
Mercier, Daniel (2017) dynStruct: An automatic reverse engineering tool
for structure recovery and memory use analysis. Master of Science (MSc)
thesis, University of Kent.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/58461/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
Other

DOI for this version

Licence for this version
CC BY (Attribution)

Additional information
Source code available at https://github.com/ampotos/dynStruct

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/58461/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

dynStruct

An automatic reverse engineering tool
for structure recovery and memory use

analysis

Daniel Mercier

Kent ID: 15907084

dm486@kent.ac.uk

School of Computing, University of Kent

Friday 9th September, 2016

Abstract

In computer security, reverse engineering is understanding how a program work. It can be used
for multiple purposes, like malware analysis or security audit of a program. Reverse engineering is
possible even without the source of the program. In this case, knowing what data structures are used
by the program is a considerable help. But recovering these structures is di�cult and time consuming.
Also, at the time of writing, no tool doing this recovery has been publicly released.

This paper introduces dynStruct, an open source structure recovery tool. dynStruct recovers
structures in two steps. First a data gatherer executes the program and monitors it. The list of all
memory accesses made by the program is written to a Json file. Afterwards a script analyzes this
Json file to recover the structures. dynStruct also provides a powerful web interface. This interface,
in addition to displaying e�ciently the structures and raw data from the data gatherer, links the raw
data and the recovered structures to allow a quick and powerful exploitation of all this information.

The tests shows that dynStruct can analyze complex program like emacs or xterm. The tests
also show that the recovered structures are similar to the original ones. This ensures dynStruct can
provide quick and useful information to help reverse engineers in their task.

Number of words: 12530

Contents

1 Reverse engineering 1
1.1 Introduction 1
1.2 Problems for reverse

engineering complex programs . . . 1
1.2.1 Compilation is not lossless . 1
1.2.2 Structure recovery 1

1.3 Existing work 2
1.3.1 Laika 2
1.3.2 Rewards 2
1.3.3 Howard 2
1.3.4 TIE 2
1.3.5 From MinX to MinC 2
1.3.6 Common issue 3

1.4 Contributions 3
1.5 Dynamic binary

instrumentation (DBI) 3
1.5.1 Why chose a dynamic bi-

nary instrumentation ap-
proach ? 3

1.5.2 Dynamic binary
instrumentation frameworks 4

1.5.3 The choice of DynamoRIO 4

2 dynStruct 4
2.1 Overview 4

2.1.1 dynStruct history 4
2.1.2 dynStruct goals 4
2.1.3 Di↵erences with existing work 5
2.1.4 dynStruct components . . . 5

2.2 Data gatherer 6
2.2.1 Allocation monitoring . . . 6
2.2.2 Memory access recording . 7
2.2.3 Other recording 7
2.2.4 Custom memory allocator

for dynStruct recording . . 8
2.2.5 AVL tree implementation . 9
2.2.6 Output 9
2.2.7 Multi-process programs . . 9
2.2.8 Options 9

2.3 Structure recovery 10
2.3.1 Step 1: recover members’

type and size 10
2.3.2 Block comparison 11
2.3.3 Step 2: fill with padding . . 11
2.3.4 Step 3: array detection . . 12
2.3.5 Step 4: array of structures

detection 12
2.3.6 Step 5: deletion of array

like structure 12

2.3.7 Output 12

2.4 Web interface 13

2.4.1 Options 13

2.4.2 Why a web interface ? . . . 13

2.4.3 Displaying data e�ciently . 13

2.4.4 Performance 13

2.4.5 Structure editing 13

3 Results 14

3.1 Test environment 14

3.2 Overheads 14

3.2.1 Data gatherer 14

3.2.2 dynStruct.py 14

3.3 Accuracy of recovered
structure 15

4 Limitations 16

4.1 Data gatherer 16

4.1.1 Heap monitoring only . . . 16

4.1.2 No handling of custom allo-
cators 16

4.1.3 Overhead 16

4.1.4 Supports only X86 architec-
tures and Linux 17

4.1.5 Path coverage 17

4.2 Structure recovering 17

4.2.1 Unrecovered structure
members 17

4.2.2 Accuracy 17

4.2.3 Memory and time
consumption in dynStruct.py 17

5 Future work 18

5.1 Data gatherer optimization 18

5.2 dynStruct.py optimization 18

5.3 Structure recovery accuracy 18

5.3.1 Via data gatherer 18

5.3.2 Via dynStruct.py 19

5.4 Stack analysis 19

5.5 Mmap and custom memory
allocator handling 19

5.6 Ports 19

6 Conclusion 20

Appendices 21

Daniel Mercier dynStruct

An automatic reverse engineering tool for structure recovery

and memory use analysis

I

Appendix A Example of use 21
A.1 Spoiler alert 21
A.2 Overview of the example 21
A.3 Note on screenshots 21
A.4 Step 1: Data gathering 21
A.5 Step 2: Structures recovering . . . 22
A.6 Step 3: Blocks analysis 22
A.7 Step 4: Accesses analysis 23
A.8 Step 5: Comparison of execution . 26
A.9 Step 6: Gather and analyze libc

memory use 26
A.10 Summary 27
A.11 End of solving 27
A.12 Conclusion 27

References 28

Daniel Mercier dynStruct

An automatic reverse engineering tool for structure recovery

and memory use analysis

II

1 Reverse engineering

1.1 Introduction

Reverse engineering is the process of understand-
ing the behaviour and logic of a program. In the
case of a program written in a compiled language,
the reverse engineering process can be done at
two di↵erent levels, source code and compiled
binary.
This paper focuses on reversing compiled pro-
grams without any access to their source code.
Although reverse engineering can be associated
with illegal activity like breaking license systems
of copyrighted software, it can also be used for
multiple legal (and necessary) usages like malware
detection, protection and vulnerability research
in closed source software.
Reverse engineering can be done statically, by
using a disassembler and analyzing the resulting
assembly code. Tools like IDA Pro [1] and radare2
[2] are very powerful aids for that approach of
reverse engineering.
It is also possible to do reverse engineering
dynamically. This is traditionally done by using a
debugger to stop the program at a specific point
in its execution and analyze its memory. Here
again IDA Pro and radare2 can be a powerful
help, but also any debugger like GDB [3] on
Linux or x64dbg [4] on Windows is useful.
But even today, when reverse engineering is
mainly done by hand, tools which can do a
specific task automatically like building a call
graph provide considerable assistance to the
reverse engineer.

This paper presents dynStruct [5], a tool
to automatically reconstruct structures (memory
layouts) used by a compiled program. The
background will be described in section 1, fol-
lowed by descriptions of the implementation of
dynStruct itself in section 2. An example of use
of dynStruct is given in appendix A. Sections 3
and 4 detail the results and limitations of the
actual implementation. Section 5 contains ideas
to improve dynStruct in the future.

1.2 Problems for reverse
engineering complex programs

The more complex a program is, the more dif-
ficult is the reversing. Very complex programs

can take months for an entire team to completely
be reversed. One of the keys to do this faster
is recovering the structures the program uses to
manipulate its internal data. Knowing the struc-
tures used by the program means understanding
its internal representation of data; that also means
easily finding where the data of these structures
are written or used by the program. With that
knowledge it is easier to know when, how and by
what a specific behaviour of the program will be
triggered.

1.2.1 Compilation is not lossless

The compilation process is not lossless. In fact it
can remove all human readable information and
only keep the information needed by the processor
to execute the program. This means unexported
symbols such as function and variable names are
removed and replaced by o↵sets, structures are
used as a limited address space where members
are o↵set in this address space without any infor-
mation about size and type except the semantic
use to write and read them. It is also di�cult to
find structure boundaries when directly looking at
the memory used by the program (with a memory
dump for example). Laika [6] uses this approach
but has less accurate results than the other re-
search presented in section 1.3.
This results in di�culties to understand quickly
what is the purpose of a specific function or what
kind of data are carried by a specific structure.

1.2.2 Structure recovery

Recovering the structures means knowing what
data is used at a specific point in the program.
This information helps to quickly understand a
complex program. For example in the case of a
malware which uses a non-standard protocol to
communicate over the network, knowing the struc-
tures the malware uses to read the incoming data
will quickly reverse that protocol. But recovering
structures can be a di�cult task.
With a static analysis approach the main problem
is that control flow is not clearly visible, and some-
times almost impossible to reconstruct. Function
pointers are a real problem here because the called
function can be determined at run-time. Also a
structure is usually used at multiple locations in
the program: the first use (just after its alloca-
tion) is the initialization which cannot always be
trusted for structure recovery. This is due to the
fact that structures are sometimes initialized by

Daniel Mercier dynStruct

An automatic reverse engineering tool for structure recovery

and memory use analysis

1/29

putting the value 0 in every byte (with a memset
like function for example). The other use of these
structures can be in a completely di↵erent func-
tion in the program which makes static recovery
almost impossible a some cases.
With a dynamic analysis it is possible to know
what structure is used for every memory access by
looking at the address used. The problem here is
that doing it by hand is time consuming. After ev-
ery memory allocation the address space allocated
has to be written somewhere and for every mem-
ory access the reverser has to find which address
space is used (by looking at which one contains
the address). Doing this by hand is not realistic
for a program which can have hundreds or more
allocations during its execution.

1.3 Existing work

Fortunately for reverse engineers, some research
exists to do this structure recovery automatically,
allowing them to make their analysis faster. This
section describes the existing research on struc-
ture recovery in compiled programs.

1.3.1 Laika

Laika [6] uses memory images to try to recover
structures from located pointers in the memory
dump and addresses pointed to by these pointers.
The structures are detected via machine learning.
The average accuracy of Laika is around 73%.
These results are enough for malware classifica-
tion using internal structures as signatures (the
purpose of Laika). For complex reverse engineer-
ing these results can be insu�cient. Also having
to make a memory image of the program the re-
verser want to reverse is not always convenient.

1.3.2 Rewards

Rewards [7] is based on PIN [8], a dynamic binary
instrumentation framework. The use case of Re-
wards is mainly memory forensics by typing the
memory of a program and allowing easy examina-
tion. It can also be used for vulnerability detec-
tion. Rewards uses well-known library calls and
syscalls to determine types used by a program.
When available it will also use debug data to re-
cover internal structures. These structures are
propagated backward and forward through the ex-
ecution. This approach is powerful (around 100%
accurate) at determining which data structure a

program uses to interact with its environment (li-
brary, kernel) but does not recover any informa-
tion about its internal data structures in the case
of a stripped binary.

1.3.3 Howard

Howard [9] uses dynamic binary instrumentation
through QEMU [10]) in order to analyze a pro-
gram during its execution and recover the struc-
tures use by this program. Howard identifies root
pointers of data structures by looking at alloca-
tion routines (malloc, realloc, mmap) for data
stored in the heap and analyzes stack frames to
get root pointers for stack data. Howard also gets
root pointers from statically allocated data (glob-
als and static variables in C) by looking at the
addresses used to access these data. By looking
at access patterns of the data pointed to by the
root pointers, Howard is able to identify arrays
and determine the types of members of a struc-
ture (including inner structures).
In term of results, Howard claims around 90% of
accuracy for heap structures and 80% for stack
structures.

1.3.4 TIE

TIE [11] can use both static and dynamic ap-
proaches. The static approach applies heuristics
to the disassembled program to try to find the
functions of the program. The dynamic approach
detects dynamically the function executed. The
positions of structure members are determined
by analyzing the access patterns of the allocated
memory. Afterwards TIE creates constraints for
every member and tries to solve them to recover
the type of structure members.

