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Abstract

The paper considers the option of an investor to invest in a project that

generates perpetual cash flows, of which the drift parameter is unobserv-

able. The investor invests in a liquid financial market to partially hedge

cash flow risk and estimation risk. We derive two 3-dimensional non-linear

free-boundary PDEs satisfied by the utility-based prices of the option and

the cash flows. We provide an approach to measure the information value.

A numerical procedure is developed. We show that investors have not on-

ly idiosyncratic-risk-induced but also estimation-risk-induced precautionary

saving demands. A growth of estimation risk, risk aversion or project risk

delays investment, but it is accelerated if the project is more closely correlat-

ed with the market. Partial information results in a considerable loss, which

reaches the peak value at the exercising time and increases with project risk

and estimation risk. The more risk-averse the investor or the weaker the

correlation, the larger the loss.
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1. Introduction

The paper considers the option of an investor to invest in a non-tradable

irreversible project that generates perpetual cash flows, of which the drift pa-

rameter is unobservable (partial information). We assume the investor hedges

the estimation risk and cash flow risk by investing in a liquid financial mar-

ket. However, generally speaking, an investor is still exposed to considerable

unhedged idiosyncratic risk and therefore, we price the real option and cash

flows by consumption utility indifference pricing approach.

We study the investor’s joint decisions of investment for perpetual cash

flows, consumption/savings, and portfolio selection when he cannot fully

insure the cash flow shocks and needs to learn about the uncertain drift

parameter. As a result, risk attitude, idiosyncratic risk, and the subjective

estimate of the drift parameter have substantial effects on the decisions.

Applying consumption utility indifference pricing method, continuous-

time stochastic control and filtering theory, we derive a system of high-

dimensional non-linear free-boundary PDEs (Partial Differential Equations)

for the implied values of the real option and cash flows. We develop an ef-

fective finite difference procedure, which allows us to present an extensive

analysis with regard to the impact of learning about uncertainty on the pric-

ing, timing and hedging of the option to invest.

Our contributions. Intuitively, unlike the full information case (i.e. the drift

is observable), an investor with partial information would very likely make
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a “wrong” decision and thus incur a loss. It is interesting to measure the

loss since it can be considered as the maximum cost an investor would like

to pay in order to obtain the full information. Naturally, we call the loss the

implied information value. However, there are almost no papers to measure

the quantity of the loss in real options literature including Décamps et al.

(2005) among others. In this paper, we provide an approach to quantify

the loss. It surprises us that the partial information leads to a considerable

decrease (loss) in the implied value of the option to invest, i.e. the implied

information value is significant relative to investment cost (sunk cost).

Our analysis indicates that the implied information value reaches the

maximum value at investment threshold and it increases with risk aversion,

project risk, and prior variance. Their growths also considerably raise the

precautionary saving motive, decrease the certainty-equivalent wealth of cash

flows, and delay real investment. Investors, particularly ones with partial

information, are still exposed to the idiosyncratic risk of cash flows after in-

vestment, though the systematic risk can be hedged away by investing in a

liquid financial market. Consequently, in contrast to Décamps et al. (2005),

learning about the uncertain drift parameter is valuable all the time no mat-

ter whether the option is exercised or not, and a more effective estimate of

the drift remarkably increases the implied values of both the option and cash

flows, speeding up investment.

Unlike Miao and Wang (2007) and Décamps et al. (2005), our results pro-

vide four new insights into the irreversible investment for perpetual cash flows

with an unobservable drift and idiosyncratic risk. Firstly, investors have not

only idiosyncratic-risk-induced but also have estimation-risk-induced precau-
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tionary saving demands both before and after investment. Secondly, a growth

of estimation risk, risk aversion or project risk delays investment. Thirdly,

investment is accelerated if the project is more closely correlated with the

market. Last but more importantly, partial information results in a consid-

erable loss, which reaches the peak value around the investment threshold

and increases with project risk and estimation risk. The more risk-averse the

investor or the weaker the correlation, the larger the loss.

Furthermore, we develop an efficient finite difference procedure to solve

the system of three-dimensional non-linear free-boundary PDEs that char-

acterize the model solutions. This is numerically more challenging than the

one-dimensional problem considered by Miao and Wang (2007), and the two-

dimensional problems discussed by Décamps et al. (2005), Yang and Yang

(2012) and Yang et al. (2011) due to the high non-linearity in two spatial

dimensions. The additional complexity arises from the dependence of the

filtering estimate of the drift not only on cash flows, but also on the market

portfolio.

Literature review. Real investment decisions play a fundamental role in en-

trepreneurial activities and modern economics. A real investment is typically

irreversible with uncertain future rewards and flexible investment time. The

right to decide when to invest in a project is analogous to an American style

financial option and so it is called real option. The real options approach

to investment under uncertainty originates from the work of Myers (1977)

and presently becomes more popular. Major contributions along this re-

search line are McDonald and Siegel (1986) and Dixit and Pindyck (1994)

among others. Recently, Henderson and Hobson (2002), Miao and Wang
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(2007), Henderson (2007) and Ewald and Yang (2008) study the real options

problem under incomplete markets by utility indifference pricing approach.

However, almost all papers including Miao and Wang (2007) in the literature

assume that an investor has access to full information. Under this assump-

tion, the mean appreciation rate of the value or cash flows of a project and

the driving Brownian motion are observable, which is of course unrealistic.

Following Yang and Yang (2012) and Song and Yang (2013), the feature of

this paper is that in contrast to the above papers, we relax this assumption to

suppose that the investor can not observe the drift parameter and the Brow-

nian motion appearing in the stochastic differential equation describing the

cash flows. In other words, we assume an investor has only access to partial

information, as argued by Gennotte (1986), Lakner (1998), Brennan (1998),

Yang and Ma (2001), Xiong and Zhou (2007), Monoyios (2007), Monoyios

(2008), Wang (2009) among others.

The “partial information” assumption in our model is quite realistic s-

ince the drift parameter and the paths of Brownian motions are fictitious

mathematical tools, which are of course not observable. On the contrary, the

volatility/dispersion parameter for the cash flows will be observable since one

can prove that the volatility is adapted to the filtration generated by the cash

flows.

Our model is closely related with Décamps et al. (2005) and Klein (2009)

since the two papers also discuss the real options problems with partial in-

formation. But the distinction between them and our paper are also evident:

First, we suppose that the drift parameter follows a normal distribution

other than a two-point distribution as assumed by them. Second and the
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most importantly, we solve the real options problem based on consumption

utility indifference pricing approach, while they assume that investors are

risk-neutral. Taking into account that a real investment is generally exposed

to considerable idiosyncratic risk, this difference makes our problem more

interesting and naturally more challenging as well. We fill the gap by devel-

oping a comprehensive model and a numerical method for an investor who

has to deal with both estimation risk and idiosyncratic risk resulting from

cash flows.

