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Adaptive Robust Fault-Tolerant Control for
Linear MIMO Systems with Unmatched
Uncertainties

Kangkang Zhant?, Bin Jiang-**, Xing-Gang Yan, Zehui Mad-?

Abstract

In this paper, two novel fault-tolerant control design aygmhes are proposed for linear MIMO
systems with actuator additive faults, multiplicativelfaand unmatched uncertainties. For time-varying
multiplicative and additive faults, new adaptive laws auddiive compensation functions are proposed.
A set of conditions is developed such that the unmatchedrtaindes are compensated by actuators in
control. On the other hand, for unmatched uncertaintiel Whigir projection in unmatched space being
not zero, based on a (vector) relative degree conditioritisedunctions are designed to compensate for
the uncertainties from output channels in presence of tmtieults. The developed fault-tolerant control
schemes are applied to two aircraft systems to demonshatefticiency of the proposed approaches.

Index Terms

Fault-tolerant control, adaptive and robust control, lo§sffectiveness faults, stuck faults, un-
matched uncertainties.

. INTRODUCTION

Modern control systems have become more complex in order det rthe increasing re-
quirements of system performances. Control engineers aredfwith increasingly complex
systems, for which both reliability and safety are very imaot. However, system faults, such
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as actuator faults, sensor faults, structural damages andrtainties may induce drastically
changes of system dynamics, and result in undesirablerpsaface degradation, even instability.
To overcome such a weakness, robust fault-tolerant cen(FaICs) for uncertain systems have
been developed to tolerate component malfunctions whilentanaing desirable stability and
system performances. This is particularly important fdetsaand actuate critical systems, such
as aircrafts, spacecrafts, nuclear power plants, cherplaaks processing hazardous materials
and high-speed railways.

It should be pointed out that some robust control methodsbeampplied to FTC design.
However, FTC is different from robust control. Generallyeaking, FTC can be separated
into two types: AFTC (active FTC) and PFTC (passive FTC) [d]PFTC systems, controller
structures are fixed and designed to be against presumesl fablch need neither fault diagnosis
schemes nor reconfiguration controllers [1]. Thereforel ®Ean also be considered as a special
robust control. This paper focuses on FTC by design adaptoteator faults compensation
schemes, taking into account types and features of acttailts, which belongs to PFTC.

Unmatched uncertainties are inevitable in practical @mndystems, and have being widely
studied in recent years. Typically, adaptive and robusttrotiars are powerful to stabilize
uncertain systems, and several design procedures fornsysseth matched and unmatched
uncertainties have been proposed in [2], [3], [4], [5], [B1], [8]. These uncertain systems
may experience faults which may further result in perforogadegradation. FTCs for systems
with uncertainties not only eliminate the effect of faultgt@ators, but also reject the effect of
uncertainties on the systems, which are full of challendé®refore, it is significant to study
FTC for systems with uncertainties, especially, unmatchedertainties. Last decades, great
achievement has been made in this area, and most of themgbieldhe following categories:
adaptive control [9], [10], [11], [12], multiple-model ctol [13], integrated diagnosis and control
[14], [15], [16], [17], sliding mode variable structure dool [18], [19], and robust., control
[20], [21].

In much existing literature for uncertain systems with &gddiand multiplicative faults, the
FTCs are designed using compensation method through tegcitirsg actuators in control [15],
[16], [22], [23], [24]. The key technologies are to developnditions under which the left
actuators in control can tolerate faults and compensateroratched uncertainties, moreover,
to construct corresponding control functions. An on-linaltiplicative fault estimation module
is provided in [9], and a FTC structure is proposed such thatdptimal robustness tg,
disturbances is still maintained in presence of faults.elienence [21], a reliable control system
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is designed based on new proposed adaptive performance index. An actuator redundancy
condition is derived in [24], and a direct adaptive conteal|aiming at compensating for actuator
faults, is proposed. Nevertheless, [9], [21] do not consilde worst case when stuck faults occur
on some actuators, [24] requires that stuck faults can banpeterized linearly, and all of the
above three papers do not consider time-varying multipliedaults and system uncertainties.
The FTC design for systems with matched uncertainties diestun [10], and for systems with
only specific unmatched uncertainties is considered in, [&A@fh of which motivate FTC design
for systems with more general uncertainties.

In this paper, firstly, built on the work in [24], an adaptivedarobust FTC is proposed for
faulty systems with uncertainties satisfying a set of cbads, such that the closed-loop systems
are asymptotically stable. Secondly, for MIMO faulty systewith uncertainties projection in
unmatched space being not zero, a (vector) relative degmediton is developed. Then a novel
adaptive robust FTC design approach is proposed, whichagtees that all the signals in the
closed-loop system are bounded, and that the outputs gorto asymptotically. The main
contribution of this paper is summarized as follows. A new a&esufficient FTC conditions
for systems with unmatched uncertainties are developed. #ovel adaptive robust FTC for
systems with time varying multiplicative faults, stuck fguand unmatched uncertainties are
designed.

The remaining parts of this paper are organized as followsSéction I, the system is
formulated, and assumptions are presented. In Sectioradiptive robust FTC is designed
for systems with “equivalent matched” uncertainties angattly unmatched” uncertainties,
respectively. Simulation results are shown to verify tHeaiveness of the designed controllers
in Section V. Finally, comments are presented to conclinie paper in Section V.

II. PROBLEMS FORMULATION AND ASSUMPTIONS
A. System Description
Consider a class of linear systems described by
& = Az + Bu, z (to) = o,
(1)

y=Cr
wherex € R" is state vectoru € R™ is control input vectory € RP is output vector,
AeR™", BeR™™ andC € RP*™ are known system matrices.
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B. Fault Model

Actuator faults considered in this paper include outagéisaioss of effectiveness faults and
stuck faults. A unified model of actuator faults is given by

f
uy = p; (t)u; + o (t),
(2
pl(t)al 207 1= ]-7 , M

wherep;, i = 1,--- ;m; are unknown time-varying efficiency factors satisfy'@gg pi (1) < p;
with p. and p; being upper bound and lower bound @f(t), respectivelys;,i = 1,--- ,m; are
unknown scalarsy; (t) ,i = 1,--- ,m; represent un-parameterizable time-varying actuatokstuc
fault values.

