricesA, B andC are the same as system (1). The fault modeluf is described by (3),

and considered fault mode(Λ(t),Σ) ∈ △ satisfies Assumption 2. The unknown nonlinear term

Df (x, ω(t), t) represents lumped uncertainties withD ∈ Rn×m2 . Without loss of generality, the

matrix D is assumed to be full column rank andIm(D) 6⊂ Im(B), i.e.,Df(·) is unmatched.

The following lemmas are introduced to projectDf (·) into matched space and unmatched space.
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Lemma 5. For any matrixS ∈ Rm×n
r with rank r > 0, there exists a decomposition

S = QR (50)

whereQ ∈ Rm×r with QTQ = Ir, andR ∈ Rr×n with R being full row rank, i.e.,RRT > 0.

Proof: The matrixS can be decomposed asS = FG whereF ∈ Rm×r
r is full column rank,

andG ∈ Rr×n
r is full row rank. ThenF can be decomposed asF = QR1 whereR1 is full rank

nonsingular matrix, andQ ∈ Rm×r
r , QTQ = Ir. Therefore,S = QR1G = QR whereR = R1G

being full row rank, i.e.,RRT > 0.

Lemma 6. [7] For any matrixQ ∈ Rn×m with rank (Q) = m, the identity matrix

In = QQ+ +Q⊥Q⊥+

holds, whereQ+ represents the left inverse ofQ, that isQ+ =
(

QTQ
)−1

QT , and the columns

of Q⊥ ∈ Rn×(n−m) span the null space ofQT .

Based on Lemma 5, the matrixB can be decomposed asB = QBRB with rank(QB) =rank(B)

andRB being full row rank. Based on Lemma 6, the identity matrixIn = QBQ
+
B + Q⊥

BQ
⊥+
B .

Now we can projectDf(·) into the matched and unmatched spaces,Df(·) = fm(·) + fu(·),
fm(·) ∆

= QBQ
+
BDf(·) and fu(·) ∆

= Q⊥
BQ

⊥+
B Df(·), where fm(·) and fu(·) are matched and

unmatched uncertainties, respectively.fu(·) is called “exactly unmatched” uncertainties. Similar

discussion is available in [28].

Assumption 6. The uncertainty vectorf (x, ω(t), t) satisfies

‖f (x, ω(t), t) ‖ ≤ β(x, t) (51)

whereβ(x, t) is known continuous and locally bounded function inx ∈ Rn and t ∈ R+.

Remark 12. Assumption 5 implies that the unmatched componentfu(·) goes to zero when

‖xTPB‖ goes to zero. However, there is no such requirement in Assumption 6. Therefore, the

limitation in Assumption 6 is more relaxed than that in Assumption 5. ∇

The FTC objective for system (49) is to tolerate the actuatorfaults and compensate for the

uncertaintiesDf (·) from output channels such that the outputs go to zero asymptotically and

all the signals in the closed-loop system are bounded.
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Remark 13. One of the most important problems in linear multivariable control theory is to

control a fixed plant such that its outputs track reference signals and reject disturbance produced

by an external generator (the exosystem) [29]. In engineering practice, it is interesting to keep

the outputs as zero in the absence of subsequent disturbances, and control the outputs to respond

in a desired way, such as in aircraft system [30] and electro-magnetic suspension system [5].∇

Definiton 1. [31] The MIMO linear time-invariant systems (1) are said to have a (vector) relative

degree{ν1, ν2, · · · , νp} at equilibrium point if

• ciA
kiB = 01×m1 , for all 0 ≤ ki < νi − 1, 1 ≤ i ≤ p;

• KB =

[

c1Aν1−1B
...

cpA
νp−1B

]

has rank equal to the number of its rows (i.e. to the number of output

channels), whereci, i = 1, · · · , p are the rows of matrixC.

