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A family index theorem for periodic Hamiltonian systems

and bifurcation

Nils Waterstraat

Abstract

We prove an index theorem for families of linear periodic Hamiltonian systems, which

is reminiscent of the Atiyah-Singer index theorem for selfadjoint elliptic operators. For the

special case of one-parameter families, we compare our theorem with a classical result of

Salamon and Zehnder. Finally, we use the index theorem to study bifurcation of branches

of periodic solutions for families of nonlinear Hamiltonian systems.

1 Introduction

Let X be a compact topological space and Y ⊂ X a closed subspace. We denote by

J =

(

0 −In
In 0

)

(1)

the standard symplectic matrix of dimension 2n and set S1 = R/2πZ. We consider Hamiltonian
systems

{

Ju′(t) +∇uH(λ, t, u(t)) = 0, t ∈ [0, 2π]

u(0) = u(2π),
(2)

where H : X × R × R2n → R is a continuous function such that Hλ : R × R2n → R, λ ∈ X , is
C2 and all its partial derivatives depend continuously on the parameter λ ∈ X . Moreover, we
assume that H(λ, t, u) is 2π-periodic in t, ∇uH(λ, t, 0) = 0 for all (λ, t) ∈ X × R and that there
exist constants a, b ≥ 0 and r > 1 such that

|∇uH(λ, t, u)| ≤ a+ b|u|r,

|Du∇uH(λ, t, u)| ≤ a+ b|u|r, (λ, t, u) ∈ X × R× R
2n.

(3)

Note that in particular u ≡ 0 is a solution of all systems (2).
Under the assumption (3) the equations (2) have a variational formulation on the Hilbert space

H
1
2 (S1,R2n), that is, there exists a family ψ : X ×H

1
2 (S1,R2n) → R of functionals, such that

u ∈ H
1
2 (S1,R2n) is a (weak) solution of (2) for the parameter value λ ∈ X if and only if it is
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a critical point of ψλ := ψ(λ, ·). Let us denote by L = {Lλ}λ∈X , the family of Hessians of ψ
at the branch of trivial critical points u ≡ 0, which is a family of bounded selfadjoint Fredholm
operators on H

1
2 (S1,R2n). Note that these operators play a fundamental role in the study of

existence and multiplicity of solutions of the nonlinear equations (2) (cf. eg. [7, Chapter IV]). We
use a relative version of the classical index bundle from [1] to assign to the family L a K-theory
class in K−1(X,Y ), which we denote by µMorse(H) and call the generalised Morse index of (2).
Now consider the family of linear Hamiltonian systems

Ju′ + Sλ(·)u = 0, λ ∈ X, (4)

where

Sλ(t) := Du∇uH(λ, t, 0), (λ, t) ∈ X × R, (5)

is the Hessian of H(λ, t, ·) at 0 ∈ R
2n. We regard the left hand side of (4) as unbounded self-

adjoint Fredholm operators Aλ, λ ∈ X , on L2(S1,R2n) having domains H1(S1,R2n). By using
again our variant of the index bundle as for the generalised Morse index µMorse(H), we assign
to the family A = {Aλ}λ∈X a relative K-theory class µspec(H) ∈ K−1(X,Y ) called the spectral
index of (2).
Let us recall that for a family D = {Dλ}λ∈X , of selfadjoint elliptic operators acting on a Hermi-
tian bundle over a closed manifold, the classical index bundle [1] defines the analytical index in
the Atiyah-Singer theorem [3]. The analytical index belongs to the odd K-theory group K−1(X)
and according to the Atiyah-Singer theorem it is given by the topological index of the family
D, which only depends on the family of principal symbols of D and topological invariants of
the Hermitian bundle. Note that our operators Aλ, λ ∈ X , in the definition of µspec(H) are
in fact selfadjoint elliptic differential operators acting on a product bundle over the manifold
S1. However, the analytical index of the family A is easily seen to vanish by deforming A to a
family of invertible operators. As we shall see later, we can avoid triviality of µspec(H) in general
because we consider relative K-theory classes in K−1(X,Y ).
Finally, the family of monodromy matrices of the differential equations (4) induce canonically an
element of K−1(X,Y ) which we denote by µmon(H) and call the monodromy index. Our main
theorem states the equality of µMorse(H), µspec(H) and µmon(H) and so computes the rather
involved objects µMorse(H) and µspec(H) in terms of a simple matrix family.
Let us now describe the content and the structure of the paper. The second section is devoted to
the construction of the relative version of the index bundle for families of generally unbounded
selfadjoint Fredholm operators having a fixed domain. In particular, we discuss its relation to
the spectral flow, and we state an abstract index theorem holding at the operator theoretic level
which will later be used for showing the equality of µMorse(H) and µspec(H) in our main index
theorem for Hamiltonian systems. At this point we recall briefly the Morse index theorem for
geodesics in semi-Riemannian manifolds [19] and explain that our abstract index theorem imme-
diately solves a problem that was left open in the topological proof of the Morse index theorem
in the authors article [30]. The reader may find in Appendix A the basics of K-theory that are
needed to follow our arguments in the second section and the rest of the paper. In the third
section we introduce our indices µMorse(H), µspec(H) and µmon(H) and we state the index theo-
rem for Hamiltonian systems. A particular special case of our theorem appears if the parameter
space X is a compact interval and Y is its boundary, which we discuss in the fourth section.
Then the operator families L and A are paths of selfadjoint Fredholm operators and moreover
there exists an isomorphism c1 : K−1(X,Y ) → Z induced by the first Chern number. Under this
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isomorphism the generalised Morse index µMorse(H) and the spectral index µspec(H) correspond
to the spectral flows of the paths L and A respectively, while the monodromy index µmon(H)
becomes the winding number of a certain planar vector field. Let us mention that the spec-
tral flows of A and L were identified with the Conley-Zehnder index of the path of monodromy
matrices of (4) by Salamon and Zehnder in [27] and Fitzpatrick, Pejsachowicz, Recht in [11],
respectively. The integer that we obtain from µmon(H) in this case seems to us rather different
in nature from the Conley-Zehnder index. As an application, we use well known methods for
computing winding numbers of planar vector fields in order to calculate our indices explicitly
for analytic Hamiltonian systems under additional assumptions. The reader may find a brief
survey on the spectral flow in Appendix B, which, however, is not intended to be exhaustive
and rather adapted to our setting. In the fifth section we consider bifurcation of branches of
periodic solutions of the nonlinear Hamiltonian systems (2). We improve the main result of [11]
on paths of Hamiltonian systems to families by using the approach of [22] and our main index
theorem. The final sixth section is devoted to the proofs of the abstract index theorem for the
index bundle from the second section, the index theorem for Hamiltonian systems from the third
section and the bifurcation theorem stated in the fifth section.

2 On the index bundle

We introduce in this section a way to construct the index bundle for families of (generally
unbounded) selfadjoint Fredholm operators having a fixed domain. In Section 2.1 we recall at
first the definition of the index bundle for Fredholm morphisms between Banach bundles from
[29] under the additional assumption that the target bundle is a product. The following Section
2.2 is divided into two parts. In Section 2.2.1 we define the index bundle for selfadjoint Fredholm
operators and discuss its relation to the spectral flow as defined by Robbin and Salamon in [26].
Afterwards, in Section 2.2.2 we state an abstract index theorem which allows to assign to a
family of unbounded selfadjoint Fredholm operators a family of bounded selfadjoint Fredholm
operators having the same index bundle. The abstract index theorem will play an essential role
in the proof of our index theorem for Hamiltonian systems.

2.1 The index bundle for Fredholm morphisms

The index bundle of a continuous family of bounded Fredholm operators parametrised by a com-
pact space is an element of the K-theory group of the parameter space with the same properties
as the ordinary integral-valued index of a single Fredholm operator. It was introduced in [2] in
the proof of the family-version of the famous Atiyah-Singer theorem and independently by Jänich
in [12]. Here we recall its definition in the more general case of Fredholm morphisms between
Banach bundles, where we make throughout the simplifying assumption that the target bundle
is a product. The more involved construction for Fredholm morphisms mapping into general
Banach bundles can be found in [29]. However, in contrast to the aforementioned references, we
allow locally compact parameter spaces and we define the index bundle as a relative K-theory
class.
Let X be a locally compact topological space and Y ⊂ X a closed subspace. Let E be Banach
bundle over X and F a Banach space. In what follows, Θ(F ) stands for the product bundle over
X with fibre F . We denote by F0,c(E ,Θ(F )) the set of all bundle morphisms T : E → Θ(F ) such
that

• Tλ : Eλ → F is a Fredholm operator of index 0, λ ∈ X ,

• there exists a compact subset K ⊂ X such that Tλ is invertible for all λ ∈ X \K.
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We include a proof of the following well known result for later reference in Section 6.1.

Lemma 2.1. For any T ∈ F0,c(E ,Θ(F )) there exists a finite dimensional subspace V ⊂ F such
that

im(Tλ) + V = F, λ ∈ X. (6)

Proof. Let λ0 ∈ X and Uλ0 ⊂ X be an open neighbourhood of λ0 such that E is trivial on Uλ0

by a trivialisation ϕ. Let T̃ = T ◦ ϕ−1 : Uλ0 × E → F be the corresponding family of bounded
Fredholm operators with respect to this trivialisation, where E denotes the model space of E .
Since T̃λ0 is Fredholm, there exists Vλ0 ⊂ F , dimVλ0 <∞, and Wλ0 ⊂ E closed such that

im(T̃λ0)⊕ Vλ0 = F, ker(T̃λ0)⊕Wλ0 = E.

