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Abstract—Understanding signature complexity has been shown
to be a crucial facet for both forensic and biometric applications.
The signature complexity can be defined as the difficulty that
forgers have when imitating the dynamics (constructional aspects)
of other users signatures. Knowledge of complexity along with
others facets such stability and signature length can lead to more
robust and secure automatic signature verification systems. The
work presented in this paper investigates the creation of a novel
mathematical model for the automatic assessment of the signature
complexity, analysing a wider set of dynamic signature features
and also incorporating a new layer of detail, investigating the
complexity of individual signature strokes. To demonstrate the
effectiveness of the model this work will attempt to reproduce
the signature complexity assessment made by experienced FDEs
on a dataset of 150 signature samples.

I. INTRODUCTION

Handwritten signatures have long been established as one
of the most widely used means of identification at per-
sonal, industrial and governmental levels. As examples, most
agreements with financial institutions or postal deliveries are
followed by the act of signing as a transactional verification.
To support the use of signature as transactional verification
many end-user companies have adopted electronic write-on
screen capture devices in order to incorporate the users sig-
natures into paperless solutions. The paperless solution allows
companies to behave in a more eco-friendly manner and, at
the same time, reduce cost and improve work flow processes.
Furthermore it has been shown that there is high customer
acceptability in the use of signature using write-on devices
[1]. These technologies have renewed interest in dynamic
automatic signature verification (AVS) systems wherein both
the static (outcome) and dynamics (constructional/temporal)
elements are considered in comparison. Current AVS systems
have achieved very promising error rates and are considered as
a mature biometric modality [2]. A number of recent studies
have assessed usability aspects of ASV systems wherein not
only the algorithmic performance was analysed, but also how
the users interact with the technology [1].

The handwritten signature is a behavioural biometrics
modality, and therefore is susceptible to fraudulent attempts
by imitating the sequence of movement that create the signa-
ture output. Within the forensic document examiners (FDE)
community it is accepted that there are a range of signatures,
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some easier to imitate than others. Found and Rogers [3]
define signature complexity as the difficulty that forgers have
when imitating the dynamics (constructional aspects) of other
users signature. This degree of difficulty supports FDE in their
decisions whether a signature sample is genuine or an imita-
tion. As a biometric means of authentication, a signature can
be thought of as being analogous to conventional passwords
in terms of definition and use, with three aspects to which a
robust signature should comply:

a) Quantity of data: this can be akin to the length of a
password. Most common password-based authentication
systems force users to choose a minimum number of
characters for their passwords. In a dynamic signature, this
can be translated as ensuring enough constructional sample
points which relates to the temporal length of a signatures
construction.

b) Consistency of the signature: as a behavioural biomet-
rics, dynamic signature have an inherent variability. ASV
systems are designed to manage this variability, generally
through tolerance within pattern recognition techniques.
However, this variability cannot be excessively large, oth-
erwise it could compromise the security of the solution.
Applying the password analogy, users are expected to use
the same password at each attempt. In the same manner,
users of ASV systems should provide the same signature
each time (within an acceptable degree of variability).

c) Complexity of the signature: as previously stated, the
complexity of a signature can be described as the difficulty
of being imitated. Within the password analogy this can be
interpreted as the rules which reject simple passwords and
force users to incorporate upper and lower case characters
and/or the inclusion of numbers. In the signature domain,
complexity has been linked to the number of changes in
direction (also known as singular points) and the number
of intersections between the signature lines [4].

Consequently, there is a consensus that knowledge of sig-
nature complexity can help the ASV systems to improve their
performance. As in other biometric modalities, the quality
of the input sample has an effect on the performance of
biometric systems. A clear example of this is the NFIQ
(NIST Fingerprint Image Quality) used in fingerprint biometric



systems [5]. The signature complexity can be used as a quality
check for ASV systems, therefore requiring a method to auto-
matically analyse the complexity of signatures after collection.
Complexity can be used within ASV systems to reject very
simple signatures that do not comply with minimum security
requirements. Signature complexity levels can also be used to
tune comparison engines with different settings at algorithmic
level providing the potential to allow an enhanced and/or more
secure method to compare simple or complex signatures.

Inspired by the work of Found and Rogers [4], the authors
have revisited the task of automatic signature complexity
assessment from a biometric perspective. Using the dynamic
data available from the signature capture devices, FDE static
signature complexity features can be automatically extracted
and complemented with dynamic signature features to improve
the complexity assessment. The aim of this work therefore is
to investigate on the creation of a mathematical model for the
automatic assessment of the signature complexity. We explore
the effect of increasing the number of features analysed
and also incorporate a new layer of detail, investigating the
complexity of individual signature strokes. To demonstrate the
effectiveness of the model this work will attempt to reproduce
the signature complexity assessment made by experienced
FDEs.