Remark 14. By Definition 1, for all0 ≤ ki < νi − 1, the row vectorciAkiB is zero, and for

ki = νi − 1, it is nonzero (i.e. has at least a nonzero element) since thematrix KB is full row

rank. In view of conditionciAkiB = 01×m1 , for all 0 ≤ ki < νi − 1, 1 ≤ i ≤ p, we see that for

each output channelci, there is at least one input channelbj such thatciAνi−1bj 6= 0, i.e. the

triple (A, bj, ci) has exactly relative degreeνi, while for any otherbj , the corresponding relative

degree is necessarily higher than or equal toνi.

Assumption 7. Suppose that the triples(A,B,C) and (A,D,C) have (vector) relative degrees

{ν1, ν2, · · ·νp} and{υ1, υ2, · · ·υp}, respectively. It is assumed thatνi ≤ υi, i = 1, · · · , p.

Remark 15. The reference [31] uses the pole placement method to design robust controller, and

removes disturbances from output channels in the steady state based on Assumption 7. However,

this issue becomes more complex when actuators faults are considered. ∇

Denoting that thekith order time derivative ofyi (t) , i = 1, 2, · · · , p asy(ki)i (t), we have

y
(ki)
i (t) =







ciA
kix (t) , ki = 0, 1, · · · , νi − 1,

ciA
kix (t) + ciA

ki−1Buf + ciA
ki−1Df (x, ω(t), t) , ki = νi.

Consider the differential equation

y
(νi)
i (t) = ciA

νix (t) + ciA
νi−1Buf + ciA

νi−1Df (x, ω(t), t) . (52)
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For the case thatr = ν1 + ν2 + · · ·+ νp is strictly less thann, setting

ζ i =







ζi1
ζi2
...

ζiνi−1






=





yi
ẏi
...

y
νi−1
i



 =

[ cix
ciAx

...
ciAνi−1x

]

and ζ = col(ζ1, ζ2, · · · ζp), then there exists a vectorη = col(η1, η2, · · · ηn−r) such that system

(49) can be transformed into a normal form in new coordinatesz = col(ζ, η) = Tx with T being

invertible, described by

ζ̇ i = Aζiζ
i + Fζix+Bζiu

f +Dζif (x, ω(t), t) , (53)

η̇ = Rζ +Qη +Dηf (x, ω(t), t) , (54)

yi = ζ i1, i = 1, 2, · · · , p (55)

wherex = T−1z,

Aζi =
[

0 I(νi−1)
0 0

]

, Bζi =
[

0
ciAνi−1B

]

, Fζi =
[

0
ciAνi

]

and Dζi =
[

0
ciAνi−1D

]

.

It can be seen that subsystems (53)- (55) are controlled by the input uf and uncertainties

f (x, ω(t), t). From [29] and [32], the state vectorη is completely unobservable, and the sub-

system

η̇ = Qη +Dηf
(

T−1
[

0, ηT
]T
, ω(t), t

)

(56)

is the zero dynamics.

Assumption 8. The triple(A,B,C) is minimum phase.

Remark 16. From [32], under Assumption 8,Q is a Hurwize matrix. Therefore, based on

Assumption 6, state vectorη in (56) is bounded. ∇
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Denoteξ = Sζ whereS is described by

S =















































Iν1−1

Iν2−1

...
...

...
. . .

Iνp−1

1 · · ·
. . .

...
...

...
...

...
...

1















































.

Then system (53) can be written as

ξ̇ = Aξξ + Fξx+BξΛ (t) u+BξΣψ (t) +Dξf (x, ω(t), t) (57)

wherex = T−1col(S−1ξ, η),

Aξ = S









0(ν1−1)×1 Iν1−1

0 01×(ν1−1)

...
0(νp−1)×1 Iνp−1

0 01×(νp−1)









S−1, Bξ =

[ 0
...
0

KB

]

, Fξ =

[ 0
...
0

KF

]

andDξ =

[ 0
...
0

KD

]

with KB =

[

c1Aν1B
...

cpAνpB

]

, KF =

[

c1Aν1

...
cpAνp

]

andKD =

[

c1Aν1−1D
...

cpAνp−1D

]

. The fault mode(Λ (t) , Σ) ∈ △

satisfies Assumption 2.