Note that, there is no fault on the actuat@rwhengi =p, = 1l ando; = 0. Whenp; = p,=0
ando; = 1, a stuck fault occurs on the actuater The case op; = p,=0 ando; = 0 means
that the actuator; is outage. Wher) < p, <P <1, it corresponds to the case that a loss of
effectiveness fault occurs on the actuatgr Table | is given to illustrate the fault modes.

TABLE |
FAULT MODEL

P, P | o fault mode

1 1 0 normal

0 0 1 stuck
>0 | <1 | 0 | loss of effectiveness

0 0 0 outage

Then (2) can be written in a compact form
T
uf:[u{,...,ugn] = A(t)u+ XY (t) with A(H) S =0 3)

where(t) = col(wy(t), ¥a(t), - -+, m, (1)),
A (t) = diag{m (t) ) P2 (t) T Pmy (t)}> pi(t) S [ﬁzaﬁl] =1, my,

0, if a stuck fault or outage fault occurs on the actuator w;,
o; =
1, otherwise, 1 =1,---,mq,

and ¥ = diag{o1,09, + ,0m, }-
Define the following sets

Ap(t) = {A(t) |A(t) = diag{p1 (£) , p2(t) .-+, pmy (D)}, pi (1) € [ﬁi,&} }7
Ay ={X|X = diag {01,009, -+ ,0m,}, 0, =0or 1}.
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Then a fault mode set is described by
A={(A@1), D)A)T =0, A(t) € Drp, S € As}. 4)

Remark 1. There are different ways to deal with actuator loss ofatifeness faults and stuck
faults. The fault model compact form (3) includes normasslof effectiveness faults and stuck
faults (outage fault is a special stuck fault). In this paplee inputs of the loss of effectiveness
actuators can be adjusted adaptively to keep the outputsitif factuators unchanged. However,
the output signals of the stuck actuators are considerexteshal disturbances, and compensated
by the partial operational actuators through designedti@ddunctions. In addition, all the fault
modes considered in this paper belong to the/seagiven in (4). \Y

C. Assumptions

To achieve FTC objective, some assumptions for system (@ )faut model (3) are needed.
Assumption 1. The pair(A, B) is stabilizable.

Assumption 2. For all considered fault moddsa\ (¢),Y) € A in (4), the following equation
holds
rank(BA (t)) = rank(B). (5)

Remark 2. Assumption 1 is a basic assumption for linear systems, Asglimption 2 is a
sufficient FTC condition about actuator redundancy [103][2 \Y

Based on Assumptions 1 and 2, the following results are réadhe presented.

Lemma 1. [23] The rank relation (5) is a necessary and sufficienditan for the existence
of a function K»(t) such thatBA (t) Kx(t) = —BX)(t).

Proposition 1. The matrix rank relation (5) holds if and only if there é@gis matrix K*(t) €
RM*m gatisfying
BA (t) K*(t) = B. (6)

Proof: (Necessaryfrom basic matrix theoryank(BA (t)) < rank(B). If rank(BA (1)) <
rank(B), there exists at least one column®fwhich cannot be expressed as a linear combination
of the columns ofBA (¢). This implies that there exists no suclik@(t) satisfying (6). Therefore,
the equation (5) is necessary for (6).

September 29, 2016 DRAFT



(Sufficiency)Note that

rank(BA (t)) < rank([BA (t), BI)), (7)
rank([BA (t) , BI]) = rank(B[A (1), I]) (8)
always hold. From the fact thatink(B[A (¢),I]) < min{rank(B),rank([A(¢),I])} and e-

quation (5), it follows thatrank(B) = rank(BA (t)) < min{rank(B),rank(A (t))}. Then,
rank([A (), I]) > rank(A (¢)) > rank(B). It can be concluded that

rank(BA (t)) < rank([BA (t), B]) < rank(B). 9)

Sincerank(BA (t)) = rank(B), rank(BA (t)) = rank([BA (t), B]). Hence there exist&*(¢)
satisfying equation (6).
Thus, the result follows. [ |

Remark 3. Proposition 1 can be satisfied for the case when actuatck &ults occur. A simple
example is shown as follows. Let

000 000

This implies that the first and second actuators are headiiny,an actuator stuck fault occurs
on the third actuator. It is clear to see that the maiix) is not regular, and rank condition (5)
is satisfied. Further, there exists a matiiX, given by

000

satisfying (6). This example shows that the mathig) is not required to be regular in this
paper. \

Under Assumption 1, for any given symmetric positive de@rfBPD) matrix) € R"*", there
exist a solutionk € R™*™ and SPD matrixP € R™*" such that

P(A+ BK)+ (A+ BK)"P = -Q. (10)
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From Proposition 1, for any\ (¢) satisfies Assumption 2, there exist a solutiéi (t) =
K*(t)K € R™*™ anda common SPD matrixP € R™*" given in (10) such that

P(A+BA () Ka () + (A+ BA(t) Ky ()P = Q. (11)

Assumption 3. The un-parameterized time-varying stuck fault veatdt) is assumed to be
bounded by an unknown constapti.e., || (t)| < .

Remark 4. In [24], the time-varying stuck fault is parameterizedl axan be compensated by
additive input control signals directly. For un-paramizied time-varying stuck faults considered
in this paper, same control objective as in [24] can be aelidwy using the bounds of stuck
fault values. \Y

Suppose that actuator stuck fault happens at time ingtawith ¢, < ¢, fork=1,2,..., N.
As in [22], the fault mode A(t), ¥) is fixed in (tx, tx+1), k=1,2,..., N, i.e., the elements of
A(t) in (t, txy1) are always zero or not zero, andis fixed.