1.3.5 From MinX to MinC

MinX (abstraction of x86 assembly) and MinC
(type safe dialect of C) [12] are two intermediate
languages used in this solution. First the assembly
code of the program is translated from x86 assem-
bly code to MinX. Then the idea behind this paper
is to construct a program in MinC which will make
exactly the same changes in memory at the same
times as the MinX program. At the end struc-
tures are extracted from the MinC program. This
solution can recover recursive data structures. Ac-
cording to the results announced, the recovery of
structures is done very quickly but the examples
are only little textbook programs. In term of ac-
curacy this solution has excellent results.

Daniel Mercier dynStruct

An automatic reverse engineering tool for structure recovery

and memory use analysis

2/29

1.3.6 Common issue

All these publications have the same goal, recover-
ing structures used by a program, but for di↵erent
purposes (malware classification, reverse engineer-
ing). That means not all of them can be used for
the purpose of reverse engineering.
Some of these papers do not give su�cient infor-
mation about their overhead (in particular time
and memory overhead) to know if they are usable
in a time-limited context like a capture the flag
(CTF) contest. A CTF contest is a hacking con-
test. Two kinds of CTF contest exist, jeopardy or
attack-defense. A jeopardy CTF contest is made
of multiple challenges which have to be solved as
quickly as possible to earn the most points pos-
sible. The common categories of challenge are
reverse engineering, exploits, cryptography, web
vulnerabilities and steganography. In an attack-
defense CTF contest each team has to protect
its own vulnerable server and attack other teams’
servers: every successful attack gives points to the
attacking team.
In both cases it’s really common to find reverse-
engineering tasks which have to be done quickly.
Reverse engineering tools which need a significant
time to deliver their analysis are not usable in
these contests.
Another issue with these publications is none of
the described tools are publicly released.

1.4 Contributions

These issues of use in a time limited context and
the fact that none of the previously described
tools are publicly released are the reasons of dyn-
Struct. My first motivation to start dynStruct
was being able to solve CTF reverse engineering
challenges faster.
dynStruct is an open-source tool (available
at https://github.com/ampotos/dynStruct)
released with a MIT license, allowing any kind of
use or modification of the tool. The first purpose
of dynStruct is automatic recovery of structures
via dynamic binary instrumentation of a pro-
gram. In addition to this recovery dynStruct also
records useful information about every memory
allocation and every memory access, making it a
powerful memory use analysis tool. All these data
(including recorded data and structure recovered)
can be easily exploited via a powerful web based
interface which links all of them together. This
interface allows, for example, quickly knowing
the address of every instruction which wrote a

specific member of a specific structure during the
analysis of the program.

1.5 Dynamic binary
instrumentation (DBI)

Binary instrumentation means modifying the in-
structions executed by the program to add, change
or remove some behaviours. This can be for
searching vulnerabilities as AFL [13] does, to ver-
ify the memory is not corrupted like Valgrind [14],
to analyze performance, etc. The instrumenta-
tion can be done at multiple levels. At source
code level, it is done by modifying the source code.
For example printing a value for debugging pur-
poses is a sort of instrumentation at code source
level. It can also be done at compilation level,
as AFL does. At this level it’s the compiler itself
that modifies the assembly output for the input
code source. In the case of AFL it adds instruc-
tions which allow afl-fuzz to determine the di↵er-
ent possible execution paths in the program. It is
also possible to perform the instrumentation on an
already compiled program by modifying the exe-
cutable file [15]. The final level where binary in-
strumentation can take place is at run-time. This
is dynamic binary instrumentation. Changing in-
structions executed at run-time allows creation of
tools which don’t need to recompile a program to
analyze it. This approach also allows modifica-
tion of the instrumentation depending on the ac-
tual state of the program or at a specific run-time
event.

1.5.1 Why chose a dynamic binary instru-
mentation approach ?

The DBI approach was chosen for the analysis of
a running binary for multiple reasons.
First static analysis for structure recovery is com-
plex if it wants to be e↵ective whereas dynamic
analysis can just look at what the program does
and where, instead of trying to predict it via static
analysis. The second reason is classical obfusca-
tion techniques modify the execution flow of the
program: a very di�cult challenge for a static
analysis. But with a dynamic approach it is pos-
sible just to look at what instructions are re-
ally executed. A dynamic analysis also has no
problem analyzing self-modifying code. Using a
DBI approach allows powerful and fast automatic
dynamic analysis. Because these are not based
on the same mechanism as debuggers (ptrace on

Daniel Mercier dynStruct

An automatic reverse engineering tool for structure recovery

and memory use analysis

3/29

https://github.com/ampotos/dynStruct

Linux), there is no change of context at every an-
alyzed instruction, so the slowdown in execution
of the program is limited. The final reason is dy-
namic binary instrumentation based tools do not
have to care about anti-debug techniques. There
is some possibility of escaping popular DBI frame-
works [16], but these are not commonly used in
real world programs compared to anti-debugger
techniques (at least at the time of writing).

1.5.2 Dynamic binary
instrumentation frameworks

This section quickly presents some available DBI
frameworks.

Pin
Pin [8] is one of the most popular DBI frame-

works (if not the most popular). It is developed
by Intel and supported only on X86 (both 32 and
64 bit) architecture. PIN can run on Linux, OS
X, Android and Windows.

DynamoRIO
DynamoRIO [17] is an open-source framework

which is supported on X86 (both 32 and 64 bit)
and ARM; compatibility for AARCH64 (ARM 64
bit architecture) is work in progress at the time
of writing. DynamoRIO runs under Windows,
Linux, OS X and Android. This framework was
supported by Google via GSOC in 2014 and 2015.
[18].

Valgrind
Valgrind [14] is more known for its memcheck

tool than for its dynamic binary instrumentation
frameworks, but the memcheck tool is based on it.
Valgrind DBI is made for heavyweight instrumen-
tation but can be used for any kind of DBI based
tool (with less performance than DynamoRIO or
PIN).

Frida
Frida [19] is di↵erent to the other DBI frame-

works described here. Frida injects JavaScript
into a native process (instead of native assembly
for the others). The result is slower than with
the other frameworks. It is more accessible to do
dynamic instrumentation specific to one program
with Frida because of the use of JavaScript but
this framework is not made for heavy instrumen-
tation. This makes it perfect for use in a CTF
contest for example but not really usable for writ-
ing a general tool.

1.5.3 The choice of DynamoRIO

dynStruct uses DynamoRIO to perform its dy-
namic binary instrumentation. This choice had
multiple reasons. First it is an multi-architecture
and multi-OS framework with an universal API
for all supported architecture and OS. The sec-
ond reason is the performance of the framework,
which is very close to PIN performance (usually
a bit better). Also it is easier to control the per-
formance of a tool with DynamoRIO than with
PIN because of the multiple way the instrumenta-
tion can be done (inline instrumentation or a call
with full context saving for example). The last
reason is it is an open-source project with regular
updates.

2 dynStruct

2.1 Overview

2.1.1 dynStruct history

During a CTF challenge I did at the start of 2015
I realized that I lost a huge amount of time re-
constructing the structures used by the program
when doing reverse engineering.
After some research I wasn’t able to find any re-
leased tool which can do that. A few months later,
in April, I discovered dynamic binary instrumen-
tation and decided to start a tool which will do the
structure recovery using dynamic binary instru-
mentation. During the development of dynStruct
I realized this tool can do more than just struc-
ture recovery and be a tool to analyze the use of
memory by a program just by recording additional
data. A few months later this project became my
MSc project for the University of Kent.

2.1.2 dynStruct goals

dynStruct has two main goals: provide a signifi-
cant help to a reverse engineer and to be usable
in both CTF contests and real world reverse engi-
neering.

Help reverse engineers
dynStruct aims to provide a powerful help to

the reverse engineer, saving them time during
their analysis. In order to do that dynStruct’s
goals are to gather relevant data, to recover struc-
tures by analyzing these data and to make these

Daniel Mercier dynStruct

An automatic reverse engineering tool for structure recovery

and memory use analysis

4/29

data and structures easily exploitable via a web
interface.

Accuracy vs usability
To be used in a CTF contest dynStruct must

be able to analyze a program fast enough. But to
be used against a real world program the accuracy
of the resulting structures can be more important
than the time spent to get the result. dynStruct
aims to be usable in both contexts.
The data gathering is always accurate because it
is a recording of what was executed and of the
context. So for that component only the speed
can be a problem.
For the structure recovery both speed and accu-
racy are important. This means dynStruct has to
find the right balance between accuracy and anal-
ysis time.

2.1.3 Di↵erences with existing work

dynStruct di↵ers from existing research in two
ways: the goals are di↵erent and the approach
of the structure recovery is di↵erent.

Di↵erent goals
The goals of the previous research are malware

classification (Laika: 1.3.1) or recovery of struc-
tures.
dynStruct also has structure recovery as a goal but
it also claims to be a tool for memory use analysis,
which is not the case of the other research.

Di↵erent approach
dynStruct uses a dynamic approach for the

structure recovery. This recovery is based on two
components, a data gatherer and an analysis of
the data.
Existing research which uses a dynamic approach
are Rewards (1.3.2) and Howard (1.3.3). TIE
(1.3.4) uses a dynamic approach only to generate a
trace of executed instructions; there is no record-
ing of any kind of context during the execution.
Rewards and Howard base their members detec-
tion on the access pattern: this means they look
at the pattern used to access the structure and
determine the size of members from this. There
is a problem with this approach. If a member is
not accessed or if there is some padding added by
the compiler, the access pattern seen during the
execution may not reflect the original structure.
To counter that dynStruct is based on the size of
memory accesses done on structures. This means

every time an access is made to a structure, dyn-
Struct records the size of the access, and uses it
to determine the size of every member accessed.

2.1.4 dynStruct components

dynStruct is made of two components, the data
gatherer which is a client for DynamoRIO and a
python script which does the structure recovery
and provides the web interface. Figure 1 provides
an overview of the di↵erent components of dyn-
Struct.
The end of this section describes the three steps of
dynStruct, data gatherer, structure recovery and
web interface.

Daniel Mercier dynStruct

An automatic reverse engineering tool for structure recovery

and memory use analysis

5/29

Figure 1: Overview of dynStruct

Figure 2: Data gatherer architecture with ex-
ploded view of block recording

2.2 Data gatherer

The data gatherer is a client for DynamoRIO. It
is written in C. It uses the dynamic instrumen-
tation framework to record data for every mem-
ory dynamically allocated and every access on the
allocated memory. This component also records
some additional data which provides a context to
the memory access. This data gatherer writes all
the recorded data into a Json file.
An overview of the data gatherer architecture is
given in figure 2. Each part of this architecture is
describe in this section.

2.2.1 Allocation monitoring

The first thing the data gatherer records is the
dynamically allocated memory. To do that every
call to malloc, realloc, calloc and free is wrapped
by pre-call instrumentation and a post-call instru-
mentation.
The pre-call instrumentation records the parame-
ters which are the requested size for malloc, calloc
and realloc, the address for free and realloc.
The post-call instrumentation records the return
value, the address of the memory allocated for
malloc, calloc and realloc. Free has no post-
instrumentation because the function doesn’t re-
turn anything.
An allocated memory is called a block in dyn-
Struct; every information which describes a block
is stored on a structure. A block is called active if
its memory is not deallocated (by a call to free).
When a block becomes inactive it is moved from
the binary tree containing active blocks (see 2.2.5)

Daniel Mercier dynStruct

An automatic reverse engineering tool for structure recovery

and memory use analysis

6/29

to a linked list which stores only inactive blocks.
This handles multiple allocations of the same ad-
dress space during the execution of the program
without using a timestamp.
The information stored into a block are its start
and end addresses, size, indication if the block was
freed or not and if it was allocated or freed by real-
loc. Also information about where the call to the
wrapped functions occurred is recorded (2.2.3).