Now consider

Aλ :Wλ0 × Vλ0 → F, Aλ(w, v) = T̃λw + v

and recall that the set of invertible operators GL(Wλ0 × Vλ0 , F ) is open in the space of bounded
operators L(Wλ0×Vλ0 , F ) with respect to the norm topology. Because of Aλ0 ∈ GL(Wλ0×Vλ0 , F )
and the continuity of A : Uλ0 → L(Wλ0 ×Vλ0 , F ), there exists a neighbourhood Ũλ0 ⊂ Uλ0 of λ0
such that Aλ ∈ GL(Wλ0 × Vλ0 , F ) for all λ ∈ Ũλ0 and hence

im(Tλ) + Vλ0 = im(T̃λ) + Vλ0 = F for all λ ∈ Ũλ0 .

Let now K ⊂ X be a compact subset such that Tλ is invertible for all λ ∈ X \K. We cover K
by a finite number of neighbourhoods Ũλi

, i = 1, . . . , n, such that for each i there exists a finite
dimensional subspace Vλi

such that

im(Tλ) + Vλi
= F for all λ ∈ Ũλi

, i = 1, . . . , n.

Then V := V1+ . . .+Vn defines a finite dimensional subspace of F satisfying (6) on all of X .

Let T ∈ F0,c(E ,Θ(F )) be a Fredholm morphism and V ⊂ F a finite dimensional subspace as
in (6). We obtain a surjective bundle morphism

E
T
−→ Θ(F ) → Θ(F/V )

and according to [16, III,§3] the kernel of this morphism defines a finite dimensional subbundle
E(T, V ) of E having the fibres

{u ∈ Eλ : Tλu ∈ V }, λ ∈ X.

Note that

dimE(T, V ) = dimV (7)

and T restricts to a bundle morphism T |E(T,V ): E(T, V ) → Θ(V ). Moreover, Tλ : Eλ → F is an
isomorphism if and only if T |E(T,V )λ is an isomorphism, λ ∈ X .
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Definition 2.2. Let T ∈ Fc,0(E ,Θ(F )) be a Fredholm morphism and Y ⊂ X closed such that
Tλ is invertible for all λ ∈ Y . The index bundle of T is defined by

ind(T ) = [E(T, V ),Θ(V ), T |E(T,V )] ∈ K(X,Y ),

where V ⊂ F is any finite dimensional subspace as in (6).

The reader may check that the definition does not depend on the choice of the subspace
V ⊂ F and that the following fundamental properties hold:

i) Let T ∈ F0,c(E ,Θ(F )) be an isomorphism, i.e. Tλ is invertible for all λ ∈ X . Then

ind(T ) = 0 ∈ K(X,Y ).

ii) Let π : X × [0, 1] → X be the projection onto the first component. If h ∈ F0,c(π
∗E ,Θ(F ))

is a morphism such that h(λ,t) is invertible for all (λ, t) ∈ Y × [0, 1], then

ind(h |X×{0}) = ind(h |X×{1}) ∈ K(X,Y ).

iii) Let G be a Banach space, T ∈ F(E ,Θ(F )) and S ∈ F0,c(Θ(F ),Θ(G)) such that Tλ, Sλ are
invertible for all λ ∈ Y . Then

ind(S ◦ T ) = ind(S) + ind(T ) ∈ K(X,Y ).

2.2 The index bundle for selfadjoint families

The index bundle for families of selfadjoint Fredholm operators was introduced by Atiyah, Patodi
and Singer in the proof of the index theorem for selfadjoint elliptic operators in [3] and it is
connected to the eta-invariant and the spectral flow (cf. also Proposition 2.5 below). We will
give here a slightly different definition which is particularly adapted to families of operators of
the type considered by Robbin and Salamon in [26].

2.2.1 Definition, properties and spectral flow

Let W and H be infinite dimensional complex Hilbert spaces with a dense injection W →֒ H . Let
L(W,H) be the usual Banach space of all bounded operators and let K(W,H) be the subspace
of L(W,H) consisting of all compact operators. We denote by S(W,H) ⊂ L(W,H) the elements
which are selfadjoint when considered as operators in H with dense domain W . Finally, we let
FS(W,H) ⊂ S(W,H) consist of all selfadjoint Fredholm operators and we write GS(W,H) ⊂
FS(W,H) for the subspace of invertible elements. In the case W = H we will shorten notation
as usual and write e.g. L(H,H) = L(H). Note that A ∈ S(W,H) belongs to FS(W,H) if and
only if A has a closed range and a finite dimensional kernel. Moreover, A ∈ FS(W,H) is an
element of GS(W,H) if and only if kerA = 0.
Now let X be a compact topological space and Y ⊂ X a closed subspace. We assume that
D : X → FS(W,H) is a continuous family such that Dλ is invertible for all λ ∈ Y . If we
regard D as a bundle morphism between the product bundles Θ(W ) and Θ(H) over X , then D
is Fredholm of index 0 in each fibre and we may assign the index bundle ind(D) ∈ K(X,Y ) as
defined in the previous section. However, since the operators Dλ, λ ∈ X , are selfadjoint when
considered as operators in H having dense domain W , their spectra are real. Consequently, the
homotopy
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h : [0, 1]× (X ×W ) → H, h(t,λ)u = Dλu+ it u

deforms D to a family of invertible operators such that h(t,λ) is invertible for all (t, λ) ∈ [0, 1]×Y .
We conclude ind(D) = ind(h1) = 0 ∈ K(X,Y ) by the properties i) and ii) of Section 2.1.
Instead, we now define a new family of bounded operators in L(W,H) by the following suspension
of the family D:

Dzu = Dλu+ is u, u ∈ W, z = (λ, s) ∈ X × R.

From the selfadjointness of Dλ, λ ∈ X , it follows that Dz, z = (λ, s) ∈ X × R, is invertible if
s 6= 0. For that reason, D can be regarded as a Fredholm morphism in F0,c(Θ(W ),Θ(H)), where
now Θ(W ) and Θ(H) are product bundles over X × R. Moreover, since we assume that Dλ is
invertible for all λ ∈ Y , Dz is invertible whenever z = (λ, s) belongs to Y × R.

Definition 2.3. Let X be a compact topological space, Y ⊂ X a closed subspace and D : X →
FS(W,H) a continuous family of selfadjoint Fredholm operators such that Dλ is invertible for
all λ ∈ Y . The index bundle of D is defined by

s-ind(D) = ind(D) ∈ K−1(X,Y ).

The following properties of the index bundle for selfadjoint Fredholm operators can easily be
derived from the assertions i)-iii) in Section 2.1:

i) If D : X → FS(W,H) is such that Dλ is invertible for all λ ∈ X , then

s-ind(D) = 0 ∈ K−1(X,Y ).

ii) Let X0 be a compact space, Y0 ⊂ X0 closed and f : (X0, Y0) → (X,Y ) continuous. Then

s-ind(f∗D) = f∗ s-ind(D),

where (f∗D)λ = Df(λ), λ ∈ X0.

iii) If D1, D2 : X → FS(W,H) are two families which are invertible on Y , then

s-ind(D1 ⊕D2) = s-ind(D1) + s-ind(D2) ∈ K−1(X,Y ).

iv) Let h : [0, 1]×X → FS(W,H) be a homotopy such that h(t, λ) is invertible for all (t, λ) ∈
[0, 1]× Y . Then

s-ind(h0) = s-ind(h1) ∈ K−1(X,Y ).

v) Let K : X → S(H) be a family of selfadjoint operators such that Kλ |W∈ K(W,H), λ ∈ X .
If Dλ + tKλ is invertible for all λ ∈ Y and t ∈ [0, 1], then

s-ind(D +K) = s-ind(D) ∈ K−1(X,Y ).
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Remark 2.4. The property v) implies in particular that s-ind(D + K) = s-ind(D) if Y = ∅.
Below we consider families of compact perturbations of fixed operators and hence a non-empty
subspace Y ⊂ X is essential for obtaining non-trivial index bundles.

The spectral flow is an integer-valued homotopy invariant of paths of selfadjoint Fredholm
operators which computes the crossing through 0 of the spectrum of the operators along the path
(cf. Appendix B). It was originally introduced by Atiyah, Patodi and Singer in [3] for closed
paths, i.e. X = S1, Y = ∅, and in this case it can be computed as the first Chern number of
the analytical index as an element of K−1(S1) (cf. [3, §7]). In view of Remark 2.4, our aim is to
obtain a similar result for generally non-closed paths in FS(W,H) having invertible endpoints,
i.e. X = I, Y = ∂I, where I denotes any compact interval in R. First recall from (30) the
definition of the isomorphism c1 : K−1(I, ∂I) → Z.

Proposition 2.5. Let D : (I, ∂I) → (FS(W,H),GS(W,H)) be a path having invertible end-
points. Denote by sf(D) its spectral flow. Then

sf(D) = c1(s-ind(D)) ∈ Z.