Assumption 4. In the interval(tx, tx.1), the efficiency factorg;(t),i = 1,--- ,m; are unknown
continuous time-varying functions and their time derivas satisfy

|pz(t)‘ < 190<t)pi<t)7 L= 17 T,y (12)

whered,(t) satisfies that
0 < lim Ltolgo(T)dTg’l?O < 0.

t—o00

Remark 5. The efficiency factorg;(t),i = 1,---,m; satisfying (12) can be used to model
many time-varying multiplicative faults, for example, ftire fault considered in [25],

1, if t < ty,
p(t) =
e t=t) i ¢, <t <t

where the constant scalar > 0 denotes the fault evolution rate @f Similar to [25], the
efficiency factorsp;, i = 1,--- ,m; can be described by

( ) 1, if t < tg,
pi(t) = o (t—
e(ﬁi/aie i(t tk)_“i) — 17 if T <t <tpyr

whereq; and §; determine the evolution rate of the efficiency factpysanda; is used to adjust
the value ofp; such thatp;(t,) = 1. Then

( ) 0, if t < ty,
pi () = e
_Breaaltmtighifase ) —as app <p e = 1
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Therefore, thely(t) satisfying (12) can be chosen as

o (t) = 252 geer
p
wherep = ma ax. {pz} p= mm {pz} anda mn {ozz} \%

=1, = =l ,ma, =1,

lIl. ADAPTIVE ROBUST FTC DESIGN FORMIMO SYSTEMS
A. With “Equivalent Matched” Uncertainties

Consider the following uncertain faulty system
Tt =Ax+ f(z,w(t),t) + BA(t)u+ BX¢ (t), x(ty) = xo (13)

wherew(t) € R represents disturbance, and the unknown nonlinear vg¢tpr R* x R xR+ —
R™ represents system lump uncertainty.

Remark 6. In system (13), the unknown nonlinear veciofz,w(t),t) represents the lumped
uncertainty, which is a generalized concept, possiblyuiticig disturbances, un-modelled dy-
namics, parameter variations, and complex nonlinear dysam \Y%

The following assumption foyf (z,w(t),t) is given.
Assumption 5. The uncertainty vectof (z,w(t),t) satisfies that
l2" Pf (z,0(t),) || < oz, t)l|la" PB| (14)

wherea(x, t) is a known continuous and locally bounded function forzaf R™ andt € RY,
and the SPD matri¥’ satisfies equation (11).

Remark 7. For matrixB in system (13), there exist matric&sandW such tha{ B, B]col(W;, Ws) =

Lixn. Thenitfollows thal|z” Pf (-)|| = |[«" PBWif (-) + 2" PBW f()|| < ||a" PB|| Wi f (-)||l+
|z PBW, f (-)||. Assumption 5 implies tha% is bounded wherz” PB|| # 0, and
[+ powasoo]

that | Thm” TR is bounded. For matched uncertaintie$,PBW,f (-) = 0, which

zt PB|—0
implies that Assumption 5 holds automatically. In fact, @nainties satisfying Assumption 5 are
called “equivalent matched” uncertainties, which inclue matched uncertainties considered

in [3] and [10], and partial of unmatched uncertainties ihd4 special cases. \Y

Remark 8. The functiona(z,t) is kind of bound on the uncertainty vectgtz, w(t),t). It is
not a design parameter ,and thus it is not chosen by us. Foedcifispreal systemg(x,t)
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may be obtained from the characteristics of the real systarhastorical statistical information.
In addition, from reference [15], if the nonlinear vectffz,w(t),t) is Lipschitz (including
AAz), then there exists a known nonlinear functiafiz,t) such that||2” P f (z,w(t),t)|| <
a(x,t) HxTPBH. \Y

The objective is to design a class of adaptive robust staebfeck FTC for system (13) to
guarantee that all the signals in the closed-loop systenbaunaded, and the states go to zero
asymptotically. Then the following controller is constret

U=Uf+ U, (15)

whereu, is an auxiliary control function to compensate for uncertias, andu; is the fault
compensation function, described by

Uf:KA$+K2<t) (16)

where K, € R"™*" is the estimation of, (t) € R™*" defined in (11) ands,(t) is also an
auxiliary control function to compensate for actuator ktésults.

Remark 9. It should be noted the FTC structurein (15) is fixed. However, the parametat,
and other parameters iy and K,(t) are to be estimated by adaptive technique later. V

The adaptive law ofy, is given by

Ky = —T((z2" PB)T + €9y (1) K}) (17)

wherel' =T'7 > ( is a constant matrix, anel> 6 is a constant scalar.
Before constructing auxiliary control functiois, (¢) andu,, the following lemmas are needed.

Lemma 2. [11] If the fault mode considered\ (t), X) € A in (4) satisfies Assumption 2,
there exists a positive constamt> 0 such that

#TPBA (t) BT Pa(t) > pu||«"PB||” (18)
where the SPD matri® is defined in (10).

Lemma 3. [26] For any square matrices andY with appropriate dimensions, the following
inequality
XY +YTX <aX'X +a 'YTY (19)

holds, wherex is a positive scalar.
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10

Lemma 4. Denotek = K + K with K, K, K having appropriate dimensions. Then
tr(K'TK) — tr(K'TK) < 2tr(K'TK) (20)
holds, wherel' = I'"" > 0 is a constant matrix.

Proof: For anya > 0,
tr(K'TK) — tr(K'TK)
= (14 a)tr(K'TK) — (1 — a )tr(K'TK) — atr(K'TK) — o 'tr(K'TK),
< (14+a)tr(K'TK) — (1 — a ™ Ytr(K'TK) + 2tr(K'TK). (21)

Let o = 1. Then it follows from (21) thatr(K'TK) — tr(K'TK) < 2tr(K'TK). u
Based on Assumption 3, there exists a positive congtastich that| Xy (1) < ||Z]|¢ < pks,
where . is positive unknown scalar defined in (18). Based on Asswmph, there exists a
positive constant, such that|z" Pf (z,w () ,1)|| < pksa (z,1) |27 PB|| wherek, = . Here,
it is worth pointing out that since the fault parametafs), > and¢> are unknown, the associated
constant parameteys k3 andk, are unknown. Adaptive laws are to be designed to identify the
parameters; and ky.
The auxiliary control functiong<,(¢) andu, are defined by

Ko (t) = — BT P2 22)
? |27 PB]| ks + (1)

BT Pra? 7.2
v — — T (x,At) k3 (23)
| PB|| o (z,t) ks + U (1)

where the SPD matri® € R™*" is given in (10), and)(¢) is any positive uniformly continuous

and bounded function, satisfying that
t

0<lim [ 9(7)dr <9 < 0. (24)

t—o00 to

The estimationg:; and &, are updated by
7%3 =N HJUTPBH - ’7119(75)]%37 (25)
ks = o || PB|| o (z,t) — 720 (t) (26)

where~; and~, are positive scalars.
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11

Let Ky = Ky — Ky (t), ks = ks — ks andky = k4 — k4. Then the error dynamics of (17),
(25) and (26) are described by
Ky=-T ((mT(t)PB)T 4 edo(t) K + edo (1)K n (t)) ,
ks = gt Hl’TPBH - 7179(’5)]%3 — 19(t)ks, (27)
ks =72 |27 PB| o (2,t) — 300 () ks — 729 (t) Ka.
Therefore, the closed-loop system by applying control (ib)ystem (13) is obtained and
described by

() = (A + BA(t)kA) + BA (t)u, + BA (t) Ko(t) + BSG() + f(z,w(t),t)  (28)
where the unknown nonlinear vect@f-) : R" x R x RT™ — R" is system lump uncertainty.