2.2.2 Memory access recording

Every executed instruction of the analyzed pro-
gram which does a memory access is instru-
mented.
The first thing this instrumentation does is check
if the accessed memory is in an active block. If it is
not the case the normal execution of the program
is resumed. If it is the case the access information
is stored in a structure and linked with the active
block which contains the accessed address.
The recorded data are the size, the number of
times this access occurred, the o↵set of the access
in the block address space, information about the
instruction (2.2.3) which does the access, the op-
code of the instruction (2.2.3) and the opcode of
the context instruction (2.2.3).

2.2.3 Other recording

To do the structure recovery the previously de-
scribed recordings provide enough data. But by
recording additional data and displaying them in
the web interface dynStruct allows the reverser to
understand all the context of the concerned access
or structure member.
These data allow the reverser to easily find a spe-
cific access instruction in the disassembly of a pro-
gram by providing information like the address of
this instruction, and the module where this ad-
dress is located (2.2.3).
Another important information recorded is the
instruction which does the access and a second
instruction called the context instruction. The
analysis of these two instructions allows dyn-
Struct to recover the type of the member such as
pointer, function pointer, floating point number
and signed/unsigned number. These two instruc-
tions also provide a context which can be di�cult
to have in the case of self-modifying code.

Addresses
Address information is recorded for every in-

struction which does a recorded memory ac-

cess and for every call instruction which allo-
cates or deallocates a recorded block. An ex-
ample of format used for these addresses is
0x40057a:main+0xd@a.out.
The first part (before the “:”) is the exact address
of the instruction during the execution.
The second part (between the “:” and the “+”)
is the name of the function executing the instruc-
tion. If the name is not available (in the case of
a stripped binary) the address where the function
starts is display instead.
The third part (between the “+” and the “@”) is
the o↵set of the instruction in the function.
And the last part (after the “@”) is the module
containing the function. A module can be the pro-
gram itself or any dynamically linked library.
In order to know in which function (and the ad-
dress of start of this function) the execution is
in when recording an address, dynStruct keeps a
stack. The address of the start of the called func-
tion is pushed at every call instruction and the top
address in the stack is popped at every ret. Be-
cause sometimes a call is used without a ret and
a ret without a previous call, some call and/or ret
are ignored. When an address is recorded dyn-
Struct gets the address of the start of the current
function and looks in a hashmap (which stores
all the symbols of the the program and of every
loaded library) if a name exists for this function.
On Linux, library calls are in reality a call to a
specific section of the program (called PLT). This
section will get the address (by reading the GOT
section) of the called library function and jump
into it. So to know the name of the function
called in the library dynStruct has to check, for
every call, if it is a call to the PLT section or not.
If it is the case dynStruct sets a flag on its stack
to denote the address is on the PLT and when
the address is requested it gets the address in the
library by reading the GOT section. This ’lazy’
resolution of the address is mandatory because in
some programs, addresses are written in the GOT
section only at the first call to the library func-
tion and the instrumentation of dynStruct occurs
before this resolution. So for the first call to a
library function, at the moment of dynStruct in-
strumentation, the address of the library function
is sometimes not yet written in the GOT section.
DynamoRIO doesn’t provide the possibility to get
the run-time address space of a specific section of
the executed binary. Or this address is not al-
ways the same, for example a program compiled
with the position independent code option (PIE)

Daniel Mercier dynStruct

An automatic reverse engineering tool for structure recovery

and memory use analysis

7/29

can be loaded at random address in memory for
security reasons. To get the address space of the
PLT and GOT sections, dynStruct parses the dif-
ferent headers of the ELF file (the file format of
program on Linux) and determines in what seg-
ment are the sections, and their o↵sets relative
to the start of the segment. DynamoRIO has an
API call to get the address space of every segment,
dynStruct determines the right segment by com-
paring its permissions (execute, read and write)
and the size to the segment described in the ELF
file. After it adds the o↵sets to the start of the
segment and gets the PLT and GOT sections run-
time addresses. All the PLT and GOT sections of
every module loaded are stored in a similar tree
as the one used for storing active blocks, to allow
quick access to their information.

Instructions
For each memory access two instructions are

recorded, the instruction which does the access
and a context instruction. This has two purposes.
First, these instructions will be analyzed during
the structure recovery to recover member’s type.
Secondly, in the case of self-modifying code, these
instructions may be dynamically generated by the
program, making them di�cult to obtain for the
reverser. In this context recording these two in-
structions allows the reverser to know these in-
structions without having to do complex analysis
to obtain the generated instructions. The context
instruction is not the same in the case of a read
access and in the case of a write access.
For a write access the context instruction is the
previous one, because the previous instruction can
provide information about where the data written
comes from.
For a read access the context instruction is the
next one, because it can provide information on
the use of the data stored.
Sometimes the context instruction is not available
because the instrumentation is made with a basic
block granularity. This means if a write instruc-
tion occurs at the start of a basic block or if a
read access occurs at the end of a basic block, dyn-
Struct cannot record a context instruction. Even
if some access doesn’t have a context instruction,
because a member of a structure is usually read
and written more than once during the execution,
every member usually has multiple accesses with
context instructions to analyze.

2.2.4 Custom memory allocator for dyn-
Struct recording

To store all the data recorded dynStruct has to
do memory allocation, but doing this through a
classical call to malloc can break the transparency
provided by DynamoRIO. So dynStruct uses the
memory management functions provide by Dy-
namoRIO. There are di↵erent kind of allocation
possible via DynamoRIO, using a managed heap
(malloc like allocation), unmanaged using a mem-
ory page (separate from analyzed program or not).
DynStruct has mainly 2 kinds of allocation for its
data, the allocation of the access and all the oth-
ers. The others’ allocation needs a managed heap
because they are allocated and deallocated mul-
tiple times during the execution of a program.
The allocation for the recording of the accesses
are di↵erent: once allocated they will be deallo-
cated only when a block will be written on the
output. Since dynStruct can write the data of the
free block on the output during the execution of
the program (2.2.6), the deallocation time of ac-
cess recording is the same as the block where the
access was made. Using a managed heap is use-
ful when allocation and deallocation can happen
at di↵erent moments in the execution, but comes
with an overhead in memory (metadata) and in
time (the managing algorithm).
So to reduce its overhead dynStruct has a custom
allocator for access data. This allocator allocates
entire memory pages (4096 bytes) and uses them
as an array of structures which store access data.
When the array is full another page is allocated.
The only metadata present are a pointer to the
previous page and the index of the next free struc-
ture in that page. When the data of the block are
written, at the end of the output all pages linked
with this block are freed. This custom allocator is
used for the two internal structures storing access
data and also for storing the instruction and the
context instruction (2.2.3).
The introduction of this optimization allows dyn-
Struct to run complex programs under the data
gatherer with a reduced memory overhead and
the time overhead was also reduced. For exam-
ple before this optimization dynStruct was unable
to start an Emacs with a configuration of more
than 45K lines of code: after 15 minutes the data
gatherer stopped because it used more than 2Go
of RAM. After this optimization the same Emacs
with the same configuration starts in 6 minutes
with a maximum usage of only 400Mo.
This significant di↵erence also shows that the Dy-

Daniel Mercier dynStruct

An automatic reverse engineering tool for structure recovery

and memory use analysis

8/29

namoRIO managed heap algorithm has di�culty
working with a highly fragmented heap.
The allocation used to get memory pages doesn’t
separate them from the executed program be-
cause this functionality is not yet implemented for
Linux. This makes dynStruct visible for the exe-
cuted program until this feature is implemented.

2.2.5 AVL tree implementation

Having a limited time overhead in the data gath-
erer is important, especially when executing com-
plex programs. dynStruct needs to keep a quick
access to every active block to store access data.
If a simple linked list can be enough for little pro-
gram with just a few allocations, when many hun-
dreds of blocks are active at the same time a linked
list is too slow. To keep the access to every active
block dynStruct has a custom AVL tree.
An AVL tree is a self balancing binary tree; the
complexity to add, access and remove a node in
this tree are all the same: O(log n). This allows
dynStruct to manage and access the active blocks
with a limited overhead. The implementation of
the AVL tree used by dynStruct is custom because
instead of having a single item for each node it
has a set of item (the address space of the block).
This means dynStruct cannot handle overlapping
blocks, which is not possible unless if the heap of
the program is corrupted.
To avoid any problem when using the ’-a’ option
to wrap allocation function provide by an other li-
brary than the libc (for example ld-linux.so), the
avl tree discard any duplicate. This mean if you
ask to add a node which has a starting address
already used as a starting address in the tree we
don’t save it. This could still be a problem in the
case of overlapping blocks but overlapping blocks
are unlikely to appear on any allocator implemen-
tation because of the memory corruption this will
entail. However in case of memory corruption due
to a bug or a vulnerability in the program this can
happen and dynStruct will have undefined behav-
ior (which can be a segfault).

2.2.6 Output

The data gatherer records information for dyn-
Struct but does not analyze them, that part is
handle by the script dynStruct.py. So the data
gatherer needs to pass the data to dynStruct.py.
To do so the data gatherer writes a Json file with
all the recorded data. Json format was chosen for
mainly two reasons. First this format can easily

represent the data gathered. The second reason
is dynStruct is an open source tool, this means
it can be used and modified by users. The Json
format is supported by almost every language
today (natively or via library/module), which
makes the use of the data gathered for another
purpose than dynStruct simple.
Json format also allows users to get the infor-
mation needed by the dynStruct.py script by
another means than the data gatherer (to use it
from an architecture other than x86 or an OS
other than Linux for example) without having
any issue with the format of the output file.
The Json output is not written at the end of
the execution of the program but every time the
inactive blocks linked list is 100 blocks long. This
maintains a low memory overhead even for long
running programs. At the end the blocks which
are still active and the blocks in the list (if any)
are written.

2.2.7 Multi-process programs

By default DynamoRIO loads every child process
with a new instance of the client used in the parent
process. This allows dynStruct to natively handle
multi-process programs. But this native handling
had a problem: the output file.
dynStruct has an option to specify the name of
the output file, but the client arguments are also
duplicated when a child process is created. This
made children processes’ output files overwritten
by others and sometime produced invalid outputs
because every process uses the same output file-
name. To resolve this issue a simple solution was
used; the file with the specified filename is used if
the file doesn’t exist. So now every output file for
child processes uses the default format which is
<program name>.<pid of process>. In ad-
dition a new option which allows choosing the out-
put directory for every output file generated by
the program and the child processes was added.

2.2.8 Options

The data gatherer has multiple options, which can
be displayed by using the -h option. Some of
them are already described, like the outputs op-
tions (2.2.6 and 2.2.7).
The option -a was briefly described in 2.2.5. This
option allows handling other allocation manage-
ment routines than the ones provided by libc, but
the name must be the same (malloc, calloc, real-

Daniel Mercier dynStruct

An automatic reverse engineering tool for structure recovery

and memory use analysis

9/29

loc and free). Improving the handling of alterna-
tive allocation management routines is described
in the future work section 5.5
Another option is the possibility to wrap mod-
ules, the -w option. By default dynStruct only
wraps the call to allocation routine coming from
the program itself and ignores the call if it comes
from a library. This is done for optimization rea-
son. Because the instrumentation of dynStruct is
heavy, this option allows specifying which library
has to be instrumented. In addition to wrapping
the program itself, dynStruct also wraps every li-
brary specified via -w option. This option can be
used multiple times.
The last option of the data gatherer is the -m op-
tion. This option works exactly as the -w option
but enable the monitoring of the module instead
of the wrapping. This means the memory access
made by specified modules will be recorded.