To the best of our knowledge, this paper is most related with Yang et

al. (2011), Yang and Yang (2012) and Song and Yang (2013). However, we

assume in this paper that an investor obtains stochastic cash flows rather

than a lump-sum payoff upon investment as assumed by Yang and Yang

(2012) and Song and Yang (2013). This distinction is trivial in a risk neutral

world but significant in our model since we suppose that the investor is risk-

averse and thus, one can not get an equivalent lump-sum payment simply by

discounting future cash flows. On the other hand, although Yang et al. (2011)

do consider the situation where the project generates cash flows, they make

the assumption that the investor has only assess to one risk-free asset. In our

paper, aside from the risk-free asset, there exists another tradable risky asset

(e.g. market portfolio) in a liquid financial market which can partially hedge

the cash flow risk and estimation risk. This difference is fundamental because

the problem we discuss here is more realistic, interesting and challenging.

In this way, we can obtain more insightful conclusions. For example, once

the absolute value of the correlation between the market portfolio and the

project goes up, the investor will hedge more risk of the cash flows and the
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remaining idiosyncratic risk become less, which decreases his precautionary

savings demand, naturally raises the implied value of the option and speeds

up the real investment as well.

In fact, our paper undertakes a systematic investigation of learning and

hedging and many conclusions here have not been addressed yet. Unlike

the previous papers, for instance, the learning in the present paper has im-

plications not only on the implied option value of waiting, but also on the

certainty-equivalent wealth of perpetual cash flows after investment. More

importantly, the estimation risk from learning and the idiosyncratic risk left

after partial hedging have effects on hedging and precautionary saving de-

mands, which affect investment decisions and the implied information value.

Furthermore, cash flow volatility has three effects on the investor’s deci-

sions in this study. First, the volatility increases the option value because

of the standard asymmetric convex payoff of an option. The second effect is

that idiosyncratic volatility instead of project volatility induces the standard

precautionary saving demand against cash flow fluctuations. Third, the id-

iosyncratic volatility rather than project volatility increases the estimation

risk induced by learning about the drift parameter for a given fixed prior

variance. This finding is implied by our filtering results and is also confirmed

by the effects of the project volatility and prior variance as is evident from

our numerical results. The interpretation is that the realized cash flows with

higher idiosyncratic volatility make it more difficult to estimate the drift ef-

fectively and the estimation risk is increased accordingly, which naturally

induces a larger precautionary saving demand.

Finally, the study incorporating learning and hedging is also particularly
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challenging. The main additional difficulty is that, the filtering estimate of

the drift parameter depends not only on the observations of cash flows, but

also on the value of the market portfolio. Consequently, solving a combined

stochastic control and optimal stopping problem of investing for cash flows

leads to a system of three-dimensional non-linear free-boundary PDEs. This

is more complicated than a two-dimensional PDE in Yang and Yang (2012)

and Yang et al. (2011). The system of PDEs appears too complex to derive

a closed form solution and numerical technique is required to approximate

the solution, which brings intensive computational demands due to the high

non-linearity in two spatial dimensions.

The remainder of the paper proceeds as follows. Section 2 presents an

optimization investment model under uncertainty and partial information.

In Section 3, we derive a system of non-linear PDEs with free-boundary con-

ditions based on the filtering theory and utility indifference pricing approach.

The results under the full information case and the implied information value

are introduced as well. Section 4 analyzes the economic implications. Sec-

tion 5 concludes. Appendix A provides computational details, Appendix B

derives model solutions and Appendix C discusses the smooth-pasting con-

ditions and presents a verification theorem.

2. Model setup

This section establishes an investment model with uncertainty under par-

tial information and incomplete markets. The investment payoff is continuous-

time cash flows with infinite horizon rather than a lump-sum payment.

Given a complete probability space (Ω,F ,P), we consider two standard
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Brownian motions B and Z defined on it with correlation coefficient ρ ∈

[−1, 1]. An investor may borrow or lend one risk-free asset at a constant

risk-free r > 0 and invest in a liquid risky asset (e.g. market portfolio) with

the price process P following the geometric Brownian motion (GBM) below:

dPt/Pt = αpdt+ σpdBt, (1)

where αp and σp are known positive constants. Let η = (αp − r)/σp denote

the sharp ratio of the market portfolio.

In addition, the investor can choose to invest in an irreversible investment

project by paying sunk cost I > 0 at an arbitrary time τ . After investment,

the investor obtains a perpetual stream of payoffs X, which is observable and

follows the arithmetic Brownian motion (ABM):1

dXt = µdt+ σxdZt, (2)

where the project volatility σx is a known positive constant and the drift

parameter µ is an unobservable Gaussian random variable with the prior

mean m0 and the variance v0. The market is incomplete when |ρ| ̸= 1 and

the volatility σx can be decomposed into the diversifiable systematic volatility

ρσx and the undiversifiable idiosyncratic volatility σx

√
1− ρ2.

1Other dynamics processes can describe the payoff as well, e.g. a GBM in Yang and

Yang (2012) and a mean-reversion process in Ewald and Yang (2008). ABM implies that

payoffs can take negative values as losses. This specification is assumed by Miao and

Wang (2007) as well and their analysis shows that the main implications are robust to the

GBM because the precautionary savings effect and the option effect are independent of

the specifications of the payoff process.
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We denote by F ≡ {Ft}t≥0 the filtration (full information) generated by

the unobservable random variable µ, processes B and Z; and by G ≡ {Gt}t≥0

the filtration (partial information) generated by the observable price process

P and the cash flow process X. This setting is obviously more reasonable

than the full-information assumption in Miao andWang (2007) among others.

We denote by T the set of all stopping times with respect to G taking

values in [0,∞). Let C be the space of G-progressively measurable process C,

taking value on [0,∞), such that
∫∞
0

Ctdt < ∞ (a.s.), where Ct represents

the consumption rate selected by the investor at time t ∈ [0,∞). We call

a consumption plan C is admissible, if C ∈ C. Denote by πt the amount of

wealth allocated to the risky asset at time t, and let Π be the set of G-adapted

process π which satisfies the integrability condition
∫∞
0

σ2
pπ

2
t dt < ∞ (a.s.).