Remark 10. Both the error dynamics (27) and the closed-loop sys@8h &re continuous in
any time intervals(t,, t;41). The existence of the solution to differential equation)(2nd
(28) in the usual sense can be guaranteed. Therefore, thwlbem(15) with the continuous
auxiliary control functions (22), (23) and the continuowsaptive laws (17), (25), (26) can be
easily implemented in practical problems. \Y%

Remark 11. The proposed—modification adaptive laws (17), (25) and (26), like in [8]dan
[27], are capable of avoiding high gain effectively. Moregvfrom auxiliary control functions
(22) and (23), it is straight forward to see tHet, (t)|| < ks and|ju, ()| < o (z,t) ky.  V

Denote<x, ka, ks, 154> as the solution of the closed-loop system (28) and the egoamiics
(27). Then the following theorem is ready to present.

Theorem 1. For the error dynamics (27) and the closed-loop system (28pposing that
Assumptions 1-5 are satisfied, then the solut(ar; ky, ks, l%4> to the error dynamics (27)
and the closed-loop system (28) is bounded. Furthermore,

lim x (t; to, xo) = 0. (29)

t—o00

Proof: For the error dynamics (27) and the closed-loop system @8&)yapunov function
candidate is chosen as

V(x, VAky, k3, k) = 2" P+ tr(A (8) KT k) + iy kS + g kS (30)
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12

Then the time derivativé’(-) in each time intervalt{, t..,) along the trajectories of (27) and
(28) is given by
AVi(x, VAK, ks, ky)
dt
— T <(A + BA (t) Ko(t)) P+ P(A + BA (t) KA(t))T> -

+ 25T PBA (1) Kz + 2r(A (8) KIT VK y) — 26r(A (£) KTT VKA (1))
+tr(A(t) KITTLK,) — 39(t)tr(A (t) KL (T KA (1)) 4 300 (t)tr(A (1) KE(OT LKA (1))
+ 22T PBA () K () + 20T PBEY (£) + 24797 ks
+ 22T PBA (t) g + 207 Pf (2, (1), 1) + 2075 Yeaks (31)
where
2T PBA() Koz + 2tr(A() KT 1K y)
—2tr(A)KET VKA (1) — 2tr(A() KIT 1K)
+ 3tr(A() KT 1K) — 390 () tr(A() KL (T LKA (1))
+ 39 ()tr (A KL ()T K (1))
—22T PBA(t) Kpx + 2tr(A) KIT 1K y)
+2tr(A)KIT 1K A (1) — 2tr(A) KIT1K,)
+3tr(A) KT 1K) — 300(t)tr(A() KL () KA (1))
+ 390 (1) tr (A(H) KX ()T 1K, (1)). (32)
From Lemma 4, the two terms in Eq. (32) can be enlarge into that
3tr(A)KIT 1Ky — 300 (t)tr(A(t) KL ()DL K\ (1))
< 390 () tr(A)KIT 1K L) — 39 () tr(A(H) KL ()T K, (1))
< 600 ()tr(A()KIT 1K), (33)
Suppose thap;(t) >0, i =1,--- ,my. Then

. 5 5 mi n 5 » 2
tr (A ) KT ) =30 S0 Ragan ! = || R win (1) (34)
i=1 j=1

where K} = [Ku], pi #0,i=1,---my, and g is the minimum value of;. From Assumption
3, there exists a positive scalarsuch thatp > piJy(t). Then it follows from (34) that

tr <A (t) f(glﬂflf(A) > HIN(/'\HQ min (T; 1) pdo(2). (35)
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13

Differentiating (11) on both sides, it follows th&(A () K (t)+A (t) Ky (t)) = 0, A(t) K (t) =
“A(t) Ka (t). Then, —2tr (A () KTT 'K, (t)) — 2tr (A (t) KTT 'K, (t)). Using Schwarz
inequality, it has that

o (A KX Ka ()| < | A () KE Ky )| max (1;7)

<[

[ 5a ()] max (T7') || (36)
wherep is the maximum value of;. Since there exists a positive scafesuch thatp| < 9, (¢) p,
it can be obtained from (35) and (36) that
tr (A (t) KIT1 K, (t)) —tr (A (1) K’{rflfq)
~ 2 ~
< 0 (t) | 3| min (01) p o+ 00 0| Bx | 158 Dl max (071 7 @)

[ KA (®)]|” max(T;")
4min(T; " )p

<o (t) 2 = ¥ (t) 6o

2 1y -
whered, = 'KAiZ"inr(Ilfl()F; L

Then substituting (33), (37) and adaptive law in (17) int@)(3t follows that whene > 6,

2" PBA() Kaz + 20 (AW KTT K y) — 26r(A(t) KTT VK A (1))

—2r(A) KT 'Ky) + 3tr(A(t) KIT 1K) @)
=300 () tr(A() KL ()T KA () + 300 (t)tr(A(t) K3 ()T KA())

< Jo(t)(200 + 301)
whered; = tr(A(t) KL ()T 1K A(t)).
For other cases that(t) < 0,i=1,---,my andp;(t) > 0,p;(t) <0, i # j, 4,5 =1,--- ,my,
the results are similar to (38) and omitted here.
Substituting auxiliary functioni,(¢) in (22) and the adaptive lais in (25) into (31),

20T PBA(E) K (t) + 201 || PB]| ks + 27 " kshs
21 H:ETPBHzl%:?
|«TPB]| ks + 0 (1)
_ 2u |zT PB]| ked (1)
 |aTPB| ks + 9 (1)

+ 24 H:ETPBH ks + 2”’71_11%3];’3

— ) () g (1%3 + kg). (39)
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Substituting auxiliary function:, in (23) and the adaptive law;, in (26) into (31),