Figure 3: Structure recovery process

2.3 Structure recovery

The structure recovery process is done by the
dynStruct.py script which is written in python.
This process is made of five steps which are de-
scribed here (see figure 3).
This process first considers every block as a struc-

ture and removes the blocks which don’t look like
a structure in step 5 (2.3.6)

2.3.1 Step 1: recover members’ type and
size

The first step of the structure recovery is to an-
alyze the data from the data gatherer. The raw
data is loaded from the Json file and analyzed dur-
ing this step.
The goal of this step is to find the type of ev-
ery member of structure. This step is split in two
sub-steps. First, get the size of the access, then
recover the type.

Recovering the size
The first thing done during the structure re-

covery process is getting the size of every mem-
ber of the structure. A member can be accessed
with multiple sizes, usually due to initialization
(memset like function) or compiler optimization,
so recover the real size of the member is the most
important step of this structure recovery. That is
simple to do, just keep the most used size to access
a specific o↵set of the structure. After getting the
size of a member dynStruct will determine the o↵-
set of the next member by adding the size to the
o↵set of the current member. Because it is pos-
sible to have holes in the structure (see 2.3.3, the
o↵set previously calculating may have no recorded
accesses. If it is the case dynStruct searches for
the next o↵set with recorded accesses. If multi-
ple sizes are all used the same amount of time,
and this amount is the most used sizes, the small-
est one is used. This mainly happen with strings
because the libc function uses XMM registers to
manipulate up to 16 bytes in one instruction.

Recovering the type
After determining the size of the member its

precise type will be recovered. This sub-step is
based on the analysis of the accessing and context
instructions (2.2.3). To analyze these instructions,
the opcodes recorded by the data gatherer are dis-
assembled using Capstone [20], a universal disas-
sembly framework. Every access will be typed,
and the type with the most occurrences will be
kept as the type of the member. Read accesses
and write ones don’t have the same analysis.
The analysis for write accesses is based on the pre-
vious instruction. The idea is to check if this pre-
vious instruction provides information exploitable
to detect the type of the value written by the ac-
cess. dynStruct perform three analysis in case of

Daniel Mercier dynStruct

An automatic reverse engineering tool for structure recovery

and memory use analysis

10/29

write accesses. Is the value written a pointer, a
floating point value or an unsigned value ?
The floating point analysis is simple: check if the
value written is from an XMM register. If it is the
case, check the size of the access. For a 4 bytes
access the type is float, for a 8 bytes access it
is a double. Sometimes XMM registers are used
to manipulate multiple bytes of a string in one
instruction; in that case the size of the access is
usually 16 bytes long, so dynStruct doesn’t type
it as a floating point value. Pointer analysis is a
bit more complex. If the context instruction is
an LEA (load e↵ective address) instruction and if
the accessing instruction is a MOV with the desti-
nation register of the LEA as source register, the
value written is a pointer. If the value loaded by
the LEA is RIP relative and the resulting address
(instruction address + disp) is on the same mem-
ory page as the instruction itself, this pointer is a
pointer to a function; if not it is a simple pointer.
Every pointer is typed as void * except pointers
to function typed as void(*)(). If the accessing
instruction is MOV of a direct value with the ac-
cess size of a pointer, and this value is an address
in the same page as the instruction itself, the ac-
cess is also typed as a pointer to function. The
last analysis for a read access is the detection of
unsigned values. The accessing instruction has to
be a MOV and the source register has a to be the
result of an unsigned operation made by the con-
text instruction.
The analysis for read accesses mostly detects
pointers. They can also detect some floating point
numbers. These analyses are based on the next in-
struction.
The first check is if the accessing instruction is a
call: the value has to be a pointer to a function.
The second check is also simple: if the access-
ing instruction writes the value read in an XMM
register with a size of 4 or 8 bytes, the access is
respectively typed as float or double. If the con-
text instruction is a call using a register written by
the accessing instruction, the access is also typed
as a pointer to function. The other checks ver-
ify if the value read is dereferenced in the context
instruction. If it is the case, the access is typed
as a pointer. A comment saying pointer to ar-
ray is added if the dereference is “base + index”,
another comment saying pointer to structure is
added if the dereference is “base + disp”. These
comments are added because they are typical pat-
terns used by compilers to access members of a
structure or values stored in an array.

When no type can be recovered for the member,
the default type will be used. The default type
is: int<number of bits> t. All members have
a default name following the format
o↵set <o↵set in the structure>

2.3.2 Block comparison

Usually a structure has multiple instances during
the execution of a program; this means the struc-
tures is allocated more than once. To avoid per-
forming all the recovery process on every instance
of the same structure, a comparison is made be-
tween step 1 and 2.
This comparison just checks if the type and size
corresponds between every member of the two
blocks compared. If one of the two blocks has a
“hole” instead of a member for an o↵set, the two
block are still considered as instances of the same
structure (because some instances can have unac-
cessed members). There are only two cases where
the type can be di↵erent and the two blocks are
still considered as instances of the same structure.
If one block has a default type of a pointer size and
the other has a pointer or a pointer to function, or
if one block has a simple pointer and the other a
pointer to function. After this comparison, if the
two blocks are instances of the same structure, a
merge is performed.
This merge fills holes with members of the second
block when available and replaces less meaning-
ful types (default type of pointer size and sim-
ple pointer) by more meaningful ones (pointer or
pointer to function).

2.3.3 Step 2: fill with padding

At this stage there can be some “hole” in recov-
ered structures. These holes can have two origins;
they can be unaccessed members or padding to
satisfy alignment.
Because the accesses are recorded on only one exe-
cution of the program, some functionalities of this
program may have been unused. This can lead
to unaccessed members in of some structures and
without access dynStruct cannot recover these
members. The second reason for these holes is
padding add by the compiler to satisfy data align-
ment. For example if a compiler uses an alignment
of 8 bytes, this means every structure has to have
a size which is a multiple of 8 bytes. So a structure
made with a short (2 bytes) and a char (1 byte)
will not be 3 bytes long but 8 bytes long with 5
bytes never used.

Daniel Mercier dynStruct

An automatic reverse engineering tool for structure recovery

and memory use analysis

11/29

dynStruct fills these holes with padding. The
padding used is an array of uint8 t. The
name of every padding array is of the format
pad o↵set<o↵set in the structure> and the
displayed type in the web interface is “padding”.

2.3.4 Step 3: array detection

Up to now only individual members were recov-
ered, but merging consecutive members which
have the same type into an array can increase the
readability of the structure. This is exactly what
dynStruct does in this step 3.
Basically dynStruct just counts how many con-
secutive members with the same type there are,
removes them from the structure and puts an ar-
ray with number of units equal to the number of
removed members. The type of the array is the
same as the members. There one exception to this
operation. An array has to be made of at least
5 members. If there are only 4 or less consecu-
tive members with the same type, they are not
replaced by an array. This is because it is very
common to have a few members of the same type
following each other in the declaration of a struc-
ture. For example a structure made for storing
coordinates can have two integers following each
other without being an array.
This assumption can be incorrect (a structure can
have an array of 2 units). But even if it is the
case, the memory layout of the structure will still
be correct because two variables following each
other and an array of two units are exactly the
same from a memory point of view.
It is possible to remove this exception by looking
at the access pattern, which can also allow detect-
ing inner structures in a structure. But that has
to be added in the data gatherer (see future work
5.3.1).
The name of arrays follows the format ar-
ray <o↵set in the structure>.

2.3.5 Step 4: array of structures detection

After array detection, dynStruct detects arrays of
structures.
An array of structures is easily detected by a sim-
ple pattern detection. Every instance of the de-
tected pattern is a unit of the array. Similar to
array detection, every member detected as a mem-
ber of the array of structures is removed and re-
placed by the array of structures. The pattern de-
tection does multiple passes until no new pattern
is detected. This allows finding arrays of struc-

tures where the inner structure contains another
array of structures and so on.
The format for the name of array of structure is
struct array <o↵set in the structure>.

2.3.6 Step 5: deletion of array like struc-
ture

This last step is enabled by default but optional;
the option -k of dynStruct.py disables it. The
idea is to remove everything which does not look
like a structure.
This step removes structures which are made
only of members with the same type. This
includes arrays and simple members; padding is
also ignored. For example consider the following
recovered structure:

struct my struct {
f loat nb 1 ;
i n t 8 t padding [1 2] ;
f loat nb array [6]
} ;

The padding is not accessed during the execution
of the program. This structure will be consider as
an array of float (because there is only float and
padding) and will be removed from the structures
(except if the -k option is used).
This suppression is made to increase the read-
ability. In a program it is common to have ar-
rays of multiple sizes, but dynStruct will recover
them as di↵erent structures because of the di↵er-
ent sizes. This will create multiple structures (es-
pecially when the program use multiple strings)
and can make the real structures more di�cult to
find.

2.3.7 Output

Structure recovery has multiple possible outputs.
The recovered structure can be written to a file
or on the console with a C header style. It is
also possible to serialize the recovered structures
and loaded blocks and accesses. This allows start-
ing the web interface later directly by loading this
serialized file without having to re-run the recov-
ery process. It is also possible to start the web
interface directly (with the structures recovered)
without writing anything on the console or on files
by using the -w option.

Daniel Mercier dynStruct

An automatic reverse engineering tool for structure recovery

and memory use analysis

12/29

2.4 Web interface

The web interface integrated in dynStruct pro-
vides a quick way to exploit e�ciently the data
gathered by dynStruct and the structures recov-
ered. The raw data and recovered structures are
linked together to help the analysis. It also al-
lows the reverser to update the recovered struc-
tures and to create new ones.
The web interface is provided by the script dyn-
Struct.py by using the option “-h”.

2.4.1 Options

By default the interface listens only on the local
interface (127.0.0.1) on the port 24242; the option
“-l” can be used to change that. Listening on an
interface other than the local one allows collabo-
rative analysis of the data and structure display
by dynStruct.
The web interface can get its data from the output
of the data gatherer, in which case the interface
start after of the structure recovery process. If a
serialized file is used the web interface starts in-
stantly.
In the case where the reverser doesn’t need struc-
ture recovery but just the raw data from the data
gatherer, the option “-n” can be used.

2.4.2 Why a web interface ?

dynStruct includes an interface to allow easy ex-
ploitation of the data recovered and recorded.
An interface is needed because the raw data can
be di�cult to exploit and the links between the re-
covered structure and the raw data from the data
gatherer are not always obvious. The interface
provided automatically links these data to allow
easy and powerful exploitation.
The choice of a web interface is not trivial. The
fact that this interface is web-based natively al-
lows multiple reversers to look at the same in-
stance of dynStruct interface. This makes reverse
engineering in teams more e�cient.
Using web technologies for the design, including
the CSS framework Bootstrap [21], allowed me to
produce an user-friendly and well designed inter-
face quickly and easily.

2.4.3 Displaying data e�ciently

An important goal of this interface is to display
data e�ciently, allowing the reverser to quickly
find the data he is looking for.

For that purpose data are presented in ta-
bles. In search views every the data can be
sorted with any column as key and search
box are also present for every column. Also
colours are used, making every component of
an address information easily identifiable. The
format of the displaying address information is:
“<address>:<function name>+
<o↵set in function>@<module name>”
(function name if replaced by function start
address if not available).

2.4.4 Performance

In addition to displaying the data in an e↵ective
way the web interface must be reactive, even if the
amount of data available is huge.
Complex programs can have hundreds of thou-
sands or more accesses recorded. Sorting and
filtering that amount of data in the browser (in
JavaScript) is not feasible; for 700,000 entries any
sorting or filtering action would take more than
twenty seconds. To avoid that, all the sorting
and filtering are done in python before sending
the data to the web interface.