An investor is characterized by his initial wealth W0, a time-discount rate

β and his preference U(·). At any time t ≥ 0, if the option to invest is

not exercised, he must choose a stopping time τ ∈ T , a consumption plan

C ∈ C and an investment portfolio π ∈ Π to maximize his following expected

lifetime utility of consumption conditional on partial information:

sup
(τ,C,π)∈T ×C×Π

J(τ, C, π) ≡ E
[∫ ∞

t

exp (−βs)U(Cs)ds |Gt

]
, (3)

subject to the budget constraint:

dWs = (rWs + πs(αp − r)− Cs)ds+ πsσpdBs, t ≤ s < τ,

Wτ = Wτ− − I,

dWs = (rWs + πs(αp − r) +Xs − Cs)ds+ πsσpdBs, s > τ,

Wt given,Ws > 0 for s ≥ t,

where the process X is given by (2). We assume in this paper the preference
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U(·) is a constant absolute risk aversion (CARA) utility function given by2

U(c) = − exp(−γc)/γ, c ∈ ℜ, (4)

where γ > 0 is the absolution risk aversion parameter.

Remark 1. The problem (3) we consider here is a combined stochastic con-

trol and optimal stopping problem under partial information, which leads to

a free boundary problem for two 3-dimensional non-linear PDEs. It is much

more challenging than that discussed by Miao and Wang (2007), who need

only to solve an ODE (Ordinary Differential Equation). It is also much more

complicated than the pure optimal stopping problem considered by Décamps

et al. (2005), who consider a lump-sum payoff model without hedging oppor-

tunities in a risk-neutral world mainly with two possible values of the drift

parameter.

3. Model solutions

We summarize model solutions in this section and present derivation in

Appendix B. According to the separation theorem (e.g. Gennotte (1986)),

we deal with the optimization problem by first deriving the filtering estimate

2CARA utility is widely applied in utility-based studies of real options to reduce the

PDE’s dimension by exploiting the property of wealth independence, see, e.g. Miao and

Wang (2007) who point out that the homogeneity property of the constant relative risk

aversion (CRRA) utility function does not hold for the real options problem because of

the jump of wealth at investment time. Since our three-dimensional PDEs thanks to the

CARA utility already requires intensive efforts in computation, the model with the CRRA

utility may impose too many difficulties to find the solution.
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for the drift parameter and then solving an equivalent optimization problem

conditional on this estimate.

Denote mt ≡ E(µ|Gt) and vt ≡ E[(µ−mt)
2|Gt]. The conditional mean mt

and the conditional variance vt represent the estimate of µ and estimation risk

(error) respectively. Filtering theory ensures that the conditional distribution

of µ is Gaussian and hence mt is the optimal estimate. An application of

filtering technique (Theorem 12.1 in Liptser and Shiryayev (1977)) leads to
mt

vt
= m0

v0
− ρ

σxσp(1−ρ2)

[
log(Pt

P0
) + (1

2
σ2
p − αp)t

]
+ 1

σ2
x(1−ρ2)

(Xt −X0)

vt =
v0σ2

x(1−ρ2)
v0t+σ2

x(1−ρ2)
.

(5)

As expected, vt → 0 and mt → µ for each t > 0 if |ρ| → 1. Therefore, when

the tradable risky asset and the investment project are perfectly correlated,

the investor’s problem is simplified into an optimization problem with full

information. Furthermore, the expression of vt in (5) implies that the id-

iosyncratic volatility ϵ = σx

√
1− ρ2 instead of the systematic volatility ρσx

results in estimation risk. This is because the change resulting from system-

atic volatility is not a noise to estimate the state variable µ. In fact, the

change due to systematic volatility can be accurately measured from (1) and

so it will not increase the estimation risk.

Define the innovation process Z̃ by

dZ̃t =
1

σx

(dXt −mtdt) , (6)

and then the dynamics of the cash flow process is transformed to

dXt = mtdt+ σxdZ̃t. (7)

According to the filtering estimate and the separation theorem, we can restate
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the optimization problem (3) as an equivalent optimization problem with (7)

replacing (2).

Thanks to CARA utility (4) and the consumption utility indifference

pricing approach, we denote the implied value (i.e. certainty-equivalent

wealth) of the option (resp. of cash flows) by y = g(t,Xt,mt) (resp. by

z = f(t,Xt,mt)). Solving the stochastic control problems for them leads to

the following two second-order non-linear PDEs, of which functions f(t, x,m)

and g(t, x,m) are solutions respectively.

rf = x+ ft + (m− ρσxη)fx +
σ2
x

2
[fxx − γr(1− ρ2)f 2

x ]

+
v2t

2σ2
x(1−ρ2)

(fmm − γrf 2
m) + vt(fmx − γrfmfx),

(8)

rg = gt + (m− ρσxη)gx +
σ2
x

2
[gxx − γr(1− ρ2)g2x]

+
v2t

2σ2
x(1−ρ2)

(gmm − γrg2m) + vt(gmx − γrgmgx),
(9)

subject to the no-bubble condition limx→−∞ g(t, x,m) = 0 and the free-

boundary conditions:3 

g(t̃, x̃, m̃) = f(t̃, x̃, m̃)− I,

gt(t̃, x̃, m̃) = ft(t̃, x̃, m̃),

gx(t̃, x̃, m̃) = fx(t̃, x̃, m̃),

gm(t̃, x̃, m̃) = fm(t̃, x̃, m̃),

(10)

where the subscript of functions f and g denotes the differentiation with

respect to that variable. Formally, we obtain the following theorem:

Theorem 3.1. Suppose that f(t, x,m) and g(t, x,m) are solutions of the

PDEs formulated by (8), (9) and (10). Define stopping time τ ∗ by

τ ∗ = inf {t ≥ 0 : g(t,Xt,mt) ≤ f(t,Xt,mt)− I} ,

3The discussion about the smooth-pasting conditions is left to Appendix C.
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and then τ ∗ is the optimal exercising time of the option to invest. The optimal

consumption rate is given by C∗
t = β−r

γr
+ r[Wt + g(t,Xt,mt) +

η2

2γr2
], 0 ≤ t < τ ∗;

C∗
t = β−r

γr
+ r[Wt + f(t,Xt,mt) +

η2

2γr2
], t ≥ τ ∗.

The optimal portfolio rule is given by π∗
t = η

σpγr
− ρσx

σp
gx(t, x,m), 0 ≤ t < τ ∗;

π∗
t = η

σpγr
− ρσx

σp
fx(t, x,m), t ≥ τ ∗.