22T PBA (t) uy 4+ 227 Pf (2, w(t),t) + 2u7§11~€4l;€4

- 2/ HxTPBHzon (2,1) k2
|xT PB|| a (z,t) kg + 0 (t)
 2u||2"PB|| o (x,t) ke (t)
| PB|| o (z,t) kg + U (t)
Notice the fact that for any positive constant> 0, 0 < -2 < a, Va, b > 0 and that

a+b
g (1%3 + kg) <1k2, —k (12:4+k;4) < 112, it follows from (39) and (40) that

+2||z" PB|| o (@, t) puky + 2#’72_112‘4;{?4

— 1 (1) ey (1%4 n m). (40)

~ 2 1
207 PBA(t) Ky (t) + 207 PBYa)(t) + 2uyy tksks < pdd (t) (1 + Zkg), (41)
~ 2 1
20T PBA(t)uy (t) + 20" Pf(z,w(t), t) + 2uryg haky < pd (t) (1 + Zki). (42)

Thus, from (38), (41) and (42), it can be concluded that for @a (tx, tri1),
AVi(z, VAKy, ks, k)
dt
where,,;,,(Q) represents the minimum eigenvalue®@f 6, = (2 + k3 + 1£3).
Let 7 = <x, VAK,, ks, 124>. Then there exists a cla$s,, function;(-) such that

— Amin Q2] + (28 + 35)9o(t) + 820(1) (43)

0 <n(lzll) < V(). (44)
Thus for anyt € (tg, tri1),

0 <u(IFl) < VE0) V@) + [ (i @ )i

tk

tht1 Tht1
+ /tk (260+361) Vo () dT + /tk 90 (1) dT. (45)
Note that for anyt > t,, it has that
t s[tup ) (/t (00+301) Vo (T) dT + /t 920 (1) dT) < (200+381) Yo + 920, (46)
€lto,00 to to
Consequently,

0<y(z@®)]) <V(E(tk)) + (200+301) Jo + 520, 47)

\/K[A(AH €

Loo ks € Loo, ky € Lo in each time intervalt(, t,.1). Note that the Lyapunov functiol (-)

which implies that if the initial valué/(t)) is finite, z € L., thenz € L,

is not continuous and has a jump with a finite value, at eacke timatantt,. If V (¢y) is finite,
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thenV () € L, Vt > 0 with several jumps of finite values. Consequenilys L., = € L.,
H\/KKAH € Loo ks € Loo, ky € Log Tor all ¢t > 0.
Consider the Lyapunov candidate function

1 A A
Vi = 5(1 — MKIT 'Ky,

It can be proved that there is a constant 0 such thatl;_, < 0 for HmKAH > k, which

implies HmKAH € L... Since it has proved th:ﬂt\/ﬂf(,\” € Loo, |Ka (t)]] € Los.
Therefore, it can be concluded thaf, (t)z € Lo, Ko(t) € Log, Uy € Loy 4 € Lo,

i(t) € Lo andzx is uniformly continuous. When approaches infinity on both sides of (45), it

follows that
t

m [ A (Q) ||z(7)||Pdr

t—o00 to

< V(i(to)) + lim ( /t t (260+30,) Yo (7) dr + / i (7) dT)

to

< V(#(to)) + (200+381) Yo + S0 (48)

Applying Barbalat lemma [8] to (48) yieldgirgO Amin (Q) ||lz(2)||* = 0, which implies that (29)
is satisfied.
Hence, the result follows. [ |
This section is studied under Assumption 5, which includegchred and part of unmatched
uncertainties. In the next section, the rest part of unnemtalncertainties, and a new control
objective will be considered.

B. With “Exactly Unmatched” Uncertainties
Consider the following uncertain faulty system

i=Ax+ Df (z,w(t),t) + Bul, x(ty) = o,
(49)
y=_Cx
where matricesi, B andC' are the same as system (1). The fault madeis described by (3),
and considered fault modge\(t),¥) € A satisfies Assumption 2. The unknown nonlinear term
Df (z,w(t),t) represents lumped uncertainties withe R™*™2. Without loss of generality, the
matrix D is assumed to be full column rank adeh(D) ¢ Im(B), i.e., Df(-) is unmatched.

The following lemmas are introduced to projdey (-) into matched space and unmatched space.
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Lemma 5. For any matrixS € R**" with rankr > 0, there exists a decomposition
S=QR (50)
where@ € R™" with QTQ = I,, and R € R"™" with R being full row rank, i.e.,RR” > 0.

Proof: The matrixS can be decomposed &s= F'G whereF' € R is full column rank,
andG € RI*™ is full row rank. ThenF' can be decomposed &= ()R, where R, is full rank
nonsingular matrix, and) € R™*", QTQ = I,. Therefore,S = QR,G = QR whereR = R,G
being full row rank, i.e.,RR" > 0. [

Lemma 6. [7] For any matrix@Q € R™*™ with rank (Q) = m, the identity matrix
I, =QQ" +Q Q™
holds, whereQ* represents the left inverse ¢f, that isQ* = (QTQ)_lQT, and the columns

of Q+ € R™ (=™ span the null space @’

Based on Lemma 5, the matriX can be decomposed &= Qs Rp With rank(Q5) =rank B)
and Ry being full row rank. Based on Lemma 6, the identity matfix= QpQ3} + Q3Q35".
Now we can projectDf(-) into the matched and unmatched spadeg,-) = fn(-) + fu(-),
Fu() 2 QpQEDS() and fu(+) £ QLQLTDF(-), where f,,(-) and f,(-) are matched and
unmatched uncertainties, respectively(-) is called “exactly unmatched” uncertainties. Similar
discussion is available in [28].

Assumption 6. The uncertainty vectof (z,w(t),t) satisfies

IS (z,w(t),) || < B(x,1) (51)
where 3(z, t) is known continuous and locally bounded functionzie R™ andt € R*.
Remark 12. Assumption 5 implies that the unmatched compongiit) goes to zero when

|zT PB|| goes to zero. However, there is no such requirement in Assamg. Therefore, the
limitation in Assumption 6 is more relaxed than that in Asgdion 5. \Y

The FTC objective for system (49) is to tolerate the actuédatts and compensate for the
uncertaintiesD f (-) from output channels such that the outputs go to zero asyioaly and
all the signals in the closed-loop system are bounded.
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Remark 13. One of the most important problems in linear multivaeatontrol theory is to
control a fixed plant such that its outputs track referengaas and reject disturbance produced
by an external generator (the exosystem) [29]. In engingegpractice, it is interesting to keep
the outputs as zero in the absence of subsequent distughyamckecontrol the outputs to respond
in a desired way, such as in aircraft system [30] and elaoi@gnetic suspension system [§].