2.4.5 Structure editing

The web interface allows to the structure to be
edited easily.

Modifying a structure
During its analysis the reverser may need to re-

name a member of a structure or change its type
to a custom one to improve readability or capture
some semantic knowledge.
In the structure view of the interface it is possible
to edit a structure. Editing allows changing the
name of the structure and adding or removing a
members. A member can be one of the following:
a simple member (for example an int), an array,
an inner structure or an array of structures. It is
also possible to edit a member, the reverser can
modify its size, name and type.
The size of a structure cannot be changed but a
new structure can be created (and existing ones
can be removed).

Adding or removing instances of a struc-
ture
During the recovery process, blocks similar to

each other are considered instances of the same
structure (see 2.3.2). But two structures can be

Daniel Mercier dynStruct

An automatic reverse engineering tool for structure recovery

and memory use analysis

13/29

similar but don’t have the same usage (so the re-
verser may want to separate them into two struc-
tures). It is also possible there is some false pos-
itive and false negative in that detection of in-
stances.
To allow the reverser to fix that, it is possible to
add and/or remove blocks from the instance list
of every structure (even the structures created in
the web interface). The only condition on adding
a block as instance of a structure is for the block
to have the same size as the structure.

Edits saving
All the modifications done in the web interface

are automatically saved in the serialized file. This
allows the reverser to save his/her work and con-
tinue reversing later with its modification on the
structures.
If no serialized file is provided to dynStruct.py, the
save will not be done.

3 Results

3.1 Test environment

All the results are from tests running on a freshly
setup VMware virtual machine with the following
specifications: Ubuntu 64 bit 16.04 (kernel 4.4),
4gb of ram (+ 4gb of swap) and 2 processors.
The only packages installed are the ones needed
by dynStruct and by the programs used for the
tests.
Two pools of programs were used for these tests.
The first pool is made of little programs and will
be used to test the accuracy of the structure re-
covery. Little programs are used because they use
fewer structures than complex programs, making
the comparison with the original easier. Even if
these programs are small, the results of these tests
will be realistic because the accuracy of recovered
structures depends how many times this structure
is used (and in how many di↵erent places in the
program). So the recovery will be more accurate
on a complex program than on a simple one.
The second pool uses complex programs and some
little programs. It was used to test the perfor-
mance and memory overhead of dynStruct.

3.2 Overheads

The overheads (in performance and memory us-
age) of dynStruct are not related to the size or

the complexity of a program. They depend on how
many allocations are done and how many accesses
to these allocations are done. Complex program
are likely to have a larger overhead than smaller
ones but this is not always the case.
The following results show the overhead on tested
programs.

3.2.1 Data gatherer

The performance overhead arithmetic mean and
confidence interval (with 95% confidence) for ten
executions. The memory usage doesn’t change be-
tween multiple run of the same, so the value is
exact. The memory usage reported includes the
memory used by all library used by the executed
program, so a part of the memory overhead is due
to the size of the DynamoRIO and dynStruct li-
brary. Also a part of the performance overhead
is due to the time taken to load the DynamoRIO
run-time and initialize it, about 0.05s
The results are shown in Figure 4.
The results show clearly it is not possible to pre-
dict dynStruct overheads. For small programs
the memory overhead (x20) seems more important
then for emacs (x4) for example. This is due to
DynamoRIO and dynStruct libraries being loaded
in memory. Because this memory overhead is lim-
ited, it will be a problem only on programs already
using a huge amount of memory during their exe-
cutions.
The performance overhead seen is between 20 and
50 times slower than the original program. But
this result shows that dynStruct is usable for al-
most every program even if they are complex. But
in the case of some very complex programs which
are slow even executing in the normal way, the
data gatherer will not be easy to use (especially
if a specific action has to be taken to trigger the
behaviour to analyze).

3.2.2 dynStruct.py

The figure 5 shows the time and memory taken by
dynStruct.py to recover structures. The time re-
ported is also the confidence interval (with 95%
confidence) of ten executions of the recovering
process. For emacs only one execution was made
(because it takes a long time) and for xterm two
executions were made.
This result shows that the time and the memory
needed to do the recovery is directly related to the
size of the Json file from the data gatherer. This
file is usually small for little programs, so their

Daniel Mercier dynStruct

An automatic reverse engineering tool for structure recovery

and memory use analysis

14/29

program memory usage dynStruct memory original time dynStruct time
invocation usage

ls 2.4Mo 42Mo <0.01s 0.16s±0.02s
netstat 2.6Mo 42Mo 0.016s±0.01 0.33s±0.03s
emacs -q 27Mo 103.7Mo 0.20s±0.04s 56.59s±2.93

xterm -e ’exit’ 11Mo 68Mo 0.12s±0.01s 4.22s±0.07s

Figure 4: Overhead results for the data gatherer

program size of data gatherer output memory used time to recover
ls 204Ko 28.5Mo 2.08s±0.14s

netstat 6.6Ko 23.5Mo 0.18s±0s
emacs -q 129Mo 2.9Go 4h30
xterm -e 28Mo 900Mo 1h16±23.56

Figure 5: Time and memory used by the recovery process

recovery is fast. For more complex programs the
recovery is longer, sometimes a few hours. Also
the amount of memory needed on very complex
program can be huge. So the structure recovery
may be too long or need too much memory to be
used on large and complex programs, but it is fully
usable for other programs.

3.3 Accuracy of recovered
structure

Figure 6 shows the accuracy of the structure
recovery against several little programs. The
accuracy here is the exactness of the recovered
structures and of the type of recovered members.
The pool of tests used here is the same as the one
used in the MinX to MinC paper [12]. These are
programs from a suite of textbook examples [24].
Some of the programs are missing because they
don’t use any structure.
The comparison of member types is based only
on the basic types. This means all typedefs will
be ignored and considered as the basic type they
replace. Also pointers are always just recovered
as “pointer” (with sometimes a hint like “pointer
to structure” or “pointer to array” comments),
so the pointed type is not used in the type
comparison.
For the two “member match” columns, the
number of members used is the total number
of members of all the structures used by the
program. The “exact member match” column
shows how many recovered types are an exact
match for the recovered member. Similarly the
“partial member match” column indicates the
the match is only partial. This means the size is

the same but not the signedness or the floating
point state of the type is wrong. There is no
“no match” column because that never happened
during the testing.

There are two other mistakes dynStruct did
during these tests which are not shown in Figure
6. The first happened when analyzing binomial:
one more structure is detected. This structure is
suppose to be an array of pointers. But, because
every unit of this array didn’t have the same con-
text, some are recovered as int64 t and others as
pointers. So dynStruct considers this as a struc-
ture. The second mistake happened on the analy-
sis of hashsep. Only one structure is recovered but
all the blocks allocated by hashsep are detected as
instances of this unique structure. This happened
because the two structures have a similar pattern
(a int followed by a pointer). So for dynStruct the
two structures are identical.
When looking at this result it is clear than dyn-
Struct has good results but it is not perfect. The
main errors are or type detection for members.
These errors are mainly due to a not related con-
text when the members are accessed. This made
dynStruct unable to discover these members as a
pointers, so it kept the basic type for that size
which is int64 t. Another common error of dyn-
Struct is recovering a structure as an; array, this is
usually because these structures are made of sev-
eral members which have same type.
These results show that dynStruct can be trusted
by a reverse engineer to provide accurate informa-
tion about the recovered structures. Even if the
types recovered are not always a perfect match
compared to the original ones, there is always a
partial match which means just the signedness or

Daniel Mercier dynStruct

An automatic reverse engineering tool for structure recovery

and memory use analysis

15/29

program structures correctly structures recovered exact member partial member
name recovered as arrays match match
aatree 1/1 0 4/4 0
avltree 1/1 0 4/4 0
binheap 1/1 0 2/3 1/3
binomial 1/2 1/2 3/5 2/5
hashquad 1/2 1/2 3/3 0
hashsep 2/2 0 2/2 0
kdtree 1/1 0 0 3/3
leftheap 1/1 0 4/4 0

list 1/1 0 2/2 0
mergesort 1/1 0 1/2 1/2
pairheap 1/1 0 2/2 2/2
queue 1/1 0 4/5 1/5

redblack 1/1 0 4/4 0
skip 1/1 0 3/3 0
sort 1/1 0 1/3 2/3

stackar 1/1 0 2/3 1/3
stackli 1/1 0 2/2 0
treap 1/1 0 4/4 0
tree 1/1 0 1/3 2/3

Figure 6: Accuracy results of structure recovery

the floating point state is wrong.

4 Limitations

Each component of dynStruct has specific limita-
tions. Some of them were shown in the results
section, some are caused by not yet implemented
features and others are due to what a structure
can be.

4.1 Data gatherer

The limitations of the data gatherer are unimple-
mented features and the overhead.

4.1.1 Heap monitoring only

At the time of writing dynStruct only monitors
heap allocations. Some ways of storing data rely
on dynamic allocation (such as tree, linked list
or graph). Also, dynamic allocation is the com-
mon way to have structures with a lifetime not
related to the stack frame of the function allocat-
ing it. But, some structures may only be used on
the stack. In that case dynStruct cannot retrieve
them. Monitoring the stack to recover the struc-
tures used there is described in the future work
section (5.4).

4.1.2 No handling of custom allocators

To monitor heap allocation dynStruct wraps allo-
cation routines and records the allocated address
space. Even if dynStruct allows wrapping func-
tion in a library other than the libc (via the ’-a’
option) it can only wrap functions named malloc,
realloc, calloc and free. Also these functions have
to use the same combination of arguments and
returned values as the libc ones. In the case of
a program using a custom allocator or using raw
memory pages (using the mmap syscall, for exam-
ple) dynStruct is not able to monitor the uses of
this allocated memory. A solution to this limita-
tions is described in 5.5.

4.1.3 Overhead

A lot of e↵ort was put in reducing the overhead of
the data gatherer, but it is not possible to have an
overhead of 0. The overhead of a specific program
is not really predictable because it depends on the
number of allocations, the number of memory ac-
cesses (and how many of the accesses are done in
a block). Also using options to specified monitor-
ing (’-m’) and wrapping (’-w’) can have a huge
impact on the overheads. In some cases this over-
head may be to important to allow a real analysis
of the program, especially if the time is limited.
There is some idea in the future work section to

Daniel Mercier dynStruct

An automatic reverse engineering tool for structure recovery

and memory use analysis

16/29

reduce these overheads (5.1).

4.1.4 Supports only X86 architectures and
Linux

dynStruct is, for now, exclusively developed on
Linux and supports only X86 (32 and 64 bit) ar-
chitectures. This limits the possibility of using it
on any other architectures or OS. But porting it is
not a too heavy task. As described in section 5.6,
dynStruct is mainly written with already portable
code.

4.1.5 Path coverage

The data gatherer records block and accesses for
only one execution of the program. The only re-
covered structures are the ones used in this execu-
tion. This clearly means the amount of structures
(and members of structures) recovered depends on
the path coverage of the execution. So it may be
necessary to execute the program multiple times
with di↵erent options or to trigger di↵erent be-
haviours of the program to have all the structures
and members recovered.

4.2 Structure recovering

The structure recovering cannot be 100% accu-
rate. This has mainly two causes: members not
accessed during the execution and the fact than
two di↵erent structures in the source can be used
in the exact same way in the compiled program.