The implied value F (t,Xt,mt) of the option to invest is given by

F (t,Xt,mt) = max {g(t,Xt,mt), f(t,Xt,mt)− I} . (11)

This theorem shows that the investor has not only idiosyncratic-risk-

induced precautionary saving demand as explained by Miao andWang (2007),

but also has estimation-risk-induced precautionary saving demand. Thanks

to (8) and (9), such two demands disappear once the investor is risk-neutral,

i.e. γ = 0. However, in sharp contrast to Miao and Wang (2007), even in

a risk-neutral world, the estimation risk and idiosyncratic risk must be still

taken into account while pricing the cash flows and the option to invest.

According to the theorem, the time-discount rate β has impact on con-

sumption choice and the total consumption utility, but it is independent of

the portfolio rules, implied value and the investment time. This conclusion

is reasonable since we expect that two investors with different time-discount

rates have identical prices and exercising times, and it is similar to that ob-

tained by Yang and Yang (2012) and Song and Yang (2013), but differs from

Dixit and Pindyck (1994), Décamps et al. (2005) and many others who use
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the ordinary utility indifference pricing instead of the superior consumption

utility indifference pricing.

Furthermore, in sharp contrast to Miao and Wang (2007), the investment

threshold x̃ here is no longer constant and it depends on time (estimation risk

in essence) and the estimate of the drift parameter or equivalently the price

level of the liquid risky asset. The conclusion is also significantly different

from Décamps et al. (2005), who conclude that the investment threshold is

independent of time and depend only on the decision maker’s beliefs.

Next, we quantify the loss resulting from partial information, which is

measured by the implied information value (IV ) since it represents the max-

imum cost an investor would like to pay in return for getting full information.

In our model, the drift parameter µ of the cash flows is randomly selected

by nature from the distribution N (m0, v0), but its realization (µ0) becomes

known immediately to the investor who has full information. As far as an in-

vestor with full information, the drift parameter can be therefore considered

as a known constant, which corresponds to the special case of Theorem 3.1:

m0 = µ0 and v0 = 0. Under this situation, the state variables in our opti-

mization model exclude time t and filtering estimate m and we can directly

get the following results as a corollary of Theorem 3.1, which correspond

those derived by Miao and Wang (2007) in their model IV where the time

discount rate β takes the special value r, i.e. the risk-free interest rate.

Corollary 3.2. Suppose that for a given value µ0, i.e. a sample point from

the distribution N (m0, v0), of the drift parameter, functions f(x;µ0) and

g(x;µ0) satisfy

rf = x+ (µ0 − ρσxη)fx(x) +
1

2
σ2
x

[
fxx − γr(1− ρ2)f 2

x

]
,
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and

rg = (µ0 − ρσxη)gx(x) +
1

2
σ2
x

[
gxx − γr(1− ρ2)g2x

]
subject to the no-bubble condition limx→−∞ g(x) = 0 and the free-boundary

conditions  g(x̃) = f(x̃)− I,

gx(x̃) = fx(x̃) =
1
r
,

and define stopping time τ ∗ by

τ ∗ = inf {t ≥ 0 : g(Xt;µ0) ≤ f(Xt;µ0)− I} ,

then τ ∗ is the optimal exercising time of the option to invest with full infor-

mation. The optimal consumption rate is given by C∗
t = β−r

γr
+ r[Wt + g(Xt;µ0) +

η2

2γr2
], 0 ≤ t < τ ∗;

C∗
t = β−r

γr
+ r[Wt + f(Xt;µ0) +

η2

2γr2
], t ≥ τ ∗.

And the optimal portfolio rule is given by π∗
t = η

σpγr
− ρσx

σp
gx(Xt;µ0), 0 ≤ t < τ ∗;

π∗
t = η

σpγr
− ρσx

σp

1
r
, t ≥ τ ∗.

The implied value of the option to invest with full information depends on

the sample point µ0 and is given by

F Full(Xt;µ0) = max {g(Xt;µ0), f(Xt;µ0)− I} ,

where, following Miao and Wang (2007), we have

f(Xt;µ0) =
Xt

r
+

µ0 − ρσxη

r2
− γσ2

x(1− ρ2)

2r2
.
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From this corollary, with full information, the implied value of the op-

tion is actually a function of the random variable µ and thus, we naturally

define the implied information value IV as its expected value minus the cor-

responding value with partial information, i.e. at any time t ≥ 0, the implied

information value is given by

IV (t,Xt,mt) ≡
∫ ∞

−∞
F Full(Xt;u)φ(u)du− F (t,Xt,mt), (12)

where φ(·) is the normal probability density function with mean m0 and

variance v0. Intuitively, the implied information value must decrease with

time since learning will continuously make partial information become closer

to full information.

4. Implications: pricing, timing, hedging and learning

In this section, we discuss the implications of our model by numerical

simulations with regard to learning about uncertainty, pricing option, timing

investment, hedging against risk, and implied information value under partial

information in an incomplete market.

Our numerical results are based on the following annualized baseline pa-

rameter values unless otherwise stated: risk-free interest rate r = 0.05, risk

aversion γ = 1, initial project value X0 = 1, investment cost I = 1, and

the volatility of cash flows σx = 0.3. The prior mean m0 and variance v0 of

the drift parameter of cash flows are 0.06 and 0.032 respectively. The mean

return rate αp and volatility σp of the tradable risky asset are 0.06 and 0.5

respectively. The correlation coefficient between the tradable asset and the

cash flows is ρ = 0.8.
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Figure 1: The figure explains the implications for pricing and timing under partial infor-

mation by displaying the implied value of option F (t = 0, X,m) (a) against the level X of

cash flows for three levels of volatility σx; and (b) against the estimate m of the drift for

three levels of risk aversion γ with baseline parameter values.

4.1. Implications for pricing and timing

We begin with the numerical illustration of the investment decision char-

acterized by Theorem 3.1. Figure 1 depicts the implied value F (t = 0, X,m)

of the option given by (11). Not surprisingly, Figure 1(a) says that the im-

plied value rises with the level X of cash flows. Figure 1(b) shows that the

implied value increases quickly with the estimate m of the drift, i.e. the

option is more valuable if its holder is optimistic about the return of the

project’s cash flows. However, conversely to standard real options theory,

Figure 1(a) says that the implied value of the option decreases with the

project volatility σx. We note that as expected, the larger the volatility the

higher the investment threshold but somewhat surprisingly, the less the im-

plied value, the larger the investment threshold. This is because a less implied
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value results from a larger project risk, which also leads to a even less value

of cash flows. For example, Figure 1(a) plots that when cash flows reach the

investment threshold X̃(0,m) = 0.7 (resp. 0.9) for σx = 0.25 (resp. 0.3), the

option is exercised.