Definiton 1. [31] The MIMO linear time-invariant systems (1) are saidhawve a (vector) relative
degree{v,, 1, - ,1,} at equilibrium point if

o C;ANB =015y, forall 0 <k; <vy;—1, 1<i<p;
ClAul_lB

o K= ; has rank equal to the number of its rows (i.e. to the numberugbud
channe ép)?y\ivir:eBrei, i=1,---,p are the rows of matrixC.
Remark 14. By Definition 1, for all0 < k; < v; — 1, the row vectorc; A* B is zero, and for
k; = v; — 1, it is nonzero (i.e. has at least a nonzero element) sincentitex Kz is full row
rank. In view of condition;; A* B = O1xm,, forall 0 <k; <y, —1, 1 <1 < p, we see that for
each output channel, there is at least one input chanrielsuch thatc; A¥~1b; # 0, i.e. the
triple (A, b;, ¢;) has exactly relative degreg, while for any othem;, the corresponding relative

degree is necessarily higher than or equad;to

Assumption 7. Suppose that the triplési, B, C') and (A, D, C') have (vector) relative degrees
{v1,19,- -1, } and{vy, vq, - - - v, }, respectively. It is assumed that< v;, i =1,--- ,p.

Remark 15. The reference [31] uses the pole placement method tgrdesibust controller, and
removes disturbances from output channels in the steatyylstiged on Assumption 7. However,
this issue becomes more complex when actuators faults asedeved \Y

Denoting that thek;th order time derivative ofy; (t) ,i =1,2,--- ,p as yko (t), we have

’ CZAkZl'(t), k:l-:O,l,---,uZ-—l,
(1) =
ciAFix (t) + ;AR TIBuS + G ARTIDf (z,w(t),t), ki = v

Consider the differential equation

yfw’) (t) = c;AYz (t) + ;A By + ¢, A D (z,w(t), t). (52)
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For the case that =14 + 15 + - - - + 1, is strictly less tham, setting

Cf Yi ciT

; Cé Yi [ c;Ax ]
.: u'.—l . '.,1
Coy—1 Y;' AV

and¢ = col(¢t, ¢?,---(P), then there exists a vectgr= col(n;, 72, - - - 7u_) SUch that system
(49) can be transformed into a normal form in new coordinatescol((, n) = Tx with T" being
invertible, described by

("= Ail' + Fax + Bau! + Deif (z,0(t),1), (53)
n=RC+Qn+ D, f(z,w(t), 1), (54)

wherez = T 12,
01, _
Ag = [o “ 1)] Bei = [ ani-1p] Foo = [ o ] and Do = [ ai-1p ]
It can be seen that subsystems (53)- (55) are controlled &yinput / and uncertainties
f(z,w(t),t). From [29] and [32], the state vectgris completely unobservable, and the sub-

system
i = Qn+Dyf (T7[0,77]" w(t).t) (56)

is the zero dynamics.

Assumption 8. The triple(A, B, C) is minimum phase.

Remark 16. From [32], under Assumption &) is a Hurwize matrix. Therefore, based on
Assumption 6, state vectorin (56) is bounded. \Y
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Denote¢ = S¢ where S is described by

- L -
-[Vg—l
Iyp—l
S =
1
— 1 -
Then system (53) can be written as
€ = Ack + Few + BeA () u+ BeS (1) + Def (x,0(1). 1) (57)
wherez = T 1col(S71¢, ),
Ow,-1x1  Tvj—-1
0 O1% (g —1) 0 0 0
AgIS . Sil, Bgz ,ng ]andDgzl ]
' 0 0
O(l/p—l)Xl Ifol Kp Kp Kp
0 O1x(vp-1)
c1AY1 B c1 AY1 C1AU1_1D
with Kp = : , Kp=1 : and Kp = , . The fault modeA (t), ) € A
cpAVP B cpAvP cpAYP=1D

satisfies Assumption 2.

It is easy to see that all the eigenvaluesdpfare zero andank (—Ag, Be) is v+ 15+ - -+ 1,
which means that the system (57) is controllable based o®Bt¢ stability criterion. Thus for
any give SPD matrixP, there is a unique SPD matriX such that

Pe(A¢ + BeK) + (A + BeK) ' P = — 0. (58)

Under Assumption 2 and based on Proposition 1, there exigtseavarying matrix function
K*(t) € R™>™ such thatBA (t) K*(t) = B. Then for the given SPD matrig in (58), there
exist K (t) = K*(t)K and a common SPD matrik: in (58) such that

Pe(Ag + BeA (t) Ka(t)) 4 (A + BeA (1) K (1) Pe = —9. (59)

Also, from that BA (t) K*(t) = B, c;A¥BA (t) K*(t) = ¢;A*B = O1xp,, for all 0 < k; <
vi—1,1<i<p,andKgA (t) K*(t) = Kp, which means that the (vector) relative degree of the
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triple (A, B, C) is equal to the (vector) relative degree of the triple BA (t) K*(t), C) for all
(A(t), X) € A satisfying Assumption 2. Therefore, after actuator fagéiisfying Assumption
2 occur, Assumption 7 is also satisfied.

Moreover, the fact that the rows df'z are linearly independent implies that there exists
a matrix K3, such that/ — KgKj} = 0. Then, for K*(t) satisfying thatBA (¢) K*(t) = B,
I—KgA (t) K*(t) K} = 0. From Assumption 2 thatank(BA (t)) = rank(B), rank(KgA (t))
rank(Kp). then it follows from Lemma 2 that there existsig(t) such thatKgA (t) K»(t)
—Kp¥u(t).

Based on the above hypothesis and analysis, under Assumnhtithe undesirable terms in
(57), Fex, BeXap(t) and De f(z,w(t),t) can be compensated after a fault mddét),>) € A
satisfying Assumption 2 occur. The FTC structure is given by

u =y + K&+ Ko (t) +u, (60)
where K, is the estimation of<, (¢). The auxiliary controller; is given by

where K* is the estimation of*(¢).