II. LITERATURE REVIEW

The need for objective measurements in FDE was the
primary motive for the development of a complexity theory.
Huber stated in his work that “the complexity of writing
movement is thought to be critical for the reliability of the
examination process” [6]. Signature complexity theory is
based therefore on two basic principles: i) the more material
there is to for the comparison of a disputed signature of a
person the easier it is for the expert to reach safer conclusions,
ii) the more complex the writing of a person, the more difficult
it is to be copied by another individual [7].

A state-of-the-art article for ASV stated that a common
problem for systems is caused by the complexity of sample
signatures [2]. When a signature is small without many
features and often similar characteristics, these carry less
information with a higher likelihood that the system will
produce the wrong outcome.

Several researchers have discussed the complexity theory
with respect to a person to executing different types of
handwritten tasks. In a study by Wing [8], a relationship
was found between the reaction time (the preparation time
that is needed by an individual and the required mental effort
to execute a task) and the complexity of writing letters of the
alphabet. Subsequently Hong also observed an effect between
the pressure and complexity, the pen pressure performed by
the participants when were asked to write on a writing surface
was higher in more complicated writing tasks [9].

Found and Rogers [4], [10], [11] proposed a complexity
theory which is based on the fact that as the complexity of a
signature increases, the likelihood of the potential for a correct
FDE opinion increases. Using a discriminant function analysis,

the best static predictors appeared to be the number of turning
points and the number of intersections. A statistical model
with 3 equations were proposed to classify the signatures
on a three-point complexity scale based on these objective
predictors [4], where 72.9% of the complexity scores by 14
FHEs were predicted correctly by the model. Dewhurst et al.
[12] in another study found that the opinions of specialists
varied, however the statistical model managed still to correctly
classify 75% of signatures based on a consensus of responses.
Within the biometric community several studies have anal-
ysed the impact of signature complexity on the verification
algorithms performance. In 1993, Brault and Plamandon anal-
ysed this impact in [13], validating than shorter signatures
convey generally less information than longer ones, and there-
fore, achieve lower verification performances. Following this
idea, Fairhurst et al. [14] investigated several issues relating
to signature complexity and authentication decisions, showing
the impact of signature complexity levels in the error rates
obtained and acknowledging the need of further investigation
on signature complexity methods. In 2007, Alonso-Fernandez
et al. [15] analysed the impact of legibility on signature
verification performance concluding that the most complex
flourish signatures are more robust to skilled forgeries.

III. METHODOLOGY

In this section our methodology to find the best set of
features than can model signature complexity assessment will
be detailed. Firstly, the capture protocol and demographic
information of the signature database used in our analysis
will be provided. Samples from this database were processed
to create an assessment form which was sent to the FDEs
in order to obtain their expert signature complexity assess-
ments. Furthermore we will describe the dynamic signature
features analysed in this work, the feature selection technique
performed and the statistical model created to replicate FDE
outputs.

A. Database

The signature database used in this study is part of a
wider collection by the University of Kent made in 2008
[16]. It comprises 150 participants and contains both signature
samples and handwriting text. Participants donated the signa-
ture data both within a constrained signing box (of 80mm
by 30mm) and without constraints. The signature data was
captured using a Wacom Intuos 2 tablet. This device captured
the movement of the pen with a sampling rate of 100 Hz,
providing the X and Y coordinates of the pen, the pen-tip
pressure exerted and two angles to spatially locate the pen:
the azimuth and the altitude. The database cover a wide range
of ages and a representative sample of gender, handedness
and writing language. Table I specifies the percentage of
participants on each category:

B. Forensic document examiners assessment

Using the signatures without constraints from the Kent
database, static images were sent to three leading professional



TABLE I: Signature database participant distributions

18-29 55%

30-40 10.50%

Age group 40-50 6%
50-60 10.50%

60-70 11.30%

Over 70 6.70%

Gender Male 39.90%
Female 60.10%

Right 91%

Handedness Left 9%
English 81%

Writing language Western 8%
Non-western 11%

forensic document examiners in the UK. These forensic docu-
ment examiners have considerable expertise over many years
through a wide variety of investigations and cases at different
national and international courts. 150 signature sample images
were arranged on a form divided into eight signatures per page
reproduced at normal size. Below each signature were three
options for complexity assessment: High, Medium or Low.
Each FDE analysed the signatures independently drawing on
their individual expertise and experience. In addition, at the
end of the document, the FDE were also asked to describe
briefly the major factors that led them to select one of the
three signature complexity level. Figure 1 shows the signature
complexity distribution of the opinion provided by the three
FDEs.
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Fig. 1: Signature complexity histograms from the three FDE (and
the modal response across the FDEs)

The three FDEs agreed on 93 of the signatures (62%)
whilst in the remaining 57 signatures, at least two of them
agree. Within these 57 signatures, in 28 cases there was a
disagreement between assigning low or medium complexity.
In other 29 cases the disagreement was between considering
medium or high complex. In Figure 1, the signature complex-
ity level mode (the most accepted value) is also represented
(black column). This modal response was selected as the
representative complexity value in order to create and evaluate
the signature complexity models.