Proof. We set µ(D) := c1(s-ind(D)) ∈ Z and show that µ(D) = sf(D) by using Theorem B.1.
Note that µ satisfies the first three assumptions in Theorem B.1 by i),iii) and iv) above.
Let now P be a rank one orthogonal projection such that ker(P ) ⊂ W and T an operator as in
iv) of Theorem B.1. We consider the path

Dλ = λP + (IH − P )T (IH − P ), λ ∈ [−1, 1],

of selfadjoint Fredholm operators and we have to show that µ(D) = 1. Dλ is not invertible only if
λ = 0 having kernel V := im(P ). Since H = ker(D0)⊕ im(D0), we conclude that V is transversal
to the image of the family of operators Dz = Dλ + is IH , z = (λ, s) ∈ [−1, 1]×R, in the sense of
(6). Moreover, V and V ⊥ = im(IH − P ) are both invariant subspaces under the operators Dz.
Denoting by D |V the restriction of the family D to V , it follows from the definition of the index
bundle that

s-ind(D) = ind(D) = [Θ(V ),Θ(V ), D |V ] ∈ K−1(X,Y ).

Since dimV = 1, we can identify V with C and obtain

s-ind(D) = [Θ(C),Θ(C), a] ∈ K−1(I, ∂I),

where a(z) = z for z = λ+ is ∈ [−1, 1]× iR. Applying (30) yields c1(s-ind(D)) = 1.

2.2.2 An abstract index theorem

Let W,E and H be infinite dimensional complex Hilbert spaces such that W ⊂ E ⊂ H as sets.
We assume that the inclusion W →֒ E is continuous, E →֒ H is compact and that W is dense in
H . We define an injective bounded linear operator K : H → E by requiring that

〈u, v〉H = 〈Ku, v〉E, u ∈ H, v ∈ E, (8)

and let K0 be the restriction of K to E. Then K0 is the Riesz representation of the scalar
product of H as a bounded bilinear form on E, i.e,
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〈u, v〉H = 〈K0u, v〉E , u, v ∈ E, (9)

and it is a nonnegative compact operator. In what follows, we require that the spaces W , E and
H satisfy the compatibility condition

W ⊂ im(K). (10)

As in the previous section, let X be a compact space, Y ⊂ X a closed subspace and D : X →
FS(W,H) a continuous family of selfadjoint Fredholm operators such that Dλ is invertible for
all λ ∈ Y . We suppose that there exists C > 0 such that

〈Dλu, v〉H ≤ C‖u‖E‖v‖E , u, v ∈ W, λ ∈ X. (11)

Then the quadratic forms aλ(u, v) = 〈Dλu, v〉H extend uniquely to bounded quadratic forms ãλ
on E, whose Riesz representations are the bounded selfadjoint operators Bλ : E → E determined
by

ãλ(u, v) = 〈Bλu, v〉E , u, v ∈ E. (12)

We assume that the Bλ, λ ∈ X , are Fredholm operators which satisfy

ker(Bλ + isK0) ⊂W, (λ, s) ∈ X × R. (13)

The following theorem is our main result on the index bundle, which we will prove below in
Section 6.1.

Theorem 2.6. Let the spaces W , E and H satisfy the condition (10) and assume that the
operators B = {Bλ}λ∈X , introduced in (12) define a continuous family of Fredholm operators on
E such that (13) holds. Then

s-ind(D) = s-ind(B) ∈ K−1(X,Y ).

In the rest of this section we illustrate Theorem 2.6 with an example. We consider the spaces
H = L2(I,Cn), E = H1

0 (I,C
n) and W = H2(I,Cn) ∩ H1

0 (I,C
n), where I = [0, 1] denotes the

unit interval (cf. [18, §2.7]). For a real symmetric matrix J and a continuous two parameter
family of such matrices S : [a, b]× I →M(n,R), we examine the bilinear forms

qλ : E × E → C, qλ(u, v) =

∫ 1

0

〈J u′(t), v′(t)〉dt−

∫ 1

0

〈Sλ(t)u(t), v(t)〉dt, (14)

and the operators

Dλ :W → H, Dλu = J u′′ + Sλ(·)u, λ ∈ [a, b]. (15)

We see at once that D is a continuous path in FS(W,H) and so the spectral flow sf(D) is
defined. Moreover, q is a continuous family of bounded bilinear forms and the associated Riesz
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representations Bλ, λ ∈ [a, b], are Fredholm, as is easy to check by using the compactness of the
embedding E →֒ H (cf. [19, Prop. 3.1]). Applying integration by parts gives

−〈Dλu, v〉H = qλ(u, v), u ∈ W, v ∈ E, λ ∈ [a, b],

and hence −D and B are related as in (12). In order to apply Theorem 2.6, we need to show
that the assumptions (10) and (13) hold.
From the definition of the scalar product

〈u, v〉E =

∫ 1

0

〈u′(t), v′(t)〉 dt, u, v ∈ E,

it may be concluded that the operator

K : H → E, (Ku)(t) = −

∫ t

0

∫ s

0

u(τ) dτds+ t

∫ 1

0

∫ s

0

u(τ) dτds

satisfies 〈u, v〉H = 〈Ku, v〉E for all u ∈ H and v ∈ E. Given u ∈ W , the second derivative u′′

belongs to H and from u(0) = u(1) = 0 it follows that Ku′′ = −u. Consequently, the spaces
W , E and H fulfil the compatibility condition (10). Finally, if we denote by K0 the restriction
of K to H1

0 (I,C
n), then the kernels ker(Bλ + isK0), (λ, s) ∈ X × R, in (13) consist of smooth

functions by elliptic regularity. Accordingly, they are contained in W which shows (13). We
obtain from Theorem 2.6 and Proposition 2.5:

Proposition 2.7. If Da and Db are invertible, then

sf(D) = − sf(B).

The Morse index theorem for geodesics in Riemannian manifolds states the equality of the
Morse index of a geodesic and the number of conjugate points along the geodesic counted with
multiplicities. For semi-Riemannian manifolds, conjugate points along a geodesic γ may accu-
mulate and also the Morse index is no longer finite in general. A generalisation of the Morse
index theorem to this setting was obtained by Musso, Pejsachowicz and Portaluri in [19] as
an equality of three integral-valued indices µMorse(γ), µcon(γ) and µspec(γ). µMorse(γ) gener-
alises the Morse index to semi-Riemannian geodesics by means of the spectral flow of a path of
bounded selfadjoint Fredholm operators B, which are induced by bilinear forms q of the form
(14). Here J is a diagonal matrix having 1 and −1 on the diagonal according to the signature
of the metric of the underlying manifold, and S contains curvature terms of the manifold along
the geodesic. The counting of conjugate points along a geodesic is replaced by µcon(γ), which
is defined as a winding number of a planar vector field associated to the Jacobi equation of the
geodesic γ. Finally, in the proof of the theorem appears the third index µspec(γ), which is the
spectral flow of a path of unbounded selfadjoint Fredholm operators as in (15). The proof of the
semi-Riemannian Morse index theorem in [19] falls naturally into two parts. The first part shows
µMorse(γ) = µspec(γ) by using an analytic perturbation argument established by Robbin and
Salamon in [26] in their construction of the spectral flow. The equality µspec(γ) = µMorse(γ),
obtained in [19] by functional analytic arguments, was later proved by the author in [30] by
using the index bundle for families of selfadjoint Fredholm operators and K-theory. However,
µMorse(γ) = µspec(γ) was again only shown by the analytic perturbation argument from [26].
Now the equality µMorse(γ) = µspec(γ) follows from Proposition 2.7 and along with [30] a com-
plete K-theoretic proof of the semi-Riemannian Morse index theorem [19] is established.
Finally, let us point out that there are several other settings in which Theorem 2.6 can be ap-
plied. We want to mention in particular that, besides periodic Hamiltonian systems which we are
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studying in this article, also wave equations and noncooperative elliptic systems as considered in
[8] provide interesting examples.

3 The index theorem for Hamiltonian systems

The aim of this section is to state the index theorem for periodic Hamiltonian systems. Through-
out we let X be a compact topological space and Y ⊂ X a closed subspace.
At first, we recall the definition of the function spaces that will be used below. The common
Hilbert space L2(S1,R2n) consists of all functions u : [0, 2π] → R2n such that

u(t) = c0 +

∞
∑

k=1

ak sin kt+ bk cos kt, (16)

where c0, ak, bk ∈ R2n, k ∈ N, and

∞
∑

k=1

|ak|
2 + |bk|

2 <∞.

The scalar product on L2(S1,R2n) is given by

〈u, v〉L2 = 2π〈c0, c̃0〉+ π
∞
∑

k=1

〈ak, ãk〉+ 〈bk, b̃k〉,

where c̃0 and ãk, b̃k denote the Fourier coefficients of v ∈ L2(S1,R2n). The subset H
1
2 (S1,R2n)

of all functions u ∈ L2(S1,R2n) such that

∞
∑

k=1

k(|ak|
2 + |bk|

2) <∞ (17)

is a Hilbert space in its own right with respect to the scalar product

〈u, v〉
H

1
2
= 2π〈c0, c̃0〉+ π

∞
∑

k=1

k(〈ak, ãk〉+ 〈bk, b̃k〉). (18)

Finally, H1(S1,R2n) is defined similarly than H
1
2 (S1,R2n) just by replacing k by k2 in (17) and

(18). We will use henceforth that we have compact inclusions

H
1
2 (S1,R2n) →֒ L2(S1,R2n) and H1(S1,R2n) →֒ L2(S1,R2n).