Under Assumption 4, there exist positive scalarand k3 such that||>X¢(t)|| < pks. Since
Im (D) C Im(B), there exists a positive scaldy such that||”PeDef (z,w (t),1)]| <
pkaf3 (z,t) |7 PeBe||. Note that the parametes ks and ks are unknown. The two auxiliary
control functionsK,(¢) andu, are given by

BT P:£k?2
Kaft) = o
€7 PeBe || ks + 9 (t) (62)
W BIPEKE @)
167 PeBel| ka3 (1) + 0 (1)
wherek; andk, are the estimations of; and k, respectively, and)(t) satisfies (24).
The parameters(,, K*, k; andk, are updated by
[A(A = —Fl <(ffTP£B£)T + 61190 (t) RA) y
K* = T, ((KngpxSTPng)T + ety (1) K) ,
ks =m HprngH — 19 (t) ks,
ka = ||€" PeBe| B (2.) — 720 (1) ks (63)
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wherel'; =T7 > 0 andl', = '} > 0 are constant matrices, > 6, e, > 6, v, > 0 and~, > 0
are constant scalars. The mat#iX is the solution of (59).
Let Ky = Ky — Kx(t), K* = K* — K*(t), ks = ks — ks, ky = k4 — k4. Then the error
dynamics are described by
Ky=-T ((fprng)T + e (t) Ka(t) + €1V (1) KA) ;
K* = _FQ ((KEKFIfTPng)T + 62’[90 (t) K*(t) + 62190 (t) K*) s
ks =m |7 PeBe| — 9 (t) ks — 119 (t) ks,
ka =7 [[€7 PeBe|| B (2,1) — 720 (1) by — 729 (t) K. (64)
the closed-loop system is described by
£ = A& + BeA(t) (u1 + K\ + Ky (1) + uu) + Fex + B3 (1) + De f (z,w(t),t),  (65)
and the subsystem (54) is described by

= RS+ Qn+ D,f (T‘1 [0,77]", w(t), t) . (66)

Remark 17. From (62) and (63), it can be seen that the auxiliary fonetK(t), u, are
continuous, and adaptive laws,, K*, k; andk, are also continuous. Moreovéik, (t)|| < ks
and ||u, (t)|| < 8 (x,t) k4. \Y%

The following theorem is ready to present.

Theorem 2. For the error dynamics (64), the closed-loop system (65) dredsubsystem (66),
supposing that Assumptions 1-4 and Assumptions 6-8 adisdtithen, the solutiofg, Ky, K*,
ks, 124) to the error dynamics (64) and the closed-loop system (6®pisnded, and the state
vectorx in (49) is bounded. Furthermore,

lim y (¢; to, z9) = 0. (67)
t—o0

Proof: For the error dynamics (64) and the closed-loop system @%)apunov function
candidate is chosen as

\% (f, [N(A, f(*, ]~€3, ]~€4> = prgf—i-t'f’ (A (t) Kfrflk/\) +tr (A (t) f(*TFQ*l[N(*> +,LL’)/1/~€§+,M’}/2];Z
(68)
Then the time derivative of (-) along the trajectories of (64) and (65) is

V=Vi+Va+Vs+V, (69)
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where
Vi = €7 (PeAg + ATP) €+ 26" PeBeA (D Ka& + 2t (AORITT ) + tr (AKLT Ry )
Va = 26" PeFea + 26 PBeh (D + 27 (ORI ) 4 tr (A KT, R
Vs = 267 PBeS) (1) + 267 PeBe ks (1) + 2 sk,
Vi = 26T PeDe f (w,w(t), ) + 267 P Bey + 2pyokaks.
Substituting the auxiliary control functions (62) and trdaptive laws (63) into (69),
Vi < —£70¢ + 9o (1) (36) + 261),
Va < 0(1)(307 + 267),

: 2 (70)
Vs < pd (1) (1+%),
Vi < pd (t) (1+’%§)
whered, 97, &, andd; are positive scalars. Then, it can be concluded that
V < —€T0¢ + kol (1) + r1? (1) (71)

wherery = 36, + 207 + 36 + 267 andk; = M% + M’Z—Z + 2.

Let £ = (g,f(A,f(, 12:3,124>. It follows from (71) that¢ € L... Then¢ € L, HKAH € Lo,
HKH €L, Hk;;” €L, Hk4H € L. It follows thatz € L., u € Lo, and¢ € Lo, and£(t) is
uniformly continuous. Therefore, using Barbalat Lemntazain be obtained tha;lirgog (t) =0,
andtli)rgloy (t:to, x (o)) = 0.

The proof is completed. [ |

IV. SIMULATION

Two simulation examples will be presented to verify the hessdeveloped in this paper.
Example 1: Consider the nonlinear model of F-16 aircraft] [@@immed conditions are
velocity=400ft/s, altitude=300000ft, cg=@.3 pitch rate=0deg/s, angle of attack=13.1deg, pitch

angle=13.1deg, elevator deflection=0.4deg, throttletjprsi0.5227) given by

&t =Ax+ Bu+ f(z,w(t),t)
wherez = col(a, q,6), u = 6. and

—0.29114 0.96353 O
A= 0.41357 —0.39716 O | ,
0

—0.000602 0.426a2+0.02409+0.16100—0.0862
5 -0 [

—0.034 ] Jf(ryw(t),t) = ~0.41910%+0.9aq :
0 0.0003010240.017ag-+0.00012400-+0.0068¢0
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a Is the angle of attack (degy, is the pitch rate (deg/sec), is the pitch angle and, is the
elevator deflection (deg).

The elevator is assumed to be double-redundant such thatetlhumdancy condition (5) is
satisfied, i.e., fom = [0, d.,], the input matrixB becomes

—0.000603 —0.000603
B=lb,b) = | —0035  —0.035
0 0
Then there exist a vectds = col(0,0,1), matricesW; = [ 21031 ~15 § ] andW> = [0,0, 1] such

that [B, B]COI(Wh Wg) = I3.3.