It is easy to see that all the eigenvalues ofAξ are zero andrank (−Aξ, Bξ) is ν1+ν2+ · · ·+νp,
which means that the system (57) is controllable based on thePBH stability criterion. Thus for

any give SPD matrixΦ, there is a unique SPD matrixPξ such that

Pξ(Aξ +BξK) + (Aξ +BξK)TPξ = −Φ. (58)

Under Assumption 2 and based on Proposition 1, there exists atime varying matrix function

K∗(t) ∈ Rm1×m1 such thatBΛ (t)K∗(t) = B. Then for the given SPD matrixΦ in (58), there

existKΛ(t) = K∗(t)K and a common SPD matrixPξ in (58) such that

Pξ(Aξ +BξΛ (t)KΛ(t)) + (Aξ +BξΛ (t)KΛ(t))
TPξ = −Φ. (59)

Also, from thatBΛ (t)K∗(t) = B, ciAkiBΛ (t)K∗(t) = ciA
kiB = 01×m1 , for all 0 ≤ ki <

νi−1, 1 ≤ i ≤ p, andKBΛ (t)K∗(t) = KB, which means that the (vector) relative degree of the
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triple (A,B,C) is equal to the (vector) relative degree of the triple(A,BΛ (t)K∗(t), C) for all

(Λ (t) , Σ) ∈ △ satisfying Assumption 2. Therefore, after actuator faultssatisfying Assumption

2 occur, Assumption 7 is also satisfied.

Moreover, the fact that the rows ofKB are linearly independent implies that there exists

a matrixK∗
B such thatI − KBK

∗
B = 0. Then, forK∗(t) satisfying thatBΛ (t)K∗(t) = B,

I−KBΛ (t)K∗(t)K∗
B = 0. From Assumption 2 thatrank(BΛ (t)) = rank(B), rank(KBΛ (t)) =

rank(KB). then it follows from Lemma 2 that there exists aK2(t) such thatKBΛ (t)K2(t) =

−KBΣψ(t).

Based on the above hypothesis and analysis, under Assumption 2, the undesirable terms in

(57), Fξx, BξΣψ(t) andDξf(x, ω(t), t) can be compensated after a fault mode(Λ(t),Σ) ∈ ∆

satisfying Assumption 2 occur. The FTC structure is given by

u = u1 + K̂Λξ +K2 (t) + uu (60)

whereK̂Λ is the estimation ofKΛ (t). The auxiliary controlleru1 is given by

u1 = −K̂∗K∗
BKFx (61)

whereK̂∗ is the estimation ofK∗(t).

Under Assumption 4, there exist positive scalarsµ and k3 such that‖Σψ(t)‖ ≤ µk3. Since

Im (Dξ) ⊂ Im (Bξ), there exists a positive scalark4 such that
∥

∥ξTPξDξf (x, ω (t) , t)
∥

∥ ≤
µk4β (x, t)

∥

∥ξTPξBξ

∥

∥. Note that the parametersµ, k3 and k4 are unknown. The two auxiliary

control functionsK2(t) anduu are given by

K2 (t) = −
BT

ξ Pξξk̂
2
3

‖ξTPξBξ‖ k̂3 + ϑ (t)
,

uu = −
BT

ξ Pξξk̂
2
4β

2 (x, t)

‖ξTPξBξ‖ k̂4β (x, t) + ϑ (t)

(62)

wherek̂3 and k̂4 are the estimations ofk3 andk4 respectively, andϑ(t) satisfies (24).