Figure 1(b) also states that the implied value of the option deceases with

the risk aversion γ. Particularly, we find from most of the figures in the text

that the effects of the parameters on the implied value of the option reach a

maximum when the level of cash flows is close to the investment threshold.

In addition, we emphasize that in sharp contrast to Décamps et al. (2005)

and Miao and Wang (2007), the implied value F (t,Xt,mt) of the option to

invest depends on the level X of cash flows, the estimate m of the drift and

time t and for this reason, to compute the implied values, we need to solve

the high-dimension PDEs (8) and (9) with a free boundary.

4.2. Implications for hedging and learning

Figure 2(a) shows the effects of the estimate m of the drift and the corre-

lation ρ between the market portfolio and the cash flows on the implied value

of the option to invest. It is shown that the implied option value F (t,X,m)

increases with the absolute value |ρ| of the correlation. There are two rea-

sons why this happens: First, a strong correlation means a less idiosyncratic

risk since more risks are hedged, which reduces the idiosyncratic-risk-induced

precautionary saving demand; Second, a strong correlation leads to a more

effective estimate for the unobservable drift and so the estimation risk is de-

clined, which reduces the estimation-risk-induced precautionary saving de-

mand. Obviously, the former is ignored by Décamps et al. (2005) and the

latter is not discussed by Miao and Wang (2007). In addition, Figure 2(a)
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Figure 2: The figure illustrates the implications for hedging and learning under partial

information by depicting the implied value of option F (t = 0, X,m) (a) against m for

three levels of correlation coefficient ρ; and (b) against X for three levels of prior variance

v0 with baseline parameter values.

states that the option to invest under a negative rather than positive cor-

relation case is more valuable. This quite accords with the corresponding

conclusion from the standard equilibrium pricing theory.

Since the estimate m of the drift has considerable impact on the implied

option value as seen in Figures 1 and 2, the learning by filtering techniques

is economically valuable. In fact, learning can reduce the uncertainty of the

drift or estimation risk, as shown by the expression of the posterior variance

vt in (5). To highlight the effect of estimation risk, Figure 2(b) displays

the effects of the prior variance v0 on the implied value F (t = 0, X,m) of

the option. It turns out that the implied value descends with the prior

variance v0. The reason is that a higher variance of the drift makes it more

difficult for an investor to estimate effectively the drift and thus, the investor
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is more likely to make a “wrong” decision. In sharp contrast to Décamps

et al. (2005), who conclude that an investor should accelerate investment

in a more uncertain situation, Figure 2(b) states that the investor should

reversely delay investment if the prior variance is increased. It turns out

that the distinction results from the two different assumptions about project

payoff: We address cash flows while Décamps et al. (2005) consider a lump-

sum payoff case. A large uncertainty of the drift increases the precautionary

saving demands, which, in our model, also reduces the certainty-equivalent

wealth f(t,X,m) of cash flows after investment. The decline is even more

than the decline of the implied option value g(t,X,m) before investment and

putting both together, an investor should finally postpone investment.

Figure 3 exhibits the effects of project volatility, prior variance and the

estimate of the drift on investment threshold. In short, the estimation risk

and project risk almost have the same effect on investment threshold: The

larger the risk, the higher the investment threshold, i.e. investment should be

delayed. In addition, Figure 3 indicates that the higher the posterior estimate

of the drift, the less the investment threshold, i.e. investment should be

accelerated. This result is reasonable but opposite to Décamps et al. (2005),

who derive that a higher estimate of drift raises the option value and delays

investment as well. The distinction is due to the fact that in our model, a

higher estimate m of the drift not only increases the implied option value

g(t,X,m) before investment but also raises the implied value f(t,X,m) of

the cash flows after investment. The rise of the latter is more than the rise

of the former.

Furthermore, the three-dimensional Figure 4(a) plots the implied value
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Figure 3: The figure shows the impact of learning on the investment threshold X̃(t = 0,m)

against m under partial information for (a) three levels of prior variance v0; and (b) three

levels of volatility σx with baseline parameter values.

−1
−0.5

0
0.5

1
1.5

2

−0.2

−0.1

0

0.1

0.2

0.3

0.4
0

5

10

15

20

25

30

35

40

45

Level X of Cash FlowsOptimal Estimate m of Drift

Im
pl

ie
d 

V
al

ue
 o

f 
O

pt
io

n 
F(

0,
X

,m
)

(a) implied value of option F (t = 0, X,m)

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0
0.5

1
1.50

0.5

1

1.5

2

2.5

Time (Years)
Optimal Estimate m of Drift

In
ve

st
m

en
t T

hr
es

ho
ld

(b) investment threshold X̃(t,m)

Figure 4: The figure plots (a) the implied value of option F (t = 0, X,m); and (b) the

investment threshold X̃(t,m) under partial information with baseline parameter values.
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of the option at varying levels of cash flows X and the estimate m of the

drift keeping time t = 0, while the three-dimensional Figure 4(b) displays

the investment threshold at varying levels of the estimate m of the drift and

time t. Evidently, the figures tell us the same but clearer story with the

preceding text and so the analysis is omitted.

4.3. The effects of parameters on the implied information value

According to our previous analysis, learning is able to reduce parameter

uncertainty and increase the implied values of a project and the option to

invest in the project. Unfortunately, the uncertainty cannot be completely

removed in a finite time horizon and consequently, investors would incur a

loss since he might often make a “wrong” decision based on his partial infor-

mation. Naturally, we wonder how much the loss is. This is an interesting

problem since the loss can be considered as a reasonable cost investors would

like to pay in order to obtain full information. However, to the best of our

knowledge, there are almost no papers to address the problem in the real op-

tions literature including Décamps et al. (2005) and Miao and Wang (2007)

among others.

In this subsection, based on our formula (12) for measuring the loss due

to partial information, we examine how the loss (i.e. implied information

value) is linked to project risk, estimation risk, risk aversion and the corre-

lation between the project and the market portfolio. Strikingly, the loss is

considerable.

Figures 5 and 6 plot the loss measured by the implied information value

IV at varying levels of the project volatility σx, prior variance v0, risk aversion

γ and correlation ρ. The figures show that the loss is significant relative to the
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sunk cost I = 1. The implied information value experiences a steady growth

with cash flows X within the waiting region and peaks at the exercising time.

After investment has taken place, it declines gradually. The conclusions

are quite in agreement with intuition. In fact, when the economic state

varies around the exercising threshold, an important decision will be made

soon. At this critical period, sufficient information is especially valuable

to make a right decision. On the contrary, if the state is far away from

the investment threshold, it should be quite easy to determine whether the

investment should be exercised or postponed and naturally, the information

is not so important. In particular, after investment has taken place, investors

are not bothered about when to exercise the investment option and thus the

value of information moves downward, although information is still valuable

since it helps make a good hedging strategy. Actually, this phenomenon is

similar with the fact seen in the previous figures that the effects of parameters

on the implied value of the option peak at the exercising time.