For the given
0.0092 0.0018 0.0050

Q= | 0.0018 0.0184 0.0070 |,
0.0050 0.0070 0.0109

the solutionP to Lyapunov equation (10) is given by
0.0135 0.0004 0.0011
P =1 0.0004 0.0166 0.0042

0.0011 0.0042 0.0167

From the expression of (z,w(t),t), it follows that

2" PBWaf () _ Awax (P) [[#7 BWaf ()]
I27PBI X (P) [T B
~_Amax (P) 0.000603z1 +0.03525] [0.521 + 0.225|
" V2 in (P) 0.00060321 + 0.035z,|

)\maX P
_ e (P) 10.521 4 0.225] ,

\/éAmin (P

which implies that Assumption 5 is satisfied. Thus,

2" Pf ()] =[la" PBWAS ()| + [[«" PBW:f ()]

<[l«"PB| <|!W1f () + e (P) 1 50 4 O.2x2|) ,

\/i)\min (P )

and«a(z, t) satisfying Assumption 5 can be chosen as

alz,t) = |Wif ()] + 1.21340.52; + 0.2%5]. (72)
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Therefore, the Assumption 5 holds if the uncerté{n) experienced by the aircraft, satisfies (14)
with a(z, t) given in (72). Hereq(x,t) shows the admissible bounds on uncertaifity), which
is calculated for the specific systems from mathematicahtpaii view.

In this example, the considered fault mode is thatloses of effectiveness, and the efficient

factor p, (t) is given by

1, if 0<t<20,
p1 (1) = ™02y g op<y<oy,
0.2586, if 24<t<oo,

andé,, is stuck at sif0.5t) after 24s.
It can be verified that Assumptions 1-5 for Theorem 1 arefeadisThe control parameters are

chosen ag’ = 1071, y; = v, = 5 x 10°, ¥p(t) = 0.2e70020  9(¢) = 5002 The simulation

results are shown in Figs. 1 and 2.

01 T T 01 T T 0.2 T T
—X, of this paper —X, of this paper —X3 of this paper
-==X of reference [10] -==X of reference [10] --=Xy of reference [10]
[ 1 B |
1 i L 4
I el

state x;
state x,
state x,

30
Time(s)

I L
0 10 20

30
Time(s)

Fig. 1. Time responses of system states
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control input u,

control input uy

30 40 50 60 0 10 20 B
Time(s) Time(s)

Fig. 2. Time response of control signals

It can be seen from the solid blue lines in Fig. 1 that all tregéest in the closed-loop system
are asymptotically stable before and after consideredsfandcur under the designed controller
(15). Comparing the solid blue lines with the dashed redsline~ig. 1, it can be seen that, after
faults occur, all the states converge to zero faster underctmtroller designed in this paper
than that in reference [10]. In addition, comparing thedoblue lines with the dashed red lines
in Fig. 2, it can be seen that after faults occur, the ampditatithe actuator:; is smaller than
that in [10].

Example 2: In reference [33], the aircraft Boeing747 Idtenmtion is described by: =
Az + Bu, wherex = col(vy, py, 76, ¢, ), u = col(d,,d,). The five state variables are: lateral
velocity v, roll rate p,, yaw rater,, roll angle¢ and yaw anglep. The rudder positior, and
aileron positiond, are chosen as outpugs= C'z. In the case of landing, the matricés B and
C' are described by
[ —0.13858  14.326  —219.04  32.167 0

—0.02073 —2.1692 0.91315 0.000256 O

A= 0.00289 —0.16444 —0.15768 —0.00489 O |,
0 1 0.000618 0 0
0 0 1 0 0
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[ 0.15935 | [ 0.00211 |
0.01264 0.21326
o 1000 0
B = [by,bs], by = | —0.12879 |, by = | 0.00171 |, C = =
¢ 0000 1
0 0
0] 0]

Suppose that both rudder and aileron are double-reduntlaan there are four actuators such
that u = col(d,,, d,,, da,, ds,) @and B = [by1, bia, b1, bas]. Hence the matrix3 becomes

0.15935 0.16 [ 0.00211 | 0.002
0.01264 0.012 0.21326 0.02
b= | —0.12879 | ,biz= | —0.13 | b = | 0.00171 | ,bao = | 0.0015
0 0 0 0
0 0| 0 0

Consider the influence of the turbulence to the aircraft. [lingped disturbance (x,w(t),t)
is given by f(z,w(t),t) = 0.5sin(vy) + 0.5. Then 5(-) in Assumption 6 can be chosen as
| f(z,w(t),t)||+7 with 7 > 0 being scalar. The distribution matrix is chosen as [31], i.el) =
col (013858, 0.02073, —0.00289, 0,0). Then it has that; B = [0.1593,0.1600, 0.0021, 0.0020],
i.e., vy = 1, B = [0,0,0,0],c2AB = [—0.1288, —0.1300, 0.0017, 0.0015], i.e., v, = 2 and
aD = 0.1386, i.e.,v; = 1, ceD = 0,c0AD = —0.0029, i.e., vy = 2. Therefore,y; = v, =1
and v, = vy = 2 satisfy Assumption 7.
The simulated fault mode is that a loss of effectiveness facturs on the second actuator
b2, and the efficiency factor is given by
1, if 0<t<30,
pa (t) = {6(60'02“30)—1“%—1, if 30<t<34,
0.2586, if 34<t<oo,

the third actuator is stuck &sin(t). The simulation results are shown in Figs. 3-5.
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T 1 T T
—y, with faults —Y, with faults
---Y with no fault| ---Y, with no fault|

Output signal A
Output signal Y,

o
T

Time(s)

Fig. 5. Time response of outputs

From the dashed red lines in Figs. 3 and 5, it can be seen thawtifaults, the states are
bounded, the outputg are asymptotically stabilized by the designed control&) (and go to
zero asymptotically. Moreover, from the solid blue linedrig. 3 and 5, it can be seen that after
actuator faults occur, the designed controller (60) camgsgtically stabilize the outputg, and
ensure that the statesare bounded simultaneously. However, the output® to zero slower
than that without faults. From Fig. 4, it can be seen that whetnator faults occur, actuators

in control produce stronger control signals to compensatehfe uncertainties and faults.

V. CONCLUSION

Two novel adaptive and robust FTC schemes have been proposdidear faulty MIMO
systems with unmatched uncertainties under a set of conditieveloped in this paper. The-
modification adaptive laws have been used to estimate thewvalf time-varying fault parameters.
Based on matched and unmatched characteristic of the aidess, two adaptive and robust
FTC design approaches have been proposed with differeritotabjectives. The future work
will focus on development of new adaptive robust FTC methagipfor more general nonlinear

systems.
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