4.2.1 Unrecovered structure members

When a member is not accessed during the ex-
ecution of the program via the data gatherer,
the structure recovery process will consider it as
padding. This makes the recovered structure not
identical to the original one. This is due to the
path coverage limitation described in section 4.1.5

4.2.2 Accuracy

Even if every member is accessed, the recovered
structure may not the same as in the source code.
This is due to di↵erent types being used in the
same way, di↵erent structure layouts having the
same memory pattern after compilation or not
enough context to recover the exact type.

Equivalent types
There are only a few basic types, defined by

a size (usually 1, 2, 4 or 8 bytes), if they are
signed or not and if they are floating point or inte-
ger numbers. An exception for the pointer types
(which are basically 4 or 8 bytes long unsigned
integers) which have a special purpose : storing
memory address. All the other types used are just
aliases of a basic type. dynStruct tries to recover
the basic type only. So the recovered type may
not be the same as in the source of the program
but rely on the same basic type.

Equivalent layouts
When looking only at the memory and at what

value will be stored in the member, there is no
di↵erence between an array of X units of type Y
and X consecutive members of type Y. dynStruct
doesn’t rely on access patterns (yet, see section
5.3.1), so it cannot know the di↵erence and every
succession of more than 4 members with the same
type will be merged as structure. If there are 4 or
less consecutive members, they are considered as
consecutive members. This means the result may
di↵er when compared to the original structure but
the memory layout of the recovered structure and
the one of the original structure will be the same.

Unrelated context instruction
The data gatherer records two instructions, the

accessing instruction and a context instructions.
The goal here is to extract some context of usage
of the stored value. But, sometimes the context
instruction is unrelated to the value stored. In
that case dynStruct keeps the default type (which
is only based on the size of the access). Section
5.3.2 describes a solution to unrelated context in-
structions.

4.2.3 Memory and time
consumption in dynStruct.py

In its actual implementation, the dynStruct.py
script keep every block, access and structure in
memory during the recovery process and during
the use of the web interface. This can be a prob-
lem with complex programs. For example Emacs
with some configuration and modules installed
and without any option used for the data gath-
erer produces a Json file of more than 1Go. On a
computer with 8Go it is not even possible to load
the Json file in memory, so recovery is not possible
either. To reduce the impact of this limitation a
solution is described in section 5.2.
Time consumption can be another limitation.
Time consumption is a problem for huge blocks

Daniel Mercier dynStruct

An automatic reverse engineering tool for structure recovery

and memory use analysis

17/29

with thousands of accesses due to the actual im-
plementation of step 1 of the recovery process.
Step 1 will search for each o↵set in all accesses
of the block which accesses are done at this o↵set.
For example a Json file of 128Mo, produced by
the execution of “emacs -q” (which mean without
loading the configuration) takes around 4 hours
to go through the structure recovery process. The
greater part of that time is used to process only
one block, an array of int8 t (maybe a string) of
more 89,000 bytes and the block has more than
300,000 accesses. Even if the possibility to have
a serialized file allows reloading of a previously
recovered program without processing it again is
possible, this time consumption is too great. Also
the solution proposed for memory consumption
will have a positive impact on the performance
of the structure recovery for block with a huge
amount of accesses (database will be quicker than
a list to search in thousands of accesses).

5 Future work

DynStruct is already a powerful tool, but some
improvements can be done.
This section describes future improvements which
will be done to dynStruct. This includes removing
some of the limitations described in section 4 and
the addition of new features.

5.1 Data gatherer optimization

The data gatherer is a critical part of dynStruct
in terms of optimization because it is the compo-
nent which execute programs and extracts data
from these executions.
In this actual implementation the data gatherer
does all its instrumentation via what DynamoRIO
calls clean calls. A clean call is an instrumentation
based on the call of a specified function with com-
plete context switching. This means all the con-
text of the processor (all registers) are saved and
restored after the call. Even if dynStruct does not
save the floating point context (because it does not
use it), this context switching at every instrumen-
tation is one of the root causes of the performance
overhead of the data gatherer.
DynamoRIO provides other types of instrumenta-
tion including inline instrumentation. Inline in-
strumentation will just change the executed in-
structions in a program without any context save.
Using this instrumentation instead of clean calls

will reduce the performance overhead but this will
be more complex because instructions will have
to be manipulated directly. Also for some of the
clean calls it may not be possible to change them
to inline instrumentation (it depends on the com-
plexity of the instrumentation).
Another possible optimization of the data gath-
erer is the bu↵ering of the output. Actually dyn-
Struct uses the “dr printf” function provided by
DynamoRIO which doesn’t have bu↵ering. This
means a system call will be executed at every call
of this printf function and a system call means a
context switch to go into kernel land, which is time
consuming. Adding a bu↵ering of the output and
print into the output file only every 4096 bytes
for example (so that a raw memory page can be
used for the bu↵ering) will reduce the time used
to write data on the output file.

5.2 dynStruct.py optimization

At the time of writing, the dynStruct.py script
always keeps in memory every block, access and
structure. This is not a problem for little pro-
grams but for complex ones the amount of data is
too high to be kept in memory. For example a run
of emacs with some module and an important con-
figuration can have an output of more than 1Go
without monitoring or wrapping any library. To
fix that, storing the data in a database like mon-
godb can be a good idea. This will require more
work to remove the serialized file and replace it
by an import/export of the database. The goal of
this is to reduce the memory used by dynStruct.py
and if possible also improve the performance.

5.3 Structure recovery accuracy

The structure recovery is not 100% accurate and
it is not possible to reach this accuracy (because
two di↵erent structures can be the same from a
memory point of view). But it is possible improve
its accuracy. This improvement can come from
more data gathered by the data gatherer or from
deeper analysis by the dynStruct.py script.

5.3.1 Via data gatherer

dynStruct does not look at access patterns to re-
cover structures (the approach used by Rewards
1.3.2 and Howard 1.3.3), mainly to be able to han-
dle non accessed members and compiler padding.
But using access patterns as a secondary source

Daniel Mercier dynStruct

An automatic reverse engineering tool for structure recovery

and memory use analysis

18/29

of data for structure recovery can help to improve
the accuracy of the structure recovery.
Because compilers usually use known patterns to
access a structure (first get the root pointer and
then add an o↵set) and array (get the root pointer
and add an index), they can be used for better
detection of arrays and detection of inner struc-
ture. Actually array detection detects if all the
members of a structure have the same type at the
end of the recovery process (with the padding ig-
nored). Using only this approach can lead to a
few false positives and false negatives. But using
both approaches to detect arrays can reduce the
number of false positives and false negatives. It
can also allow removing the minimal size limita-
tion for array (which is 5 units).
Because a specific pattern is usually used to access
inner structures, it could be possible possible to
detect inner structures during the structure recov-
ery process. This will allow to recover structure in
a more closer way to the original than dynStruct
today.

5.3.2 Via dynStruct.py

The recovery process is done by dynStruct.py, so
it is logical that script can do more to improve the
accuracy of this recovery. Detecting the real type
of a member is di�cult: it requires analyzing the
semantics of instructions manipulating the value
stored in that member.
Today the data gatherer records one context in-
struction which is analyzed to recover the type of
a member. But sometimes, this context instruc-
tion (which is the previous instruction or the next
one) is unable to provide any context to the ac-
cess. In that case dynStruct.py could perform a
static analysis on the program itself by disassem-
bling and analyzing the entire function directly
from the program file, instead analyzing of only
two instructions to get this context. In order to
simplify this analysis, the program slicing tech-
nique [22] can be used on the disassembled func-
tion before analyzing it to only keep the instruc-
tion manipulating the read or written value. With
this dynStruct will be able to recover precise types
for more members than actually.

5.4 Stack analysis

The data gatherer only monitors access on the
heap. This means structures only used on the
stack will not be recovered.

By looking at the access pattern, the data gath-
erer would be able to identify structures on the
stack. After identifying, just considering it as a
block and considering it free on the return of the
current function should be enough for dynStruct
to handle structures used on the stack as well. The
most di�cult part will be to know the size of the
structure: it may require being able to change the
block size after its creation.

5.5 Mmap and custom memory
allocator handling

In its current state dynStruct only monitors calls
to malloc, calloc, realloc and free. Even if it is pos-
sible to wrap these functions in any library via the
“-a” option, wrapping other functions as memory
allocators and deallocators is not possible.
Becoming more flexible on these allocators will al-
low dynStruct to recover structures for multiple
languages and to be able to analyze programs us-
ing their own allocators and deallocators. This
can be di�cult to implement in a generic way be-
cause dynStruct will have to handle di↵erent com-
binations of arguments and return values. Using
a configuration file which will define the function
name to wrap and describe the combination of
arguments and return value can be a good solu-
tion. This configuration also should tell the data
gatherer where (what arguments) and how (for
example in calloc case, two arguments have to be
multiple to get the size of the allocation) it can
get the data needed to create and remove blocks.

5.6 Ports

dynStruct works only on Linux and X86 (32 and
64 bit) architectures. Porting it for other OS and
architectures would be a huge improvement. For-
tunately dynStruct is mainly already portable.
The script dynStruct.py is written in python3
making it available for any OS and architectures
where python3 is available. The only exception is
the analysis of the context instructions analyzes
only X86 architectures. But this analysis is using
Capstone [20]. Capstone can handle other archi-
tectures just by changing a parameter when ini-
tializing the disassembler. The code which does
the analysis may also need to do specific analyze
on each di↵erent architectures. All the other com-
ponents in dynStruct.py can already handle any
architecture.

Daniel Mercier dynStruct

An automatic reverse engineering tool for structure recovery

and memory use analysis

19/29

The data gatherer is compiled, so it needs to be
recompiled for any new architecture. Also it uses
the API provided by DynamoRIO for every in-
teraction with the executed program or the OS.
DynamoRIO is portable and actually available for
the three main OS (Linux, Windows and OS X):
just a few changes (like enabling Windows specific
options) are needed in dynStruct’s use of the API
to be portable. The data gatherer also reads and
parses the executable file to recover the address
of the GOT and PLT sections (2.2.3). The mech-
anism behind the GOT and PLT sections is not
present in every file format and OS. So to be us-
able on other OS the data gatherer will have to
have a specific handler for library calls for each
OS. In terms of architecture, every mechanism of
wrapping and recording only uses the API of Dy-
namoRIO, which is the same for every architec-
ture. Some little change may be needed (like mon-
itoring new type of memory access specific for the
ARM architecture) to work properly on other ar-
chitecture, but except that, the data gatherer is al-
ready portable. In term of dependencies, the data
gatherer doesn’t have any, except DynamoRIO.
This will also help to port to other OS easily.

6 Conclusion

dynStruct is a reverse engineering tool which
can successfully recover structures used by a
program. It performs this recovery in two steps,
data gathering followed by recovering. dynStruct
provide a powerful web interface which allows
a reverse engineer to e�ciently exploit the raw
data gathered for the structure recovery and
the recovered structure by linking all of them
together.
dynStruct already has users. Github repository
statictics shows that dynStruct is cloned, on
average, three or four times per week with a
peak at more than 40 clones during the first
two weeks of July. During these two weeks,
dynStruct was also tweeted and re-tweeted many
times by well-known accounts in the security
community like Binni Shah or Capstone Engine
(https://twitter.com/search?f=tweets&
vertical=default&q=dynstruct%20since%

3A2016-07-04&src=savs). At the time of writ-
ing, the dynStruct repository has 110 stars and
16 forks. Several websites like reddit (https:
//www.reddit.com/r/ReverseEngineering/

search?q=dynstruct&restrict_sr=on) and
ycombinator (https://hn.algolia.com/

?query=dynstruct&sort=byPopularity&

prefix&page=0&dateRange=all&type=story)
have posted it in their news. WeakerThan Linux
7, a custom security oriented Linux distribu-
tion, included dynStruct in its 11th of july
update (http://www.weaknetlabs.com/2016/
07/wt7-updater-stable.html).