The parameterŝKΛ, K̂∗, k̂3 and k̂4 are updated by

˙̂
KΛ = −Γ1

(

(ξξTPξBξ)
T + ǫ1ϑ0 (t) K̂Λ

)

,

˙̂
K∗ = −Γ2

(

(K∗
BKFxξ

TPξBξ)
T + ǫ2ϑ0 (t) K̂

∗
)

,

˙̂
k3 = γ1

∥

∥ξTPξBξ

∥

∥− γ1ϑ (t) k̂3,

˙̂
k4 = γ2

∥

∥ξTPξBξ

∥

∥ β (x, t)− γ2ϑ (t) k̂4 (63)
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whereΓ1 = ΓT
1 > 0 andΓ2 = ΓT

2 > 0 are constant matrices.ǫ1 ≥ 6, ǫ2 ≥ 6, γ1 > 0 andγ2 > 0

are constant scalars. The matrixPξ is the solution of (59).

Let K̃Λ = K̂Λ − KΛ(t), K̃∗ = K̂∗ − K∗ (t), k̃3 = k̂3 − k3, k̃4 = k̂4 − k4. Then the error

dynamics are described by

˙̃
KΛ = −Γ1

(

(ξξTPξBξ)
T + ǫ1ϑ0 (t)KΛ(t) + ǫ1ϑ0 (t) K̃Λ

)

,

˙̃
K∗ = −Γ2

(

(K∗
BKFxξ

TPξBξ)
T + ǫ2ϑ0 (t)K

∗(t) + ǫ2ϑ0 (t) K̃
∗
)

,

˙̃
k3 = γ1

∥

∥ξTPξBξ

∥

∥− γ1ϑ (t) k3 − γ1ϑ (t) k̃3,

˙̃
k4 = γ2

∥

∥ξTPξBξ

∥

∥ β (x, t)− γ2ϑ (t) k4 − γ2ϑ (t) k̃4. (64)

the closed-loop system is described by

ξ̇ = Aξξ +BξΛ (t)
(

u1 + K̂Λξ +K2 (t) + uu

)

+ Fξx+BξΣψ (t) +Dξf (x, ω(t), t) , (65)

and the subsystem (54) is described by

η̇ = RS−1ξ +Qη +Dηf
(

T−1
[

0, ηT
]T
, ω(t), t

)

. (66)

Remark 17. From (62) and (63), it can be seen that the auxiliary functions K2(t), uu are

continuous, and adaptive lawŝKΛ, K̂∗, k̂3 and k̂4 are also continuous. Moreover,‖K2 (t)‖ ≤ k̂3

and‖uu (t)‖ ≤ β (x, t) k̂4. ∇

The following theorem is ready to present.

Theorem 2. For the error dynamics (64), the closed-loop system (65) andthe subsystem (66),

supposing that Assumptions 1-4 and Assumptions 6-8 are satisfied, then, the solution(ξ, K̃Λ, K̃
∗,

k̃3, k̃4) to the error dynamics (64) and the closed-loop system (65) isbounded, and the state

vectorx in (49) is bounded. Furthermore,

lim
t→∞

y (t; t0, x0) = 0. (67)

Proof: For the error dynamics (64) and the closed-loop system (65),a Lyapunov function

candidate is chosen as

V
(

ξ, K̃Λ, K̃
∗, k̃3, k̃4

)

= ξTPξξ+tr
(

Λ (t) K̃T
ΛΓ

−1
1 K̃Λ

)

+tr
(

Λ (t) K̃∗TΓ−1
2 K̃∗

)

+µγ1k̃
2
3+µγ2k̃

2
4.

(68)

Then the time derivative ofV (·) along the trajectories of (64) and (65) is

V̇ = V̇1 + V̇2 + V̇3 + V̇4 (69)
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where

V̇1 = ξT
(

PξAξ + AT
ξ Pξ

)

ξ + 2ξTPξBξΛ(t)K̂Λξ + 2tr
(

Λ(t)K̃T
ΛΓ

−1
1

˙̃
KΛ

)

+ tr
(

Λ̇(t)K̃T
ΛΓ

−1
1 K̃Λ

)

,

V̇2 = 2ξTPξFξx+ 2ξTPξBξΛ(t)u1 + 2tr
(

Λ(t)K̃∗TΓ−1
2

˙̃
K∗

)

+ tr
(

Λ̇(t)K̃∗TΓ−1
2

˙̃
K∗

)

,

V̇3 = 2ξTPξBξΣψ (t) + 2ξTPξBξK2 (t) + 2µγ1k̃3
˙̃
k3,

V̇4 = 2ξTPξDξf (x, ω(t), t) + 2ξTPξBξuu + 2µγ2k̃4
˙̃
k4.