Specifically, Figures 5(a) and 5(b) show that the implied information

value IV increases with project volatility σx and the prior variance v0. This is

intuitively obvious because a larger project risk and estimation risk represent

a higher uncertainty about the investment and drift parameter and therefore

information is more valuable to make a good decision. Figure 6(a) explains

that the more risk-averse the investor, the larger the implied information

value. This is reasonable since investors with higher risk aversion levels are

more desirous of information to reduce uncertainties. Figure 6(b) indicates

that the stronger the correlation between the project and the market, the

less the implied information value. This is also expected because a strong
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Figure 5: The figure demonstrates the effects of three levels of (a) volatility σx; and

(b) prior variance v0 on the implied information value IV (X) against X with baseline

parameter values.
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Figure 6: The figure demonstrates the effects of (a) three levels of risk averse γ; and (b)

three levels of correlation coefficient ρ on the implied information value IV (X) against X

with baseline parameter values.
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m0 = 8% with baseline parameter values.

correlation allows investors to make an efficient estimate of the drift based

on the observable process of the market return and accordingly, information

is not so valuable.

Figure 7 plots the histogram of the implied option value F Full(X0;µ0)

under full information situation and its density fitted from the corresponding

normal distribution. The figure says that in contrast with Yang and Ma

(2001), who conclude that the information value in their model is independent

of the estimate of the drift parameter, the implied information value IV here

decreases with the estimate. It turns out that after the option has been

exercised, the information in our model is still important unlike Décamps et

al. (2005) but it is not so valuable as it was before investment since it can

only help investors to hedge the cash flow risk of the project by investing in

a liquid financial market. Additionally, a large estimate m leads to an early
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investment and thus, the implied information value decreases naturally with

the estimate.

In addition, as shown in Figure 7, it is not uncommon but somewhat

counter-intuitive at first sight that the implied option values with full infor-

mation for some sample points from the prior normal distribution N (m0, v0)

are less than the implied option value F (0, X0,m) with partial information.

5. Conclusions

Based on consumption utility indifference pricing approach, this paper

deals with the learning, pricing, timing, and hedging of the option to invest

for perpetual cash flows, of which the drift parameter is unobservable. We im-

plement a computational procedure to solve the system of high-dimensional

non-linear PDEs with a free boundary for the investment problem. We

present a method to quantify the loss resulting from replacing full informa-

tion with partial information. Numerical results reveal that the loss due to

partial information is substantial in terms of the implied information value.

The loss reaches the maximum value at investment threshold. The risk aver-

sion, project risk, and estimation risk considerably raise precautionary saving

motive and delay the real investment. These results indicate that learning

about the uncertainty is important and valuable all the time. We believe

that our investment model taking into account both hedging and learning

and the numerical methods developed here are applicable to finance theory

and entrepreneurial activities, such as evaluating natural resource invest-

ments, valuing alternative market entry and exit strategies, and examining

agency conflicts and financial policy.
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Appendices

Appendix A Computation methods

We solve the highly non-linear system of free-boundary PDEs (8)-(10)

under partial information in the following way. We build an equally spaced

lattice in (t, x,m)-space within the domain [0, th]× [xl, xh]× [ml,mh] defined

by the grid points

{(tk, xi,mj) |k = 1, · · · , Nt + 1, i = 1, · · · , Nx + 1, j = 1, · · · , Nm + 1},

where th, xl, xh, ml and mh are artificial (lower and upper) bounds, xi =

xl + (i− 1)∆x, mi = ml + (j − 1)∆m, and ti = (k − 1)∆t for fixed positive

spacing parameters ∆x = xh−xl

Nx
, ∆m = mh−ml

Nm
and ∆t = th

Nt
. We denote

the approximated implied values of f(t, x,m) and g(t, x,m) by fk
i,j and gki,j

respectively.

For each gki,j in the interior of the grid, we use the central difference to

approximate the derivatives in space given below. The approximations of the

derivatives of fk
i,j are similar.

∂gki,j
∂x

= D0
xg

k
i,j =

gki+1,j − gki−1,j

2∆x
,
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∂gki,j
∂m

= D0
mg

k
i,j =

gki,j+1 − gki,j−1

2∆m
,

∂2gki,j
∂x2

= D2
xxg

k
i,j =

gki+1,j − 2gki,j + gki−1,j

∆x2
,

∂2gki,j
∂m2

= D2
mmg

k
i,j =

gki,j+1 − 2gki,j + gki,j−1

∆m2
.

∂2gki,j
∂x∂m

= D2
xmg

k
i,j =

gki+1,j+1 − gki+1,j−1 + gki−1,j−1 − gki−1,j+1

4∆x∆m
.

We apply a backward procedure starting at the time th. The algorithm

for computing gki,j is outlined as follows and the computation of fk
i,j is similar

and so omitted. For convenience we rewrite the PDE (9) in short notation

as

rg = gt + νgx + a1gxx − b1g
2
x + d1gmm − e1g

2
m + vtgmx − h1gmgx, (13)

where ν = m − ρσxη, a1 = σ2
x

2
, b1 = a1γr(1 − ρ2), d1 =

v2t
2σ2

x(1−ρ2)
, e1 = d1γr,

and h1 = vtγr.

Step 1: At time th, i.e. k = Nt + 1, and for a given mj, the PDE (13) is

degenerated into a non-linear ODE in finite difference terms

rgki,j = νjD
0
xg

k
i,j + a1D

2
xxg

k
i,j − b1D

0
xg

k
i,jD

0
xg

k
i,j. (14)

We guess a investment threshold x̃ and obtain the corresponding solution of

gki,j for all [xl, x̃] by iteratively solving the non-linear system of finite difference

equations (14).

Step 2: We adjust x̃ and repeat Step 1 until the free-boundary condi-

tion (10) is approximately satisfied. Then we repeat the above-mensioned

calculation for all mj, j = 1, ..., Nm + 1.

Step 3: At any earlier time tk, k = 1, ..., Nt, we know the value of gk+1
i,j

for all i and j. Due to the mixed derivatives gmx in the highly non-linear
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PDE (9), the standard Alternative Direction Implicit (ADI) method does not

work well but the splitting method provides stable and convergent solutions

to such problem (Yanenko, 1971).