Daniel Mercier dynStruct

An automatic reverse engineering tool for structure recovery

and memory use analysis

20/29

https://twitter.com/search?f=tweets&vertical=default&q=dynstruct%20since%3A2016-07-04&src=savs
https://twitter.com/search?f=tweets&vertical=default&q=dynstruct%20since%3A2016-07-04&src=savs
https://twitter.com/search?f=tweets&vertical=default&q=dynstruct%20since%3A2016-07-04&src=savs
https://www.reddit.com/r/ReverseEngineering/search?q=dynstruct&restrict_sr=on
https://www.reddit.com/r/ReverseEngineering/search?q=dynstruct&restrict_sr=on
https://www.reddit.com/r/ReverseEngineering/search?q=dynstruct&restrict_sr=on
https://hn.algolia.com/?query=dynstruct&sort=byPopularity&prefix&page=0&dateRange=all&type=story
https://hn.algolia.com/?query=dynstruct&sort=byPopularity&prefix&page=0&dateRange=all&type=story
https://hn.algolia.com/?query=dynstruct&sort=byPopularity&prefix&page=0&dateRange=all&type=story
http://www.weaknetlabs.com/2016/07/wt7-updater-stable.html
http://www.weaknetlabs.com/2016/07/wt7-updater-stable.html

Appendices

A Example of use

This section provides an example of use of
dynStruct. For this example a reverse engineer-
ing challenge from plaidctf 2016 (available at
https://github.com/ctfs/write-ups-2016/

tree/master/plaidctf-2016/reversing/

bitwise-250) will be solved using dynStruct
to analyze its use of memory. The challenge is
named bitwise and worth 250 points.
This section is not a write-up of the challenge:
just the part of the analysis using dynStruct
is described step by step. For the other steps
required to solve the challenge, just an overview
will be provided.
The program asks for a password when it is exe-
cuted without an argument and writes “Wrong”
when given an incorrect argument.
This is a classical reverse engineering challenge:
the input string which will make the program
print a success message will be the flag which
unlocks the points during the CTF.

A.1 Spoiler alert

When I did this example I started with no
knowledge of how bitwise works. But, to help
you follow this example I describe here how it
works.
Bitwise takes an argument and encodes it (I
will explain how) and compares the result with a
hard-coded value.
The encoder is a Burrows-Wheeler transform [23].
First a squared matrix is created: in each line
put the data and rotate it for the next line. For
example:
d a t a
a t a d
t a d a
a d a t

Next, the transformation will sort the ma-
trix using the first column as key. The result in
our example is:
a d a t
a t a d
d a t a
t a d a

The result of the transformation is the last
column (tdaa in our case) and the key is the

number of the line containing the original data,
3 in our example. With just the last column it
is possible to rebuild the matrix, and the key
indicates the line to read to get the data.
Bitwise does this transformation on the bit
representation of the argument and compares
the last column with the hard-coded data (which
is the last column of the same transformation
applied to the flag).
Please keep in mind that this description of how
bitwise works is here just to help following the
example. The example of use was written when I
solved this challenge. I started with no knowledge
at all of bitwise and discovered things and hints
step by step.

A.2 Overview of the example

Here is described every step I took to analyze this
program with dynStruct. The detail of each step
is in the following text of this section.
Step 1 Data gathering
Step 2 Structures recovering
Step 3 Blocks analysis
Step 4 Accesses analysis
Step 5 Comparison of execution
Step 6 Gather and analyze libc memory use

These steps are specific to the analysis of
bitwise. For another program they may be
di↵erent but the first four steps will be similar.
The other two steps are here to validate or not
some thoughts I had during the first four steps.

A.3 Note on screenshots

In all screenshots (except the first one) the blue
squares are zoomed areas of the screenshot to in-
crease the readability of important data.
All addresses (instruction addresses for accesses
and call addresses for allocation/deallocation) dis-
played by dynStruct’s web interface follow the for-
mat: “<address>:<function name>+
<o↵set in function>@<module name>”.

A.4 Step 1: Data gathering

The first thing to do is to gather the data with:
“drrun -c dynStruct -o run 1 – ./bitwise
4242”. This executes bitwise with the argu-
ment “4242” under the data gatherer. The option
“-o run 1” names the output file run 1, this file is
362K long at the end of the execution of the data

Daniel Mercier dynStruct

An automatic reverse engineering tool for structure recovery

and memory use analysis

21/29

https://github.com/ctfs/write-ups-2016/tree/master/plaidctf-2016/reversing/bitwise-250
https://github.com/ctfs/write-ups-2016/tree/master/plaidctf-2016/reversing/bitwise-250
https://github.com/ctfs/write-ups-2016/tree/master/plaidctf-2016/reversing/bitwise-250

Figure A.1: Block search view when starting the interface

gatherer.

A.5 Step 2: Structures recover-
ing

Next we have to recover the structure: “python3
dynStruct.py -o run 1.serialized -d run 1 -
c”. This takes run 1 as input file and will save the
result of the structure recovery (with all blocks
and accesses) into the run 1.serialized file. The
“-c” option is used to display the recovered struc-
tures into the console. The command displays the
message “No structure found”. This means the
program doesn’t use structures but may use ar-
rays because there are some blocks and accesses
recorded (the output file of the data gatherer
is not empty). dynStruct allows analyzing how
memory is used even if no structures are used. In
contrast, figure A.2 is a screenshot of the result of
the -c option with the data gathered on a program
which does use structures.

Figure A.2: Example of output of dynStruct.py -c
with a program using structure

A.6 Step 3: Blocks analysis

Now to analyze how the program uses its
allocated memory, the web interface must
be launched.“python3 dynStruct.py -w -p
run 1.serialized”. This used the serialized file
“run 1.serialized” as input and the -w option
starts the web interface. The output on the con-
sole is: “Starting web server at 127.0.0.1:24242”,
which means the web interface listens on 127.0.0.1
(only the host can access it) on port 24242. Just
copy the given address (“127.0.0.1:24242”) into a
web browser to see the web interface.
The web interface starts in the search blocks view
(figure A.1). This view displays every recorded
block with its information (the blue rectangle in
figure A.1 shows where the information is dis-
played). It also allows searching a specific block
with search fields (the red rectangle in figure A.1).
The navbar (the purple rectangle in figure A.1) al-
lows navigating through the di↵erent views.
By looking at this view we can start to analyze
the memory used by bitwise. There are 34 allo-
cations (the orange rectangle in figure A.1 shows
the total number of blocks), and looking at the
first page of the data-table, a lot of them are 4
bytes long. By putting 4 in the search field in the
column “size” we can see there are 33 allocations
of 4 bytes (see blue square in figure A.3). Now by
sorting the data-table by descending size (via the
little symbol after the name of the column (green
squares in figure A.1)) we can see a 256 byte block.

Daniel Mercier dynStruct

An automatic reverse engineering tool for structure recovery

and memory use analysis

22/29

Figure A.3: Search for all 4 bytes long blocks

A.7 Step 4: Accesses analysis

The purpose of this step is to find out how the
di↵erent types of allocation by bitwise are used.
For that I take a look at the “malloc caller” col-
umn. I can see multiple blocks seem to be allo-
cated in the same function starting at 0x400550 (if
this function had a symbol, dynStruct would have
display it instead of the starting address). We can
check if all the blocks are allocated by this func-
tion by putting “:0x400550+” in the search field
of the “malloc caller” column. Putting “:” be-
fore the address and “+” ensures we find exactly
this exact address (because of the format used to
display the information). After filtering, all the
blocks are still displayed, so all the blocks were
allocated in this function. I will call this function
the “allocating function”. Now multiple 4-byte al-
locations are allocated by the exact same instruc-
tion (at 0x4005f5). To verify if all 33 blocks are
allocated at the same place, it is possible to put
“0x4005f5:” in the “malloc caller” search field.
This time only 32 blocks are displayed, so there
is one 4-byte block which is allocated somewhere
else. I will call the 32 blocks “little blocks” and
last one the “lonely block”. Clean the search
field and sort the data-table by descending malloc
caller: the first displayed 4-byte block (block 33)
is allocated at 0x4005a3.
Now I know there are 34 allocations, one of 256

bytes and 33 of 4 bytes. I also know all 4-byte al-
locations are done by the same call to malloc, so it
must be in a loop. All the 34 allocations are made
in the same function, which start at 0x400550.
To continue this analysis I must go to the detailed
view of some of these blocks. I will start with
the 256-byte block. To go to its detailed view

just click on the link of the “detailed view” corre-
sponding to this block (see figure A.4). dynStruct
didn’t find any structure pattern in this block so it
must be an array. dynStruct can recover the type
of the array. For that I just need to click on the
link named “Analyze this block”. Now the block
is linked to “struct 1” (the default name given by
dynStruct). Clicking on the link “struct 1” shows
me the detailed view of the structure. In this case
it is an array, so dynStruct considers it is a struc-
ture of only one member. As shown in figure A.5,
this member is an array of int64 t (the default
type for members of this size). If I click on this
single member, named “array 0”, I can see that
there are 32 units in this array. Looking at the
number of units and the size of each unit, this
array may be an array of pointers (bitwise is a
64bit program) where every pointer points to one
of the 32 little blocks (I will check that later by
comparing this result with another execution of
bitwise, in section A.8).
Back on the detailed page of the longest block,
I will take a look at the data-table. This data-
table contains every access made to this particular
block. The first thing I notice is some accesses are
made in a function other than the allocating func-
tion; this function starts at 0x4009b0. To check if
some access is made by the allocating function, I
can search for “:0x400550+” in the agent column
(see figure A.6). I can see there are 32 read and 32
write accesses made by this function. The write
accesses are at 0x4006a1 but the allocation of this
block is at 0x400593. These two instructions are
very close to each other. This may mean the ar-
ray is initialized just after its allocation and never
written again in the allocating function. The 32
read accesses are made elsewhere in the function,

Daniel Mercier dynStruct

An automatic reverse engineering tool for structure recovery

and memory use analysis

23/29

Figure A.4: Detailed view of the longest block

Figure A.5: struct 1 view, recovered from analysis of the longest block

Daniel Mercier dynStruct

An automatic reverse engineering tool for structure recovery

and memory use analysis

24/29

Figure A.6: Accesses made to the longest block in function 0x400550

maybe to check the result after some processing.
The accesses made on this array by the allocat-
ing function are one read and one write per o↵set.
This may mean the array is initialized in the allo-
cating function and processing in the other func-
tion. I will call this other function the “processing
function”. To confirm that I will put the address
of the other function in the search field of the col-
umn “agent”. The result is 1043 of 1107 accesses
are made by this function. So every access is made
in the processing function except the 64 made in
the allocating function.
Now I will analyze the detailed view of one of

the little blocks. I to go the detailed view of block
22 and run the analysis on it. The “struct 2” is
created and linked to this block. In the detailed
view of this structure there are 4 members of the
same type (int8 t) instead of 1 array with 4 units.
This is due to the minimal size for an array which
is 5. Next I click on the link “Detect instances” to
automatically link every block which matches the
pattern of struct 2 (in this case every array of four
unit of int8 t). After that I can see there are 33
blocks in the second data-table of the page.This
data-table displays the linked blocks or instances
of this structure (see figure A.7). This means the
4-byte block which is not allocated at the same
place is also an array of four int8 t.
Back in the detailed view of block 22, I will take a
closer look into its accesses (displayed in the data-
table). The first thing I notice is, there are only 9
write accesses (I checked that by selecting write in
the bottom of the “write” column). All these write
accesses are done in the allocating function. Four

of these accesses are done by the same instruction
(at 0x40068d) and are done to every o↵set. The
instruction at 0x400628 also accessed every o↵set
and an extra access is made at o↵set 3. All the
instructions are quite close to each other. It could
mean one or two loops are used to initialize the
little blocks. Looking at the read accesses I notice
some are done in the allocating function and some
in the processing function. If I take a look at the
o↵sets of the read accesses I notice that all o↵sets
are read once in the allocating function and twice
more for the o↵set 3. All of the other reads (24
in the processing function) access all the o↵sets
between 5 and 7 times. Apparently these little
blocks are allocated and then initialized in the al-
locating function, and after that, the processing
function reads all the data they contain multiple
times. Also their number is equal to the size of the
bit representation of the input used when collect-
ing the data (“4242”); this thought will be checked
later in A.8 with the one relating to the size of the
biggest allocation. I also check another of the lit-
tle blocks and the accesses are very similar, so I
consider all of them identical for the rest of the
analysis.
Now it is time to take care of the lonely block, allo-
cated at 0x4005a3 (block 32). In its detailed view
I can see there are only 8 accesses, 4 writing and
4 reading. All of them occur eight times, and are
done by the same instruction at 0x400705. This
means this instruction does a read access and a
write access at the same time, so this instruction
is called 8 times per o↵set, which is the number
of bits per o↵set. I will suppose this means the