The Hilbert space H
1
2 (S1,R2n) has an orthogonal decomposition H

1
2 (S1,R2n) = E+⊕E0⊕E−,

where

E0 =
{

u ∈ H
1
2 (S1,R2n) : u ≡ c0, c0 ∈ R

2n
}

E± =

{

u ∈ H
1
2 (S1,R2n) : u(t) =

∞
∑

k=1

ak cos kt∓ Jak sin kt, ak ∈ R
2n

}

.
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Let P± denote the orthogonal projections in H
1
2 (S1,R2n) onto E± and define a bilinear form by

Γ : H
1
2 (S1,R2n)×H

1
2 (S1,R2n) → R, Γ(u, v) = 〈P+u− P−u, v〉

H
1
2
. (19)

For u ∈ H1(S1,R2n), we see from the definition of E± and 〈·, ·〉
H

1
2

that we can rewrite Γ as

Γ(u, v) =

∫ 2π

0

〈Ju′, v〉 dt, v ∈ H
1
2 (S1,R2n). (20)

Now consider the family of functionals

ψ : X ×H
1
2 (S1,R2n) → R, ψ(λ, u) =

1

2
Γ(u, u) +

∫ 2π

0

H(λ, t, u(t)) dt.

It is well known (cf. [4, Prop. 2.1]) that under the assumptions (3) each ψλ is C2 and

∇uψ(λ, u) = (P+ − P−)u +G(λ, u),

where

〈G(λ, u), v〉
H

1
2
=

∫ 2π

0

〈∇uH(λ, t, u(t)), v(t)〉 dt, u, v ∈ H
1
2 (S1,R2n).

Consequently, the critical points of ψλ are precisely the weak solutions of the Hamiltonian system
(2). Let us denote by Lλ, λ ∈ X , the linearisation of ∇uψ(λ, u) with respect to u at the branch of

trivial critical points X × {0} ⊂ X ×H
1
2 (S1,R2n). Since ∇uH(λ, t, 0) = 0, it may be concluded

that these operators are given by

〈Lλu, v〉
H

1
2
= Γ(u, v) +

∫ 2π

0

〈Sλ(t)u(t), v(t)〉 dt, u, v ∈ H
1
2 (S1,R2n), (21)

where Sλ(t) = Du∇uH(λ, t, 0), (λ, t) ∈ X × R, as already introduced in (5) above. Henceforth,
we call the Hamiltonian system (2) admissible if the operators Lλ are invertible for all λ ∈ Y .

Lemma 3.1. The operators Lλ, λ ∈ X, are of the form Lλ = A+Kλ, where A is a selfadjoint
Fredholm operator and K is a continuous family of compact operators.

Proof. At first, we set A := P+ − P−, which is a selfadjoint Fredholm operator on H
1
2 (S1,R2n).

The maps

βλ : L2(S1,R2n)× L2(S1,R2n) → R, (u, v) 7→

∫ 2π

0

〈Sλ(t)u(t), v(t)〉 dt

restrict to a continuous family of bounded bilinear forms on H
1
2 (S1,R2n). Now

〈Kλu, v〉
H

1
2
= βλ(u, v), u, v ∈ H

1
2 (S1,R2n),

defines a continuous family of bounded selfadjoint operators Kλ on H
1
2 (S1,R2n) such that Lλ =

A+Kλ, λ ∈ X . It remains to show the compactness of Kλ, λ ∈ X . Let {un}n∈N and {vn}n∈N be

sequences in H
1
2 (S1,R2n) which converge weakly to some elements u, v ∈ H

1
2 (S1,R2n). From the

compactness of the inclusion H
1
2 (S1,R2n) →֒ L2(S1,R2n), it follows that they converge strongly

in L2(S1,R2n). Consequently, 〈Kλun, vn〉
H

1
2
= βλ(un, vn) converges to βλ(u, v) = 〈Kλu, v〉

H
1
2
,

which shows the compactness of Kλ (cf. [33, §21.10]).
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The previous lemma implies that L = {Lλ}λ∈X is a continuous family of bounded selfadjoint

Fredholm operators in H
1
2 (S1,R2n). We now consider the complexifications LC

λ, of the operators

Lλ, λ ∈ X , acting on the complexified Hilbert spaceH
1
2 (S1,R2n)C = H

1
2 (S1,C2n) (cf. eg. [32, p.

113-114]). Then LC

λ = AC +KC

λ , λ ∈ X , where AC ∈ FS(H
1
2 (S1,C2n)), KC

λ ∈ K(H
1
2 (S1,C2n))

is selfadjoint, and accordingly

LC : X → FS(H
1
2 (S1,C2n))

is a continuous family of bounded selfadjoint Fredholm operators. Of course, LC

λ is invertible if
and only if Lλ is invertible, λ ∈ X .

Definition 3.2. The generalised Morse index of the admissible family of Hamiltonian sys-
tems (2) is defined by

µMorse(H) = s-ind(LC) ∈ K−1(X,Y ).

Let us now consider the family of differential operators

Aλ : H1(S1,R2n) ⊂ L2(S1,R2n) → L2(S1,R2n), Aλu = Ju′ + Sλ(·)u, λ ∈ X,

where as before Sλ(t) = Du∇uH(λ, t, 0). The multiplication operators induced by S define a
continuous family in S(L2(S1,R2n)), which restricts to a continuous family in

K(H1(S1,R2n), L2(S1,R2n))

by the compactness of the inclusion H1(S1,R2n) →֒ L2(S1,R2n). Consequently,

Aλ ∈ FS(H1(S1,R2n), L2(S1,R2n)), λ ∈ X,

and A = {Aλ}λ∈X defines a continuous family

A : X → FS(H1(S1,R2n), L2(S1,R2n))

It follows from (20) and (21) that Aλ is invertible whenever Lλ is invertible, λ ∈ X . Finally, we
complexify the spaces and operators to obtain a continuous family

AC : X → FS(H1(S1,C2n), L2(S1,C2n))

of selfadjoint Fredholm operators such that AC

λ is invertible for all λ ∈ Y if (2) is admissible.

Definition 3.3. The spectral index of the admissible family (2) is defined by

µspec(H) = s-ind(AC) ∈ K−1(X,Y ).

Remark 3.4. Note that by Remark 2.4, µMorse(H) and µspec(H) are trivial if Y = ∅.

For our final K-theoretic index let

Ψz : [0, 2π] → GL(2n,C), z = (λ, s) ∈ X × R,

be the fundamental solution of the ordinary differential equation

12



{

JΨ′
z(t) + Sλ(t)Ψz(t) + i sΨz(t) = 0, t ∈ [0, 2π],

Ψz(0) = I2n.
(22)

We define a family of matrices by

Λ : X × R →M(2n,C), Λ(z) = (I2n −Ψz(2π))
T , (23)

where ·T stands for the transpose of a matrix. Note that det Λ(z) = 0 if and only if 1 is a Floquet
multiplier of the system (22).

Lemma 3.5. For z = (λ, s) ∈ X × R the following assertions are equivalent:

1. detΛ(z) = 0,

2. s = 0 and kerAC

λ 6= 0,

3. s = 0 and kerAλ 6= 0.

Proof. If detΛ(z) = 0, then there exists 0 6= u0 ∈ C2n such that Ψz(2π)u0 = u0. Hence
u(t) = Ψz(t)u0, t ∈ [0, 2π], is a non-trivial element of H1(S1,C2n) such that AC

λu + is u = 0.
From this we conclude that s = 0 and kerAC

λ 6= 0 since AC

λ is selfadjoint and Fredholm. Of
course, ker(AC) = (kerA)C and so the second and the third assertion are equivalent. Finally, if
u ∈ kerAλ and z = (λ, 0), then there exists u0 ∈ R2n such that u(t) = Ψz(t)u0, t ∈ [0, 2π]. From
u0 = Ψz(0)u0 = u(0) = u(2π) = Ψz(2π)u0, we obtain (I2n − Ψz(2π))u0 = 0 and consequently
detΛ(z) = 0.

Let us recall from the definition of the spectral index that kerAλ = 0 for all λ ∈ Y if (2) is
admissible. Consequently, by the previous lemma, Λ(z) is invertible whenever z = (λ, s) belongs
to Y × R or is outside the compact subset X × {0} of X × R. Now we obtain immediately a
relative K-theory class as follows:

Definition 3.6. The monodromy index of the admissible family (2) is defined by

µmon(H) = [Θ(C2n),Θ(C2n),Λ] ∈ K−1(X,Y ).

Finally, we can state our main theorem, which we prove below in Section 6.2.

Theorem 3.7. If (2) is admissible, then

µMorse(H) = µspec(H) = µmon(H) ∈ K−1(X,Y ).

Note that the indices in Theorem 3.7 are trivial if Y = ∅ by Remark 3.4. Non-vanishing
indices can be obtained, for instance, if X is a compact interval and Y = ∂X is its boundary.
We devote the following section to this special case of Theorem 3.7.
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4 The special case of paths

In this section we discuss Theorem 3.7 in the case that the families of operators are paths. Let us
recall at first the definition of the Conley-Zehnder index for paths of symplectic matrices, where
we follow the approach of Robbin and Salamon in [25]:
An n-dimensional subspace ℓ ⊂ V of a (real) symplectic vector space (V, ω) of dimension 2n
is called Lagrangian if the restriction of the symplectic form ω to ℓ vanishes. The set Λ(V )
of all Lagrangian subspaces of V forms a smooth submanifold of the ordinary Grassmannian
of all n-dimensional subspaces of V , which is called the Lagrangian Grassmannian. We fix a
Lagrangian subspace ℓ0 ∈ Λ(V ) of V . The Maslov index m(γ, ℓ0) provides an integer-valued
homotopy invariant of paths γ : [a, b] → Λ(V ) whose endpoints are transverse to ℓ0. Roughly
speaking, it is the number of non-transverse intersections of γ([a, b]) with ℓ0. There are several
approaches to the construction of this invariant and we refer to [6] for a detailed exposition. Let
us now restrict our discussion to the symplectic space (V, ω), where V = R2n ×R2n and ω is the
symplectic form induced by

(

−J 0
0 J

)

.