Specifically, we first approximate the PDE (13) within the whole domain

of [xl, xh]× [ml,mh]
4 by

rgk̃i,j =
gk+1
i,j −gk̃i,j

∆t
+ νjD

0
xg

k̃
i,j + a1D

2
xxg

k̃
i,j − b1D

0
xg

k̃
i,jD

0
xg

k̃
i,j

+0.5vkD
2
xmg

k+1
i,j − 0.5h1D

0
mg

k+1
i,j D0

xg
k̃
i,j,

where gk̃i,j represents the value of g on the node (i, j) at the artificial auxiliary

time layer k̃, whose values are unknown at this step.5 Hence, we use the

implicit method to solve gk̃i,j, which is unconditionally stable.6 The non-linear

system of equations of gk̃i,j can be solved by standard numerical methods such

as Levenberg-Marquardt algorithm.

Step 4: For the given gk̃i,j we have computed in Step 3, we turn to approx-

imate the PDE (13) by7

0 =
gk̃i,j − gki,j

∆t
+d1D

2
mmg

k̃
i,j−e1D

0
mg

k̃
i,jD

0
mg

k̃
i,j+0.5vkD

2
xmg

k̃
i,j−0.5h1D

0
mg

k̃
i,jD

0
xg

k̃
i,j,

where gk̃i,j is known at this step and gki,j is unknown. Namely, we use the

explicit method to solve gki,j without numerically solving a non-linear system

of equations. It produces stable solutions in our numerical example.

Step 5: At any state (tk,mj), by comparing the implied option value gki,j

and the certainty-equivalent wealth fk
i,j of cash flows, we can determine the

4The approach of guessing a threshold x̃ used in Step 1 cannot be applied in the splitting

method since the values of gk̃i,j for all x ∈ [xl, xh] need to be known in Step 4.
5The splitting method uses the whole step-size ∆t in the finite difference equation.
6It is unstable to use the explicit method at this step in our numerical example.
7The item rgk̃i,j does not appear in Step 4.
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investment threshold x̃(t,m) such that the free-boundary condition (10) is

approximately satisfied.

Appendix B The derivation of model solutions

Lemma B.1. If the conditional distribution ΨG0(x) = P(µ ≤ x|G0) is nor-

mal with mean m0 and variance v0, a.s., then the conditional distribution

ΨGt(x) = P(µ ≤ x|Gt) is normal with mean mt and variance vt, a.s..

This lemma follows from Theorem 11.1 in Liptser and Shiryayev (1977)

and we obtain the next lemma from Theorem 12.1 in Liptser and Shiryayev

(1977). After a careful calculation, we obtain the explicit solution (5) to the

following (15).

Lemma B.2. Let {Xt}t≥0 be stochastic process given by (2). Suppose that

P(µ ≤ x|G0) is Gaussian with mean m0 and variance v0. Then mt and vt

satisfy the following dynamics:
dmt = − ρvt

σxσp(1−ρ2)

(
dPt

Pt
− αpdt

)
+ vt

σ2
x(1−ρ2)

(dXt −mtdt) ,

v̇t = −
(

vt

σx

√
1−ρ2

)2

,
. (15)

Filtering theory ensures that the process Z̃ defined by (6) is a standard

Brownian motion with respect to the stochastic basis (Ω,F ,P, {Gt}t≥0). Ac-

cording to (1) and (6), the correlation coefficient between processes Z̃ and B

is ρ. Then, we obtain from (15) and (6) the following expressions:

dmt ≡ − ρvt
σx(1−ρ2)

dBt +
vt

σx(1−ρ2)
dZ̃t

= − ρvt
σx(1−ρ2)

dBt +
vt

σx(1−ρ2)
(ρdBt +

√
1− ρ2dZ̃1

t )

= vt

σx

√
1−ρ2

dZ̃1
t ,
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where Z̃1 is a Brownian motion, independent of B but correlated with Z̃

with correlation coefficient
√
1− ρ2.

In contrast to Yang and Yang (2012) and Song and Yang (2013), the

value function of (3) depends on the filtering estimate no matter whether

investment has taken place or not. Therefore, we denote the value function

of (3) after and before investment by V 0(t,Wt, Xt,mt) and V (t,Wt, Xt,mt)

respectively.

To apply the consumption utility indifference pricing method, we first

introduce the following optimization problem without investment project:

sup
(C,π)∈C×Π

J0((Cs)s≥t, (πs)s≥t) ≡ E
[∫ ∞

t

exp (−β(s− t))U(Cs)ds |Gt

]
,

subject to

dWs = (rWs + πs(αp − r)− Cs)ds+ πsσpdBs.

Similar to Merton (1971), we obtain the following explicit solution by dy-

namic programming:

G(Wt) ≡ J0((C∗
s )s≥t, (π

∗
s)s≥t) = − 1

γr
exp(1− β/r − γr(Wt +

η2

2γr2
)), (16)

where C∗
s and π∗

s are the optimal consumption and portfolio rules selected at

time s respectively, which are given by C∗
s = β−r

γr
+ r(Ws +

η2

2γr2
),

π∗
s = η

σpγr
.

Following Hodges and Neuberger (1989), we define the consumption utility-

based indifference price or implied value of the option to invest at time t by

y, which satisfies

V (t,Wt, Xt,mt) = G(Wt + y). (17)
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where V (t,Wt, Xt,mt) is the value function defined by (3). Similarly, we

define the indifference price or implied value of the cash flows after investment

at time t by z, which satisfies

V 0(t,Wt, Xt,mt) = G(Wt + z). (18)

By the standard argument of dynamic programming, V 0(t,Wt, Xt,mt)

satisfies the following Hamilton-Jacobi-Bellman equation:

sup
c,π

(rw + π(αp − r) + x− c)V 0
w + U(c) + (πσp)2

2
V 0
ww + ρπσpσxV

0
wx

+V 0
t +mV 0

x + σ2
x

2
V 0
xx + vtV

0
mx +

v2t
2σ2

x(1−ρ2)
V 0
mm − βV 0 = 0,

(19)

where the subscript of V 0 denotes the differentiation with respect to that

variable. We assume the usual transversality condition

lim
t→∞

E[exp(−βt)V 0(t,Wt, Xt,mt)] = 0

is satisfied. The first-order conditions for the optimal consumption and port-

folio rule after exercising the option are given by:

U ′(c) = V 0
w and π = − η

σp

V 0
w

V 0
ww

− ρσx

σp

V 0
wx

V 0
ww

. (20)

Then, we turn to the case before the option is exercised. By Bellman

principle, we have

V (t,Wt, Xt,mt) = sup
(τ,C,π)∈T ×C×Π

E
[∫ τ

t
exp (−β(s− t))U(Cs)ds

+exp(−β(τ − t))V 0(τ,Wτ− − I,Xτ ,mτ ) |Gt ] .