Substituting the auxiliary control functions (62) and the adaptive laws (63) into (69),

V̇1 ≤ −ξTΦξ + ϑ0(t)(3δ
′
0 + 2δ′1),

V̇2 ≤ ϑ0(t)(3δ
′′
0 + 2δ′′1),

V̇3 ≤ µϑ (t)
(

1 +
k23
4

)

,

V̇4 ≤ µϑ (t)
(

1 +
k24
4

)

(70)

whereδ′0, δ
′
1, δ

′′
0 andδ′′1 are positive scalars. Then, it can be concluded that

V̇ ≤ −ξTΦξ + κ0ϑ0 (t) + κ1ϑ (t) (71)

whereκ0 = 3δ′0 + 2δ′1 + 3δ′′0 + 2δ′′1 andκ1 = µ
k23
4
+ µ

k24
4
+ 2.

Let ξ̄ =
(

ξ, K̃Λ, K̃, k̃3, k̃4

)

. It follows from (71) thatξ̄ ∈ L∞. Then ξ ∈ L∞,
∥

∥

∥
K̂Λ

∥

∥

∥
∈ L∞,

∥

∥

∥
K̂
∥

∥

∥
∈ L∞,

∥

∥

∥
k̂3

∥

∥

∥
∈ L∞,

∥

∥

∥
k̂4

∥

∥

∥
∈ L∞. It follows thatx ∈ L∞, u ∈ L∞ and ξ̇ ∈ L∞ and ξ(t) is

uniformly continuous. Therefore, using Barbǎlat Lemma, it can be obtained thatlim
t→∞

ξ (t) = 0,

and lim
t→∞

y (t; t0, x (t0)) = 0.

The proof is completed.

IV. SIMULATION

Two simulation examples will be presented to verify the results developed in this paper.

Example 1: Consider the nonlinear model of F-16 aircraft [30] (trimmed conditions are

velocity=400ft/s, altitude=300000ft, cg=0.3C̄, pitch rate=0deg/s, angle of attack=13.1deg, pitch

angle=13.1deg, elevator deflection=0.4deg, throttle position=0.5227) given by

ẋ = Ax+Bu+ f (x, ω (t) , t)

wherex = col(α, q, θ), u = δe and

A =
[

−0.29114 0.96353 0
0.41357 −0.39716 0

0 1 0

]

, B =
[

−0.000602
−0.034

0

]

, f (x, ω (t) , t) =

[

0.426α2+0.024αq+0.161αθ−0.08θ2

−0.4191α2+0.9αq
0.000301α2+0.017αq+0.000124αθ+0.0068qθ

]

,
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α is the angle of attack (deg),q is the pitch rate (deg/sec),θ is the pitch angle andδe is the

elevator deflection (deg).

The elevator is assumed to be double-redundant such that theredundancy condition (5) is

satisfied, i.e., foru = [δe1, δe2 ], the input matrixB becomes

B = [b1, b2] =











−0.000603 −0.000603

−0.035 −0.035

0 0











.

Then there exist a vector̄B = col(0, 0, 1), matricesW1 =
[

−1024 −16 0
−1024 −16 0

]

andW2 = [0, 0, 1] such

that [B, B̄]col(W1,W2) = I3×3.

For the given

Q =











0.0092 0.0018 0.0050

0.0018 0.0184 0.0070

0.0050 0.0070 0.0109











,

the solutionP to Lyapunov equation (10) is given by

P =











0.0135 0.0004 0.0011

0.0004 0.0166 0.0042

0.0011 0.0042 0.0167











.