The main factors indicated by the FDEs when assigning
high signature complexity was: i) the existence of multiple
pen strokes and whether they overlap or not, ii) the existence
of multiple changes in directions, iii) length, iv) the difficult to

determine the path of strokes sequence followed by the signers
and v) the degree of signature illegibility. If a signature was
short with a simple structure and clean path it was considered
of low complexity (see Figure 2 for high and low complexity
signature examples). The signature which werent considered
low or high complex would fall consequently in the medium
complexity level. FDEs based their assessment mainly on static
features extracted from the signature image. A number of tech-
niques allow FDEs to extract or estimate dynamic information
such pressure or velocity. However, due to the time required
for the task of assessing 150 complexity signatures, these
techniques were not applied by the FDEs. In this work, the use
of automated extraction of dynamic information such as pen
velocity or acceleration will enable the systematic and accurate
location of points such as intersections, changes of writing
direction or stroke detection adding new layers of information
for use in the complexity assessment.
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Fig. 2: Signature samples of high and low signature complexity
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Fig. 3: Signature image with Inter and intra stroke intersection
points and Zero-crossing points for X and Y velocity

C. Signature feature extraction

Based on the literature review and the FDE indications, the
following set of static and dynamic features were extracted
from each signature to enable a signature complexity assess-
ment:

1) Number of strokes: the number of pen-down events
within a full signature. In Figure 3, the strokes are
represented by line styles: solid, dashed and dotted.

2) Total number of intra-stroke intersections: this feature
denotes the sum of all the intersections points from every
individual stroke from a signature. Example of intra-
stroke intersections can be seen at Figure 3, marked with
white circles.

3) Total number of inter-stroke intersections: this feature
denotes the sum of all the intersections point across
different strokes from a signature. Example of inter-stroke



intersections can be seen at Figure 3, marked with black
circles.

4) Mean of intra-stroke intersections: the average number
of intra-stroke intersections amongst the different strokes
of a signature.

5) Maximum of intra-stroke intersections: the maximum
number of intra-stroke intersections amongst the different
strokes of a signature.

6) Mean of inter-stroke intersections: the average number
of inter-stroke intersections amongst the different strokes
of a signature.

7) Maximum of inter-stroke intersections: the maximum
number of inter-stroke intersections amongst the different
strokes of a signature.

8) Number of X-axis intersections: As UK population
generally writes from left to right, the X-coordinate
generally shows a tendency to increase across signing
time. This effect can be seen in the X-coordinate vs.
time graph as a linear component of a regression line.
This feature denotes how many times the X-coordinate
signal intersect an imaginary line that joins the start and
the end points. The value is an indication of how many
times the pen moved backwards (to the left). Examples of
these crossing can be seen at the first graph of Figure 4,
where X-coordinate is represented by the black line, and
the imaginary line from the start to the end sample points
is represented in grey. The intersections are marked with
white diamonds.

9) Total number of Vx zero-crossings: this feature denotes
how many times the X-coordinate change direction from
increasing to decreasing or vice-versa. In order to find
these changes the first time derivative, the velocity of X-
coordinate (Vx), is calculated and the number of time it
cross the zero line (denoting a change from increasing to
decreasing or vice-versa) value is found. In Figure 4, the
X-coordinate velocity is represented, along with the zero-
velocity line and examples of the zero-crossing points
marked with white diamonds.

10) Total number of Vy zero-crossings: as in feature 9, but
using the Y-coordinate.

Total number of Ax zero-crossings: in order to add
another level of complexity measurement, the changes
in pen velocity, from increasing to decreasing and vice-
versa, have been analysed. The temporal derivative of
the velocity, the acceleration in x-coordinate (Ax), has
been calculated. This feature denotes the total number
of zero-crossing-point found in Ax. In Figure 4, the x-
axis acceleration is represented, along with the zero-
acceleration line and examples of the zero-crossing points
marked with white diamonds.

Total number of Ay zero-crossings: as in feature 11,
but with the Y-coordinate.