Here J denotes as before the standard symplectic matrix (1). Given a symplectic matrix M ∈
Sp(2n,R), its graph

graph(M) = {(u,Mu) ∈ R
2n × R

2n : u ∈ R
2n}

is a Lagrangian subspace of (V, ω). Of course, the diagonal ∆ ⊂ R2n × R2n is a Lagrangian
subspace of (V, ω) as well, and graph(M)∩∆ 6= {0} if and only if det(I2n−M) = 0. Consequently,
if M : [a, b] → Sp(2n,R) is a path such that det(I2n −Ma) and det(I2n −Mb) do not vanish,
then the endpoints of the path graph(M) : [a, b] → Λ(V ) are transverse to ∆ ⊂ R2n ×R2n. The
Conley-Zehnder index of M is defined by

µCZ(M) = m(graph(M),∆) ∈ Z.

Now assume that X = [a, b] parametrises the family of Hamiltonian systems (2) and Y = ∂X =
{a, b}. The initial value problems

{

JΨ′
λ(t) + Sλ(t)Ψλ(t) = 0, t ∈ [0, 2π],

Ψλ(0) = I2n,
(24)

induce a path M : [a, b] → Sp(2n,R) of symplectic matrices by Mλ = Ψλ(2π). Note that (24)
coincides with equation (22) from the definition of the monodromy index if s = 0. If (2) is
admissible, then I2n −Ψa(2π) and I2n −Ψb(2π) are invertible because of Lemma 3.5 and hence
the Conley-Zehnder index of M is defined. Note that, heuristically, µCZ(M) counts instants
λ ∈ X for which graph(Ψλ(2π)) ∩∆ 6= {0}, i.e. λ ∈ X for which the linear Hamiltonian system
(4) admits non-trivial periodic solutions.
Let us now investigate the three indices of Theorem 3.7 for X = [a, b] and Y = ∂X . The
families of operators L and A from Section 3 are then paths of selfadjoint Fredholm operators
acting on the real Hilbert spaces H

1
2 (S1,R2n) and L2(S1,R2n), respectively. Accordingly, the

spectral flows sf(L) and sf(A) are defined, and if (2) is admissible, then L and A have invertible
endpoints. Since the spectral flow is invariant under complexification by (32), we obtain from
Proposition 2.5
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sf(L) = c1(µMorse(H)) and sf(A) = c1(µspec(H)).

Let us recall from (30) that the first Chern number c1 for an element in K−1(X,Y ) of the form
[Θ(C2n),Θ(C2n), ã] is given by

c1([Θ(C2n),Θ(C2n), ã]) = w(det(ã) ◦ κ, 0),

when κ : S1 → X×R is any simple positively oriented curve surrounding the support of ã. From
this we get for the monodromy index

c1(µmon(H)) = w(ρ ◦ κ, 0),

where ρ is the planar vector field on X × R ⊂ C defined by

ρ : X × R → C, ρ(z) = detΛ(z)

and Λ : X × R → M(2n,C) is the matrix family introduced in (23). Note that according to
Lemma 3.5, the support of µmon(H) is contained in (a, b)×{0}. Finally, it is proved in [11, Prop.
2.1] that the spectral flow of L is equal to the Conley-Zehnder index of the path M in (24). In
summary, we obtain from Theorem 3.7 the following result.

Theorem 4.1. If (2) is admissible, then

sf(L) = sf(A) = w(ρ ◦ κ, 0) = µCZ(M) ∈ Z,

where κ : S1 → X × R is any simple positively oriented curve surrounding (a, b)× {0}.

Remark 4.2. The equality of the spectral flow of A and the Conley-Zehnder index of M was
originally proven by Salamon and Zehnder in Theorem 3 of [27].

The definitions of the Conley-Zehnder index of the path M and the winding number of
the planar vector field ρ in Theorem 4.1 seem to us rather different in nature, although also
the definition of µCZ(M) involves a winding number (cf. [27]). We want to point out that
there is a well studied theory for computing winding numbers of planar vector fields (cf. eg.
[13]). As an example, let us assume that the components of Sλ(t) in (5) depend analytically
on (λ, t) ∈ (a, b) × R. Then ρ is analytic as well and hence its zeroes are a finite subset of
(a, b)×{0}. From the properties of the winding number it is clear that we can assume without loss
of generality that there exists only a single zero, which is then of the form z0 = (λ0, 0) ∈ (a, b)×R.
Let κ : S1 → X × R be a simple positively oriented curve surrounding z0.
We have in a neighbourhood of z0

ρ(z) = ρ(λ, s) = (P (λ− λ0, s) + f(λ− λ0, s)) + i(Q(λ− λ0, s) + g(λ− λ0, s)),

where P and Q are real homogenous polynomials of degree m and n, respectively, and |f(z)| =
O(|z|m+1), |g(z)| = O(|z|n+1). Set η := P + iQ and let us require henceforth that z0 is the only
zero of η. We see at once that

w(ρ ◦ κ, 0) = w(η ◦ κ, 0),

and now the winding number of η◦κ can be computed directly from the coefficients of η as follows:
we assume without loss of generality that m ≥ n and set N0(s) := P (1, s), N1(s) := Q(1, s).
Let N0, N1, . . . , Nl be non-trivial polynomials such that Ni+1(s) is the rest of the division of
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Ni−1(s) by Ni(s) so that, incidentally, Nl(s) is the greatest common divisor of N0 and N1 by
the Euclidean algorithm. For any r ∈ R which is not a zero of any of the polynomials Ni, we
denote by m(r) the number of sign changes in the sequence of integers N0(r), . . . , Nl(r). Since
m(r) is defined and constant if r or −r is sufficiently large, the limits m+ and m− of m(r) for
r → ±∞ exist. Now Theorem 10.2 of [14] provides the following simple formula for the indices
in Theorem 4.1:

w(ρ ◦ κ, 0) = (1 + (−1)m+n)
m+ −m−

2
. (25)

5 Bifurcation

In this section we consider the generally nonlinear Hamiltonian systems (2), where we no longer
assume the parameter space X to be compact. Note that u ≡ 0 solves all these equations and
our aim is to study multiparameter bifurcation from this branch of trivial periodic solutions by
using Theorem 3.7. In what follows we assume as in Section 3 that (2) is admissible, i.e. the
operators Lλ introduced in (21) are invertible for all λ ∈ Y .

Definition 5.1. We call λ∗ ∈ X a bifurcation point of periodic solutions for the Hamiltonian
system (2) if every neighbourhood of (λ∗, 0) in X ×H

1
2 (S1,R2n) contains elements (λ, u), where

u 6= 0 is a solution of (2) for the parameter value λ.

We denote by B(H) ⊂ X the set of all bifurcation points of the family (2) and we observe
that B(H) is closed by the very definition of a bifurcation point.
In [23] the author has studied in collaboration with A. Portaluri several parameter bifurcation
of critical points for abstract families of functionals by using the main theorem of [10]. For the
optimal results we need to assume simply connected parameter spaces. Here we want to use the
subsequent article [22], written in collaboration with J. Pejsachowicz, and our Theorem 3.7 in
order to investigate several parameter bifurcation for periodic solutions of Hamiltonian systems
as critical points of the functional ψ in Section 3. Interestingly, it turns out that we do not need
to require simple connectedness of the parameter space X any longer due to the special form of
the operators L from Section 3.
Let us recall that in the definition of the monodromy index in (23), we defined a matrix family
Λ : X × R → M(2n,C) by using the monodromy matrices of the family of equations (22). Let
I = [a, b] ⊂ R denote a compact interval. Given a path γ : (I, ∂I) → (X,Y ), we obtain by
composition a map

Λ ◦ (γ, id) : I × R →M(2n,C)

and an integer

d(γ) := w(det(Λ ◦ (γ, id)) ◦ κ, 0) ∈ Z,

where as before κ : S1 → I × R is any simple positively oriented path surrounding (a, b) × {0}
and w(·, 0) denotes the winding number with respect to 0 for closed curves in C \ {0}. Since
det(Λ(γ(t), s)) 6= 0 for all (t, s) /∈ (a, b)×{0} by Lemma 3.5, d(γ) does not depend on the choice
of κ. Note furthermore that d(γ) = µCZ(M ◦ γ) by Theorem 4.1, where M : X → Sp(2n,R) is
the associated family of monodromy matrices of the equations (24).

Theorem 5.2. Assume that the admissible family of Hamiltonian systems (2) is parametrised
by a path-connected topological space X and let ∅ 6= Y ⊂ X be a closed subspace.
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i) If there exists a path γ : (I, ∂I) → (X,Y ) such that d(γ) 6= 0, then B(H) disconnects X.

ii) If there exists a sequence of paths γn : (I, ∂I) → (X,Y ), n ∈ N, such that

lim
n→∞

|d(γn)| = ∞,

then X \B(H) has infinitely many path components.