From the expression off(x, ω(t), t), it follows that
∥

∥xTPB̄W2f (·)
∥

∥

‖xTPB‖ ≤λmax (P )

λmin (P )

∥

∥xT B̄W2f (·)
∥

∥

‖xTB‖

≤ λmax (P )√
2λmin (P )

|0.000603x1 + 0.035x2| |0.5x1 + 0.2x2|
|0.000603x1 + 0.035x2|

=
λmax (P )√
2λmin (P )

|0.5x1 + 0.2x2| ,

which implies that Assumption 5 is satisfied. Thus,

∥

∥xTPf (·)
∥

∥ =
∥

∥xTPBW1f (·)
∥

∥+
∥

∥xTPB̄W2f (·)
∥

∥

≤
∥

∥xTPB
∥

∥

(

‖W1f (·)‖+
λmax (P )√
2λmin (P )

|0.5x1 + 0.2x2|
)

,

andα(x, t) satisfying Assumption 5 can be chosen as

α(x, t) = ‖W1f (·)‖+ 1.2134 |0.5x1 + 0.2x2|. (72)
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Therefore, the Assumption 5 holds if the uncertainf(·) experienced by the aircraft, satisfies (14)

with α(x, t) given in (72). Here,α(x, t) shows the admissible bounds on uncertaintyf(·), which

is calculated for the specific systems from mathematical point of view.

In this example, the considered fault mode is thatδe1 loses of effectiveness, and the efficient

factor ρ1(t) is given by

ρ1 (t) =

{

1, if 0≤t≤20,

e(e
−0.02(t−20)

−ln 2)−1, if 20≤t≤24,
0.2586, if 24≤t<∞,

andδe2 is stuck at sin(0.5t) after 24s.

It can be verified that Assumptions 1-5 for Theorem 1 are satisfied. The control parameters are

chosen asΓ = 107I, γ1 = γ2 = 5 × 103, ϑ0(t) = 0.2e(−0.02t), ϑ(t) = 5e(−0.02t). The simulation

results are shown in Figs. 1 and 2.

0 10 20 30 40 50 60
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Time(s)

st
at

e 
x 1

 

 

x
1
 of this paper

x
1
 of reference [10]

0 10 20 30 40 50 60
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Time(s)

st
at

e 
x 2

 

 

x
2
 of this paper

x
2
 of reference [10]

0 10 20 30 40 50 60
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time(s)

st
at

e 
x 3

 

 

x
3
 of this paper

x
3
 of reference [10]

Fig. 1. Time responses of system statesx

September 29, 2016 DRAFT



25

0 10 20 30 40 50 60
−3

−2

−1

0

1

2

3

Time(s)

co
nt

ro
l i

np
ut

 u
1

 

 

u
1
 of this paper

u
1
 of reference [10]

0 10 20 30 40 50 60
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Time(s)

co
nt

ro
l i

np
ut

 u
2

 

 

u
2
 of this paper

u
2
 of reference [10]

Fig. 2. Time response of control signalsu

It can be seen from the solid blue lines in Fig. 1 that all the states in the closed-loop system

are asymptotically stable before and after considered faults occur under the designed controller

(15). Comparing the solid blue lines with the dashed red lines in Fig. 1, it can be seen that, after

faults occur, all the states converge to zero faster under the controller designed in this paper

than that in reference [10]. In addition, comparing the solid blue lines with the dashed red lines

in Fig. 2, it can be seen that after faults occur, the amplitude of the actuatoru1 is smaller than

that in [10].

Example 2: In reference [33], the aircraft Boeing747 lateral motion is described bẏx =

Ax + Bu, wherex = col(vb, pb, rb, φ, ϕ), u = col(dr, da). The five state variables are: lateral

velocity vb, roll rate pb, yaw raterb, roll angleφ and yaw angleϕ. The rudder positiondr and

aileron positionda are chosen as outputsy = Cx. In the case of landing, the matricesA, B and

C are described by

A =

























−0.13858 14.326 −219.04 32.167 0

−0.02073 −2.1692 0.91315 0.000256 0

0.00289 −0.16444 −0.15768 −0.00489 0

0 1 0.000618 0 0

0 0 1 0 0

























,
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B = [b1, b2] , b1 =

























0.15935

0.01264

−0.12879

0

0

























, b2 =

























0.00211

0.21326

0.00171

0

0

























, C =





c1

c2



 =





1 0 0 0 0

0 0 0 0 1



 .