Signature length: the signature length has been calcu-
lated as the sum of the Euclidean distances between
sample points.

14) Normalized signature length: in order to obtain a robust

11)

12)

13)

value which is not dependant on the size of the signature,
the signature length is normalized by the diagonal length
of the signature minimum bounding box.
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Fig. 4: Crossing points for X-Coordinate

D. Statistical model and feature selection

Following the extraction of these 14 features from each
signature, the power to predict the complexity of signature
was analysed using statistical models. Using, as a response
of the model, the complexity indicated by the FDEs (which
was numerically translated to: 1 for Low, 2 for Medium and
3 for High complexity) multi-linear regression models have
been created for different combinations of features. Multi-
linear regression models represent the relationship between
the explanatory variables (the different combination of the 14
features extracted) and the response variable, the signature
complexity, by fitting a linear equation to the observed data.
The linear equation has the following form:

n
y=cot Y (om0
=1

where y is the response variables (in our case the signature
complexity), z; is the i-th feature extracted, c¢; is the i-
th regression coefficient for that specific feature, cy is the
intercept of the linear regression model and n is the number of
features included in the model. In order to find the optimum set
of features to predict the signature complexity, an exhaustive
search was implemented. As the search space is made out of
14 potential features, it represents 2* — 1 (=16383) possible
combinations.

IV. RESULTS

The 14 signature features were calculated for all the 150
signers within the dataset. The mean and standard deviation
of feature results can be analysed when grouped by the
complexity level assigned by the three FDEs. Table II shows
the values obtained for each feature.

It is possible to note how all the features have a higher
mean value as the complexity level increase. However, the
standard deviations for each feature also increase, especially
for the high signature complexity levels. For the modelling
stage, in order to obtain coefficient values more easily compa-
rable, feature values have been z-normalized. Z-normalization



TABLE II: Feature value mean and standard deviation grouped by
signature complexity level

Feature Low Medium High

1 410  (2.35) 526  (3.65) 5.62 (4.09

2 693  (453) 12.69  (8.72) 25.15  (18.41)
3 590 (448 10.13  (7.07) 16.54  (14.41)
4 147 (3.16) 2.58  (6.66) 7.15  (15.00)
5 1.90  (3.06) 3.61  (6.61) 10.73  (14.76)
6 246  (2.90) 432 (6.33) 8.43  (14.57)
7 459 (349 7.04  (6.31) 11.69  (14.17)
8 6.72  (3.73) 927 (559 8.65 (8.17)

9 25776 (12.09) 3740 (16.07) 46.77  (23.24)
10 26.83  (12.54) 3998  (16.20) 48.69  (20.60)
11 34.31 (1591) 4992 (2144) 61.77  (28.86)
12 3510  (16.84) 4882  (21.81) 60.54  (28.60)
13 16.16  (5.46) 24.04  (7.86) 37.59 (1431
14 3.10  (0.91) 372 (1.15) 521  (1.34)

transforms a variable to have 0 mean and 1 standard deviation
value. This is made by subtraction of the mean variable value
and dividing by its standard deviation. It is worthy to remind
that z-normalization does not affect the fit of the model, only
made a change on the coefficient values. Both model, with and
without z-normalization will have the same r-square values and
error distributions. Furthermore both models will provide the
same signature complexity decision. Based on the accuracy to
replicate the signature complexity decisions made by the three
FDEs, the best model obtained contained the following feature
set (Table III):

TABLE III: Coefficient values for the signature complexity model
based on the mode value

Feature Coefficient
Intercept 1.98
Number of strokes -0.09
Number of intra-stroke Intersections -0.12
Mean of inter-strokes intersection -0.99
Maximum of inter-stroke intersections 0.65
Mean of intra-stroke intersections 0.53
Total number of Vy zero-crossing 0.38
Total number of Ax zero-crossings 0.09
Total number of Ay zero-crossings -0.30
Length 0.25

This model shows a root mean squared error (RMSE) of
0.457 with an R-squared value of 0.468 (the predictors explain
47% of the response variation). It is noticeable that there are
negative values of the coefficients for the number of strokes,
the number of intra-strokes intersections and the mean of
inter-strokes intersection. The reason behind these negative
values is to moderate the importance of these variables in
the calculation prediction of signature complexity. A greater
number of strokes does not necessarily imply a higher signa-
ture complexity. For example, the addition of several simple
and short strokes would generally decrease the signature
complexity. On the contrary, the addition of highly complex
strokes (with great number of intersection and changes in
both directions) would result in a rise the overall signature
complexity. In a similar way, the negative value of the total

number of Ay zero-crossing may compensate the importance
of the total number of Vy zero-crossing. Figure 5 shows a
graphic representation of the model, where y-axis represent
the output of the model and x-axis represent a combination of
feature input values made just for this representation.
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Fig. 5: Added variable plot for signature complexity