(21)

This is a combined stochastic control and optimal stopping problem and the

Hamilton-Jacobi-Bellman (HJB) equation has the form

sup
c,π

(rw + π(αp − r)− c)Vw + U(c) + (πσp)2

2
Vww + ρπσpσxVwx

+Vt +mVx +
σ2
x

2
Vxx + vtVmx +

v2t
2σ2

x(1−ρ2)
Vmm − βV = 0.

(22)
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The first-order conditions are similar to (20) and given by

U ′(c) = Vw, and π = − η

σp

Vw

Vww

− ρσx

σp

Vwx

Vww

. (23)

We enforce the no-bubble condition

lim
x→−∞

V (t,Wt, Xt,mt) = G(Wt)

as an economically sensible solution refinement in the class of fundamen-

tal solutions. At the investment boundary (t̃, w̃, x̃, m̃), the value matching

condition

V (t̃, w̃, x̃, m̃) = V 0(t̃, w̃ − I, x̃, m̃) (24)

and the smooth-pasting conditions

Vt(t̃, w̃, x̃, m̃) = V 0
t (t̃, w̃ − I, x̃, m̃),

Vw(t̃, w̃, x̃, m̃) = V 0
w(t̃, w̃ − I, x̃, m̃),

Vx(t̃, w̃, x̃, m̃) = V 0
x (t̃, w̃ − I, x̃, m̃),

Vm(t̃, w̃, x̃, m̃)) = V 0
m(t̃, w̃ − I, x̃, m̃)

(25)

are imposed, see Section 1.G of Chapter 4 in Dixit and Pindyck (1994) and

Section 9 in Peskir and Shiryaev (2006) for details.

On account of (16), (17) and (18), we can conclude that the value func-

tions take the following forms respectively:

V 0(t, w, x,m) = − 1
γr

exp(1− β/r − γr(w + f(t, x,m) + η2

2γr2
)),

V (t, w, x,m) = − 1
γr

exp(1− β/r − γr(w + g(t, x,m) + η2

2γr2
)).

(26)

Substituting (26) into the HJB equations (19) and (22), we get the PDEs

(8) and (9) for the functions f and g subject to the no-bubble condition

limx→−∞ g(t, x,m) = 0 and the free-boundary conditions (10).
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Appendix C The smooth-fit principle and a verification theorem

The smooth-pasting conditions shown in (25) is generally called “smooth-

fit or high contact principle”. Roughly speaking, it states that under certain

conditions, the value function like V (t, w, x,m) here is differentiable on the

free boundary. Peskir and Shiryaev (2006) (see Theorem 9.5 in their book)

present a general result under one-dimensional situation. Aliev (2007) pro-

vide sufficient conditions for this principle to hold under multi-dimensional

case. The principle is necessary for the optimality of the value function like

V here. As pointed out by Øksendal (2003) (see Section 10.4 of their book),

this principle is so useful that it is frequently applied in the literature, al-

though under many cases, especially in economic studies, its validity has not

been rigorously proved, e.g. Miao and Wang (2007) under one-dimensional

situation and Alvarez and Lippi (2012) under multi-dimensional case among

others. We believe our model satisfies the sufficient conditions demanded by

Aliev (2007) and so the smooth-pasting conditions shown in (25) must hold.

However, it is a challenging task to produce a valid formal proof for this and

thus we leave it for future research.

The following verification theorem presents in essence that if a function

Γ(t, w, x,m) satisfying (22)∼(25) is regular enough so that Itô’s stochastic

differential rule holds for Γ(t,Wt, Xt,mt), then Γ(t, w, x,m) = V (t, w, x,m).

Theorem C.1. For a given consumption plan C ∈ C and an investment

portfolio π ∈ Π, let

LC,π = ∂
∂t
+ [rw + πt(αp − r)− Ct]

∂
∂w

+m ∂
∂x

+ 1
2
(σpπt)

2 ∂2

∂w2

+1
2
σ2
x

∂2

∂x2 +
1
2

v2t
σ2
x(1−ρ2)

∂2

∂m2 + ρπtσpσx
∂2

∂w∂x
+ vt

∂2

∂x∂m
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be the partial differential operator of the diffusion process (t,Wt, Xt,mt) and

let O ≡ (0,∞) × ℜ2. Suppose we can find a function Γ: [0,∞) × O → ℜ,

which is regular enough so that for each (C, π) ∈ C × Π, Itô’s stochastic

differential rule and Dynkin’s formula hold for Γ(t,Wt, Xt,mt) and it is a

solution of the following variational inequality
sup
Ct,πt

LC,π[Γ](t, w, x,m) ≤ 0, Γ(t, w, x,m) ≥ V 0(t, w, x,m),

(Γ(t, w, x,m)− V 0(t, w, x,m)) sup
Ct,πt

LC,π[Γ](t, w, x,m) = 0,

then we have Γ(t, w, x,m) = V (t, w, x,m).

The proof of the theorem can be finished by using a similar structure with

the proof of the corresponding assertions in Rishel and Helmes (2006) or the

proof of Theorem 10.4.1 in Øksendal (2003) and it is therefore omitted.
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Rishel, R., & Helmes, K. (2006). A variational inequality sufficient condition

for optimal stopping with application to an optimal stock selling problem.

SIAM J, control and optimization, 45(2): 580-598.

Song, D.D., & Yang, Z.J. (2013). Utility-based pricing, timing and hedg-

ing of an American call option under an incomplete market with partial

information. Computational Economics, published online.

38



Wang, N. (2009). Optimal consumption and asset allocation with unknown

income growth. Journal of Monetary Economics, 56(4): 524-534.

Xiong, J., & Zhou, X.Y. (2007). Mean-variance portfolio selection under

partial information. SIAM Journal on Control and Optimization, 46: 156-

175.

Yanenko, N.N. (1971). The method of fractional steps. Springer-Verlag, New

York.

Yang, Z.J., & Ma, C.Q. (2001). Optimal trading strategy with partial in-

formation and the value of information: the simplified and generalized

models. International Journal of Theoretical and Applied Finance, 2001,

4(5): 759-772.

Yang, J.Q., & Yang, Z.J. (2012). Consumption utility-based pricing and tim-

ing of the option to invest with partial information. Computational Eco-

nomics, 39(2): 195-217.

Yang, J.Q., Yang, Z.J. & Song, D.D. (2011). The pricing and timing of the

option to invest for cash flows with partial information. African Journal of

Business Management, 5(21): 8432-8445.

39