Intuitively, part i) of Theorem 5.2 states that B(H) is a subset of codimension 1 in X . Let us
recall that the covering dimension dimX of a topological space X is the minimal value of n ∈ N

such that every finite open cover of X has a finite open refinement in which no point is included
in more than n+1 elements. Now, from the disconnectedness of its complement in X , it indeed
follows from Theorem 5.2 that the covering dimension of B(H) is at least dim(X)− 1 if X is a
topological manifold (cf. [9, Prop. V.6]).
Finally, setting (X,Y ) = (I, ∂I), we obtain from the first assertion of Theorem 5.2 that if one of

the integers in Theorem 4.1 is non-zero, then any neighbourhood of I × {0} in I ×H
1
2 (S1,R2n)

contains non-trivial solutions of (2). This result was proved in [11, Theorem 2.2] under the
additional assumption that H depends smoothly on the parameter λ ∈ I.

6 Proofs of the theorems

In this section we give the proofs of Theorem 2.6, Theorem 3.7 and Theorem 5.2.

6.1 Proof of Theorem 2.6

Let us recall at first that s-ind(B) = ind(B) and s-ind(D) = ind(D), where

B(λ,s) = Bλ + is IE , D(λ,s) = Dλ + is IH , (λ, s) ∈ X × R.

We divide the proof of Theorem 2.6 into three parts. In the first part we introduce a further
family of Fredholm operators B̃ parametrised by X × R. In the subsequent second and third
part we show that ind(B̃) = s-ind(B) and ind(B̃) = s-ind(D), respectively.

Step 1

We define a family of bounded operators by

B̃ : X × R → L(E), B̃(λ,s)u = Bλu+ isK0u,

where K0 is the compact nonnegative operator introduced in (9). Since B̃(λ,s) is a compact
perturbation of Bλ, it is a Fredholm operator of index 0. Now consider for (λ, s) ∈ X × R the
diagram

E
B̃(λ,s) // E

W

ι

OO

D(λ,s) // H

K

OO
(26)
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where ι :W → E denotes the continuous inclusion. The diagram commutes because of

〈Bλu+ isK0u, v〉E = 〈Bλu, v〉E + is〈K0u, v〉E = 〈Dλu+ is u, v〉H

= 〈K(Dλu+ is u), v〉E , u ∈ W, v ∈ E.

The next lemma deals with the relationship between the families B and B̃.

Lemma 6.1. For (λ, s) ∈ X × R the following assertions are equivalent:

i) ker B̃(λ,s) 6= 0,

ii) kerB(λ,s) 6= 0,

iii) s = 0 and kerBλ 6= 0.

Proof. By using the selfadjointness of Bλ, it is clear that ii) and iii) are equivalent. Since iii)
obviously implies i), it is sufficient to show that the first assertion implies the third one. Assume
that B̃(λ,s)u = Bλu + isK0u = 0 for some 0 6= u ∈ E. Then u ∈ W by (13), and since (26)
is commutative and K injective, we obtain Dλu + is u = 0. From the selfadjointness of Dλ, we
conclude that s = 0 and u ∈ kerDλ. Finally, by using again the commutativity of (26), we see
that u ∈ kerBλ.

From the previous lemma we conclude that B̃(λ,s) is invertible for all (λ, s) /∈ X × {0} and
all (λ, 0) ∈ Y × {0}. Hence

ind B̃ ∈ K−1(X,Y )

is defined.

Step 2

We define a path of bounded selfadjoint operators on E by A(t) = (1 − t)K0 + t IE , t ∈ [0, 1].
Since K0 is nonnegative, A(t) is invertible for all t ∈ (0, 1]. Hence there exists for any t ∈ (0, 1] a

unique square root A(t)
1
2 , which is an invertible and selfadjoint operator on E. We now consider

the homotopy of Fredholm operators

h : [0, 1]× (X × R× E) → E, h(t)(λ,s)u = Bλu+ isA(t)u

and note that h(0) = B̃ and h(1) = B.

Lemma 6.2. h(t)(λ,s), t ∈ [0, 1], (λ, s) ∈ X × R, is invertible if s 6= 0.

Proof. Note at first that h(0)(λ,s) = B̃(λ,s) is invertible if s 6= 0 according to Lemma 6.1. Hence
we can restrict to the case t > 0 and obtain

h(t)(λ,s) = Bλ + isA(t) = A(t)
1
2 (A(t)−

1
2BλA(t)

− 1
2 + is IE)A(t)

1
2 .

Since A(t)−
1
2BλA(t)

− 1
2 is selfadjoint and s 6= 0, we conclude that A(t)−

1
2BλA(t)

− 1
2 + is IE and,

consequently, also h(t)(λ,s) is invertible.

From the definition of h it is clear that h(t)(λ,s) is also invertible for all t ∈ [0, 1] if (λ, s) ∈
Y × {0}. Now the homotopy invariance property ii) in Section 2.1 shows that

s-ind(B) = ind(B) = ind(B̃) ∈ K−1(X,Y ).
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Step 3

Since the operators Bλ are selfadjoint and Fredholm, we have for each λ ∈ X an orthogonal
decomposition E = im(Bλ)⊕ ker(Bλ). It is readily seen from the proof of Lemma 2.1 that there

exist λ1, . . . , λN ∈ X such that U :=
⊕N

i=1 kerBλi
is transversal to the image of the family B as

in (6), i.e.

im(Bλ) + U = E, λ ∈ X.

Since B̃(λ,s) is invertible for s 6= 0 according to Lemma 6.1, we conclude that

im(B̃(λ,s)) + U = E, (λ, s) ∈ X × R.

From the definition of U , (10) and (13) we see that U ⊂W ⊂ imK and hence there exists a finite
dimensional subspace V1 ⊂ H such that K(V1) ⊃ U . Now choose V2 ⊂ H finite dimensional such
that

im(D(λ,s)) + V2 = H, (λ, s) ∈ X × R,

and set V := V1 + V2. We have by definition

ind(B̃) = [E(B̃,K(V )),Θ(K(V )), B̃ |E(B̃,K(V ))], s-ind(D) = [E(D,V ),Θ(V ), D |E(D,V )].

It follows from the commutativity of (26) that the inclusion ι : W → E maps E(D,V ) into
E(B̃,K(V )). Since

dimE(D,V ) = dimV = dimK(V ) = dimE(B̃,K(V )),

where we use (7) and the injectivity of K, ι actually induces an isomorphism. Finally, by
employing again the commutativity of (26), we obtain that the diagram

E(B̃,K(V ))
B̃ // Θ(K(V ))

E(D,V )
D //

ι

OO

Θ(V )

K

OO

commutes. Consequently, s-ind(D) = ind(B̃) by the definition of K-theory, and the proof of
Theorem 2.6 is complete.

6.2 Proof of Theorem 3.7

For the proof of Theorem 3.7 we set in accordance with the notation in Section 2.2.2

W = H1(S1,C2n), E = H
1
2 (S1,C2n), H = L2(S1,C2n).
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Part I: µMorse(H) = µspec(H)

The first part of our proof is based on Theorem 2.6. We note at first that by (20) and (21)

〈AC

λu, v〉H = 〈LC

λu, v〉E , u ∈W, v ∈ E,

and consequently the families AC : X → FS(W,H) and LC : X → FS(E) are in the relation
assumed in Section 2.2.2.
We define K : H → E as the unique bounded selfadjoint operator such that

〈u, v〉H = 〈Ku, v〉E, u ∈ H, v ∈ E, (27)

and denote by K0 the restriction of K to E. It is readily seen that

Ku = c0 +
∞
∑

k=1

ak
k

sin kt+
bk
k

cos kt,

where c0, ak, bk ∈ C2n, k ∈ N, denote the Fourier coefficients of u ∈ H . Hence imK =W , which
shows (10).
Finally, let us assume that u ∈ ker(LC

λ + isK0) for some (λ, s) ∈ X × R. We obtain from (27)

0 = 〈LC

λu, v〉E + is〈K0u, v〉E = ΓC(u, v) +

∫ 2π

0

〈Sλ(t)u(t), v(t)〉dt + is〈u, v〉H

= ΓC(u, v) +

∫ 2π

0

〈(Sλ(t) + is I2n)u(t), v(t)〉dt, u, v ∈ E,

where ΓC denotes the complexification of the bilinear form Γ introduced in (19). Consequently,
u is a weak solution of

{

Ju′(t) + Sλ(t)u(t) + is u(t) = 0, t ∈ [0, 2π],

u(0) = u(2π).

By a well known regularity argument (cf. [24, §6]), every weak solution of this equation is in fact
a classical solution and we obtain

ker(LC

λ + isK0) ⊂ C1(S1,C2n) ⊂W.

Accordingly, assumption (13) is satisfied as well and we conclude from Theorem 2.6 that

µMorse(H) = µspec(H) ∈ K−1(X,Y ).

Part II: µspec(H) = µmon(H)

The second part of our proof of Theorem 3.7 is less direct than the first one.
We will use throughout the paths of matrices Ψz : [0, 2π] → GL(2n,C), z = (λ, s) ∈ X × R,
which we introduced in (22).
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Lemma 6.3. The space

E = {Ψ−1
z (·)u : u ∈W, z = (λ, s) ∈ X × R}

is a Hilbert subbundle of the product (X × R)×H1([0, 2π],C2n).

Proof. We have a bundle isomorphism

ϕ : (X × R)×H1([0, 2π],C2n) → (X × R)×H1([0, 2π],C2n), (ϕzu)(t) = Ψ−1
z (t)u(t),

and W ⊂ H1([0, 2π],C2n) is a closed subspace. Hence

E = ϕ((X × R)×W ) ⊂ (X × R)×H1([0, 2π],C2n)

is a Hilbert subbundle.