Suppose that both rudder and aileron are double-redundant.Then there are four actuators such

that u = col(dr1, dr2, da1 , da2) andB = [b11, b12, b21, b22]. Hence the matrixB becomes

b11 =

























0.15935

0.01264

−0.12879

0

0

























, b12 =

























0.16

0.012

−0.13

0

0

























b21 =

























0.00211

0.21326

0.00171

0

0

























, b22 =

























0.002

0.02

0.0015

0

0

























.

Consider the influence of the turbulence to the aircraft. Thelumped disturbancef (x, ω(t), t)

is given by f(x, ω(t), t) = 0.5sin(vb) + 0.5. Then β(·) in Assumption 6 can be chosen as

‖f(x, ω(t), t)‖+π with π > 0 being scalar. The distribution matrixD is chosen as [31], i.e.,D =

col(013858, 0.02073,−0.00289, 0, 0). Then it has thatc1B = [0.1593, 0.1600, 0.0021, 0.0020],

i.e., ν1 = 1, c2B = [0, 0, 0, 0] , c2AB = [−0.1288,−0.1300, 0.0017, 0.0015], i.e., ν2 = 2 and

c1D = 0.1386, i.e., υ1 = 1, c2D = 0, c2AD = −0.0029, i.e., υ2 = 2. Therefore,ν1 = υ1 = 1

andν2 = υ2 = 2 satisfy Assumption 7.

The simulated fault mode is that a loss of effectiveness fault occurs on the second actuator

b12, and the efficiency factor is given by

ρ2 (t) =

{

1, if 0≤t≤30,

e(e
−0.02(t−30)

−ln 2)−1, if 30≤t≤34,
0.2586, if 34≤t<∞,

the third actuator is stuck at2sin(t). The simulation results are shown in Figs. 3-5.
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Fig. 3. Time responses of system statesx

0 50 100 150
−80

−60

−40

−20

0

20

40

60

Time(s)

C
on

tr
ol

 in
pu

t u
1

 

 

u
1
 with faults

u
1
 with no fault

0 50 100 150
−80

−60

−40

−20

0

20

40

60

Time(s)

C
on

tr
ol

 in
pu

t u
2

 

 

u
2
 with faults

u
2
 with no fault

0 50 100 150
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time(s)

C
on

tr
ol

 in
pu

t u
3

 

 

u
3
 with faults

u
3
 with no fault

0 50 100 150
−5

−4

−3

−2

−1

0

1

2

3

4

5

Time(s)

C
on

tr
ol

 in
pu

t u
4

 

 

u
4
 with faults

u
4
 with no fault

Fig. 4. Time response of control signalsu
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Fig. 5. Time response of outputsy

From the dashed red lines in Figs. 3 and 5, it can be seen that without faults, the statesx are

bounded, the outputsy are asymptotically stabilized by the designed controller (60) and go to

zero asymptotically. Moreover, from the solid blue lines inFig. 3 and 5, it can be seen that after

actuator faults occur, the designed controller (60) can asymptotically stabilize the outputsy, and

ensure that the statesx are bounded simultaneously. However, the outputsy go to zero slower

than that without faults. From Fig. 4, it can be seen that whenactuator faults occur, actuators

in control produce stronger control signals to compensate for the uncertainties and faults.

V. CONCLUSION

Two novel adaptive and robust FTC schemes have been proposedfor linear faulty MIMO

systems with unmatched uncertainties under a set of conditions developed in this paper. Theσ−
modification adaptive laws have been used to estimate the values of time-varying fault parameters.

Based on matched and unmatched characteristic of the uncertainties, two adaptive and robust

FTC design approaches have been proposed with different control objectives. The future work

will focus on development of new adaptive robust FTC methodology for more general nonlinear

systems.
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