Daniel Mercier dynStruct

An automatic reverse engineering tool for structure recovery

and memory use analysis

25/29

Figure A.7: Auto-detected instances for struct 2

value store is built bit by bit. The fact that the in-
struction (it is always the same instruction which
accesses the lonely block) which accesses the allo-
cation is an “or” supports the idea of the bit by
bit construction of the value.
Now we know that the allocating function also
does the initialization of all the allocations. We
also know that the processing function changes
values of the array and reads every o↵set in the
little blocks multiple times.

A.8 Step 5: Comparison of exe-
cution

Now I need to find out if my thoughts were correct
or not to have a deeper understanding of bitwise.
I had one thought which is that the size of the ar-
ray and the number of little blocks is equal to
the number of bits in the parameter given to the
program. To check if this is true, I will re-execute
bitwise under dynStruct with the argument “24”
instead of “4242”. If it is true I will have only 16
allocations and 16 units in the array.
The first command is similar to before: “drrun -c
dynStruct -o run 2 – ./bitwise 24”. But this
time for the script, it will be: “python3 dyn-
Struct.py -k -d run 2 -w -l 127.0.0.1:24243”.
The option “-o” in not used because I will use this
only once to do the comparison, so I don’t need
to save the loaded data in a serialized file. The
web interface is directly started via the “-w” op-
tion but on a di↵erent port (the “-l” option is
used to change the port). Binding it on a di↵er-
ent port allows me to have to two instances of the
web interface in two tabs in the same browser to
compare them easily. To finish the “-k” option is
used because I know there are only arrays and not

structures, so I have to tell dynStruct to not re-
move them (I don’t have to analyze each of them
via the web interface).
Looking at the details of the longest array, there
are only 16 units, but there are no allocations of
size 4. Instead I have 17 allocations of size 2, 16
by the same instruction and 1 separate. The one
separate is allocated and used in the same way as
the lonely one in the first execution; the 16 alloca-
tions are also very similar in their use (allocation,
access pattern) as the little blocks in the first ex-
ecution.
This confirms my thought. I also learn new in-
formation, the size of the allocations (little blocks
and lonely block). This size is the number of bytes
in the parameter given to bitwise.

A.9 Step 6: Gather and analyze
libc memory use

In this last step, I want to know how the compar-
ison with the hard-coded data is made and with
what this data is compared.
If I take a look at the symbols imported by
bitwise, I notice memcmp. Memcmp is used to
compare memory areas; it could be used the check
the input after the processing in bitwise.
To check that, I will do a third execution with
the parameter “4242” but I will add monitoring
of libc: “drrun -c dynStruct -m libc -o run 3
– ./bitwise 4242”. To start dynStruct.py I used
the same command as the one used for the com-
parison (just change the name of the file).
This time I go to the access view to see if some ac-
cesses are done by memcmp. To check that I just
write “memcmp” in the column agent as shown in
figure A.8. I can see two accesses made in block

Daniel Mercier dynStruct

An automatic reverse engineering tool for structure recovery

and memory use analysis

26/29

Figure A.8: All accesses made by memcmp during bitwise execution

32. If I go to the detailed view of this block it
turns out to be the lonely block. This confirms
that the lonely allocation is the one used to do a
comparison, which certainly is the check to tell if
the parameter is the flag or not. Some classical
reverse engineering is needed to confirm that and
finish solving the challenge.

A.10 Summary

By using dynStruct, I quickly know where to look
(only two functions appear on the accesses) and
what data structures are used by the program (I
know the size of the di↵erent allocations). I also
know where every allocation is done and accessed.
All this information can be gathered faster using
dynStruct than via classical reverse engineering.

A.11 End of solving

After this analysis via dynStruct, radare2 (a
reverse engineering and exploitation framework
[2]) was used to finish solving this challenge. It
turns out the allocating function is the main of
bitwise. After some reverse engineering it is
possible to recognize a Burrows Wheeler trans-
formation [23] based on the binary representation
of our input (which explains the number of allo-
cations and the size of the array). This explains
the number of little blocks, which is “8 * <size of
input>” or the number of bits in our input. After
this transformation the Burrows Wheeler form
of the input parameter is copied in the lonely
allocation. This lonely allocation is compared
with a hard coded array of 48 bytes after that
(via the noticed memcmp). We don’t have the
key of the transformation but by reconstruct-
ing the matrix used for the Burrows Wheeler
transformation using the hard coded data as last
column of the matrix and only keeping the row
starting with “PCTF{” (all flags in the plaid ctf
start with these letters) it is possible to get the
original sentence used. The Burrows Wheeler

transformation is specially made to allow the re-
construction of the initial matrix. The final flag is
“PCTF{clever pun about burrows wheeler goes here}”.

A.12 Conclusion

All the thoughts I had during the dynStruct analysis

were true. This information allowed me to only take a

look at the important places in bitwise’s disassembly

which were: the initialization (to know what are the

data put in the allocations), the processing (to know

what manipulation is done to the array) and the final

check (to know what data are put in the lonely alloca-

tion and with what it is compared).

Daniel Mercier dynStruct

An automatic reverse engineering tool for structure recovery

and memory use analysis

27/29

References

[1] Hex-Rays SA. IDA PRO disassembler and de-
bugger. July 2016. https://www.hex-rays.
com/products/ida/

[2] Radare2. July 2016. http://radare.org/r/

[3] The GNU Project Debugger. July 2016.
https://www.gnu.org/software/gdb/

[4] X64dbg. July 2016. http://x64dbg.com/

[5] Daniel Mercier. dynStruct. August 2016.
https://github.com/ampotos/dynStruct

[6] Anthony Cozzie, Frank Stratton, Hui Xue,
and Samuel T. King. 2008. Digging for data
structures. In Proceedings of the 8th USENIX
conference on Operating systems design and
implementation (OSDI’08). USENIX Associ-
ation, Berkeley, CA, USA, 255-266.

[7] Zhiqiang Lin, Xiangyu Zhang, and Dongyan
Xu. 2010. Automatic reverse engineering of
data structures from binary execution. In
Proceedings of the 11th Annual Information
Security Symposium (CERIAS ’10). CERIAS
- Purdue University, West Lafayette, IN, Ar-
ticle 5, 1 pages.

[8] Chi-Keung Luk, Rovert Cohn, Robert Muth,
Harish Patil, Arthur Klauser, Geo↵ Lowney,
Steven Wallace, Vijay Janapa Reddi, and
Kim Hazelwood. Pin: building customized
program analysis tools with dynamic instru-
mentation. In Proceedings of ACM SIGPLAN
Conference on Programming Language De-
sign and Implementation (PLDI’05), pages
190–200, Chicago, IL, USA, 2005.

[9] Asia Slowinska, Traian Stancescu, Herbert
Bos. Howard: a Dynamic Excavator for Re-
verse Engineering Data Structures. In Pro-
ceedings of Network and Distributed System
Security Symposium. The Internet Society,
2011.

[10] Fabrice Bellard. QEMU, a fast and portable
dynamic translator. In Proceedings of the
USENIX Annual Technical Conference,
2005.

[11] JongHyup Lee, Thanassis Avgerinos, and
David Brumley. TIE: Principled Reverse En-
gineering of Types in Binary Programs. In

Proceedings of Network and Distributed Sys-
tem Security Symposium. The Internet Soci-
ety, 2011.

[12] Ed Robbins, Andy King, and Tom Schri-
jvers. 2016. From MinX to MinC: semantics-
driven decompilation of recursive datatypes.
In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL ’16).
ACM, New York, NY, USA, 191-203.

[13] Michal Zalewski (aka Icamtuf). American
fuzzy lop. July 2016. http://lcamtuf.

coredump.cx/afl/

[14] Nicolas Nethercote and Julian Seward. Val-
grind: A framework for heavyweight dy-
namic binary instrumentation. In Proceedings
of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implemen-
tation (PLDI ’07). pages 89–100, June 2007.

[15] Stefan Le Berre. Vulnerability research on
Windows binaries. In Nuit du hack 2015. July
2016. https://www.youtube.com/watch?v=
IexI5hIY6A0

[16] Cosmin Gorgovan. dynamorio pin escape.
July 2016. https://github.com/lgeek/

dynamorio_pin_escape

[17] Derek Bruening, Qin Zhao, and Saman Ama-
rasinghe. 2012. Transparent dynamic instru-
mentation. In Proceedings of the 8th ACM
SIGPLAN/SIGOPS conference on Virtual
Execution Environments (VEE ’12). ACM,
New York, NY, USA, 133-144.

[18] Google Inc. Google Summer of Code.
July 2016. https://developers.google.

com/open-source/gsoc/

[19] Frida. July 2016. http://www.frida.re/

[20] Capstone engine. July 2016. http://www.

capstone-engine.org/

[21] Bootstrap. August 2016. http:

//getbootstrap.com/

[22] Mark Weiser. 1981. Program slicing. In Pro-
ceedings of the 5th International Conference
on Software Engineering (ICSE ’81). IEEE
Press, Piscataway, NJ, USA, 439-449.

Daniel Mercier dynStruct

An automatic reverse engineering tool for structure recovery

and memory use analysis

28/29

https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/
http://radare.org/r/
https://www.gnu.org/software/gdb/
http://x64dbg.com/
https://github.com/ampotos/dynStruct
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
https://www.youtube.com/watch?v=IexI5hIY6A0
https://www.youtube.com/watch?v=IexI5hIY6A0
https://github.com/lgeek/dynamorio_pin_escape
https://github.com/lgeek/dynamorio_pin_escape
https://developers.google.com/open-source/gsoc/
https://developers.google.com/open-source/gsoc/
http://www.frida.re/
http://www.capstone-engine.org/
http://www.capstone-engine.org/
http://getbootstrap.com/
http://getbootstrap.com/

[23] Michael Burrows and David John Wheeler.
1994. A Block-sorting Lossless Data Com-
pression Algorithm. Digital Systems Research
Center, Research Report 124.

[24] Mark Allen Weiss. Data Structures and Algo-
rithm Analysis in C. Addison-Wesley, 1996.

Daniel Mercier dynStruct

An automatic reverse engineering tool for structure recovery

and memory use analysis

29/29