We now define isomorphisms

M : E → (X × R)×W, (Mzu)(t) = Ψz(t)u(t),

MT : (X × R)×H → (X × R)×H, (MT
z u)(t) = ΨT

z (t)u(t),

and consider the compositions

Tz :=MT
z ◦ AC

z ◦Mz : Ez → H, z = (λ, s) ∈ X × R.

Then T : E → (X × R) × H is a Fredholm morphism between Hilbert bundles and we obtain
from the properties i) and iii) in Section 2.1

ind(T ) = ind(MT ◦ AC ◦M) = ind(MT ) + ind(AC) + ind(M) = s-ind(AC).

Our aim is now to compute ind(T ). At first, we obtain for u ∈ Ez, z = (λ, s) ∈ X × R,

(Tzu)(t) = (MT
z (AC

λ + is IH)Mzu)(t) = ΨT
z (A

C

λ + is IH)(Ψzu)(t)

= ΨT
z (t)(JΨ

′
z(t)u(t) + JΨz(t)u

′(t) + Sλ(t)Ψz(t)u(t) + isΨz(t)u(t))

= ΨT
z (t)(−Sλ(t)Ψz(t)u(t) − isΨz(t)u(t) + JΨz(t)u

′(t) + Sλ(t)Ψz(t)u(t) + isΨz(t)u(t))

= ΨT
z (t)JΨz(t)u

′(t) = Ju′(t),

where the last equality is easily seen by differentiating ΨT
z (t)JΨz(t) with respect to t.

We have a decomposition H = Y1 ⊕ Y2, where Y1 denotes the space of constant functions and

Y2 =

{

y ∈ L2(S1,C2n) :

∫ 2π

0

y(t) dt = 0

}

.
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Let y ∈ Y2 be given. The function w(t) = −J
∫ t

0 y(s) ds, t ∈ [0, 2π], belongs to W . From
w(0) = w(2π) = 0 we see moreover that w ∈ Ez for all z ∈ X × R and Tzw = y. Hence Y1 is
transverse to the image of the Fredholm morphism T as in (6) and we obtain

ind(T ) = [E(T, Y1),Θ(Y1), T |E(T,Y1)] ∈ K−1(X,Y ).

Now we have

E(T, Y1)z = {u ∈ Ez : Tzu ∈ Y1} = {u ∈ Ez : Tzu constant }

= {(2π − t)a+ tb ∈ Ez : a, b ∈ C
2n}.

By definition of Ez, we conclude that (2π− t)a+ tb ∈ Ez if and only if (2π− t)a+ tb = Ψ(t)−1u(t),
t ∈ [0, 2π], for some function u ∈ W . From the periodicity of u, it follows that b = Ψz(2π)

−1a,
and hence

E(T, Y1)z = {(2π − t)a+ tΨz(2π)
−1a : a ∈ C

2n}.

Now we define bundle isomorphisms

E(T, Y1) → Θ(C2n), u 7→
1

2π
u(0),

Θ(Y1) → Θ(C2n), v 7→ v(0),

and a bundle morphism

N : Θ(C2n) → Θ(C2n), Nza = J(Ψz(2π)
−1 − I2n)a.

We obtain a commutative diagram

E(T, Y1)
T //

��

Θ(Y1)

��
Θ(C2n)

N // Θ(C2n)

and conclude from the definition of the K-theory groups that

ind(T ) = [Θ(C2n),Θ(C2n), N ] ∈ K−1(X,Y ).

Finally, note that

Nz = J(Ψz(2π)
−1 − I2n) = J(−JΨz(2π)

T J − I2n) = ΨT
z (2π)J − J = (Ψz(2π)− I2n)

T J

and, by deforming J inside GL(2n,C) to −I2n, we obtain from Lemma A.1 the second assertion
of Theorem 3.7.
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6.3 Proof of Theorem 5.2

In this final part of Section 6 we prove Theorem 5.2. Throughout the proof, I = [a, b] denotes
a compact interval in R. At first we introduce a bifurcation theorem for continuous paths of C2

functionals of Fredholm type (cf. [22, Thm. 2.1]).

Theorem 6.4. Let H be a separable Hilbert space and ψ : I ×H → R a continuous map such
that each ψλ = ψ(λ, ·) : H → R, λ ∈ I, is C2 and its derivatives depend continuously on
(λ, u) ∈ I ×H. Assume that 0 is a critical point of each ψλ and that the corresponding Hessians
Lλ are Fredholm with La and Lb invertible. If sf(L) 6= 0, then the interval (a, b) contains at least
one point of bifurcation of critical points of ψ from the trivial branch I × {0} ⊂ I ×H.

Note that, if we apply Theorem 6.4 to the functionals ψλ from Section 3 in the case that
(X,Y ) = (I, ∂I), we obtain bifurcation of weak solutions of the Hamiltonian systems (2) from

the branch I × {0} ⊂ I ×H
1
2 (S1,R2n) provided that the spectral flow of the path L in (21) is

non-zero.
For the proof of Theorem 5.2 let now X be a path-connected topological space and ∅ 6= Y ⊂ X
closed such that Lλ is invertible for all λ ∈ Y . By the implicit function theorem, bifurcation
can occur only at points λ ∈ X where Lλ is non-invertible and consequently Y is contained in
X \B(H).
We fix a point λ0 ∈ Y and let γ̃1, γ̃2 and γ̃3 be three paths such that γ̃1(a) = γ̃3(a) = λ0, γ̃1(b) =

γ̃2(a) ∈ Y and γ̃3(b) = γ̃2(b) ∈ Y . This yields a path of operators B : I → FS(H
1
2 (S1,R2n)) by

Bλ = (L ◦ (γ̃1 ∗ γ̃2 ∗ γ̃
−1
3 ))λ, where γ̃−1

3 (t) = γ̃3(a+ b − t), t ∈ I, denotes the inverse path of γ̃3.
Since B is closed, we conclude from Lemma 3.1 and Lemma B.2 iii) that sf(B) = 0. From this
and the first two assertions of Lemma B.2, it follows that

sf(L ◦ γ̃2) = sf(L ◦ γ̃3)− sf(L ◦ γ̃1). (28)

Let now C be a path component of X \B(H) such that C ∩Y 6= ∅. We assign an integer to C by
ι(C) = sf(L◦ γ̃1), where γ̃1 is any path which connects λ0 and some point λ1 ∈ C∩Y . In order to
show that ι(C) is well defined, let γ̃3 be another path connecting λ0 and some point λ2 ∈ C ∩Y .
We join λ1 and λ2 by a path γ̃2 in C and consider the continuous path of C2 functionals

ψ̃ : I ×H
1
2 (S1,R2n) → R, ψ̃(λ, u) = ψ(γ̃2(λ), u)

The critical points of ψ̃ are the weak solutions of the Hamiltonian systems

{

Ju′(t) +∇uH(γ̃2(λ), t, u(t)) = 0, λ ∈ I,

u(0) = u(2π),
(29)

and the Hessians at 0 ∈ H
1
2 (S1,R2n) are given by the operators L ◦ γ̃2. We conclude from

Theorem 6.4 that sf(L ◦ γ̃2) = 0, because otherwise there is a bifurcation point of (29) and
consequently a bifurcation point for (2) on γ̃2(I) ⊂ C ⊂ X \ B(H). Therefore, we see by (28)
that ι(C) is well defined.
Now, given any path γ : (I, ∂I) → (X,Y ), it follows from Theorem 4.1 and (28) that

d(γ) = sf(L ◦ γ) = ι(Cγ(b))− ι(Cγ(a)),

where we denote by Cλ the component ofX\B(H) to which λ ∈ Y belongs. This proves Theorem
5.2, since if d(γ) 6= 0 for some γ : (I, ∂I) → (X,Y ), it may be concluded that X \ B(H) has at
least two path components. Moreover, if there exists a sequence γn : (I, ∂I) → (X,Y ) such that
|d(γn)| → ∞, it follows that that the number of path components of X \B(H) cannot be finite.
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A K-theory

The aim of this appendix is to recall briefly the definition and main properties of topological
K-theory of locally compact spaces. Our main references are [28] and [15].
Let X be a locally compact topological space. We consider triples {E0, E1, a}, where E0 and E1

are complex vector bundles over X and a : E0 → E1 is a bundle morphism. The support supp ξ
of such a triple ξ = {E0, E1, a} is defined to be the closed subset of X consisting of those points
λ ∈ X for which aλ : E0,λ → E1,λ is not an isomorphism. ξ is said to be trivial if supp ξ = ∅. We
call {E0

0 , E
0
1 , a0} and {E1

0 , E
1
1 , a1} isomorphic, if there exist bundle isomorphisms ϕ0 : E0

0 → E1
0

and ϕ1 : E0
1 → E1

1 such that the diagram

E1
0

a1 // E1
1

E0
0

ϕ0

OO

a0 // E0
1

ϕ1

OO

commutes.
For a closed subspace Y ⊂ X , we denote by L(X,Y ) the set of isomorphism classes of all triples
ξ = {E0, E1, a} on X such that supp ξ is a compact subset of X \ Y . Note that L(X,Y ) is a
semigroup under the operation of direct sum and

supp ξ0 ⊕ ξ1 = supp ξ0 ∪ supp ξ1, ξ0, ξ1 ∈ L(X,Y ).