Using this model, we can categorize the signature complex-
ity levels by using complexity level thresholds. In this study we
apply a high complexity threshold of 2.5 and low complexity
threshold of 1.5. These thresholds are represented as black
horizontal lines in Figure 5. Using these thresholds signature
complexity has been categorized as:

a) Low when: signature complexity <1.5
b) Medium when: 1.5 <= signature complexity <= 2.5
¢) High when: signature complexity <2.5

Comparing the complexity levels obtained after applying
these thresholds with the complexity levels assessed by each
FDE and also with the modal prediction for each signature,
we obtain the following results, Figure 6:

80%
78%
76% —
74% —
72% — —
70% —
68%
66%
64%
62%
60%

Accuracy (%)

Mode FDE1 FDE2 FDE3

Fig. 6: Accuracy obtained based on the mode complexity level and
the individual FDEs levels

As expected, the model created using the modal responses
has the highest accuracy achieving a 78% success rate, which
represent an improvement over the results presented at the
literature review section. If we compare the outputs with the
individual prediction from each FDE, Figure 6 shows that the



FDE3 obtains 75% while the FDEI and 2 obtain 73% and 71%
respectively. FDE2 presented the most noticeable difference
for signature complexity (see Figure 1). The FDE2 produced
a higher frequency of low complexity signature than the other
FDEs, and a lower frequency for high complexity signature.
This explains the low accuracy of the model when applied to
the complexity levels assessed by this FDE.

Finally, using the same input features previously selected,
we created a new multi-linear model, not using the modal
signature complexity levels from the three FDEs, but using
the mean value. Figure 7 shows the added variable plot for
this model:
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Fig. 7: Added variable plot for the multi-linear regression model
created with the mean complexity values

This new model has an RMSE value of 0.406, with and
R-squared of 0.492. This values represent a better fit of the
data than previous model, which is explained by the higher
granularity of the signature complexity levels used. In Table
1V, the coefficient values for this model are detailed:

TABLE IV: Coefficient values for the signature complexity model
based on the mean value

Feature Coefficient
Intercept 1.99
Number of strokes -0.09
Number of intra-stroke Intersections -0.09
Mean of inter-strokes intersection -0.85
Maximum of inter-stroke intersections 0.53
Mean of intra-stroke intersections 0.50
Total number of Vy zero-crossing 0.36
Total number of Ax zero-crossings 0.12
Total number of Ay zero-crossings -0.33
Length 0.23

V. CONCLUSSIONS AND FUTURE WORK

In this work we have revisited the idea of automatic as-
sessment of signature complexity. With a signature database
of 150 samples and the collaboration of professional FDEs,
a new set of signature features has been analysed. As can be

seen in the complexity assessment of the FDEs, the human
inspection still implies a subjective categorization of signature
complexity, revealed in the 32% of signatures where there is
disagreement between assessors.

A new set of signature complexity features has been anal-
ysed. This set includes some of the more used features found in
the ASV literature (as length, time and overall singular points)
but also incorporate a more detailed feature level, taking into
consideration the complexity structure of individual strokes.

As a result of the analysis, a multi-linear regression model
has been obtained. This signature complexity model has been
able to replicate the FDEs evaluation with an accuracy of 78%,
providing a more objective way to assess signature complexity.
The features found within this model are a combination of
common features such as number of strokes and number of
changes in velocity (y-axes) with new stroke-detail features
such the number of intra-stroke intersections or the mean of
inter-strokes intersection. Furthermore, the inclusion of zero-
crossing acceleration points also have been found to increase
the overall accuracy of the model.

These new features could add a new layer within the
automated signature complexity theory. Treating the signature
as a sequence of strokes, each of them with its individual
complexity led to a more reliable assessment of the overall
signature complexity.

As a future work, the authors plan to expand this idea and
create a new stroke complexity index. Instead of assessing the
signature complexity as a whole, we will assess the complexity
of every individual stroke and analyse different ways to create
from these individual complexity levels an overall signature
complexity level. This stroke complexity index could be used
to create new models for signature complexity and improve
even more the objectivity and accuracy of the automatic
signature complexity assessment systems.

A reliable signature complexity model will benefit both
forensics and biometrics state of the art. The FDE community
will have available new tools to help their decision on the
authenticity of a signature. Furthermore, the biometric com-
munity will benefit from the automatic assessment of signature
complexity by incorporating it to the actual deployed ASV
systems in order to improve their performance and security
levels.
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