We call ξ0 = {E0
0 , E

0
1 , a0} and ξ1 = {E1

0 , E
1
1 , a1} homotopic, ξ0 ≃ ξ1, if there is an element in

L(X × [0, 1], Y × [0, 1]) such that its restrictions to X × {0} and X × {1} are isomorphic to ξ0

and ξ1, respectively. Finally, we introduce an equivalence relation ∼ on L(X,Y ) by ξ0 ∼ ξ1 if
there are trivial elements η0, η1 ∈ L(X,Y ) such that

ξ0 ⊕ η0 ≃ ξ1 ⊕ η1.

The K-theory K(X,Y ) of the pair (X,Y ) is defined as the set of equivalence classes of L(X,Y )
with respect to this equivalence relation. Henceforth we denote the class of {E0, E1, a} ∈ L(X,Y )
in K(X,Y ) by [E0, E1, a]. The sum operation

[E0
0 , E

0
1 , a0] + [E1

0 , E
1
1 , a1] = [E0

0 ⊕ E1
0 , E

0
1 ⊕ E1

1 , a0 ⊕ a1] ∈ K(X,Y )

turns K(X,Y ) into an abelian group, where the neutral element is represented by any trivial
element in L(X,Y ).
For a proper map f : (X,Y ) → (X ′, Y ′) of topological pairs, we obtain a homomorphism

f∗ : K(X ′, Y ′) → K(X,Y ), f∗[E0, E1, a] = [f∗E0, f
∗E1, f

∗a],

where f∗E0, f
∗E1, denote the pullback bundles and (f∗a)λ = af(λ), λ ∈ X . If g : (X,Y ) →

(X ′, Y ′) and f : (X ′, Y ′) → (X̃, Ỹ ) are proper, then

(f ◦ g)∗ = g∗ ◦ f∗ : K(X̃, Ỹ ) → K(X,Y ).

Moreover, f∗ = g∗ : K(X ′, Y ′) → K(X,Y ) if f ≃ g : (X,Y ) → (X ′, Y ′) are properly homotopic
maps. Consequently, K is a contravariant functor from the category of pairs of locally compact
spaces and closed subspaces to the category of abelian groups. A slightly different homotopy
invariance property, which is often useful in computations, reads as follows:
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Lemma A.1. Let E0 and E1 be vector bundles over X and a : [0, 1] → hom(E0, E1), a path of
bundle morphisms. Set ξt := {E0, E1, at} and assume that supp ξt ⊂ K ⊂ X \ Y , t ∈ [0, 1], for
some compact set K ⊂ X. Then

[E0, E1, a0] = [E0, E1, a1] ∈ K(X,Y ).

The following lemma states the so called logarithmic property of K.

Lemma A.2. If [E0, E1, a0], [E1, E2, a1] ∈ K(X,Y ), then their sum is given by

[E0, E1, a0] + [E1, E2, a1] = [E0, E2, a1 ◦ a0] ∈ K(X,Y ).

The odd K-theory groups are defined by

K−1(X,Y ) = K(X × R, Y × R)

and, as above, any proper map f : (X,Y ) → (X ′, Y ′) induces a homomorphism

f∗ : K−1(X ′, Y ′) → K−1(X,Y ).

Finally, we want to recall the definition of the well known isomorphism c1 : K−1(I, ∂I) → Z

coming from the first Chern number, where I ⊂ R is any compact interval. Let

[E0, E1, a] ∈ K−1(I, ∂I) = K(I × R, ∂I × R)

be given. Since I × R is contractible, we can find global trivialisations ψ : E0 → (I × R) × Cn

and ϕ : E1 → (I × R)× Cn. Then

c1([E0, E1, a]) = w(det(ϕ ◦ a ◦ ψ−1) ◦ κ, 0) ∈ Z, (30)

where κ : S1 → I × R is any simple positively oriented curve surrounding the support of
{E0, E1, a}, and w(·, 0) denotes the winding number for closed curves in C \ {0} with respect to
0.

B Spectral Flow

The spectral flow of paths of selfadjoint Fredholm operators was introduced by Atiyah, Patodi
and Singer in [3] in connection with the eta invariant and spectral asymmetry. Since then it has
reappeared in several other contexts like Floer homology, the distribution of eigenvalues of the
Dirac operator, odd Chern characters, gauge anomalies and bifurcation theory, among others.
Detailed references can be found in the introduction of [10]. We base our presentation essentially
on the recent work [5].
We follow the notation of Section 2.2 and assume that W and H are complex Hilbert spaces with
a dense continuous inclusion W →֒ H . Let us recall that for a selfadjoint Fredholm operator
T0 ∈ FS(W,H), 0 ∈ R either belongs to the resolvent set or it is an isolated eigenvalue of finite
multiplicity. Since the set of Fredholm operators is open in L(W,H), there exists Λ > 0 such
that ±Λ do not belong to the spectrum

σ(T0) = {λ ∈ R : λ− T0 /∈ GS(W,H)}

of T0 and σ(T0) ∩ [−Λ,Λ] consists only of isolated eigenvalues of finite multiplicity. If now Γ
denotes the simple closed curve surrounding 0 positively along the circle of radius Λ, then
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χ[−Λ,Λ](T0) =
1

2πi

∫

Γ

(λ− T0)
−1 dλ,

is the orthogonal projection onto the direct sum of the eigenspaces of T0 with respect to eigen-
values in [−Λ,Λ]. In what follows we set for −Λ ≤ c < d ≤ Λ

E[c,d](T0) =
⊕

λ∈[c,d]

ker(λ− T0).

From the continuity of spectra, it is readily seen that there exists a neighbourhood N(T0,Λ) ⊂
FS(W,H) of T0 such that ±Λ /∈ σ(T ) and the rank of the projection χ[−Λ,Λ](T ) has the same
finite value for all T ∈ N(T0,Λ).
Let now A : [a, b] → FS(W,H) be a path of selfadjoint Fredholm operators. We choose a
subdivision a = t0 < t1 < . . . < tN = b, operators Ti ∈ FS(W,H) and numbers Λi > 0,
i = 1, . . . N , such that the restriction of the path A to [ti−1, ti] runs entirely inside N(Ti,Λi).
Accordingly, dimE[−Λi,Λi](At) is constant for t ∈ [ti−1, ti], i = 1, . . . , N . The spectral flow of A
is defined by

sf(A) =

N
∑

i=1

dimE[0,Λi](Ati)− dimE[0,Λi](Ati−1 ) ∈ Z. (31)

Note that, roughly speaking, sf(A) counts the number of negative eigenvalues of Aa that become
positive as the parameter t travels from a to b minus the number of positive eigenvalues of Aa

that become negative; i.e. the net number of eigenvalues which cross zero
There exist other definitions of the spectral flow under various assumptions in the literature.
We want to mention here the work of Robbin, Salamon [26] in the case W 6= H and Fitz-
patrick, Pejsachowicz, Recht [10] for W = H . The relation between those several existing
definitions, which all have the same interpretation, was clarified by Lesch in [17]. Let us denote
by Ω(FS(W,H),GS(W,H)) the set of all paths in FS(W,H) having ends in GS(W,H). By
using Proposition 4.6 of [26], one may restate the uniqueness of the spectral flow as proved in
[17, Thm. 5.13] as follows:

Theorem B.1. Let

µ : Ω(FS(W,H),GS(W,H)) → Z

be a map such that

i) µ(A1) = µ(A2) if A1,A2 are homotopic inside Ω(FS(W,H),GS(W,H)).

ii) If A1,A2 ∈ Ω(FS(W,H),GS(W,H)), then

µ(A1 ⊕A2) = µ(A1) + µ(A2).

iii) If A ∈ Ω(FS(W,H),GS(W,H)) is constant, then µ(A) = 0.

iv) There is a rank one orthogonal projection P with ker(P ) ⊂W such that for all T ∈ S(W,H)
with (IH − P )T (IH − P ) ∈ GS(ker(P )) the path

At = t P + (IH − P )T (IH − P ), t ∈ [−1, 1],

has µ(A) = 1.
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Then µ equals the spectral flow.

Besides the four characteristics stated in Theorem B.1, we want to mention three further
properties in the following lemma.

Lemma B.2. Let A,A1,A2 : [a, b] → FS(W,H) be three paths of selfadjoint Fredholm operators.

i) sf(A1 ∗ A2) = sf(A1) + sf(A2), whenever the concatenation of the paths Ai, i = 1, 2, is
defined,

ii) sf(A′) = − sf(A), where A′(t) = A(a+ b− t) denotes the inverse path of A,

iii) if there exists a path of selfadjoint operators K : [a, b] → S(H) such that A1
t −A2

t = Kt |W∈
K(W,H), t ∈ [a, b], and Ka = Kb = 0, then

sf(A1) = sf(A2).

Note that i) and ii) follow immediately from (31), whereas iii) is a simple consequence of the
homotopy invariance stated in Theorem B.1.
Finally, we want to point out that one can define the spectral flow for paths of selfadjoint
Fredholm operators acting on real Hilbert spaces verbatim by (31). On the other hand, if W
and H are real Hilbert spaces and T ∈ FS(W,H) is a selfadjoint Fredholm operator, then the
complexification TC acting between the complexified spaces WC and HC defines an element
of FS(WC, HC) (cf. [32]). Moreover, σ(T ) = σ(TC) and dimE[a,b](T ) = dimE[a,b](T

C) for
every compact interval [a, b] such that [a, b] ∩ σ(T ) consists only of isolated eigenvalues of finite
multiplicity and a, b /∈ σ(T ). Now given a path A : [a, b] → FS(W,H), it follows from the
definition in (31) that

sf(A) = sf(AC), (32)

where AC : [a, b] → FS(WC, HC) denotes the path of complexified operators.
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